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Abstract Microarray measurements are being widely
used to infer gene functions, identify regulatory mecha-
nisms and to predict phenotypes. These measurements
are usually made and recorded to high numerical preci-
sion (e.g. 0.24601). However, aspects of the underlying
biology, including mRNA molecules being highly un-
stable, being only available in very small copy numbers
and the measurements usually being made over a het-
erogeneous population of cells, ought to make us scep-
tical about the reproducibility of these measurements
and thus the numerical precisions reported. In this pa-
per, we show that over a range of different procedures
(classification, cluster analysis, detection of periodically
expressed genes and the analysis of developmental time
course data), the quality of inference from microarray
data does not significantly degrade when the numeri-
cal precision is lowered by quantization. A surprising
finding, with respect to classification problems, is that
much of the discrimination is retained with numerical
precision as low as binary (i.e. whether the gene is ex-
pressed or not). From this premise we show preliminary
results that similarity metrics suitable for binary spaces,
namely the Tanimoto metric used in chemoinformatics,
can be successfully deployed to improve classification
accuaracies of binarized transcriptome data.
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1 Introduction

Microarray technology enables the simultaneous mea-
surement of expression levels of thousands of genes
in a single experiment. Work on developing diagnostic
tools, inferring functions of unknown genes by ob-
serving similarity of expression patterns with genes of
known function across a range of experiments, the
detection of genes operating in response to specific en-
vironmental influences such as heat shock (e.g. Causton
et al. [1]) and the use of high density arrays (e.g. Stolc
et al. [2]) to detect alternative splicing action that of-
fers enhanced functional diversity at the protein level
are applications that follow from these high through-
put measurements. Transcriptome measurements have
been applied to a range of problems [3-§].

From a machine learning perspective, too, the avail-
ability of transcriptome data has caught the fascination
of several researchers. Apart from the natural curiosity
induced by the post-genomic era, more fundamental re-
search challenges have been of interest. An example of
this is the high dimension, small sample problem inher-
ent in most transcriptome based classification problems
that have been described in the literature. Owing to
this, and other reasons, a plethora of machine learning
(or statistical inference) methods have been developed
and applied to transcriptome measurements.

We take a critical look at a particular aspect of the
problem, that of the numerical precision with which
mRNA concentration measurements can be utilized
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in making inferences. By numerical precision we refer
to the difference between expresion levels quoted as
2.4601 and simply 2. Clearly, the former looks unreal-
istic and some truncation seems reliable. But how low
can this precision be dropped?

Questioning such numerical precision is motivated
by several biological considerations. Firstly, microarray
hybridisation is carried out against mRNA samples
taken from a population of cells from a biological
sample of interest [9-11]. Except in few studies, dif-
ferent cells in such a population can potentially be in
different states with respect to the expression of their
genes. The few exceptions include forcing cells into
synchrony for investigating cell cycle behaviour [5] and
entraining cultured cells for observing circadian rhythm
[12]. While there is apparent broad acceptance of syn-
chronization in the literature, the topic is not without
controversy [13]. Secondly, there is only a finite number
of mRNA molecules in any particular cell. The total
number of mRNA molecules is of the order of 50,000
in a mammalian cell, leading to an average of about
ten molecules per cell for a gene of interest [11, 14].
With the underlying biology of such small numbers,
pooling of cells and subsequent amplification of the
extracted mRNA population can potentially give rise to
a variable environment against which the arrays are set
to hybridise [10]. Thirdly, in the cellular context from
which it is extracted, mRNA is an inherently unstable
molecule which is subject to decay at different rates
[15, 16] often much faster than the decay of proteins.
Thus the process of extracting cellular mRNA will be
subject to significant variability prior to subsequent
amplification processes. Fourthly mRNAs undergoing
translation can be bound to several ribosomal com-
plexes, the effect of which may be to restrict the avail-
ability of these molecules [17]. Thus the overall picture
is quite different from one in which molecules of very
high abundance, free-floating in the medium, are set to
hybridise efficiently onto the probes of a microarray.

In a critical appraisal of the reproducibility and relia-
bility of the microarray technology, Draghici et al. [18]
conclude as follows: “...the existence and direction of
gene expression changes can be reliably detected for
the majority of genes. However, accurate measure-
ments of absolute expression levels and the reliable
detection of low abundance genes are currently beyond
the reach of microarray technology.” Put another way,
how similar are the transcriptome measurements of
biological samples coming from the same tissue or cell
culture? It is generally acknowledged that biological
variability is high when compared to the technical vari-
ability of hybridizing amplified mRNA against different
microarrays [41, 42].
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An idea of the variation in biological replicates can
be gained looking closely at studies comparing mi-
croarray measurements with quantitative PCR (qPCR)
measurements. Tomayko et al. [44] compare mRNA
measurements of 61 genes using microarray and qPCR.
Figure 1b shows their results. When one measures the
correlation between the two sources of measurements,
taken across all the data, one obtain a correlation of
0.82, very close to what is reported by the authors.!
However, a better description of the data is that it is
bimodal with two outlier data points. When the up and
down-regulated sets of genes are considered separately,
with the outliers removed, the correlation are 0.36 and
0.47 respectively. This adds further weight to Draghici
et al.’s observation that it is the up or down regulation
information, rather than the precise expression levels,
that is reliable in microarray data.

To overcome all these issues we propose the use of
binary gene expression values and take a computational
approach to explore the performance of quantized tran-
scriptome measurements. We used Zhou et al.’s [19]
binarization method to obtain different levels of quan-
tization, and ask if researchers would have reached
different conclusions, had they worked with data repre-
sented at lower precisions. We consider five inference
problems, which are: (a) inferring gene function from
gene expressions by posing a classification problem, us-
ing both two colour spotted array data and Affymetrix
synthetic oligonucleotide data; (b) classification of phe-
notypes (medical conditions) from gene expressions;
(c) function inference by cluster analysis; (d) detecting
periodically expressed genes in the cell cycle and (e)
analysing developmental time series. We report in this
paper observations on a sample of problems to illus-
trate the critical question we pose and present some
further analyses in on-line supplementary material
accompanying this paper.

We stress that this work should not be considered
as questioning the capability of microarrays as mea-
surement devices to accurately measure mRNA con-
centrations. Several spike-in studies, and inter-platform
comparisons [43] demonstrate excellent similarities be-
tween technical replicates (Fig. 1a). Our contention is
that the biological variability of the source of the data
is so highly variable that binary precision is best suited
for inference.

IThis data is not available in the public domain. We re-created
the expression levels by measuring off an enlarged printout.
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Figure 1 Comparison of
6000

MAQC data (Technical replicates)

Tomayko et al. data (Biological Replicates)

reproducibility of mRNA
measurements. (a) example
of technical replicates of two
Affymetrix arrays achieving a
correlation of 0.99 taken from
[43]. (b) example of biological
variability from a comparison
of microarray and qPCR
measurements [44].
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2 Quantization

Quantization is a topic that has been researched ex-
tensively in the context of rate distortion theory for
data reduction, where the problem is one of faithful
reproduction of data at a constrained data rate. To
achieve optimal quantization, statistical properties of
the signal and perceptual properties at the receiver
(e.g. spectral weighting in speech coding) have to be
exploited.

There is some work in the literature on quantizing
gene expression data, starting from [20, 21], in which
discrete expression levels were used to derive gene
interaction networks in a Bayesian setting. They set
up a multinomial probability distribution over three
discrete levels —1 for under-expressed genes, +1 for
over-expressed genes and 0 for the remainder, using
threshold values of —0.5 and +0.5 on a logarithmic
scale of expressions. While acknowledging that such a
discretization procedure might suffer loss of informa-
tion, Friedman et al. [20] also state that the discrete
space has greater flexibility to capture combinator-
ial dependencies that cannot be extracted from linear
Gaussian models operating on the raw data.

Camillo et al. [22] suggest quantization may be a
means of reducing the probability of finding random
associations between genes, given the fact that often
the number of data points is smaller than the number
of genes in microarray experiments. Similar to [20],
they quantize to three levels, proposing a method to
set thresholds based on an expected balance between
true positives and false positives. It is argued that this
approach yields better thresholds to discretize gene
expression data, by comparing the resulting gene inter-
action networks on simulated data.

Shmulevich et al. [23] argue for binary representa-
tion and the use of Hamming distance as a measure of
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inverse similarity between gene expression signatures.
They use a genetic algorithms approach to normalize
microarray data, followed by a discretization proce-
dure that looks for sudden changes in sorted gene ex-
pressions. The authors argue that different thresholds
should be set for individual genes, as opposed to a
global threshold for the entire experiment. Using two
very small cancer datasets they demonstrate that dis-
crimination between classes exist under Hamming dis-
tance between profiles. Surprisingly the paper does not
offer a comparison of discrimination using the raw and
quantized data. The two examples chosen are very easy
classification tasks in which the classes are well sepa-
rated. While the above work is the closest in literature
to the central theme of our paper, our analyses report
novel results. We analyse a range of inference problems
in classification, clustering, periodicity determination
and in the analysis of developmental time series, and
systematically quantify what is lost when scaling down
from raw down to binary precision. In all these cases
we compare what might be achieved at binary lev-
els with the original inference made by authors who
published them. Our quantification includes appropri-
ate measures of comparison, for example in quanti-
fying the loss in classification, we use area under the
ROC curve.

For quantizing gene expressions, we follow [19], who
fit a mixture Gaussian model to log expression levels
(Fig. 2). Our justification for choosing the method in
[19] is that it is relatively more principled than other
approaches to quantization reviewed above. Arbitrary
thresholds set by other researchers are not necessarily
transferable across different platforms or experiments
due to variabilities induced by image processing and
normalization, while the method in [19] depends on the
underlying probability density of the expression levels
and hence the idea is portable to any situation.

@ Springer



270

J Sign Process Syst (2010) 58:267-279

Figure 2 Mixture Gaussian 2
distributions and corre- 18l
sponding histograms of gene '
expression levels for a subset 161
of data taken from a sample 1.4+
of (a) Affymetrix gene 1210
expression measurements i
(Causton et al. [1]), and
(b) from a cDNA experiment 08
(Eisen et al. [29]). (¢), (d) and 0.6
(e) illustrate how a mixture 04}
model is used in setting a 02l
quantization threshold [19] '
(see Section 4). When the 0_5 0 5
standard deviations of the (C)
expressed genes are the same, 5
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set at the average of the 1.8+
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3 Simulation Studies

Classification Two types of classification problems are
usually posed on transcriptome data. Function predic-
tion, where class labels correspond to genes in particu-
lar functional groups, and phenotype prediction where
class labels correspond to different diagnostic outcomes
in a clinical setting. The latter, particularly in the case of
various types of cancer, has been studied widely while
examples of the former include [4] and [24].

Using SVMs as classifiers, implemented in the
SVMlight package [25], and using cross validation to
optimise the free parameters, we measured classifier
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performance by means of areas under receiver operat-
ing characteristics curves. In all experiments, we con-
firmed that cross validation error of the baseline (i.e.
unquantized raw data) is identical to what was claimed
in each of the original publication.

As examples of function prediction by classification
we used two datasets of classifying ribosomal genes
from all others, following the work reported in [4].
One of these used cDNA spotted arrays and the other
used synthetic oligo arrays (Affymetrix arrays). Missing
values in the datasets were simply replaced by zeros.
For phenotype classification we considered the well
known problem of molecular classification of two types
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Table 1 Loss of discriminability in a sample of classification problems when expression data is quantized to three and two levels.

Dataset Raw data 3 level of quantization Binary

Golub et al. [26]: Leukhemia data, 5000 genes, 38 ALL vs 0.92 £+ 0.05 0.89 £ 0.06 0.89 £ 0.07
37 AML samples

Ramaswamy et al. [27]: Cancer (190) vs non-cancer (66) 0.90 + 0.03 0.89 £ 0.03 0.90 + 0.04
classification; 7000 genes

Brown et al. [4]: Ribosomal genes (121) vs non-ribosomal (2000) 0.99 + 0.004 0.99 £ 0.001 0.99 + 0.001
genes in yeast from 79 different hybridizations; cDNA arrays

Causton et al. [1]: Classifying ribosomal genes as above, but with 0.95 +0.02 0.96 + 0.01 0.95 +0.01

45 hybridizations using Affymetrix arrays

Averages and standard deviations across 25 random bootstrap partitions of areas under the receiver operating characteristics curve are

shown for a sample of problems.

of cancer (ALL/AML) considered in [26] and a similar
problem, the GCM problem, considered in [27].

Table 1 shows the result for four of the datasets that
we worked with, confirming that even under extreme
levels of quantization discriminability between these
classes is retained. A similar conclusion can be reached
by looking at Fig. 3, showing the ROC curves with
original and quantized data for one of the ribosome
classification problems [4].

Clustering The most widely used inference tool in
transcriptome analysis is clustering. One hypothesizes
that genes that are co-regulated or those that have sim-
ilar biological functions might show similar expression
profiles under different hybridisation conditions, and
hence may be found in the same clusters. To demon-
strate that inferences made from cluster analysis do
not degrade with lower precision data, we adopted two
computational strategies. We took several published
microarray cluster studies and computed the average
pairwise correlation of gene profiles, where the pairs
were taken from within and across clusters. Figure 4
shows that the the average within cluster correlation
is much higher than the average correlation of pairs of
genes taken from outside clusters. The discrimination is
not affected significantly with quantization of the data
down to binary precision.

As a second illustrative example, we analysed the
clusters published in [29]. For the ten clusters identified
in this work, we computed average pairwise within and
cross class correlations for every pair of clusters. The
resulting 10 x 10 matrix is shown as an intensity plot in
Fig. 5. For two of these, identified as clusters B and C in
the paper, we compared the histograms of within clus-
ter and cross cluster pairwise gene correlations. These
two distributions being well separated is an indication
of how well-clustered the two groups of genes are,
in the space of expression profiles. We attempted to
quantify how much the separation between these two
distributions degrade when the data is quantized to
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Figure 3 Change in classification performance with progressive
quantization of gene expression levels for the problem of discrim-
inating ribosomal yeast genes from data published by Causton
et al. [1]. Receiver operating characteristic curves and areas
under the curves, averaged over 25 bootstrap partitions of the
data, are shown in (a) and (b) respectively. Error bars over these
partitions are also shown in (b).
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Figure 4 Average within and
cross group correlations for a
cluster of genes taken from
Tyer et al. [28]’s study of
human fibroblast response to
serum. (a) and (b) are the
expression levels of an
identified cluster of 100
genes, with raw and
binary-quantized data.

(¢) shows correlations,
illustrating that the average
within group correlations stay
much higher than cross group
correlations even under
extreme quantizations.
Quantization levels 1—raw
data, 2—three levels (+1, 0
and —1), 3—binary.

Figure 5 Average pairwise
correlations, within and
cross-group, of ten clusters
taken from Eisen et al. [29],
shown as intensity plots.

(a) and (c) are 10 x 10
average correlation matrices
computed using the raw
expression levels and
binary-quantized expression
levels respectively. (b) shows
within group and cross group
correlations of genes in
clusters identified by labels B
and C in [29] as histograms.
(d) shows the same
histograms when the data is
quantized to binary precision.
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different levels. A convenient way of quantifying the
separation between distributions is the Fisher ratio,

abs(u1(g) — n2(g)

P& == "0 tor®

(1

which has been used in many other similar contexts,
for example in selecting discriminant genes, where
[n1(g), o1(g)] and [u2(g), 02(g)] are the means and stan-
dard deviations of the two distributions. We find a
reduction in Fisher ratio from 3.85 to 1.25 when the
data was quantized from its original to binary pre-
cision and some overlap between the distributions is
seen in the histograms. How much discriminability has
been lost? The Fisher ratio does not give an intuitive
picture of this loss. In Fig. 6 we give a simulation to
gain a feel for this by comparing the Fisher ratios and
areas under receiver operating characteristics curves
(AUROC) for randomly chosen one dimensional
Gaussian distributions. AUROC, effective in quantify-
ing classifier performance, has a useful statistical mean-
ing: when one is presented with two data points, one
from each class of a two class classification problem,
the AUROC is the probability the classification system
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Figure 6 In comparing Fisher ratios with area under receiver
operating characteristics curves (AUROC), of interest is how
much discrimination is lost when the Fisher ratio between clus-
ters reduces (from 3.85 to 1.25, in the example considered) as
a result of quantization. We randomly generated several pairs
of one dimensional Gaussian densities and measured the two
figures of merit for their separation. The points on the scatter
diagram correspond to pairs of Gaussians and the continuous
line is an interpolation through them, obtained by curve fitting.
Note that at a Fisher ratio of 1.25, AUROC has only reduced
to 0.95, demonstrating that significant discriminability is retained
between the clusters.

under study correctly ranks them. In the clustering
context we have here, given two pairs of genes, one
pair from the same cluster and the other pair formed
by genes from different clusters, this figure is the prob-
ability we would correctly rank the pairs as to their
likelihood of having come from the same cluster. Given
that, the observed worst case Fisher ratio of 1.25, under
extreme quantization, corresponds to an AUROC of
0.95, meaning that only 5% of the genes will be grouped
into wrong clusters, had we worked with binarized,
rather than the original, data.

In a second computational strategy, we pooled genes
from published clusters and applied K-Means cluster-
ing algorithm, at raw and binarized precisions, and
compared the resulting cluster memberships. To quan-
tify the overlap between genes in a particular cluster,
we used the F1 measure, used widely in information
retrieval problems (more details in supplementary ma-
terial). This analysis confirmed significant overlap in
membership, results of which are presented as supple-
mental information.

Periodic Expression 'We now consider the detection of
periodically expressed genes, using a recent yeast cell
cycle data from [30]. We took a subset of genes iden-
tified as cell cycle regulated, with peak expression in
the § phase of the cycle. Our objective is to show how
the ability to detect periodicity in the expression of
these genes degrades with quantization of the data. We
adopted a computational strategy similar to that used
in clustering above, and measured the average pair-
wise correlation amongst three groups of genes: (a) the
99 genes which are known to be periodically expressed,
yielding an average correlation measure, averaged
across 99 x 98/2 = 4851 pairwise correlations; (b) simi-
lar average correlation across an arbitrary group of 100
genes taken from the dataset, but not overlapping with
those in group (a); and (c) average correlation between
the above 99 genes and 99 x 100 genes whereby we
picked 100 genes at random to correlate against the 99
above. For correct detection of periodically expressed
genes we would expect group (a) to show higher av-
erage correlation than those of groups (b) and (c). Of
interest is whether the average correlation amongst
group (a) genes continues to be higher than the other
two groups under increasing levels of quantization.

We find (Fig. 7) that the correlation difference we
measure, i.e. differences between within class correla-
tion of the periodically expressed genes from those for
the other two groups (mixture of periodic and aperiodic
genes and the random set of genes) do not change. Thus
even under such coarse quantization, we would have
picked out these genes as expressed in regulation with
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Figure 7 Expression profiles
of a subset of periodically
expressed genes, (a), and
binary expression profiles
after coarse quantization, (b).
(¢) shows the within class
average pairwise correlation
for three groups of genes
considered (see text),
showing that the
discriminability of the set

of periodic genes from the
remainder is robust enough
to be maintained at low
precisions of the expression
levels. Quantization levels
one and two refer to the use
of raw data and binary levels
+1, and —1.

the cell cycle in the S phase. Here our demonstration of
the effect of quantization on periodicity determination
is based on correlation, within and across groups of
genes identified as periodic. We have not re-computed
the Fourier transform with binarized data. This is be-
cause the Fourier transform is an expansion in terms
of orthogonal basis functions, correlating data against
sinusoids of varying frequencies, and thus should
produce the same results.

Developmental Time Series In a recent study [31],
the authors analyse significant changes in gene expres-
sion during embryonic development of the fruit fly
Drosophila melanogaster. To detect significant changes
they use local convolution with two step functions:

o [+1, +1, +1, +1, -1, —1, —1, —1], to detect
down-regulation; and
o [—1I,—1,—1, —1, +1, +1, +1, +1], to detect

upregulation.

The numbers of genes that undergo significant changes
in expression give a picture of major regulatory changes
during the stages of development. We re-analyzed this
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data’® at the original precision and after discretizing it
to binary precision. Figure 8 shows this comparison,
demonstrating that the numbers of genes detected as
significantly up-regulated (or down-regulated) along
the developmental time-course of interest is very much
the same at the lowest possible precision.

Classification in Binary Spaces Noting that the same
inference may be made at lower precision, binary pre-
cision in particular, leads to two other questions. Firstly,
we see a plethora of sophisticated methods for mi-
croarray gene expression analysis. Indeed, it would be
hard to find a statistical inference model that has not

2As an aside, with respect to the use of raw precision, we noted
that we were unable to achieve an exact reproduction of of the
results reported in [31], in terms of the numbers of genes detected
as increasing / decreasing in expression levels. We believe, this is
mainly because of the step function with which local correlation
is taken. The step function used in [31] ranges between 0 and 1,
while ours takes values —1 and +1. When 0 is the lower figure
any variation on the signal is suppressed (i.e. multiplying any
number by zero returns a zero). This difference does not affect
the argument developed in our paper, however.
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Figure 8 Comparison of the numbers of significantly upregu-
lated, (a), and significantly downregulated, (b), genes at different
stages of development, using raw gene expression measurements
and binary quantized expression levels.

been applied to microarray data in recent years. One
is led to ask if much of this falls into the category
of “cracking a nut with a sledgehammer”. In a recent
study comparing methods of detecting cell cycle reg-
ulated genes [32], it was found that no sophisticated
algorithm outperformed the original Fourier transform
based method used by Spellman et al. [5]. Secondly, we
could expect algorithms that are specifically designed to
deal with low precision (mainly binary) data, either for
computational or for performance reasons, to perform
well in transcriptome based inference problems. An
example of this is the use of the Tanimoto similarity in
matching chemical fingerprints, and the incorporation
of such a distance measure in a kernel classifier, as has
been attempted by Trotter [33].

Table 2 shows results of classification experiments
comparing the use of Tanimoto kernel with other classi-
fiers (see Section 4). The two microarray studies chosen
are ones for which baseline performance is not too close
to perfect classification. We have also included results
from a chemoinformatics problem for reference [34].
This is a two-class classification study that used 5747
training patterns of chemical fingerprints in 992 binary
dimensions, and the task was to classify molecules with
drug-like properties. Note the Tanimoto kernel classi-
fier has no free parameters to tune, giving it a distinct
advantage where applicable. The results suggest that
the observations seen in the chemoinformatics area of
the suitability of this metric for high dimensional binary
problems translates to gene expression measurements
as well. Quantization does slightly reduce the perfor-
mances but these are recovered by a method suitable
for high dimensional binary spaces.

Table 2 Comparison of

. e Dataset Kernel Parameters AUROC
Tanimoto kernel with linear - - -
and RBF kernels in an SVM Chemoinformatics Linear C=o00 0.87 +£0.02
classifier with quantized RBF o=,/%F C=00 0.88 £0.02
input data. Tanimoto 0.91 +0.02
Barcode 0.79 £0.01
Alon et al. [6] Linear(raw data) C=o0 0.87 £0.10
Linear C=o00 0.85 £0.06
RBF o= /% C=00 0.86 + 0.06
Tanimoto 0.88 +0.05
RBF width o is set as a Barcode 0.82+0.10
function of the total number Pomeroy et al. [40] Linear(raw data) C=o00 0.72+0.22
of training patterns . Linear C=o0 0.54 £0.46
Barcode refers to a distance RBF o= \/% ,C =00 0.59 & 0.27
to template classifier used Tanimot 0.95 £ 0.07
in [36] where the template ammoto ) :
Barcode 0.94 £ 0.05

is fixed at class means.
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Figure 9 AUROC results when gene expression data is binarized
by using a global threshold. There is a wide range of thresh-
olds over which classifier performance is very similar. Note the
dynamic ranges are different because (a) is on data supplied as
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4 Methods

The mixture Gaussian model for quantization is

M
P = AN, o)

j=1

where p (x) is the probability density of gene ex-
pression measurement, M, the number of mixture
components, and N(u, o) is a Gaussian density of mean
w and standard deviation o. Fitting such a model is
by standard maximum likelihood techniques, and we
used the gmm function in NETLAB software http://www.
ncrg.aston.ac.uk for this purpose. We used two and
three component mixtures mostly, corresponding to
M =2 and M = 3 in the above equation. After learning
parameters of the model, a threshold T is chosen as:

T=05{u+o1+pu—o3}

to achieve binary quantization. For three level quan-
tization, we fit a model of three Gaussian compo-
nents, ordered them by their means and selected two
thresholds between adjacent Gaussians using the above
formula.

Note there is some flexibility in designing a binariza-
tion scheme: (a) a global threshold obtained by pooling
the expression levels of all the genes in all the arrays of
an experiment and fitting a mixture Gaussian model to
the pooled data; (b) estimate a quantization threshold
for each gene across the different hybridizations; or (c)
quantize gene expressions on an array-by-array basis.
An example of the last of the above is the use of
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log expression levels and (b) is from raw expression levels. This
distinction is not relevant for the point we make in this paper.
Two examples are shown from (a) [4] and (b) [27].

present/absent calls from Affymetrix arrays to deter-
mine if a gene is expressed or not, where individual
arrays are processed independent of each other. For the
main message conveyed in this paper, that low preci-
sion representations still carry much of the information
needed for inference, the different quantization strate-
gies do not make a big difference. We illustrate this
in Fig. 9, by scanning a range of thresholds for global
quantization, we are able to observe a wide range of
threshold settings for which discriminant performance
remains high. Our method of choice, however, is gene-
by-gene quantization. This is because different genes
show different expression levels in cells. Genes encod-
ing transcription factors, for example, are known to be
expressed at very low copy numbers, so a low threshold
is required to detect their presence for inference.
Tanimoto distance is given by ¢/ (a + b — ¢), where ¢
is the number of genes expressed in common between
the two profiles, and a and b are the numbers of
genes expressed in each of the two profiles individually.
Pairwise similarities between items of data computed
by the above formula were used to form elements of the
kernel matrix and input to the SVM optimiser. This was
implemented within a MATLAB SVM package [35].

5 Conclusion and Discussion

Transcriptome measurements are recorded, reported
and archived on a very large scale. Public availabil-
ity of archived data has triggered extensive research
into sophisticated computational algorithms for making
functional inferences and detecting disease associated
biomarkers from gene expressions. We demonstrate
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here that the inferences drawn from such data are
largely unaffected when the precision of measurement
is dropped, often down to binary levels. This observa-
tion is consistent with the underlying biology of mes-
senger RNA molecules: that they are unstable, much
regulation takes place post-transcriptionally and tran-
scriptome measurements are usually done with a pop-
ulation of cells, averaging out inter-cell variabilities.
The seemingly high precisions in measurements re-
ported should be regarded as artefacts of measurement
systems, such as image processing and normalizations.

A very recent study by Zilliox et al. [36] carries
similar ideas to ours in advancing what the authors call
a “bar code” for microarray data, essentially suggest-
ing advantages in binary representations of microarray
data. However, several differences between that paper
and our work should be noted. Firstly, Zilliox et al. do
not make robust direct comparisons between inference
drawn from gene expressions at raw precision and ex-
pression levels quantized to binary precision. The prob-
lems on which the advantage of working with binary
precision is demonstrated, namely the tissue prediction
problem is different from the original class prediction
problems for which the array experiments were de-
signed. Secondly, the performance gains reported by
these authors is carried out against a method that can-
not be regarded as state-of-the-art. The method of Pre-
dictive Analysis of Microarrays (PAM) [37] does not
come out as a high performing method in a systematic
study conducted in [38]. Thus the comparison in [36]
is against a very weak baseline. Thirdly, the points we
make about negligible loss of the quality of inference
at low precisions covers a wider range of problems,
including, for example, the analysis of developmental
time-course data. Fourthly, we use performance mea-
sures that are appropriate for the problems at hand, for
example, the area under the ROC curve, rather than
error rates, for classifier performance. Finally, where
we demonstrate that the binary representation may also
lead to performance gains, we explicitly take advantage
of properties of high dimensional binary spaces, by use
of a specific distance measure, namely the Tanimoto
distance, integrated in a kernel discriminant (or Sup-
port Vector machine, SVM) framework. The compari-
son suggests that the Euclidean distance to a quantized
class mean vector (or bar code) actually does not carry
the performance advantage claimed in [36].

As a closing remark, we stress that the limitation
we observe in this paper is about how precision of
representing gene expression influences the inference
one can make from transcriptome data, and not about
the possibility or practicality of making such measure-
ments themselves. Studies have shown, for example

with spike-in data of known concentrations, that mi-
croarray measurements can be made over a wide range
of concentrations and our work should not be seen as
questioning their validity. Our claim, instead, is that
though the measurements themselves may be precise,
the inferences drawn from them do not change at
lower precisions. We have shown this via a range of
examples in this paper, sufficient to illustrate the point,
but have now begun a systematic study of all inference
problems that have been posed on the data archived at
the European Bioinformatics Institute’s ArrayExpress
repository. Results described in [39] are also of interest
in the context of our findings, where the authors report
that binarization of data has been helpful in improving
performance of classification systems on some bench-
mark classification tasks. While this cannot be univer-
sally true, we believe it is worth exploring further in
the context of transcriptomic data due to properties of
the underlying biology of unstable molecules, available
only in low copy numbers across a population of cells.
It is surprising indeed that the plethora of inferen-
tial tools developed in the literature, each claiming to
out-perform a sample of competing methods, appear
to have overlooked such fundamental properties of the
source of the data.
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