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Abstract This paper studies the convergence analysis of
the least mean M-estimate (LMM) and normalized least
mean M-estimate (NLMM) algorithms with Gaussian
inputs and additive Gaussian and contaminated Gaussian
noises. These algorithms are based on the M-estimate cost
function and employ error nonlinearity to achieve improved
robustness in impulsive noise environment over their
conventional LMS and NLMS counterparts. Using the
Price’s theorem and an extension of the method proposed in
Bershad (IEEE Transactions on Acoustics, Speech, and
Signal Processing, ASSP-34(4), 793–806, 1986; IEEE
Transactions on Acoustics, Speech, and Signal Processing,
35(5), 636–644, 1987), we first derive new expressions of
the decoupled difference equations which describe the
mean and mean square convergence behaviors of these
algorithms for Gaussian inputs and additive Gaussian noise.
These new expressions, which are expressed in terms of the
generalized Abelian integral functions, closely resemble
those for the LMS algorithm and allow us to interpret the
convergence performance and determine the step size
stability bound of the studied algorithms. Next, using an
extension of the Price’s theorem for Gaussian mixture,
similar results are obtained for additive contaminated
Gaussian noise case. The theoretical analysis and the

practical advantages of the LMM/NLMM algorithms are
verified through computer simulations.

Keywords Adaptive filtering . Robust statistics .

Least mean square/M-estimate . Impulsive noise

1 Introduction

Adaptive filters are frequently employed to handle filtering
problems in which the statistics of the underlying signals
are either unknown a priori, or in some cases, slowly-
varying. Many adaptive filtering algorithms have been
proposed and they are usually variants of the well known
least mean square (LMS) [1] and the recursive least squares
(RLS) [2] algorithms. An important variant of the LMS
algorithm is the normalized least mean square (NLMS)
algorithm [3, 4], where the step size is normalized with
respect to the energy of the input vector. Due to the
numerical stability and computational simplicity of the
LMS and the NLMS algorithms, they have been widely
used in various applications [5].

Other studies on the variants of the LMS and NLMS
algorithms have also been very active, among which their
robust counterparts in impulsive noise environment are of
great practical interests. This is because their performances
will deteriorate significantly when the additive noise is of
impulsive nature [6, 7], as both the LMS and NLMS
algorithms assume that the additive noise is Gaussian
distributed. Considerable efforts have been devoted to
combat this adverse effect of impulsive noise on various
adaptive filtering algorithms [7–12]. Among them, the least
mean M-estimate (LMM) [7] algorithm, and its step size
normalized version, the normalized least mean M-estimate
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(NLMM) algorithm are two efficient generalizations of the
LMS family. Like the recursive least M-estimate (RLM)
algorithm [12], which is a robust variant of the RLS
algorithm, they are derived from the concept of robust
statistics techniques [13] where the M-estimate function
[13] is minimized instead of the MSE to improve the
robustness to impulsive noise. A common and important
feature of these robust algorithms is the use of error
nonlinearity to suppress the adverse effect of impulsive
errors with large amplitude.

Because of the importance of these adaptive filtering
algorithms, their convergence performance analyses have
been long standing research problems. The convergence
behavior of the LMS algorithm for Gaussian inputs was
thoroughly studied in the classical work of Widrow et al.
[1], in which the widely used concept of independence
assumption was first introduced. Other related studies of the
LMS algorithm with independent Gaussian inputs include
[14–16]. On the other hand, the NLMS algorithm generally
possesses an improved convergence speed over the LMS
algorithm, but its analysis is more complicated due to the
step size normalization. In [17] and [18], the mean and
mean square behaviors of the NLMS algorithm for
Gaussian inputs were studied. Analysis for independent
Gaussian inputs in [19] also revealed some of the
advantages of the NLMS algorithm over the LMS algo-
rithm. Due to the difficulties in evaluating the expectations
involved in the difference equations for the mean weight-
error vector and its covariance matrix, and hence in
deriving the general expressions for these equations, the
works in [17] and [18] only concentrated on certain special
cases of eigenvalue distribution of the input autocorrelation
matrix. In [20] and [21], simplified input data models were
introduced to facilitate the analysis so that useful analytical
expressions can still be derived. In [22–24], the averaging
principle was invoked to simplify the expectations involved
in the difference equations. Basically, the normalization
term is assumed to vary slowly with respect to the input
correlation term and the power of the input vector is
assumed to be either chi-square distributed with L degrees
of freedom [22] or integrated otherwise [24]. Recently,
Sayed et al. [25] proposed a unified framework based on
the concept of energy conservation for analyzing the
convergence of adaptive filtering algorithms. It has been
applied to different adaptive filtering algorithms with
satisfactory results [26, 27]. Other related works for the
normalized sign-sign algorithm [28] and the NLMS
algorithm in Gaussian noise environment with white input
signal can be found in [29].

Convergence behavior of the RLM algorithm in con-
taminated Gaussian (CG) noise [30] using the modified
Huber (MH) error nonlinearity was studied in [12].
However, a detailed analysis of the LMM and NLMM

algorithms both in Gaussian and CG additive noises is still
unavailable, probably due to the complicated error nonlin-
earity and robust statistics involved, and the difficulty in
analyzing the NLMS algorithm as mentioned above.

In this paper, we study the performance of a class of
LMS and NLMS algorithms with error nonlinearity and
Gaussian inputs and additive Gaussian as well as CG noise.
In particular, the LMM and NLMM algorithms with MH
error nonlinearity and adaptive threshold selection (ATS)
will be studied in detail. It also includes a variety of other
interesting algorithms and provides valuable insights into
the advantages of using ATS and the effectiveness of the
LMM/NLMM algorithms in impulsive noise environment.
The analysis is divided into two main parts:

(1) We extend the framework of [17] and [18] to analyze
the NLMS algorithm with a class of error nonlinearity,
which we called the M-nonlinearity, in Gaussian noise.
This includes most M-estimate functions and several
other commonly used error nonlinearities. Using the
conventional Price’s theorem [31–33], new decoupled
difference equations describing the mean and mean
square convergence behaviors are derived. The final
results closely resemble the classical results for LMS
in [1] and can be easily reduced to related works such
as [34, 35]. Moreover, it is found that the nonlinearity
will in general slow down the adaptation rate and the
normalization process will always speed up the
maximum convergence rate of the NLMS algorithms
over their LMS counterparts if the eigenvalues of the
input autocorrelation matrices are unequal. The con-
vergence performances of the LMM and NLMM
algorithms are studied in detail. The theoretical and
practical importance of ATS is also explained and
analyzed.

(2) Instead of using the Price’s theorem for Gaussian
variates as an approximation in analyzing the RLM
algorithm with MH nonlinearity in CG noise as in
[12], we show that it is also applicable to Gaussian
mixtures with very slight modification. In fact, the
Price’s theorem is applicable to each independent
Gaussian component as pointed out, without proof, in
a short note by Price [36]. Using this result and those
in (1) above, the mean and mean square convergence
behaviors of the LMS and NLMS algorithms with M-
nonlinearity in CG noise are derived. The LMM and
NLMM algorithms are then analyzed in detail. The
analytical results suggest that the M-nonlinearity with
ATS helps to suppress the impulsive noise in exchange
for a slightly slower adaptation rate than that in the
Gaussian noise case.

Another key to the above analysis is the introduction of
certain special functions called the generalized Abelian
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integral functions [37], which are generalizations of the
Abelian integral functions [38]. They allow us to obtain
decoupled analytical formulas by evaluating the expect-
ations involved in the difference equations and help us
interpret the convergence behaviors of the NLMS algo-
rithms with M-nonlinearity. Particularly, these analytical
results can be reduced to those for the conventional NLMS
algorithms in Gaussian additive noise which agree with [17,
18], except that new expressions for the excess mean square
error (EMSE), stability bound and difference equations in
terms of the generalized Abelian integrals are obtained. For
clarity of presentation and its practical importance, this
particular case is separately treated in the companion paper
[37]. All the above results can also be readily generalized to
the simpler LMS case. Moreover, the new results also agree
with the conventional LMS algorithm [1], the LMS
algorithms with dual sign (DS) nonlinearity [34] and the
error function (EF) nonlinearity [35]. Monte Carlo simula-
tion results confirm that the NLMM algorithm offers
improved robustness to impulsive noise over the NLMS
algorithm, and are in good agreement with the theoretical
analysis.

The rest of this paper is organized as follows: In
Section 2, the NLMS algorithm is briefly reviewed and
the NLMM algorithm is introduced. In Section 3, the
proposed convergence performance analysis is presented.
Simulation results are given in Section 4 and conclusions
are drawn in Section 5.

2 Normalized Least Mean M-Estimate Algorithm

2.1 The NLMS Algorithm

Consider the adaptive system identification problem in
Fig. 1 where an adaptive filter with coefficient or weight
vector of order L, W ðnÞ ¼ w1ðnÞ;w2ðnÞ; � � � ;wLðnÞ½ �T , is
used to model an unknown system with impulse response
W* ¼ w1;w2; � � � ;wL½ �T . Here, (∙)T denotes the transpose of
a vector or a matrix. The unknown system and the adaptive
filter are simultaneously excited by the same input x(n). The
output of the unknown system d0(n) is assumed to be

corrupted by a measurement noise η0(n) to form the desired
signal d(n) for the adaptive filter. The estimation error is
given by eðnÞ ¼ dðnÞ � yðnÞ. In the LMS algorithm, the
MSE is minimized by updating the weight vector in the
negative direction of the instantaneous gradient of the MSE
with respect to the weight vector, −2e(n)X(n). This gives

W nþ 1ð Þ ¼ W ðnÞ þ meðnÞXðnÞ; ð1Þ

where eðnÞ ¼ dðnÞ �W T ðnÞXðnÞ, XðnÞ ¼ xðnÞ; x n� 1ð Þ; . . . ;½
x n� Lþ 1ð Þ�T is the input vector at time instant n and μ is
a constant step size parameter chosen to reduce the gradient
noise and to control the convergence rate and steady state
error of the algorithm. In the NLMS algorithm, the step size
is normalized by the energy of the input vector, XT(n)X(n),
which gives:

W nþ 1ð Þ ¼ W ðnÞ þ meðnÞXðnÞ
"þ XT ðnÞXðnÞ : ð2Þ

The step size μ in the NLMS algorithm is a positive constant
which should be chosen in the range 0<μ<2 to ensure
convergence of the algorithm. ε is a small positive value
used to avoid division by zero.

When the additive noise η0(n) is of impulsive nature, the
performance of the NLMS algorithm which is based on the
MSE criterion will deteriorate significantly. Recently, it is
pointed out in [29] and [39] that the normalization
mechanism of the NLMS algorithm can provide some
degree of protection against impulsive noise. However, as
will be illustrated in the subsequent computer experiments,
the NLMS algorithm is still sensitive to consecutive
impulses corrupting the desired signals. This motivates us
to consider the NLMM algorithm.

2.2 The Normalized Least Mean M-Estimate Algorithm

Many techniques have been employed to reduce the hostile
effect on the system due to impulsive interference.
Examples include algorithms based on median filtering
[8, 9], nonlinear clipping approaches [10, 11], and M-
estimation-based algorithms such as the LMM [7] and
RLM [12] algorithms. In particular, the last two algorithms
were developed by minimizing the robust M-estimate cost
functions instead of the conventional MSE criterion. Their
improved robustness to impulsive noise and performance
comparison with other relevant algorithms were thoroughly
discussed in [7] and [12]. In the following, the concept of
M-estimate cost function will be briefly reviewed and the
NLMM algorithm will be derived.

In the LMM algorithm [7], the least mean M-estimate
distortion measure Jr ¼ E r eðnÞð Þ½ � is minimized, where
ρ(e) is an M-estimate function, which can be chosen as the
Hampel’s three parts redescending function [40] or the
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Figure 1 Adaptive system identification.

J Sign Process Syst (2010) 60:81–103 83



modified Huber (MH) M-estimate function [13] as shown
in Fig. 2a:

rMHðeÞ ¼ e2=2; 0 � ej j < x
x2=2: otherwise ;

�
ð3Þ

where x is the threshold parameter used to suppress the
effect of outlier when the estimation error e is very large.
Notice that when rðeÞ ¼ e2=2 it reduces to the conventional
MSE criterion. Like the LMS algorithm, Jr is minimized by
updating W(n) in the negative direction of the instantaneous
gradient vector brWr. Hence, the gradient vector, rW Jr

� �
,

is approximated by

rW Jr
� � ¼ E � @ r eðnÞð Þð Þ

@W

h i
� brWr ¼ � @

@W r eðnÞð Þ
¼ �q eðnÞð ÞeðnÞXðnÞ;

ð4Þ

where qðeÞ ¼ yðeÞ=e ¼ @rðeÞ=@eð Þ=e and = (e) is the
score function. For the MH function:

qMHðeÞ ¼ yMHðeÞ
e

¼ 1; 0 � ej j < x
0: otherwise

�
ð5Þ

which is depicted in Fig. 2b.
Finally, we obtain the LMM algorithm as follows

W nþ 1ð Þ ¼ W ðnÞ � mbrWr ¼ W ðnÞ þ my eðnÞð ÞXðnÞ: ð6Þ
In general, when e(n) is smaller than ξ, the weight

function q(e(n)) is equal to one and (6) becomes identical to
the LMS algorithm. When e(n) is larger than certain
thresholds, say J in the MH function, q(e(n)) will become
zero and prevent the weight vector from updating. Thus the
LMM algorithm can effectively reduce the adverse effect of
large estimation error on the update of the filter coefficients.
Another interpretation of (6) is that the error term is passed
through a nonlinear device = (e). This type of adaptive
filtering algorithms has been studied previously for the
error-function nonlinearity [35] and the sign nonlinearity
[34]. The former concludes that the nonlinearity will slow
down the convergence rate, while the latter is mainly
introduced to reduce the implementation complexity. Both

of them did not recognize the robustness of this class of
algorithms to impulsive outliers. This was later studied by
Koike in [10, 29] and using the clipping nonlinearity, and
[6, 7, 41] using M-estimation. In [7], the threshold
parameter J in the MH function is continuously updated
using a technique called adaptive threshold selection (ATS),
which greatly improves the convergence speed and steady
state error.

Adaptive Threshold Selection (ATS) In ATS, e(n) is
assumed to be Gaussian distributed except being corrupted
occasionally by additive impulsive noise. By using the
following robust variance estimate

bs2
eðnÞ ¼ lsbs2

e n� 1ð Þ þ c1 1� lsð Þmed AeðnÞð Þ; ð7Þ

bs2
eðnÞ, the variance of the “impulse-free” error êðnÞ, can be

estimated. Hence, it can be used to detect and reject the
adverse outliers in e(n). The forgetting factor ls is a
positive real number close to but smaller than one. med(∙) is
the median operator. AeðnÞ ¼ e2ðnÞ; � � � ; e2 n� Nw þ 1ð Þ� �

.
c1=2.13 is the correction factor for median estimation and
Nw is the length of the data set. The probability of êðnÞj j
greater than a given threshold Th is given by

qT ðnÞ ¼ Pr eðnÞj j > Thf g ¼ erfc Thffiffi
2

p bseðnÞ

� 	
; ð8Þ

where erfcðxÞ ¼ 2=
ffiffiffi
p

pð Þ∫1x e�t2dt is the complementary
error function. Let qx ¼ Pr eðnÞj j > xf g be the probabilities
that e(n) is greater than J , the value of J can be determined
by appropriate selection of qx according to (8). For
example, if qx, is chosen as 0.01, there will be 99%
confidence to reject it when êðnÞj j > x. Accordingly, J can
be obtained from (8) as

x ¼ kxbseðnÞ ¼ 2:576bseðnÞ: ð9Þ

Similar expressions for the Hampel’s three parts re-
descending function can be found in [7, 12]. This
technique, which is referred to as adaptive threshold
selection (ATS), is very important both theoretically and
practically to the LMM and NLMM algorithms as we shall
further elaborate in Sections 3 and 4. Some commonly used
M-estimate functions, which we called the M-nonlinearity,
and useful properties pertaining to their analyses in
Section 3 are also summarized in Appendix C.

The computational complexity of the LMM algorithm
per iteration is of order O(L) with additional O(NwlogNw)
operations for performing the median filtering [7]. The
window length Nw is usually chosen between 5 and 9.

If the step size μ in (6) for the LMM algorithm is again
normalized by the squared norm of the input vector as in
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Figure 2 a The modified Huber M-estimate function ρMH(e);
b =MH(e), the score function of ρMH(e).
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the NLMS algorithm, the following NLMM algorithm is
obtained

W nþ 1ð Þ ¼ W ðnÞ þ my eðnÞð ÞXðnÞ
"þ XT ðnÞXðnÞ ; ð10Þ

where y eðnÞð Þ ¼ q eðnÞð ÞeðnÞ. Alternatively, (10) can be
derived using the Least Perturbation Property (LPP) [5]
originally proposed for the NLMS algorithm. Given the a
prior output estimation error eðnÞ ¼ dðnÞ � XT ðnÞW ðnÞ.
The NLMS algorithm can be derived by seeking a W(n+1)
such that its deviation from W(n) is minimized in the 2-
norm, while satisfying a constraint between the a posteriori
output estimation error epðnÞ ¼ dðnÞ � XT ðnÞW nþ 1ð Þ
and the prior output estimation error as follows:

min
W nþ1ð Þ

W nþ 1ð Þ �W ðnÞk k2;

subject to

epðnÞ ¼ 1� m XðnÞk k2
"þ XðnÞk k2

 !
eðnÞ: ð11Þ

The solution of this problem yields the NLMS conventional
update in (2). In M-estimation, the a prior output
estimation error e(n) is replaced by the score function
= (e(n)) to suppress the adverse effect of impulsive noise.
Substituting this into the constraint above and solving for
W(n+1) will yield the update in (10) above, since the two
optimization problems have the same structure except for
that e(n) is now replaced by = (e(n)).

As will be shown in the performance analysis in
Section 3 and the simulation results in Section 4, this
normalization brings faster convergence speed when the
input is highly colored. Compared to the LMM algorithm
for real inputs, the computational complexity is increased
by one multiplication and two additions for updating
XT(n)X(n), and one addition and one division for evaluating
m= "þ XT ðnÞXðnÞ� �

. The performance advantage of the
NLMS algorithm for white inputs has been also analyzed in
detail by Douglas et al. [42].

3 Mean and Mean Square Convergence Analysis

In this section, we first present a detailed convergence
performance analysis of the NLMS algorithms with M-
nonlinearity y(e) for Gaussian input and independent white
Gaussian additive noise. More precisely, by extending the
approach in [7, 12] and using the conventional Price’s
theorem, it is possible to derive analytical expressions for
modeling their mean and mean square convergence
behaviors. Next, we extend the Price’s theorem to mixture
Gaussian processes and, by using the above results, present

a detailed convergence performance analysis of these
NLMS algorithms for Gaussian inputs and independent
CG additive noise. In particular, the LMM and NLMM
algorithms with MH function and ATS will be studied in
detail. The final results are new expressions for EMSE,
stability bound and difference equations describing the
convergence behaviors of the various algorithms in terms of
the generalized Abelian integral functions. They are similar
to the classical results of the LMS algorithm by Widrow et
al. [1], which allow us to clearly interpret and compare the
convergence behaviors of this class of algorithms. To
simplify the analysis, the following assumptions are made:

Assumption 1: The input signal x(n) is an ergodic process
which is Gaussian distributed with zero mean and autocor-
relation matrix RXX ¼ E XðnÞXT ðnÞ
 �

.

Assumption 2: The additive noise η0(n) is assumed to be
a Gaussian noise for the analysis in section A below
(η0(n)=ηg(n)). For the analysis in Section B below, η0(n) is
modeled as a CG noise which is a frequently used model
for analyzing impulsive noise. More precisely, it is given
by:

h0ðnÞ ¼ hgðnÞ þ himðnÞ ¼ hgðnÞ þ bðnÞhwðnÞ; ð12Þ

where ηg(n) and ηw(n) are both independent and identically
distributed (i.i.d.) zero mean Gaussian sequences with
respective variance s2

g and s2
w. b(n) is an i.i.d. Bernoulli

random sequence whose value at any time instant is either
zero or one, with occurrence probabilities Pr bðnÞ ¼ 1ð Þ ¼
pr and Pr bðnÞ ¼ 0ð Þ ¼ 1� pr. The variances of the random
processes ηim(n) and η0(n) are then given by s2

im ¼ prs2
w

a n d s2
h0
¼ s2

g þ s2
im ¼ s2

g þ prs2
w. T h e r a t i o rim ¼

s2
im=s

2
g ¼ prs2

w=s
2
g is a measure of the impulsive charac-

teristic of the CG noise. s2
Σ ¼ s2

g þ s2
w. Accordingly, the

probability distribution function (PDF) of this CG distribu-
tion is given by

fh0 hð Þ ¼ 1�prffiffiffiffiffiffiffiffi
2ps2

g

p exp � h2

2s2
g

� 

þ prffiffiffiffiffiffiffiffi

2ps2
Σ

p exp � h2

2s2
Σ

� 

: ð13Þ

Assumption 3: W(n), x(n) and η0(n) are statistically inde-
pendent (the independent assumption [1]). Although
this assumption is not completely valid in general applica-
tions, it is a good approximation and is commonly used to
simplify the convergence analysis of numerous adaptive
filtering algorithms. Moreover, we denote W* ¼ R�1

XXPdX as
the optimal Wiener solution, where PdX ¼ E dðnÞXðnÞ½ � is
the ensemble-averaged cross-correlation vector between X(n)
and d(n).
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3.1 Convergence Behaviors of the NLMS Algorithms
with M-Nonlinearity and Gaussian Inputs and Noises

3.1.1 Mean Behavior

From (10), the weight-error vector vðnÞ ¼ W*�W ðnÞ can
be written as:

v nþ 1ð Þ ¼ vðnÞ � my eðnÞð ÞXðnÞ
"þ XT ðnÞXðnÞ : ð14Þ

If = (e(n))=e(n), (14) will reduce to the conventional
NLMS algorithm (2). Taking expectation on both sides of
(14), we get

E v nþ 1ð Þ½ � ¼ E vðnÞ½ � � mH1; ð15Þ

where H1 ¼ E y eðnÞð ÞXðnÞ= "þ XT ðnÞXðnÞ� �
 �
and E[∙]

denotes the expectation over vðnÞ;XðnÞ; hgðnÞ
� �

and is
written more clearly as E v;X ;hgf g �½ ��½ �. Since X(n) and ηg(n)
are stationary, we can drop the time index n in the
expectation to get H1 ¼ E yðeÞX= "þ XTX

� �
 �
.

In the conventional NLMS algorithm [17] and [18],
similar difference equation for the mean weight-error vector
(c.f. [18, Eq. 11]) was obtained:

E v nþ 1ð Þ½ � ¼ I � mF"ð ÞE vðnÞ½ �; ð16Þ

where F" ¼ E XðnÞXT ðnÞ= "þ XT ðnÞXðnÞÞ��

and I is the

identity matrix. For convenience, the variables have been
renamed according to the notation in this paper. Moreover,
F" was further diagonalized to H" whose i-th element
is H"½ �i;i¼ ∫10

exp �b"ð Þ
Iþ2bRXXj j1=2

li
1þ2bli

db (c. f. [18, Eq. 14]), where

li is the i-th eigenvalue of RXX. It was evaluated
analytically in [17] for three important cases with different
eigenvalue distributions (in [18], only the first case was
elaborated): (1) white input signal with l1 ¼ . . . ¼ lL; (2)
two signal subspaces with equal powers l1 ¼ . . . ¼ lK ¼ a
and lKþ1 ¼ . . . ¼ lL ¼ b; (3) distinct pairs, l1 ¼ l2; l3 ¼
l4; . . . ; lL�1 ¼ lL (assuming L is even). Besides these
three special cases, no general solution to H" was provided.
Therefore, general closed-form formulas for modeling the
mean and mean square behavior of NLMS algorithm were
unavailable in [17] and [18]. To our best knowledge, no
such analytical solution has ever appeared in the literature.

Here, we pursue another direction by treating some of
these integrals involved as special functions and carry them
throughout the analysis. Furthermore, using the Price’s
theorem, the expectation involving the M-nonlinearity and
ATS can be decoupled from the rest of the equations. The
final formulas containing these special integral functions

still allow us to clearly interpret the convergence behavior
of the NLMS algorithms with error nonlinearity. More
precisely, it is shown in Appendix A (A-14) that

H1 � Ay s2
e

� �
UΛDΛU

TE vðnÞ½ �: ð17Þ

where Ay s2
e

� � ¼ y 0 s2
e

� � ¼ 1ffiffiffiffi
2p

p
se
∫1�1y 0ðeÞ exp �e2= 2s2

e

� �� �
de,

RXX ¼ UΛUT is the eigenvalue decomposition of RXX

and Λ ¼ diag l1; l2; � � � ; lLð Þ contains its eigenvalues. DΛ

is a diagonal matrix with the i-th diagonal entry given

by (A-16): DΛ½ �i;i ¼ Ii Λð Þ ¼ ∫10 exp �b"ð Þ 9
L

k¼1
2blk þ 1ð Þ�1=2

� �
2bli þ 1ð Þ�1db, which is a generalized Abelian integral
function, whereas the conventional Abelian integral has the
form IaðxÞ ¼ ∫x0 q bð Þ½ ��1=2db with q(β) being a polynomial
in β. It is also similar to H"½ �i;i in [18].

Substituting (17) into (15), we obtain

E v nþ 1ð Þ½ � ¼ I � mAy s2
eðnÞ

� �
UΛDΛU

T
� �

E vðnÞ½ �; ð18Þ
where s2

eðnÞ ¼ E vT ðnÞRXX vðnÞ½ � þ s2
g and the approximate

sign has been replaced by the equality sign. (18) can also be
written in the natural coordinate V(n)=U

T
v(n) as

E V nþ 1ð Þ½ � ¼ I � mAy s2
eðnÞ

� �
ΛDΛ

� �
E VðnÞ½ �; ð19Þ

which is equivalent to L scalar first order finite difference
equations as follows:

E V nþ 1ð Þ½ �i ¼ 1� mAy s2
eðnÞ

� �
liIi Λð Þ� �

E VðnÞ½ �i; ð20Þ

where E[V(n)]i is the i-th element of the vector E[V(n)].
Though the maximum possible step size is in general

difficult to obtain, a sufficient condition for the algorithm to
converge is 1� mAy s2

e

� �
liIi Λð Þ�� �� < 1, for all i. If y 0 s2

e

� �
is bounded above by a constant y 0

max ¼ Ay max, then a
conservative maximum step size bound is

m <
2

Ay maxlmaxIi lmax Λð Þ ð21Þ

which yields good estimates in practical algorithms such as
the LMM, NLMM, and those in [34, 35].

Remarks

(R-A1): LMS algorithms with error nonlinearity:

As pointed out at the end of Appendix A, our analysis
will reduce to the LMS case when DΛ ¼ I and Eq. (18)
strictly holds for general error nonlinearity = (e). Except for
the conventional LS error criterion, (19) or (20) are
generally a set of nonlinear difference equations due to
the error nonlinearity. A general solution is rather difficult
to obtain because the term Ay s2

e

� � ¼ y 0 s2
e

� �
is dependent

on the MSE. For the DS nonlinearity, (19) agrees with the
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results in [34], and moreover, Mathews et al. showed that the
resulting equation is convergent using the Doob’s theorem
[43, 44]. (19) also agrees with the result in [35] for LMS
algorithm with EF nonlinearity, in which the difference
equation was approximated with a differential equation and it
was showed that there are two possible adapting phases, the
nonlinear and linear ones. If the nonlinearity = (e) is known,
then it may be possible to derive its convergence behavior by
converting it to a nonlinear ordinary differential equation
(ODE). Ay s2

e

� �
for some commonly used error nonlinear-

ities are summarized in Table 1.
For most M-estimate functions, = (e)=q(e)e. q(e) is

equal to one when ej j is less than a certain threshold x
and will gradually decrease to reduce its sensitivity to
impulses with large amplitude. Hence, 0 � y 0ðeÞ � 1 and it
is approximately equal to one when ej j is less than x.
Specifically, for the LMM and NLMM algorithms using
MH nonlinearity, it can be shown from (C-5) and (5) that:

AMH s2
e

� � ¼ erf xffiffi
2

p
se

� 

� 2xffiffiffiffi

2p
p

se
exp � x2

2s2
e

� 

;

with lim
s2
e!0

AMH s2
e

� �! 1 and lim
s2
e!1

AMH s2
e

� �! 0. For

sufficiently small step size μ, the algorithm will converge

and s2
e will decrease. Because when s2

e is much larger than
x2, AMH s2

e

� �! 0, x should be carefully chosen otherwise
the step size can be unnecessarily small as adaptation starts.
This is because s2

e can be much larger than x2 initially,
which depends in turn on the initial condition. If AMH s2

e

� �
is not made adaptive, an inappropriately chosen x may
suppress the signal component, instead of just the outliers.
This will cause AMH s2

e

� �
to increase gradually and lead to

the so called “nonlinear adaptation” problem encountered
by the EF nonlinearity in [35]. When the algorithm is
nearly converged, s2

e will be approximately constant
and the asymptotic rate of convergence is 1� mAMH

s2
e 1ð Þ� �

Ii Λð Þ, which is the so called “linear adaptation”.
Since nonlinear adaptation is typically slow, it should be

avoided. In the LMM and NLMM algorithms, J is chosen
to be a multiple of the estimated σe as shown in (9). If
ŝ2
e � s2

e , this helps to avoid significant signal suppression
by maintaining a fairly stationary AMH s2

e

� �
as follows:

AMH � erf kxffiffi
2

p
� 


� 2kxffiffiffiffi
2p

p exp �k2x
2

� 

;

which is approximately constant and is slightly less than
one. From (20), we can see that the degradation in mean
convergence over their LMS and NLMS counterparts is
therefore minimal. When an impulse with large amplitude
is encountered, we will momentarily have s2

e >> k2xbs2
e and

the measurement will be discarded to improve robustness.
In Appendix C, it is further shown that for most M-

estimate functions and nonlinearities (c.f. (C-1) for the
definition of M-nonlinearities), Ay s2

e

� �
is approximately T
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independent of s2
e if ATS mentioned above is used.

Consequently, the convergence rate is approximately
constant and similar to that of the LMS and NLMS
algorithms. Because of its good performance, ATS is highly
recommended in practical applications.

(R-A2): NLMS algorithms with error nonlinearity:

In the normalized case, (19) provides a good approx-
imation at the steady state of the algorithm and for the
NLMS algorithms using the M-nonlinearities together
with ATS, which we have elaborated above (c.f. the
approximation used in Appendix A and the justification at
Appendix C). It should be noted that no such approxima-
tion is used in the variants of the LMS algorithms [34, 35]
mentioned above. If ATS is not employed, (19) is only an
approximation and nonlinear adaptation is likely to be
encountered, depending on the clipping level of the
nonlinearity and variances of the error signals. The
adaptation is typically slow and accurate analytical
solution is very difficult to obtain. When the algorithm
is nearly converged, s2

e will be approximately constant
and (19) will be a good approximation. The asymptotic
rate of convergence is 1� mAMH s2

e 1ð Þ� �
Ii Λð Þ, which is

the familiar “linear adaptation” phase. To avoid slow
nonlinear adaptation, ATS is again recommended in
practical applications. A conservative maximum step size
can also be estimated from (21). Because of its impor-
tance, the main focus of this paper is those algorithms
employing ATS.

(R-A3): Comparison of LMS and NLMS algorithms
with M-nonlinearity and ATS:

Next, we briefly compare the LMS/NLMS-based algo-
rithms. It can be seen that with M-nonlinearity and ATS, the
convergence rate of the NLMS-based algorithms is
1� mAy s2

eðnÞ
� �

Ii Λð Þ, where Ay s2
eðnÞ

� �
is approximately

constant and usually has a value slightly smaller than one
when no impulses are encountered. As a result, compared
with the conventional LMS-based algorithms, the step size
of the normalized algorithms is changed by a factor of
1= Ay s2

eðnÞ
� �

Ii lmax Λð Þ� � � 1=Ii lmax Λð Þ. Since the maxi-
mum of the product

liIi Λð Þ ¼ li∫
1
0 exp �b"ð Þ Π

L

k¼1
2blk þ 1ð Þ�1=2

� �
2bli þ 1ð Þ�1db

¼ ∫10 exp �b"ð Þ ΠL
k¼1 2blk þ 1ð Þ�1=2

h i
2b þ lið Þ�1
h i�1

db;

also achieves its maximum at the largest eigenvalue lmax

with the corresponding value of Ii(Λ) given by Ii lmax Λð Þ,
the fastest convergence rate of the normalized algorithm
occurs when m ¼ 1= Ay s2

e

� �
lmaxIi lmax Λð Þ� �

and it is limit-
ed by the mode corresponding to the smallest eigenvalue

lmin with the corresponding value of Ii(Λ) given by
Ii lmin Λð Þ. That is

1� 2lminIi lmin Λð Þ
lmaxIi lmax Λð Þ : ð22Þ

From the definition of Ii(Λ), it can be shown that
Ii lmin Λð Þ=Ii lmax Λð Þ � 1. In other words, the eigenvalue
spread lmax/lmin is reduced by a factor Ii lmax Λð Þ=Ii lmin Λð Þ
after the normalization. Therefore, under the stated assump-
tions, the maximum convergence rate of the normalized
algorithms using ATS is faster than the LMS-based algorithms
if the eigenvalues are unequal. Similar conclusion is obtained
for the conventional NLMS algorithm [37, 46].

3.1.2 Mean Square Behavior

Post-multiplying (14) by its transpose and taking expecta-
tion gives

I nþ 1ð Þ ¼ I ðnÞ �M1 �M2 þM3; ð23Þ
where I ðnÞ ¼ E vðnÞvT ðnÞ½ �,
M1 ¼ mE vf g HvT


 � � mAy s2
e

� �
UΛDΛU

TI n� 1ð Þ; ð24Þ

M2 ¼ MT
1 � mAy s2

e

� �
I ðnÞUDΛΛU

T ; ð25Þ
and

M3 ¼ m2E y2ðeÞXXT= "þ XTX
� �2h i

: ð26Þ

Note, the expressions in (24) and (25) are obtained by using
previous result in (18), and (26) is obtained from the
stationarity and independence assumptions. M3 is evaluated
in Appendix B to be

M3 � 2m2Cy s2
e

� �
U Λ UTI ðnÞU� � � I Λð Þ
 �

Λ
� �

UT

þm2Sy s2
e

� �
UD2UT þ m2Sy s2

e

� �
s2
gUΛI 0 Λð ÞUT :

ð27Þ

where Cy s2
e

� �¼ d
ds2

e
E y2ðeÞ½ �, Sy s2

e

� �¼By s2
e

� �
=s2

e , By s2
e

� �¼
E y2ðeÞ½ � ¼ 1ffiffiffiffi

2p
p

se
∫1�1y2ðeÞ exp � e2

2s2
e

� 

de.○ denotes element-

wise product of two matrices (Hadamard product), and I(Λ)
and I′(Λ) are defined in (B-14) and (B-16). The diagonal
matrix D2 results from (B-14b) and its i-th element is
D2


 �
i;i
¼ Σ

k
lkliIki Λð Þ UTI ðnÞU
 �

k;k
. For a given distortion

measure ρ(e) and hence = (e), these integrals can either be
computed analytically or numerically.

Substituting (24)–(27) into (23), and using the natural
coordinate 6 ðnÞ ¼ UTI ðnÞU , one gets
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6 nþ1ð Þ �6 ðnÞ � mAy s2
e

� �
ΛDΛ6 ðnÞ � mAy s2

e

� �
6 ðnÞDΛΛ

þ2m2Cy s2
e

� �
Λ 6 ðnÞ � I Λð Þð ÞΛ½ � þ m2Sy s2

e

� �
D
	
2

þm2Sy s2
e

� �
s2
gΛI

0 Λð Þ;
ð28Þ

where D
	
2

h i
i;i
¼ Σ

k
lkliIki Λð Þ 6 ðnÞ½ �k;k . (28) can be written

as the following scalar form:

6 i;i nþ1ð Þ � 1� 2mAy s2
e

� �
liIi Λð Þ þ 2m2Cy s2

e

� �
l2i Iii Λð Þ� �

6 i;iðnÞ
þm2Sy s2

e

� �
Σ
k
lkliIki Λð Þ6k;kðnÞ þ m2Sy s2

e

� �
s2
gliI

0
i Λð Þ:

ð29Þ
To study the step size bound for mean square conver-

gence, we first note that the EMSE at time instant n is given
by EMSEðnÞ ¼ Tr 6 ðnÞΛð Þ. Assuming that algorithm con-
verges, it is shown in Appendix B that the last two terms on
the right hand side of (29) are tightly upper bounded by
m2Sy s2

e

� �
s2
e 1ð ÞliI 0i Λð Þ at the steady state. Therefore, from

(28), one gets an upper bound for the EMSE as

EMSENLMS y 1ð Þ ¼ Tr 6 1ð ÞΛð Þ
� 1

2ms
2
e 1ð ÞfNLMS y ;

ð30Þ

where fNLMS y ¼ Sy s2
e 1ð Þ� �

ΣL
i¼1

liI
0
i Λð Þ

Ay s2
e 1ð Þð ÞIi Λð Þ�mCy s2

e 1ð Þð ÞliIii Λð Þ.

Using the fact that s2
e 1ð Þ ¼ EMSENLMS y 1ð Þ þ s2

g, one
gets

EMSENLMS y 1ð Þ ¼
1
2ms

2
gfNLMS y

1� 1
2mfNLMS y

: ð31Þ

which is a nonlinear equation in s2
e 1ð Þ and hence

EMSENLMS y 1ð Þ. It can be seen that EMSENLMS y 1ð Þ
is unbounded when either its denominator becomes zero or
when fNLMS y becomes unbounded due to any of the
denominators of its partial sum becomes zero. These two
conditions allow us to determine the following conditions
for the maximum step size:

m < 2=fNLMS y ; ð32aÞ

0 < m < Ay s2
e 1ð Þ� �

Ii Λð Þ= Cy s2
e 1ð Þ� �

liIii Λð Þ
 �
:

ð32bÞ
For the conventional LMS algorithm, Ay ;Cy ; Ii Λð Þ; I 0i Λð Þ,
and Iii(Λ) are all equal to one, (32a) and (32b) are identical
to the necessary and sufficient conditions for the mean
square convergence of the LMS algorithm previously
obtained in [14]. Similar results are obtained in [15] by
solving the difference equation in Φ(n) and in [16] by a
matrix analysis technique. Furthermore, a lower bound of
the maximum step size for mean square convergence is
obtained in [15]. Here, we extend this approach to study the

stability bound of our algorithms. To this end, we write
(32a) in full as follows

Sy s2
e 1ð Þ� �

@L
i¼1

mliI
0
i Λð Þ

Ay s2
e 1ð Þð ÞIi Λð Þ�mCy s2

e 1ð Þð ÞliIii Λð Þ < 2: ð33Þ

For convenience, rewrite (33) as

@L
i¼1

mlici
1� mlidi

< 2; ð34Þ

where ci ¼ I
0
i Λð Þ= Ay s2

e 1ð ÞIi Λð Þ� ��
, and di¼Cy s2

e 1ð Þ� �
Iii

Λð Þ= Ay s2
e 1ð Þ� �

Ii Λð Þ� �
.

The right hand side has singularities at 1/(λidi). Between 0
and min

i
1= lidið Þð Þ, it is a monotonic increasing function of

μ. Therefore, it will reach the critical value of two on the
right hand side of the equality at the smallest root μmax of
the equation

@L
i¼1

mlici
1� mlidi

¼ 2; ð35Þ

before min
i

1= lidið Þð Þ. Any positive step size μ below μmax

will ensure the mean square convergence of the LMS
algorithm.

Let u=2μ−1 and rewrite (35) as

‘ðuÞ � @L
i¼1 liciliðuÞ ¼ Π

L

i¼1
u� uið Þ ¼ @L

i¼1 �1ð ÞL�i bL�iu
i ¼ 0;

ð36Þ
where, ‘ðuÞ ¼ Π

L

i¼1
u� 2lidið Þ, liðuÞ ¼ ‘ðuÞ= u� 2lidið Þ, and

u�1
i are the roots of (36). The largest root of (36) (smallest

root of (34)) is upper bounded (lower bounded) by [47]

uN max � 1
L s1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� 1ð Þ Ls2 � s21

� �q� �
; ð37Þ

where s1 ¼ @L
i¼1 ui ¼ b1 and s2 ¼ @L

i¼1 u
2
i ¼ b21 � 2b2.

By comparing the coefficients on different sides of (36),
one also gets

b1 ¼ @L
i¼1 li 2di þ cið Þ

and

b2 ¼ 4 @
1�i6¼j�L

liljdidj þ @L
i¼1 lici 2 @

1�j6¼i�L
ljdj

� 	
: ð38Þ

From (37), a more convenient lower bound of μmax can
be obtained as follows

mmax � 2L

b1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1ð Þ2b21�2LðL�1Þb2Þ

p
� 2L

b1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1ð Þ2b21

p ¼ 2=b1 
 mB

¼ 2Ay s2
e 1ð Þð Þ

Sy s2
e 1ð Þð Þ@L

i¼1 li I
0
i Λð Þ= Ii Λð Þð Þþ2Cy s2

e 1ð Þð ÞIii Λð Þ=Ii Λð Þ½ �:
ð39Þ
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It can be seen from (39) that Ay s2
e 1ð Þ� �

, Cy s2
e 1ð Þ� �

and Sy s2
e 1ð Þ� �

also depend on s2
e 1ð Þ and the exact step

size bound is still very difficult to obtain analytically. For
M-nonlinearities with ATS, they are approximately constant
and the step size bound can be determined accordingly
from μB. Alternatively, one can replace Ay s2

e 1ð Þ� �
,

Cy s2
e 1ð Þ� �

and Sy s2
e 1ð Þ� �

by their worse case values to
estimate the step size bound μB.

In passing, we find from simulation results that the term
m2
k@lkliIki Λð Þ6 k;kðnÞ in (29) is very small for small EMSE.

Consequently, (29) can be approximated as:

6 i;i nþ 1ð Þ � 1� 2mAy s2
e

� �
liIi Λð Þ þ 2m2Cy s2

e

� �
l2i Iii Λð Þ� �

6 i;iðnÞ
þm2Sy s2

e

� �
s2
gliI

0
i Λð Þ:

For notation convenience, we have dropped the time
index n in s2

eðnÞ ¼ E vT ðnÞRXX vðnÞ½ � þ s2
g. The algorithm

will converge when 1� 2mAy s2
e

� �
liIi Λð Þ þ 2m2Cy s2

e

� ���
l2i Iii Λð Þj < 1, which gives (32b): m < Ay s2

e

� �
Ii Λð Þ=

Cy s2
e

� �
liIii Λð Þ� �

for all i. That is, the results of (32a)
and (32b) are very close to each other. From the definition
of Ii(Λ) and Iii(Λ), we then have Ii Λð Þ= liIii Λð Þð Þ ¼
2= 1� I

0 0
i Λð Þ=Ii Λð Þ� �

> 2, whe re I
0 0
i Λð Þ ¼ ∫10 exp �b"ð Þ

Π
L

k¼1
2blk þ 1ð Þ�1=2

� �
2bli þ 1ð Þ�2db. Therefore, a conservative

stability bound for small EMSE is mB < 2Ay s2
e

� �
=Cy s2

e

� �
.

For M-nonlinearities with ATS, mB < 2Ay=Cy , which is a
useful “rule of thumb” step size bound because it does not
require any prior knowledge of the input signal.

Remarks

(R-A4): LMS algorithms with error nonlinearity:

When Ii Λð Þ ¼ I
0
i Λð Þ ¼ Iii Λð Þ ¼ 1, our analysis will

reduce to that for the LMS algorithm with general
nonlinearity. (31) will reduce to

EMSELMS y 1ð Þ �
1
2ms

2
gfLMS y

1� 1
2mfLMS y

; ð40Þ

where fLMS y¼Sy s2
e 1ð Þ� �

@L
i¼1

li
Ay s2

e 1ð Þð Þ�mCy s2
e 1ð Þð Þli ,

By s2
e

� �¼ s2
e and Sy s2

e

� �
and Cy s2

e

� �
for some related

algorithms are summarized in Table 1. For the DS algorithm
[34], (40) will reduce to [34, Eq. (24)]. If μ is sufficiently
small, then the contribution of the weight-error vector to
s2
e 1ð Þ can be ignored. Accordingly, s2

e 1ð Þ � s2
g and (31)

can be simplified to EMSELMS y 1ð Þ � mSy s2
e 1ð Þð Þs2

g

2Ay s2
e 1ð Þð Þ @L

i¼1 li.

This agrees with [34, Eq. (25)] for the DS algorithm. Further,
if the input is white, it will reduce to [35 Eq. 45] for the EF
nonlinearity case.

For M-nonlinearities with ATS, Ay s2
e

� �
, Sy s2

e

� �
and

Cy s2
e

� �
are approximately constant (c.f. Appendix C).

Denote them by Ay, Sy and Cy , respectively. Then, (30)
becomes

EMSELMS y 1ð Þ �
1
2ms

2
gfLMS y

1� 1
2mfLMS y

; ð41Þ

where fLMS y ¼ Sy Σ
L
i¼1

li
Ay�mliCy

. The stability bound from
(32) is m < min 2=fLMS y ; Ay= Cyli

� �� �
, from which we

can obtain its lower bound from (38) as follows:

mB LMS y ¼ 2Ay

Sy @L
i¼1 li 1þ 2Cy

� � : ð42Þ

If = (e)=e and Ay ¼ Sy ¼ Cy ¼ 1 we obtain the traditional
LMS algorithm. (40) and (42) will respectively reduce to
the EMSE(∞) and stability bound for the conventional
LMS algorithm derived in [15]. For the LMM algorithm
using MH-nonlinearity with a practical value of kx ¼ 2:576,
Ay , Sy , and Cy are quite close to one, and its performance
is therefore similar to that of the conventional LMS
algorithm.

(R-A5): NLMS algorithms with error nonlinearity:

For the normalized version, (31) will be a good
approximation at the steady state of the algorithm and for
the NLMS algorithms using M-nonlinearities and ATS (c.f.
the approximation used in Appendix B). For the latter, (31)
can be simplified to

EMSENLMS y 1ð Þ � ms2
e 1ð Þ
2 fNLMS y ; ð43Þ

where fNLMS y ¼ Sy
Ay

@L
i¼1

liI
0
i Λð Þ

Ii Λð Þ�mliIii Λð Þ Cy=Ayð Þ. Solving (43)
yields

EMSENLMS y 1ð Þ �
1
2ms

2
gfNLMS y

1� 1
2mfNLMS y

: ð44Þ

The stability bound from (32) satisfies: m < 2=fNLMS y ;

0 < m < Ay= Cyli
� ��

, from which we can obtain its lower
bound from (39) as follows:

mB NLMS y ¼ 2Ay

Sy @L
i¼1 li I

0
i Λð Þ= Ii Λð Þð Þþ2Cy Iii Λð Þ=Ii Λð Þ½ �: ð45Þ

For = (e)=e and Ay ¼ Sy ¼ Cy ¼ 1 we obtain the tradition-
al NLMS algorithm. (43) and (45) will reduce to the EMSE
(∞) and stability bound for the conventional NLMS algorithm
derived in [37]. For the NLMM algorithm using MH-
nonlinearity with a practical value of kx ¼ 2:576, Ay , Sy ,
and Cy are quite close to one, and its performance is
therefore similar to that of the conventional NLMS algorithm.
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3.2 Convergence Behaviors of the NLMS Algorithm
with Error Nonlinearity and Gaussian Input and CG Noise

We now analyze the mean and mean square behaviors of
the various algorithms studied above in Section 3.1 in CG
noise environment. From the previous analysis, we note
that the assumption of Gaussian input and additive noise
allows us to use the Price’s theorem to approximately
decouple the effect of the nonlinearity. For most M-estimate
functions which suppress outliers with large amplitude, the
convergence rate will be slightly impaired with a similar
EMSE, after using ATS. We shall show in the following
that this will be paid off by their improved robustness to
impulsive noise. Apparently, the Price’s theorem does not
apply to Gaussian mixture. However, as pointed out in [36]
and to be explained below, it is actually applicable to
individual components of the mixture. Moreover, for the
LMM and NLMM algorithms, the error signal is nearly
Gaussian distributed after the impulsive component is
suppressed. This also explains why the approximations in
[12, 41] give excellent agreement with Monte Carlo
simulations. A detailed analysis will be given below.

3.2.1 Mean Behavior

Assume the additive noise η0 is now a CG noise as defined
in (12), it is a Gaussian mixture consisting of two
components η0_1 and η0_2, each with zero mean and
variance s2

1 ¼ s2
g and s2

2 ¼ s2
@, respectively. The occur-

rence probability of the impulsive noise is pr. Accordingly,

E v;X ;h0f g½ f ð XðnÞ; eðnÞÞ� ¼ 1� prð ÞE v;X ;h0 1f g f XðnÞ; eðnÞð Þ½ �
þ prE v;X ;h0 2f g f XðnÞ; eðnÞð Þ½ �;

ð46Þ
where f (X(n), e(n)) is an arbitrary quantity whose statistical
average is to be evaluated. Since X(n), η0_1, and η0_2 are
Gaussian distributed, each of the expectation on the right
hand side can be evaluated using the Price’s theorem.
Consequently, the results in Section 3.1 can be carried
forward to the CG case by firstly changing the noise power
respectively to s2

g and s2
@, and then combining the two

results using (46).
Recall the relation of the mean weight-error vector in (15):

E v nþ 1ð Þ½ � ¼ E vðnÞ½ � � mH 0 ð47Þ
where H 0 ¼ E v;X ;h0f g

y eðnÞð ÞXðnÞ
"þXT ðnÞXðnÞ

h i
¼ 1� prð ÞH 0

1 þ prH
0
2,

H
0
1 and H

0
2 are the expectation of the term inside the

brackets above with respect to {v, X, η0_1}, and {v, X, η0_2}.
From (17), we have H

0
i � Ay s2

ei

� 

UΛDΛUTE vðnÞ½ �, i=1, 2,

where s2
e1
¼ s2

eg
and s2

e2
¼ s2

e@
. Hence

H 0 � eAy s2
eg
; s2

e@

� 

UΛDΛU

TE vðnÞ½ �; ð48Þ

where s2
eg
¼E vT ðnÞRXX vðnÞ½ � þ s2

g, s
2
e@
¼ E vT ðnÞRXX vðnÞ½ � þ s2

@,eAy s2
eg
; s2

e@

� 

¼ 1� prð ÞAy s2

eg

� 

þ prAy s2

e@

� 

, and U, Λ, and DΛ

have been defined in Section 3.1. Substituting (18) into (46)
and using the natural coordinate V(n)=UTv(n), one gets

E V nþ 1ð Þ½ �i ¼ 1� mA
	
y s2

eg
; s2

e@

� 

liIi Λð Þ

� 

E V ðnÞ½ �i: ð49Þ

For notational convenience, we have replaced the
approximate symbol by the equality symbol. This yields
the same form as (20), except for A

	
y s2

eg
; s2

e@

� 

. Similar

argument regarding the mean convergence in Section 3.1.1
also applies to (49). A sufficient condition for the algorithm
to converge is 1� mA

	
y s2

eg
; s2

e@

� 

liIi Λð Þ

��� ��� < 1, for all i. If
Ay s2

e

� �
is bounded above by Ay max, then following the

argument in Section 3.1.1, the following conservative
maximum step size is obtained:

mmax < 2= A
	
y maxlmaxIi lmax Λð Þ

� 

:

Remarks

(R-B1): LMS and NLMS algorithms

Compared with the Gaussian case, the convergence rate
of the conventional LMS and NLMS algorithms
without error nonlinearity remains unchanged since
Ay

~
s2
eg
; s2

e@

� 

¼ 1, though the EMSE will be increased sig-

nificantly as shown below in Section 3.2.2. All the
conclusions in (R-A1) and (R-A2) apply.

For general nonlinearity without ATS, both s2
eg

and s2
e@

can be very large due to the large value of s2
eΣ

and the slow
decay of the EMSE E vT ðnÞRXX vðnÞ½ �, as the gain

Ay

~
s2
eg
; s2

e@

� 

¼ 1� prð ÞAy s2

eg

� 

þ prAy s2

e@

� 

c a n b e

very small initially. This leads to nonlinear adaptation and
slow convergence. Near convergence, s2

eg
and hence

Ay

~
s2
eg
; s2

e@

� 

will become stable. The convergence is expo-

nential and the rate for the i-th mode is approximately
1� mAy

~
1ð ÞliIi Λð Þ. The actual steady state value of

Ay

~
s2
eg

1ð Þ; s2
e@

1ð Þ
� 


will depend on the EMSE and the

nonlinearity. Normally, the second term pry 0 s2
e@

� 

will be

much smaller than the first due to the clipping property of
the nonlinearity. The “asymptotic convergence rate” of the
NLMS algorithm with general nonlinearity will still be faster
than their LMS counterparts if the eigenvalues are unequal.

(R-B2): LMS and NLMS with M-nonlinearity and ATS

For the LMM/NLMM algorithms with M-nonlinearity
and ATS, this degradation is again not very serious. To see
this, consider the MH function where A

~

MH s2
eg
; s2

e@

� 

is

given by

A
~

MH s2
eg
; s2

e@

� 

¼ 1� prð ÞAMH s2

eg

� 

þ prAMH s2

e@

� 

: ð50Þ
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Using the J update in (9), the first term will approach
1� prð ÞAMH s2

eg

� 

while the second term will be close to

zero if s2
eg

<< s2
eΣ

as explained at the end of Appendix C.

Hence, A
~

MH � 1� prð ÞAMH s2
eg

� 

, which is a constant

close to one if pr is not too large.
The fastest convergence rate of these NLMS algorithms

with M-nonlinearity occurs when m ¼ 1= A
	
ylmaxIi lmax Λð Þ

� 

and it is limited by the mode corresponding to the smallest
eigenvalue. That is

1� 2A
	
ylminIi lmin Λð Þ

A
	
ylmaxIi lmax Λð Þ

¼ 1� 2lminIi lmin Λð Þ
lmaxIi lmax Λð Þ : ð51Þ

Therefore, in additive CG noise, the maximum conver-
gence rate of the NLMS algorithm with M-nonlinearity will
also be faster than its un-normalized counterpart if the
eigenvalues are unequal.

3.2.2 Mean Square Behavior

For convenience, we drop the argument s2
eg
; s2

e@

� 

in

Ay

~
s2
eg
; s2

e@

� 

and similar quantities. From (23), we have

ΞΞΞ nþ 1ð Þ ¼ ΞΞΞðnÞ �M
0
1 �M

0
2 þM

0
3; ð52Þ

where M
0
1 ¼ mAy

~
UΛDΛUTΞΞΞðnÞ, M

0
2 ¼ mAy

~
ΞΞΞðnÞUDΛΛUT ,

M
0
3 ¼ m2E v;X ;h0f g½ yðeÞ= "þ XTX

� �
 �2
XXT �: No t e , t h e

expressions for M
0
1 and M

0
2 are obtained by using the

previous result in (48). Using (46), we have

M
0
3 ¼ 1� prð ÞM 0

3 1 þ prM
0
3 2; ð53Þ

where M
0
3 i ¼ m2E v;X ;h0 if g yðeÞ= "þ XTX

� �
 �2
XXT

h i
, for

i=1, 2, and from (27):

M
0
3 � 2m2eCyU Λ ΞΞΞðnÞ � I Λð Þð ÞΛ½ �UT þ m2eByUΛI 0 Λð ÞUT

þm2eSyUD2UT ;

ð54Þ
where Cy

~
¼ 1� prð ÞCy s2

eg

� 

þ prCy s2

e@

� 

and

Sy
~
¼ 1� prð ÞSy s2

eg

� 

þ prSy s2

e@

� 

By

~ ¼ 1� prð ÞSy s2
eg

� 

s2
g þ prSy s2

e@

� 

s2
@:

Substituting (53) into (51) and using the natural coordinate
6 ðnÞ ¼ UTΞΞΞðnÞU , one gets

6 nþ 1ð Þ � 6 ðnÞ � mA
	
yΛDΛ6 ðnÞ � mA

	
y6 ðnÞDΛΛΛΛ

þ2C
	
ym2 Λ 6 ðnÞ � I Λð Þð ÞΛ½ � þ m2B

	
yΛI 0 Λð Þ

þ m2S
	
yD
	
2 Λð Þ:

ð55Þ

The i-th diagonal value of Φ(n) is

Φi;i nþ 1ð Þ � 1� 2mA
	
yliIi Λð Þ þ 2m2C

	
yl2i Iii Λð Þ

� 

Φi;iðnÞ

þm2S
	
y @

k
lkliIki Λð ÞΦk;kðnÞ þ m2B

	
yliI

0
i Λð Þ:
ð56Þ

This has the same form as (28) except for the constants Ay

~
,

Sy
~
, By

~
and Cy

~
. As mentioned previously, the last two terms

on (55) is upper bounded at the steady state by
m2By

~
s2
e 1ð Þ� �

liI
0
i Λð Þ, where By

~
s2
e 1ð Þ� � ¼ E s2

e 1ð ÞSy s2
e 1ð Þ� �
 �

and the expectation, is taken over the CG noise. Conse-
quently, we have

EMSENLMS y 1ð Þ ¼ Tr 6 1ð ÞΛð Þ

� mB
	
y s2

e 1ð Þ� �
2S
	
y s2

e 1ð Þ� � f	 NLMS y;

ð57Þ

where f
	

NLMS y ¼ Sy
~

s2
e 1ð Þ� �

@L
i¼1

liI
0
i Λð Þ

A
	
y s2

e 1ð Þð ÞIi Λð Þ�mC
	
y s2

e 1ð Þð ÞliIii Λð Þ
.

In general, (57) is a nonlinear equation in the EMSE.

Remarks

(R-B3): LMS and NLMS algorithms.

For NLMS algorithm, Ay

~
¼ Cy

~
¼ Sy

~
¼ 1, By

~ ¼ 1� prð Þs2
gþ

prs2
@ ¼ s2

g þ prs2
w ¼ s2

h0
, and By

~
s2
e 1ð Þ� � ¼ s2

e 1ð Þ. Using
the fact that s2

e 1ð Þ ¼ EMSENLMS 1ð Þ þ s2
h0
, one gets

EMSENLMS 1ð Þ �
1
2 ms

2
h0
fNLMS

1� 1
2 mfNLMS

: ð58Þ

Similar results are obtained for the LMS algorithm with
Ii Λð Þ ¼ I 'i Λð Þ ¼ Iii Λð Þ ¼ 1. The step size bounds are the
same as the Gaussian case.

(R-B4): LMS and NLMS algorithms with M-
nonlinearities and ATS

In this case, Ay

~
, Cy

~
, and Sy

~
are nearly constant at the

steady state. The step size bounds are similar to Eqs. (42)
and (45) for the Gaussian noise case, except that Ay and Cy

are now replaced by Ay

~
and Cy

~
respectively.

If s2
eg

<< s2
e@
, the parameter kx in ATS, which is chosen

as a reasonable multiple of the “impulse free” variance
of the estimation error, can be selected to reduce the
adverse effect of the impulses. Consider for example
Ay

~
¼ 1� prð ÞAy s2

eg

� 

þ prAy s2

e@

� 

. As mentioned at the

end of Appendix C and remarks (R-B2) above, the term
Ay s2

e@

� 

is usually small since the nonlinearity is designed

to clip at this high noise level arising from the impulsive
noise. Moreover the first term is nearly a constant. As a
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result, Ay

~
� 1� prð ÞAy , and similarly Sy

~
� 1� prð ÞSy,

Cy

~
¼ 1� prð ÞCy , and By

~
s2
e 1ð Þ� � � 1� prð ÞSys2

eg
1ð Þ.

If ATS is not employed, both Ay

~
and Cy

~
, and hence the

MSE, will be significantly affected by the impulses.
Moreover, complicated nonlinear effects will be encountered,
which will generally lead to slower convergence and higher
EMSE to be discussed in the sequel.

By noting that s2
eg

1ð Þ ¼ EMSENLMM y þ s2
g, (57) can

be simplified to

EMSENLMS y 1ð Þ �
1
2 ms

2
gf
	
NLMS y

1� 1
2 mf

	
NLMS y

; ð59Þ

where f
	

NLMS y ¼ Sy
~
@L
i¼1

li I
0
i Λð Þ

A
	
y Ii Λð Þ�mC

	
yliIii Λð Þ

� Sy @L
i¼1

liI
0
i Λð Þ

Ay Ii Λð Þ�mCyliIii Λð Þ,

which is identical to that in Gaussian noise alone (c.f.
Eq. (41)). This also holds true for the LMS-based
algorithms where Ii Λð Þ ¼ I

0
i Λð Þ ¼ Iii Λð Þ ¼ 1. The step size

for convergence is also identical to the Gaussian case.
For the NLMM algorithm using the MH function and

ATS, the values of A
~
MH, S

~
MH and C

~
MH can be computed

with the help of Table 1. Assuming sg < x << s@, then
A
~
MH � S

~
MH � 1� prð Þerf kxffiffi

2
p
� 


, C
~
MH � A

~
MH � 1� prð Þ k3xffiffiffiffi

2p
p
� 


exp � k2x
2

� 

. For practical values of kx ¼ 2:576, the

second term of C
~
MH above is small and f

	
NLMS y in (58)

will be approximately given by

f
	
NLMS y � @L

i¼1
liI 0 Λð Þ

I 0 Λð Þ�mliIii Λð Þ; ð60Þ

which is identical to that of the NLMS algorithm in
Gaussian noise alone. This approximation is more accurate
when the step size is small. This applies to the LMM
algorithm with Ii Λð Þ ¼ I

0
i Λð Þ ¼ Iii Λð Þ ¼ 1.

In [37], the performance of the NLMS algorithm in
Gaussian noise was analyzed and it is shown that 1

2ms
2
g

serves as a useful lower bound for estimating the EMSE
(misadjustment) of the NLMS algorithm. It is attractive
because it does not require the knowledge of the eigenvalues
or eigenvalue spread of RXX. A similar upper bound can be
estimated empirically as well. From the above analysis for the
NLMM algorithm, we see that 1

2ms
2
g also serves as a useful

lower bound for the EMSE of the NLMM algorithm in both
Gaussian and CG noises since its performance is similar to the
NLMS algorithm in Gaussian noise alone in view of Eq. (60).
This will be illustrated by computer simulations in the next
section.

Finally, we note that the increase in EMSE of NLMS
algorithm over the NLMM algorithm in CG noise environ-
ment is

$EMSENLMS 1ð Þ �
1
2mfNLMS

1� 1
2mfNLMS

pr s2
@ � s2

g

� 

: ð61Þ

It is clear that the NLMM algorithm, which is based on
robust statistics, offers a substantially lower steady state error
than the NLMS algorithm in impulsive noise environment.
Similar observation applies to the LMM algorithm.

4 Simulation Results

In this section we shall first examine the performance of the
NLMM and other related algorithms and then verify the
analytical results obtained in Section 3. Since the compar-
ison of the LMM algorithm with other robust algorithms is
available in [7], we will only compare the NLMM
algorithm with the LMM and NLMS algorithms in our
experiments. All simulations are carried out using the
system identification model shown in Fig. 1 and all the
learning curves are obtained by averaging the results of K=
200 independent runs. The unknown system to be estimated
is an FIR filter with order L. Its weight vector W* is
randomly generated and normalized to unit energy. The
input signal x(n) is obtained from a first order AR process
xðnÞ ¼ ax n� 1ð Þ þ vðnÞ; where 0 < a < 1 is the correla-
tion coefficient. v(n) is an additive white Gaussian noise
(AWGN) sequence with zero mean and variance s2

v and
s2
v ¼ 1= 1� a2ð Þ. The additive noise is either the Gaussian

noise ηg(n) with zero mean and variance s2
g, or the CG

noise sequence η0(n) generated from (12) with a probability
P bðnÞ ¼ 1ð Þ ¼ pr.

Experiment A: Convergence performance in Gaussian
and CG noise

In this experiment, the convergence performance and the
robustness of the NLMM algorithm to impulsive noise are
evaluated. The system order is L=8 and the correlation
coefficient of the input AR process is a=0.9. The impulse
occurrence probability and the impulsive characteristic ratio
are respectively pr=0.01 and rim=300. For illustration
purpose, the impulsive noise is applied to the system after
time instant n=2,000. From n=1 to n=1,999, the additive
noise is ηg(n) with s2

g ¼ 10�4. From n=2,000 onwards, a
CG noise η0(n) generated by (12) is applied. The step size
of the NLMM, NLMS and LMM algorithms are set to
mNLMM ¼ mNLMS ¼ 0:1 and μLMM=0.025, which enables
all algorithms to reach a similar steady state EMSE. The
small positive constant ε used to prevent division by zero in
(2) and (10) for the NLMS and NLMM algorithms is set to
0.0001. The threshold parameter x of the M-estimate
function in the NLMM and LMM algorithms is calculated
from (9) with bs2

eðnÞ being estimated from (7). The
forgetting factor ls in (7) is 0.95. The window length Nw

for the NLMM and the LMM algorithms is chosen to be 9.
For better visualization, the locations of the impulses
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are fixed whereas their amplitudes are varied according
to ηw(n). This is realized by generating one fixed
Bernoulli sequence bðnÞ with pr=0.01 and using it in all
of the independent runs. Consequently, the locations of
the impulses are fixed at n=2,482, n=3,475 and n=4,486
so as to visualize more clearly the impact of the impulsive
noise on the desired signal. Figure 3 depicts the
performance of all the algorithms, which shows they can
reach a similar steady state MSE value. The NLMM and
NLMS algorithms have almost identical initial conver-
gence performance. It can be also seen that the NLMM
and LMM algorithms are very robust to the impulses in
the desired signal. In contrast, the performance of the NLMS
algorithm is severely deteriorated by these impulses.

Simulations for pr larger than 0.01 were also conducted
and similar results are obtained. In general, the performance
of the algorithms will be degraded gradually as pr increases.
More simulation results concerning the effects of using
different parameter values of SNR, μNLMM, Nw, kx are
available in [41]. The results show that the NLMM
algorithm has improved robustness to impulses and is not

Table 2 List of parameters in experiment B.

Exps. L a μ s2
g rim pr Fig. and curve index

Mean Mean square e2(n), bs2
e

(1). NLMS with CG noise 16 0 0.2 10−6 50 0.005 4 (a), (1) 4 (b), (1) N/A

16 0.3 0.15 10−5 100 0.01 4 (a), (2) 4 (b), (2) N/A

16 0.6 0.1 10−4 200 0.015 4 (a), (3) 4 (b), (3) N/A

16 0.9 0.05 10−3 400 0.02 4 (a), (4) 4 (b), (4) N/A

(2). NLMM with CG noise 8 0 0.2 10−6 50 0.02 5 (a), (1) 5 (b), (1) Omitted

8 0 0.1 10−6 50 0.02 5 (a), (2) 5 (b), (2) 5 (c), (2)

8 0 0.05 10−6 50 0.02 5 (a), (3) 5 (b), (3) Omitted

8 0 0.02 10−3 400 0.005 5 (a), (4) 5 (b), (4) Omitted

8 0 0.01 10−3 400 0.005 5 (a), (5) 5 (b), (5) 5 (c), (5)

8 0 0.007 10−3 400 0.005 5 (a), (6) 5 (b), (6) Omitted

24 0.9 0.3 10−6 50 0.02 6 (a), (1) 6 (b), (1) 6 (c), (1)

24 0.9 0.15 10−6 50 0.02 6 (a), (2) 6 (b), (2) Omitted

24 0.9 0.1 10−6 50 0.02 6 (a), (3) 6 (b), (3) Omitted

24 0.9 0.08 10−3 400 0.005 6 (a), (4) 6 (b), (4) Omitted

24 0.9 0.05 10−3 400 0.005 6 (a), (5) 6 (b), (5) Omitted

24 0.9 0.03 10−3 400 0.005 6 (a), (6) 6 (b), (6) 6 (c), (6)

(3). NLMM with Gaussian noise 8 0 0.2 10−6 N/A N/A 7 (a), (1) 7 (b), (1) Omitted

8 0.3 0.15 10−5 N/A N/A 7 (a), (2) 7 (b), (2) 7 (c), (2)

8 0.6 0.1 10−4 N/A N/A 7 (a), (3) 7 (b), (3) Omitted

8 0.9 0.05 10−3 N/A N/A 7 (a), (4) 7 (b), (4) 7 (c), (4)

(4). LMM with CG noise 24 0 0.01 10−6 50 0.02 8 (a), (1) 8 (b), (1) 8 (c), (1)

24 0.3 0.008 10−5 100 0.015 8 (a), (2) 8 (b), (2) Omitted

24 0.6 0.006 10−4 200 0.01 8 (a), (3) 8 (b), (3) Omitted

24 0.9 0.005 10−3 400 0.005 8 (a), (4) 8 (b), (4) 8 (c), (4)

Figure 3 The convergence performance and the robustness of (1)
LMM, (2) NLMM and (3) NLMS algorithms to impulses in desired
signal (MSE vs. n).
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too sensitive to these parameters if they are reasonably
chosen as suggested.

Experiment B: Verification of convergence performance
analysis

In this experiment, the theoretical analysis presented in
Section 3 will be verified through extensive simulations.
For the mean convergence, the norm of the mean square
weight-error vector is used as the performance measure:

vAðnÞk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@L
i¼1

1
K@

K
j¼1v

ðjÞ
i ðnÞ

h i2r
; i ¼ 1; � � � ; L;

j ¼ 1; � � � ;K;

where vðjÞi ðnÞ is the i-th component of the weight-error
vector v(n) at time n in the j-th independent run. For the
mean square convergence results, EMSEðnÞ ¼ Tr 6 ðnÞΛð Þis
used as the performance measure. The values of the special
integral functions appearing in the analytical results, i. e.,
Ii(Λ), I

0
i Λð Þ, and Iii(Λ), are evaluated numerically using the

method introduced in [45]. Unlike experiment A, the
impulsive noise sequence used in these algorithms is applied
to the tested algorithms throughout thewhole adapting process.
The locations of impulses in the desired signal are not fixed for
each independent run. Different system order L, input
correlation factor a, algorithm step size μ and other key
parameters s2

g, rim, and pr are employed in different experi-
ments. For succinct description, their values are summarized
in Table 2. The following four experiments are conducted:

Ex.1 NLMS algorithmwith CG noise. The theoretical results
are calculated from (49), (56) and (58). Figure 4a
shows that for mean convergence there is a good
agreement between theoretical and experimental
results. It can be seen from Fig. 4b that the EMSE
as given in (58) is also close to the true EMSE, which
shows that the performance of the NLMS is substan-
tially affected by CG noise. The results concerning
NLMS algorithm with Gaussian noise has been
detailed in [37] so that they are omitted here.

Ex.2 NLMM algorithm with CG and Gaussian noises.
The theoretical results of the former are calculated
from (49), (56) and (60) while those for Gaussian
noise are calculated from (20), (29) and (44). All
theoretical and experimental results are depicted in
Figs. 5, 6 and 7 respectively and they are found to
match each other very well. To evaluate the
effectiveness and robustness of the ATS proposed
in (7), (9), the “impulse-free” variance bs2

eðnÞ
estimated from (7), k2x bs2

eðnÞ, and s2
eðnÞ for one

independent run are plotted in sub-figures (c) at
Figs. 5, 6, 7 and 8. It can be seen that the estimated
“impulse-free” variance is able to follow the true value

and impulses with large amplitudes can be effectively
detected. As pointed out at the end of Section 3, an
estimate of the lower bound of the EMSE for the
NLMM algorithm is 1

2ms
2
g. To account for the

approximation error in this formula, we also empirically
estimated an upper bound CF � 12ms2

g from extensive
simulation results by means of a constant correction
factor CF, which was found to be 1.7. Due to space
limitation, we only plot these bounds in Fig. 5b curve
(4) and Fig. 7b curve (3). It can be seen that these
estimates give satisfactory bounds for the EMSE.

Ex.3 LMM algorithm with CG noise, which is a special
case of Ex. 1 with all special integrals equal to one.
Figure 8 illustrates the good performance of the
algorithm and an agreement between the theoretical
and simulation results.
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Figure 4 The mean (a) and mean square (b) convergence performance
of the NLMS algorithm with CG noise. Learning curves: (1) a = 0, μ =
0.2, σ2g = 10−6, rim = 50, pr = 0.005; (2) a = 0.3, μ = 0.15, σ2g = 10−5,
rim =100, pr = 0.01; (3) a = 0.6, μ = 0.1, σ2g = 10−4, rim = 200, pr =
0.015; (4) a = 0.9, μ = 0.05, σ2g = 10−3, rim = 400, pr = 0.02.
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Figure 6 The mean (a) and mean square (b) convergence performance
of the NLMM algorithm with CG noise; c Illustration of (i) s2

eðnÞ, (ii)bs2
eðnÞ and (iii) k2x bs2

eðnÞ. Learning curves: (1) a = 0.9, μ = 0.3, σ2g = 10−6,
rim = 50, pr = 0.02; (2) a = 0.9, μ = 0.15, σ2g = 10−6, rim =50, pr = 0.02; (3)
a = 0.9, μ = 0.1, σ2g = 10−6, rim = 50, pr = 0.02; (4) a = 0.9, μ = 0.08, σ2g =
10−3, rim = 400, pr = 0.005; (5) a = 0.9, μ = 0.05, σ2g = 10−3, rim = 400,
pr = 0.005; (6) a = 0.9, μ = 0.03, σ2g = 10−3, rim = 400, pr = 0.005.

a 

b 

c

0 1000 2000 3000 4000 5000 6000 7000

0

0.2

0.4

0.6

0.8

1

Time index n

||V
A
(n

)|
| 2

0 2000 4000 6000 8000 10000
-80

-70

-60

-50

-40

-30

-20

-10

0

Time index n

E
M

S
E

 (
dB

)

 

Simulation results
Theoretical results

(1)

(4)
(5)

(2)

(6)
(3)

(b1)

(b2)

(1)~(6): Same as Fig. 5 (a)

(b1): Estimated upper bound
(b2): Estimated lower bound

NLMM with CG noise, L=8

0 2000 4000 6000 8000 10000

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Time index n

10
lo

g1
0(

M
S

E
) 

(d
B

)

 

 

(i) (ii) (iii )

(2)

(5)

 

Simulation results
Theoretical results

(5)(2)

(3)

(1)

(6)

(4)

NLMM with CG noise, L = 8

Figure 5 The mean (a) and mean square (b) convergence performance
of the NLMM algorithm with CG noise; c Illustration of (i) s2

eðnÞ, (ii)bs2
eðnÞ and (iii) k2x bs2

eðnÞ. Learning curves: (1) a = 0, μ = 0.2, σ2g = 10−6,
rim = 50, pr = 0.02; (2) a = 0, μ = 0.01, σ2g = 10−6, rim =50, pr = 0.02; (3)
a = 0, μ = 0.05, σ2g = 10−6, rim = 50, pr = 0.02; (4) a = 0, μ = 0.02, σ2g =
10−3, rim = 400, pr = 0.005; (5) a = 0, μ = 0.01, σ2g = 10−3, rim = 400,
pr = 0.005; (6) a = 0, μ = 0.07, σ2g = 10−3, rim = 400, pr = 0.005.

96 J Sign Process Syst (2010) 60:81–103



 

a  

b 

c 

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Time index n

||V
A
(n

)||
2

 

Simulation results
Theoretical results

Simulation results
Theoretical results

(1)

(3)

(4)

(2)

LMM with CG noise, L=24

0 0.5 1 1.5 2 2.5

x 10
4

-70

-60

-50

-40

-30

-20

-10

0

Time index n

Time index n

E
M

S
E

 (d
B

)

 

(1)

(2)

(4)

(3)

LMM with CG noise, L=24

(1)~(4): Same as Fig. 8 (a)

0 2000

(1)

(4)

4000 6000 8000 10000 12000 14000 16000 18000

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

10
lo

g1
0(

M
S

E
) 

(d
B

)

(i) (ii) (iii)

Figure 8 The mean (a) and mean square (b) convergence perfor-
mance of the LMM algorithm with CG noise; c Illustration of (i)
s2
eðnÞ, (ii) bs2

eðnÞ and (iii) k2x bs2
eðnÞ. Learning curves: (1) a = 0, μ =

0.01, σ2g = 10−6, rim = 50, pr = 0.02; (2) a = 0.3, μ = 0.008, σ2g = 10−5,
rim = 100, pr = 0.015; (3) a = 0.6, μ = 0.006, σ2g = 10−4, rim = 200, pr =
0.01; (4) a = 0.9, μ = 0.005, σ2g = 10−3, rim = 400, pr = 0.005.
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Figure 7 The mean (a) and mean square (b) convergence perfor-
mance of the NLMM algorithm with Gaussian noise; c Illustration of
(i) s2

eðnÞ, (ii) bs2
eðnÞ and (iii) k2x bs2

eðnÞ. Learning curves: (1) a = 0, μ =
0.02, σ2g = 10−6; (2) a = 0.3, μ = 0.15, σ2g = 10−5; (3) a = 0.6, μ = 0.01,
σ2g = 10−4; (4) a = 0.9, μ = 0.05, σ2g = 10−3.
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5 Conclusions

A new convergence performance analysis of the LMS and
NLMS algorithms with error nonlinearity in Gaussian and
CG noises is presented. The approach relies on the use of
the Price theorem and its extension to signals with mixture
Gaussian distributions, and the use of generalized Abelian
integral functions in evaluating the mathematical expecta-
tion involved. New formulas for the EMSE, stability bound
and difference equations describing both the transient and
the steady state convergence behaviors of the algorithms are
obtained. Simulation results show good agreement with the
theoretical results.

Appendix

Appendix A: Evaluation of H1

We now extend the approach in [17, 18] and [12] to
evaluate H1. Using the independence assumption 3, we
further have H1 = E{v}[H] , where H ¼ E X ;hgf g
yðeÞX= "þ XTX

� �jv
 �
. As ηg(n) and x(n) are also assumed

to be statistically independent, and X are jointly Gaussian
with autocorrelation matrix RXX, one gets

H ¼ CR ∫∫
Lþ1fold

yðeÞX
"þ XTX

exp �1
2X

TR�1
XXX

� �
fhg hg
� �

dhgdX ;

ðA� 1Þ
where CR ¼ 2pð Þ�L=2jRXX j�1=2 and fhg hg

� �
is the PDF of

the Gaussian noise hg: �j j denotes the determinant of a
matrix. Similar to [17] and [18], let us consider the integral

F bð Þ ¼ CR ∫∫
Lþ1fold

yðeÞX exp �b "þXTXð Þð Þ
"þXTX

� exp �1
2X

TR�1
XXX

� �
fhg hg
� �

dhgdX :
ðA� 2Þ

It can be seen that H=F(0). Differentiating (A-2) with
respect to " , one gets

dF bð Þ
db ¼ � exp �b"ð ÞCR ∫∫

Lþ1fold
yðeÞXð Þ exp � 1

2 X
TB�1ðnÞX� �

�fhg hg
� �

dhgdX ;

ðA� 3Þ
where BðnÞ ¼ 2bI þ R�1

XX

� ��1
. For notation convenience,

we shall simply write B for B(n). To evaluate the integral, we
use the eigenvalue decomposition of RXX=UΛU

T, where Λ is
a diagonal matrix whose elements are the eigenvalues of RXX

and U is a unitary matrix. The matrix B−1 can be written as

B�1 ¼ U 2bI þ Λ�1
� �

UT ¼ UD�1UT ; ðA� 4Þ

where D is a diagonal matrix with the i-th diagonal entry
given by diiðnÞ ¼ 2b þ l�1

i

� ��1
. Noting that the determinants

of U and D are respectively 1 and Dj j�1=2 ¼ QL
i¼1

2b þ l�1
i

� �1=2,
one can rewrite (A-3) as follows

dF bð Þ
db

¼ � g bð ÞE X ;hgf g yðeÞX vj½ �jE XXT½ �¼B ¼ �g bð ÞL1;

ðA� 5Þ
where CB ¼ 2pð Þ�L=2 Bj j�1=2,g bð Þ ¼ exp �b"ð ÞQL

i¼1
2bliþ 1ð Þ� 1

2,
and L1 ¼ E X ;hgf g yðeÞX vj½ � E XXT½ �¼B

��� is the expectation of
= (e)X conditioned on v when xi, xj∈X are jointly Gaussian
with correlation matrix B. We shall evaluate L1 by
considering its i-th element as follows:

L1;i ¼ E X ;hgf g yðeÞxi vj½ �jE XXT½ �¼B� ðA� 6Þ

Using the Price’s theorem, we have

@L1;i

@rxie
¼ E X ;hgf g

dyðeÞ
de vj

h i���
E XXT½ �¼B

¼ 1ffiffiffiffi
2p

p
se
∫1�1y 0ðeÞ exp � e2

2s2
e

� 

de ¼y 0 s2

e

� �
;

ðA� 7Þ

where y 0 s2
e

� �
is the average of = ′(e), and e=XTv+ηg,

which is Gaussian distributed with zero mean and variance
s2
eðvÞ ¼ E vTXXTv vj
 �

E XXT½ �¼B

��� þ s2
g ¼ vTBvþ s2

g. T o
simplify notation, we shall write y 0 s2

e

� �
as Ay s2

e

� �
.

Integrating (A-7) with respect to rxie, one gets

L1;i ¼ Ay s2
e

� �
rxie; ðA� 8Þ

where the constant of integration is zero because rxie is
equal to zero when xi and e are uncorrelated. Since

rxie ¼ E xie vj½ �jE XXT½ �¼B

¼ E xi XTvþ hg
� �

vj
 ���
E XXT½ �¼B

¼ Biv;
ðA� 9Þ

where Bi is the i-th row of B, we have

L1 ¼ Ay s2
e

� �
BvðnÞ: ðA� 10Þ

Substituting (A-10) into (A-5) and integrating yield

FðbÞ ¼ �∫bAy s2
e

� �
g bð ÞBdb� �

vðnÞ
� Ayðs2

eÞI bð ÞvðnÞ; ðA� 11Þ

where I bð Þ ¼ U �∫bg bð ÞDðnÞdb� �
UT and diiðnÞ ¼ li=

2bli þ 1ð Þ. The constant of integration is equal to zero
because of the boundary condition F(∞)=0. Here, we have
assumed that y 0 s2

e

� �
depends weakly on " and is taken

outside of the integral using mean value theorem with some
appropriate mean value Ay s2

e

� 

. Note, the dependence of

Ayðs2
eÞ ¼ y 0ðs2

eÞ on " is mainly through s2
e ¼ vTBvþ s2

g.
From (A-4), we can see that as " various from 0 to ∞, s2

e

will decrease from s2
eðnÞ ¼ vTRXX vþ s2

g to s2
g. Here, we

shall use the mean value of the upper bound:
s2
eðnÞ ¼ E vTRXX v½ � þ s2

g, which is the mean MSE at time
n for s2

e. This is also a good approximation at the steady
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state of the algorithm where s2
e ¼ vTBvþ s2

g � s2
g. This is

also commonly used as in [34, 35]. For the effect of the
nonlinearity Ay s2

e

� �
, first we note from (A-7) that it can be

rewritten as Ay s2
e

� � ¼ 1ffiffiffiffi
2p

p ∫1�1y 0 seuð Þ exp � u2

2

� 

du. For

most practical nonlinearities, it is shown in Appendix C that
= (e) can be written as eq e=xð Þ with threshold parameter J.
Moreover, it can be shown in Appendix C that if the ATS in
(7)–(9) is used to update ξ for these nonlinearities (collec-
tively called the M-nonlinearity) and the estimated error
variance bs2

e is close to the “impulse-free” variance, then
Ay s2

e

� �
is approximately independent of s2

e and hence of β.
For general nonlinearity, = (e) is usually equal to one

when ej j is smaller than J, and gradually decreases to zero.
For sufficiently large J, the main contribution is due to the
first term in (C-5) because of the exponential decay of the
Gaussian PDF. Hence, Ay s2

e

� � � 2ffiffiffiffi
2p

p ∫x=se

0 exp � u2

2

� 

du.

The derivative of Ay s2
e

� �
with respect to s2

e is approxi-
mately � 2xffiffiffiffiffiffiffi

2ps2
e

p exp � x2

2s2
e

� 

. For sufficiently large J, the

exponential factor decreases faster than the other factor
and the variations of Ay s2

e

� �
with respect to s2

e is small.
This also justifies the approximation used above. To
efficiently suppress outliers, J however cannot be very
large so that it is important to adapt it with respect to s2

e ,
which will help to reduce the variation of Ay s2

e

� �
with

respect to s2
e . These are also the cases which are of practical

interests. In conclusion, (A-11) is a good approximation for
commonly used M-estimate functions and practical non-
linearities with ATS or at the steady state of the algorithm.

To evaluate the term I(0) and hence H ¼ Fð0Þ ¼
Ay s2

e

� �
Ið0ÞvðnÞ, we note from (A-4) that B=UD(n)UT

and thus

Ið0Þ ¼ U �∫0g bð ÞDðnÞdb� �
UT ¼ UΛDΛU

T : ðA� 12Þ

where DΛ ¼ diag I1 Λð Þ; :::; IL Λð Þð Þ and

IiðΛÞ ¼ ∫10 exp �b"ð Þ Π
L

k¼1
2blk þ 1ð Þ�1=2

� �
2bli þ 1ð Þ�1db;

ðA� 13Þ
i ¼ 1; 2; � � � ; L. Finally, we have the following desired
result

H1 ¼ E H½ � ¼ E Fð0Þ½ � � Ay s2
e

� �
UΛDΛU

TE vðnÞ½ �:
ðA� 14Þ

For the LMS-like algorithms, B will be equal to RXX.
Accordingly, (A-14) will be modified by replacing DΛ with
the identity matrix and s2

eðvÞ by vTRXX vþ s2
g.

Appendix B: Evaluation of s3 and M3

Firstly, we note that M3 ¼ m2E vf g s3½ �, where s3 ¼ EfX ;hgg
y2ðeÞXXT=ð"þ XTXÞ2jv
h i

. As in Appendix A, we can
write s3 as:

s3 ¼ CR ∫∫
Lþ1fold

y2ðeÞXXT

"þ XTX
� �2 exp �1

2X
TR�1

XXX
� �

fhg hg
� �

dhgdX :

ðB� 1Þ
Let us define

F bð Þ ¼ CR ∫∫
Lþ1fold

y2ðeÞXXT exp �b "þXTXð Þð Þ
"þXTXð Þ2

� expð�1
2X

TR�1
XXXÞfhgðhgÞdhgdX :

ðB� 2Þ

Comparing (B-2) with (B-1), it can be seen that s3 ¼ Fð0Þ.
To evaluate F bð Þ, differentiating (B-2) twice with respect to
" , one gets

d2F bð Þ=db2 ¼ CR exp �b"ð Þ ∫∫
Lþ1fold

y2ðeÞXXT exp �1
2X

TB�1X
� �

fhg hg
� �

dhgdX

¼ g bð Þ
h
CB ∫∫

Lþ1fold
y2ðeÞXXT exp � 1

2 X
TB�1X

� �
fhg hg
� �

dhgdX
i
¼ g bð ÞL3;

ðB� 3Þ

where L3 ¼ E X ;hgf g y2ðeÞXXT jv
 ���
E XXT½ �¼B

, g(β), CB, and
the correlation matrix B have been defined in Appendix A.
Let’s evaluate the (i, j)-th element of L3 as follows:

L3;i;j ¼ E X ;hgf g y2ðeÞxixj vj

 ���

B
: ðB� 4Þ

Using Price’s theorem, we have

@L3;i;j

@rxi xj
¼ E X ;hgf g y2ðeÞ vj½ ���

B

¼ 1ffiffiffiffi
2p

p
se
∫1�1y2ðeÞ exp � e2

2s2
e

� 

de ¼ y2 s2

e

� �
:

ðB� 5Þ

For notational simplicity, we shall write y2 s2
e

� �
as By s2

e

� �
.

Integrating with respect to rxixj gives

L3;i;j ¼ By s2
e

� �
rxixj þ ci;j; ðB� 6Þ

where ci;j ¼ E y2ðeÞxixj

 ���

rxixj¼0
is the integration constant.

Using Price’s theorem again, we have

@ci;j
@rxie

¼ E
dy2ðeÞ
de

xj

� �����
rxixj¼0

¼ E
d2y2ðeÞ
de2

� �
rxje ¼ 2Cy s2

e

� �
rxje:

ðB� 7Þ
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(From Price’s theorem, 1
2E

d2y2ðeÞ
de2

h i
¼ d

ds2
e
E y2ðeÞ½ �, which is

written as Cy s2
e

� �
here) Integrating again, one gets

ci;j ¼ 2Cy s2
e

� �
rxjerxie: ðB� 8Þ

Combining (B-6) and (B-8), we have

L3 ¼ By s2
e

� �
Bþ 2Cy s2

e

� �
BvvTB: ðB� 9Þ

Substituting (B-9) into (B-3) gives

d2F bð Þ
db2

¼ g bð ÞBy s2
e

� �
Bþ 2g bð ÞCy s2

e

� �
BvvTB:

ðB� 10Þ
Integrating (B-10) with respect to " yields

s3 ¼ ∫10 ∫1b1g b2ð ÞBy s2
e

� �
Bdb2db1

þ2∫10 ∫1b1g b2ð ÞCy s2
e

� �
BvvTBdb2db1;

ðB� 11Þ

with the boundary conditions: F 1ð Þ ¼ 0 and @F
bð Þ=@bjb¼1 ¼ 0. For NLMS algorithm with general non-
linearity, the integrals are rather difficult to evaluate
because of the presence of s2

e .
Fortunately, it can be shown in Appendix C that for M-

nonlinearities which include commonly used M-estimate
functions and several practical nonlinearities, By s2

e

� �
=s2

e ¼
Sy s2

e

� �
and Cy s2

e

� �
are approximately independent of s2

e

due to the use of ATS in (7)–(9) to update J and thus the
estimated error variance s2

e is close to the “impulse-free”
variance. Similar to the case of Ay bs2

e

� �
, if J is sufficiently

large, then this is also a reasonable approximation,
especially at the steady state. Thus, Sy s2

e

� �
and Cy s2

e

� �
can be taken outside of the integral if the above conditions
are satisfied. This leaves the term s2

e , which is identical to
the conventional analysis of the NLMS algorithm. Taking
Sy s2

e

� �
and Cy s2

e

� �
outside the integral, one gets

s3 � Cyðs2
eÞI1 þ Syðs2

eÞI2 þ Syðs2
eÞs2

gI3: ðB� 12Þ

where I1 ¼ 2∫10 ∫1b1g b2ð ÞBvvTBdb2db1, I2 ¼ ∫10 ∫1b1g b2ð Þ
vTBvð ÞBdb2db1, and I3 ¼ ∫10 ∫1b1g b2ð ÞBdb2db1. The inte-
grals I1~I3 also appear in the analysis of the NLMS
algorithm in Gaussian noise [37] and they have been
evaluated to be

I1 ¼ UD1U
T ; ðB� 13Þ

where D1 ¼ 2Λ VV T
� � � I Λð Þ
 �

Λ, I Λð Þ½ �i;j ¼ I ij Λð Þ, ○
denotes element-wise product of two matrices,

Iij Λð Þ ¼ ∫
1
0 b exp �b"ð Þ Π

L

k¼1
2blk þ 1ð Þ�1=2

� �
2bli þ 1ð Þ�1 2blj þ 1

� ��1
db;

ðB� 14aÞ

and

I2 ¼ UD2U
T ðB� 14bÞ

where D2 is a diagonal matrix and its i-th diagonal element
is given by D2½ �i;i ¼ @

k
lkliIki Λð Þ VV T


 �
k;k.

I3 ¼ ∫10 ∫1b1g b2ð ÞUDðnÞUTdb2db1 ¼ UD3ðnÞUT ; ðB� 15Þ
where D3(n)=ΛI′(Λ) and I′(Λ) is a diagonal matrix with its
i-th diagonal element given by

I 'i Λð Þ ¼ ∫10 b exp �b"ð Þ Π
L

k¼1
2blk þ 1ð Þ�1

2

� �
2bli þ 1ð Þ�1db:

ðB� 16Þ
Substituting (B-13) ~ (B-15) into (B-12) yields

M3 ¼ m2E vf g s3½ � � 2Cy s2
e

� �
m2U Λ UTΞðnÞU� � � I Λð ÞΛ
� �

UT

þSy s2
e

� �
m2UD2UT þ Sy s2

e

� �
m2s2

gUΛI 0 Λð ÞUT :

ðB� 17Þ

This expression is somewhat complicated. To simplify the
determination of the step size bound, we can alternatively adopt
the argument in Appendix A and that in [37] by approximating
s2
e inside the integral by the mean value of its upper bound

s2
eðnÞ ¼ E vTRXX v½ � þ s2

g, which is the mean MSE at time n.
Although this approximation is not entirely valid for all n,
By s2

e

� �
only dominates at the steady states where the other

terms have died down. Therefore, the mean square behavior
can still be satisfactorily described as shown in the simulation
results. Moreover, in (B-17) since both terms are multiplied by
μ2 which is usually small, they only affect the behavior at the
steady state where the approximation is more likely to be valid.
By doing so, the last two terms in (B-17) will be tightly
bounded by m2Sy s2

e

� �
s2
eðnÞUΛI 0 Λð ÞUT.

Finally, we note that for the LMS algorithm, the
normalization term in (B-2) is missing and L3 is obtained
by replacing B above by RXX.

Appendix C: M-Estimate Functions (Nonlinearities)
and Properties

In addition to the modified Huber M-estimate function, the
bi-weight family of functions and the Hampel’s three parts
redescending function are also commonly used in robust
statistics [40]. The score functions of these M-estimate
functions can be written as

r
0
xðeÞ ¼ yxðeÞ ¼ eq e=xð Þ; ðC� 1Þ

where q e=xð Þ is the score function and J is a threshold for
controlling the tradeoff between degree of outlier suppres-
sion. We call those nonlinearities satisfying (C-1) the M-
nonlinearity. As an M-estimate score function, yxðeÞ should
be equal to e when ej j is much smaller than J and gradually
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decrease in magnitude as ej j increases, i.e. q(0) = 1. For
redescending score function, = (∞) = 0 so that outliers with
very large amplitude are completely ignored. The score
functions for the bi-weight family of functions, the
Hampel’s function and the MH nonlinearity are all
redescending. More specifically:

Bi-Weight Family of Functions

rBWðeÞ ¼ x2=6
� �

1� 1� e=xð Þ2
h i3� �

; if ej j � x

1: if ej j > x

8<: ðC� 2Þ

r
0
BWðeÞ ¼ yBWðeÞ ¼ e 1� e=xð Þ2

h i2
, I ej j � xð Þ and 0 else-

where where I(∙) is the indicator function.

Hampel’s Function

yHPðeÞ ¼ eqHP e=xð Þ; ðC� 3Þ

qHPðeÞ ¼
1; 0 � ej j < 1

sgnðeÞ=e; 1=1 � ej j < x1=x
sgnðeÞ sgnðeÞ � x2ð Þ=e x1 � x2ð Þ; x1=x � ej j < x2=x

0: x2=x � ej j

8>><>>:
The score function of the EF nonlinearity and the Huber
function also satisfy (C-1), but they are not redescending.
Therefore, they will be sensitive to outliers with large
amplitude. More specifically, the weighting functions of the
EF nonlinearity is:

yEFðeÞ ¼ eqEF e=xð Þ;
where qEFðeÞ ¼ 1

e ∫
e
0exp �u2=2ð Þdu. Note, for the sake of

presentation we have used J instead of σy as shown in
Table 1. This is also true for the quantizer function in which

yQ með Þ ¼ með ÞqQ me=Δð Þ;

where qQ með Þ ¼
0; mej j < 1=2

1=með Þsgn með Þ; 1=2 � mej j < 1
1: otherwise

8<:
We now show that Ay s2

e

� �
, By s2

e

� �
=s2

e , and Cy s2
e

� �
are

approximately independent of s2
e , if the score function has

the form in (C-1) and the ATS is employed. First of all, we
note from (C-1) that

y
0
xðeÞ ¼ q e=xð Þ þ e=xð Þq0 e=xð Þ: ðC� 4Þ

Using change of variable u ¼ e=se, one gets

E y
0
xðeÞ

h i
¼ 1ffiffiffiffiffi

2p
p ∫1�1 q

use

x

� 	
þ e

x

� 	
q0

use

x

� 	� �
exp � u2

2

� 	
du:

ðC� 5Þ

If ATS is employed, then x ¼ kxbse. Assuming thatbse � kse, i.e. the estimate “impulse free” noise standard
deviation is k times of σe, then (C-5) becomes

E y
0
xðeÞ

h i
¼ Ay s2

e

� � � 1ffiffiffiffiffi
2p

p ∫1�1 q
u

kkx

� 	
þ e

x

� 	
q0

u

kkx

� 	� 	
exp � u2

2

� 	
du

;

which is almost independent of s2
e . For normal operation

without outliers, k ≈1. In the presence of impulses, the
conditioned error variance σe will be much larger than the
“impulse free” error variance and k >> 1. Consequently,
Ay s2

e

� �
will be nearly zero. Similarly, we have

By s2
e

� � ¼ 1ffiffiffiffi
2p

p
se
∫1�1e2q2 e=xð Þ exp � e2

2s2
e

� 

duse

¼ 1ffiffiffiffi
2p

p ∫1�1u2s2
eq

2 use=xð Þ exp � u2

2

� 

du:

Using ATS and assuming bse � kse yields By s2
e

� � ¼
s2
eSy s2

e

� � � s2
eSy kð Þ, w h e r e Sy kð Þ ¼ 1ffiffiffiffi

2p
p ∫1�1u2q2

u
kxk

� 

exp � u2

2

� 

du is independent of σe. Note, By s2

e

� �
is

proportional to the error power s2
e. Finally,

Cy s2
e

� � � d
ds2

e
E y2ðeÞ½ � ¼ 1ffiffiffiffi

2p
p ∫1�1u2q2 use

x

� 

exp � u2

2

� 

du

þ 1ffiffiffiffi
2p

p ∫1�1
u3se
x

� 

q use

x

� 

q0 use

x

� 

exp � u2

2

� 

du:

If ATS is employed and assuming that bse � kse, then

Cy s2
e

� � � Sy kð Þ þ 1ffiffiffiffiffi
2p

p ∫1�1
u3

kkx

� 	
q

u

kkx

� 	
q0

u

kkx

� 	
exp �u2

2

� 	
du;

which is again independent of σe. In summary, if ATS is
employed, Ay s2

e

� �
, Cy s2

e

� �
, and Sy s2

e

� �
depend very

weakly on s2
e and they depend on the threshold parameters

k and the ratio between s2
e and the “impulse free” noise

variance bs2
e , k

2. For normal operation without outliers, k ≈
1. In case of impulsive outliers, κ2 will be much larger than
one, and their values will be very small.
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