
 1

Kincses Z, Orzó L, Nagy Z, Mező Gy, Szolgay P High-speed, SAD based wavefront sensor architecture

implementation on FPGA JOURNAL OF SIGNAL PROCESSING SYSTEMS 64:(3) pp. 279-290. (2011)

DOI: 10.1007/s11265-010-0487-4

High-speed, SAD based wavefront sensor architecture

implementation on FPGA

Zoltán Kincses

Department of Electrical Engineering

and Information Systems,

University of Pannonia,

Veszprém, Hungary

kincsesz@vision.vein.hu

László Orzó1, Zoltán Nagy1, György Mező2,

Péter Szolgay1,3
1 Cellular Sensory and Wave Computing Laboratory

Computer and Automation Institute, HAS,

Budapest, Hungary

orzo@sztaki.hu,nagyz@sztaki.hu, szolgay@sztaki.hu
2 Heliophysical Observatory, Debrecen, Hungary

gmezo@puma.unideb.hu
3also affiliated to: Faculty of Information

Technology, Pazmany Peter Catholic University,

Budapest, Hungary

Abstract— Wavefront aberrations caused by turbulent or

rapidly changing media can considerably degrade the

performance of an imaging system. To dynamically

compensate these wavefront distortions adaptive optics is

applied. We developed an affordable adaptive optic system

which combines CMOS sensor and Liquid Crystal on

Silicon (LCOS) display technology with the Field

Programmable Gate Arrays (FPGA) devices parallel

computing capabilities. A high-speed, accurate wavefront

sensor is an elemental part of an adaptive optic system. In

the paper, an efficient FPGA implementation of the Sum

of Absolute Differences (SAD) algorithm, which

accomplishes the correlation-based wavefront sensing, is

introduced. This architecture was implemented on a

Spartan-3 FPGA which is capable of real-time (>500 fps)

measuring the incoming wavefront.

Keywords: SAD, FPGA, wavefront sensor, real-time

image processing

1 INTRODUCTION

The rapidly changing turbulent media distort the

wavefront of the propagating light wave, thus considerably

deteriorating the imaging system’s performance.

Wavefront sensors measure these wavefront distortions.

An Adaptive Optic (AO) system using the wavefront

measurement data can dynamically compensate these

disturbances applying a deformable mirror (Micro-Electro-

Mechanical Systems (MEMs) [1]) or other actuator

devices [2]; this provides an aberration corrected system

with increased imaging performance. Moreover, adaptive

optic devices may be applied not only in large telescopes,

but also in many other diverse fields from ophthalmology

to telecommunication.

An AO system correcting ability is better if the delay

from sensing the wavefront to correcting is smaller than

evolution time of the medium being corrected for. This

delay can be diminished by choosing faster components:

sensors, actuators, and computing-controlling units.

However, the communication bandwidth between the

components also limits the achievable speed of a closed

loop AO system.

Thus, we have developed a single board adaptive optic

system, made up of a high-speed CMOS sensor, a very fast

Liquid Crystal on Silicon (LCOS) display, and a Field

Programmable Gate Array (FPGA) device for control and

calculation purposes. This type of affordable AO system

 2

can open a new scope of widespread applications of

adaptive optics. Distortions of the incoming wavefront are

determined by using the on-board CMOS sensor with the

help of the FPGA, calculating the required corrections. At

the end, the LCOS device displays the corrections, which

can eliminate the incoming wavefront distortions.

Although several wavefront sensor architectures exist,

here we applied a special version of the most popular

Hartmann-Shack (HS) sensors. In a HS sensor the image

of the incoming pupil is projected on a lenslet array. Each

lens of the array forms a miniature image of the source

object and divides the incoming aperture into sub-

apertures. The images of these sub-apertures are detected

by an area scan sensor. The shifts of these images from the

reference positions (positions without aberrations) specify

the local wavefront slopes at the locations of the

corresponding sub-apertures (the wavefront is regarded

locally flat but tilted). The overall shape of the wavefront

extended for the whole pupil can be reconstructed by

assembling all these local tilted surfaces.

For a point source object (such as a star), simple quad-

cell based HS sensors can measure these shifts [3, 4].

However, in the case of extended objects (the Sun or the

Moon), these shifts can be determined only with a higher

resolution sensor from the correlations between the sub-

aperture images and reference sub-aperture images.

Correlation-based HS sensors have signal to noise ratio

larger, than that of the quad cells [5], and they can be used

also in the case of point source objects, but they require

considerably more computing resources. Even for first

order aberration compensations (tip-tilt) high-speed

correlation trackers are frequently applied [6].

In the case of conventional applications (e.g. Solar

observation), the wavefront has to be measured by using

many relatively large resolution sub-apertures. Since the

wavefront is dynamically changing at a very high rate

(time scale of a few milliseconds), an appropriately fast,

real-time correlation-based wavefront sensor is required

[7].

Some parallel processing devices can fulfill the

necessary computation at this speed. Even though modern

CPUs, stream processors (a GPU) [8, 9, 10] or DSPs can

provide the required computation power, the FPGA

technology appears to be a very competitive alternative,

due to its fast development. As the control of the sensor

and actuator regularly needs the application of some

programmable logic device, it seems to be advantageous to

employ both of them to fulfill the requested computation

tasks as well. Recently, several FPGA-based wavefront

sensors and AO system architectures have been introduced

[11, 12] and their attainable performance was studied

comprehensively [13, 14].

Considering the limitation of the FPGA devices and

special parameterization of the mandatory wavefront

sensors, we have chosen the Sum of Absolute Difference

(SAD) method to implement the required correlation like

processing. Several efficient FPGA implementations of the

SAD algorithm have emerged [15], due to the needs of the

FPGA implementation of motion image compression

algorithms.

Accordingly, the optimal matching position of two pictures

can be determined by the SAD algorithm. First, the SAD

values of the picture are calculated, and then the minimum

of them is determined. By this method, the displacement of

the images of all sub-apertures is determined with respect

to a reference image which can be considered as an image

of a wavefront with no local slope. There are several

alternatives to assign a proper reference image: here we

use a sample image of a central sub-aperture as reference.

Otherwise, the average image of many sub-apertures can

also be used as reference. The SAD values are computed

through the next equation:

, , , , ,
S S

k l i j i k j l

i j

SAD P R k l A    , (1)

where S is the size of the sub-aperture, A the size of the

SAD value array, P the sub-aperture pixel, and R the

reference pixel. The size of the reference image is the sum

of the sizes of the sub-aperture and the SAD value array

minus 1. Practically, the chosen size of the SAD value

array is smaller than the size of the sub-aperture.

The structure of the paper is as follows: In Section 2 the

overall structure of the FPGA-based adaptive optic system

is outlined. Details of the wavefront sensing architecture

implemented on FPGA are introduced in Section 3. In

Section 4 our results are presented. Finally, conclusions

are drawn in Section 5.

2 THE FPGA-BASED ADAPTIVE OPTIC SYTEM

Our FPGA-based adaptive optic system contains three

main components. The first one is a very high frame-rate,

mega pixel resolution CMOS image sensor, which is

equipped with an appropriate lenslet array. The second one

is a high-speed and resolution LCOS display aimed to

fulfill the wavefront correction. The third one is an on-

board FPGA, which is responsible for the control of the

overall system and the calculation of the correction data.

The error compensation of the sensor and data display

using different linear, nonlinear and spatial filtering

operations can also be accomplished in real-time by the

built in FPGA. The adaptive optic system can be seen in

Figure 1.

 3

Cypress USB

controller

Micron CMOS

sensor

Lenslet
Philips LCOS

display

Xilinx Spartan-3

FPGA

Samsung

memories

Figure 1. The adaptive optic system

The input image flow for the system is provided by a

Micron MT9M413 CMOS sensor [16] whose resolution is

1280×1024 pixels (12m×12m in size). It is able to

acquire 500 full-image frames per second. The sensor has

digital output with ten parallel 10-bit wide data buses

working at 60MHz to ensure the extremely large sensing

speed; for this reason, it is often applied in high frame-rate

cameras. This sensor is extended with a 32×32 array of

micro-lenses, called lenslet array, and each of them covers

16×16 center part within a 32×32 sub-aperture on the

sensor surface. The general structure of an N×M lenslet

array covering S×S sub-apertures is depicted in Figure 2.

This lenslet array and the corresponding sensor are applied

to implement the HS wavefront sensor, which provides the

required input of the adaptive optic system.

Optical geometry of the actual wavefront sensor

depends on the aimed application. Parameterization issues

are considered in the HS sensor literature [17].

Sub

aperture

1,1

(SxS pixel)

Sub

aperture

1,2

(SxS pixel)

Sub

aperture

1,M

(SxS pixel)

Sub

aperture

2,1

(SxS pixel)

Sub

aperture

2,2

(SxS pixel)

Sub

aperture

2,M

(SxS pixel)

Sub

aperture

N,1

(SxS pixel)

Sub

aperture

N,2

(SxS pixel)

Sub

aperture

N,M

(SxS pixel)

....................

....................

....................

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

...
...

...
...

...
...

..

Figure 2. The general structure of an N×M lenslet array covering

S×S sub-apertures

The correction is performed by a Philips DD720 LCOS

display [18, 3] whose resolution is 1280×768 pixels with

20m pixel sizes, which can display up to 540 full-image

frames per second. With the help of this device, amplitude

or phase modulation can be carried out by applying

appropriate wave plates and polarizers. The required I/O

bandwidth is approximately 750 megabytes/second, which

implies that real-time data processing can be fulfilled only

by using a parallel device.

Details and limitations of the considered zonal

correction procedure, as it are even more intricate than

wavefront sensing, is out of scope of this paper. However,

it seems important to consider its achievable performance

from the HS sensor speed and resolution requirements

point of view.

The obvious choice to provide the appropriate control of

the sensor and display devices is using a programmable

logic device. Usually, the commercially available FPGA

development boards do not make it easy to connect to

high-performance imaging devices (cameras).

Furthermore, the aforementioned 750 megabytes/second

I/O bandwidth requirement is also a bottleneck of these

FPGA boards. Consequently, a customized system was

constructed, equipped with: 1) the previously introduced

CMOS sensor, 2) LCOS display, and 3) Xilinx Spartan-3

XC3S4000 FPGA [19] whose density is 4 million system

gates, and supplied by 96 18Kb BlockRAM and 96

18×18bit multipliers.

Although the system is designed as a stand-alone device

for configuration and calibration purposes, a USB interface

is required, and it is driven by an USB microcontroller.

Many other standard steps, such as uploading sensor data,

displaying bias patterns, downloading image correction

and program parameters use this communication channel

as well. Since there is not enough memory on the given

FPGA to store a full image frame, external off-chip

memories are required. Static RAMs are used, in which 8

full-image frames can be stored. Consequently, fixed

pattern noise removal (FPN), flat field correction and

LCOS manufacturing caused phase unevenness

compensation can be carried out. The sensor and display

device need different reference voltages, which are set by

appropriate D/A converters. These D/A converters are

programmed through a standard Serial Peripheral Interface

(SPI). Furthermore, the temperature and power control of

the LCOS display can be handled by a microcontroller,

which communicates with the FPGA through a Universal

Asynchronous Receiver Transmitter (UART) interface.

3 ARCHITECTURE IMPLEMENTED ON FPGA

Our primary goal is to implement a high-speed and

highly parallel SAD architecture on the FPGA to

 4

determine the displacement of the sub-apertures and to

calculate the wavefront distortions, at rate of up to 500 full

frames per second. Although the SAD algorithm is simple,

its efficient FPGA implementation requires particular

design considerations.

3.1 The architecture of the overall system

The architecture implemented on FPGA has three main

parts, as shown in Figure 3. The Shuffle unit is responsible

for serializing the pixels required for the calculation of the

SAD values. SAD values for each image are computed,

and the smallest value is chosen by the SAD unit. This

value and its 4-connected neighbors are transferred to a

Xilinx MicroBlaze soft-core processor to determine the

slope values at sub-pixel resolution motion vectors. In

addition to these elements, a CMOS controller, a Flat and

FPN unit, an LCOS unit, a USB control unit, a Memory

controller, and a Master Controller unit are also essential.

The CMOS controller receives the image data and controls

the Micron CMOS sensor. The LCOS unit computes the

correction terms and sends them to the LCOS display. The

FPN unit eliminates the fixed pattern noise from the

CMOS sensor whereas the flat field correction is

performed by the Flat unit. The USB controller is

responsible for the communication with the host computer

connected to the FPGA board. The coordinates of the

relevant pixels of the CMOS sensor are defined by the host

computer, whereas the reference image is updated rarely

by the MicroBlaze unit. The Memory controller handles

the data transfer from and to the memory. The memories

store data for the Flat and FPN units, while the Master

Controller unit is responsible for the control of the overall

system.

Master

Controller

CMOS

control

LCOS unit

USB

control

Memory

control

Flat unit

MicroBlaze

SAD unit

Data from

computer

Data to LCOS

Data from CMOS

Shuffle unit

FPN unit

Figure 3. The implemented architecture of the overall system on

FPGA (the main three parts are shaded)

3.2 The Shuffle unit

During the image capturing only the pixels of the sub-

apertures are used; therefore, SAD values should be

computed (to determine the wavefront) only in these areas,

as shown in Figure 2. The relevant pixels with respect to

the coordinates of the sub-apertures are defined by the host

computer, by sending the upper left coordinates which are

stored in the memory of the Pixel selection and Control

unit. The selection and serialization of the incoming pixels

from the CMOS sensor are performed by the Shuffle unit,

whose architecture is shown in Figure 4.

Arranged data fifo

Input data fifo

Shift register

Pixels from

CMOS

Shift_en

Out

In

Coordinates

from Controller

100

10
Out

In

10

Pixels to

SAD unit

100

In

Out

W
r_

e
n

R
d

_
e

n

W
r_

e
n

R
d

_
e

n

Prog_full

To Controll

unit

P
ix

e
l s

e
le

c
tio

n
 a

n
d

c
o

n
tro

l

Figure 4. The architecture of the Shuffle unit

 5

This architecture is built up from an Input data FIFO,

an Arranged data FIFO, a parallel in serial out Shift

register unit, and a Pixel selection and control unit. The

Input data FIFO is a 100-bit input and 100-bit output

FIFO, which is responsible for storing the 10×10-bit pixel

data generated by the CMOS sensor in every clock pulse.

This FIFO operates on the same clock frequency as the

data bus of the CMOS sensor. The FIFO has to be deep

enough to store a whole sub-aperture row (1280×P), in the

worst case. The parallel in serial out Shift register unit

converts the 100-bit input data to 10-bit output data by

propagating only the relevant pixels (pixels of a certain

sub-aperture) to the Arranged data FIFO and discarding

the others. Therefore, only the pixels of the sub-apertures

are stored in the Arranged data FIFO. This FIFO stores

these pixels until all pixels in a certain row of this sub-

aperture have arrived, and they are fed into the SAD unit

serially. The parallel in serial out Shift register unit and the

Arranged data FIFO operates on the clock frequency of

the SAD unit. The Pixel selection and control unit controls

the operation of the FIFOs and the parallel in serial out

Shift register unit.

3.3 Operation of the SAD unit

The SAD unit is designed to compute Eq.(1) on the sub-

apertures of the input image in real-time. Image data are

sent by the CMOS sensor in a row-wise order. Therefore,

S×S pixels should be stored to carry out the computation

of the SAD values. Additionally, there are several sub-

apertures in the row, which further increases the memory

requirements, because the double buffering of the sub-

apertures are required, and this is impractical in the case of

large sub-apertures. The size of the required memory can

be computed by the following formula:

2memorys S S p N    
 (2)

where S is the sub-aperture size p is the bit width of the

pixels and N is the number of sub-apertures.

Instead of storing the sub-aperture windows, the

computation of the SAD values is rearranged to match the

incoming data flow, whereas all partial SAD values are

computed in parallel. When, for example, the first pixel

(P0,0) has arrived, the first term of Eq.(1) – ADk,l,0,0=|P0,0-

Rk+i,l+j| – is computed for all possible k,l values. When

partial results, using the first row of the sub-aperture are

computed, the SAD values are stored in a temporary buffer

and the computation with the next sub-aperture starts. In

this case AxA pixels should be stored, where

(1) (1)A r S r S     
 (3)

and r is the size of the reference image. To avoid overflow

during the SAD computation the width of the partial

results should be extended by
2log S S   bits. So in this

case the memory requirement can be computed by the

following formula:

2(log)memorys A A p S S N        (4)

In our case relatively large reference images are used,

with small shifts of the sub-apertures, thus S will be

always larger than A. Therefore storing the partial SAD

values requires considerably less memory than double

buffering the incoming sub-aperture data. For example

using the following typical values r=32, S=28, A=5, p=8,

N=32, in this case double buffering of the sub-apertures

requires 392 Kbits, while storing only the partial results

requires only 14 Kbits memory.

The operation of the SAD unit is demonstrated in details

on a simple example, where a 3×3 sized lenslet array

covering 3×3 sub-apertures are used. The arrangement of

the lenslet array is depicted in Figure 2. To calculate the

3×3 SAD value array of a sub-aperture of the lenslet array,

a 5×5 reference picture is required in order to obtain a

SAD value for every single pixel. Elements of the sub-

aperture, the reference picture, and the SAD results are

enumerated in a row-wise order, as shown in Figure 5.

According to Eqs.(5-7), pixel P1 is required for the

calculation of the first term of the SAD values but with a

different reference pixel. Similarly, pixel P2 is required for

the calculation of the second term of all the nine SAD

values as shown in Eqs.(5-7), and so on.

By this method, partial SAD values are computed in

parallel. The computation of one sub-aperture can be

carried out in A×A cycles.

P1

P9P8P7

P6P5P4

P3P2

R1

R25R24R23R22R21

R20R19R18R17R16

R15R14R13R12R11

R10R9R8R7R6

R5R4R3R2

3x3 sub-

aperture

5x5 reference

picture

R1

R25R24R23R22R21

R20R19R18R17R16

R15R14R13R12R11

R10R9R8R7R6

R5R4R3R2

The 9 reference values

for SAD1

R1

R25R24R23R22R21

R20R19R18R17R16

R15R14R13R12R11

R10R9R8R7R6

R5R4R3R2 R1

R25R24R23R22R21

R20R19R18R17R16

R15R14R13R12R11

R10R9R8R7R6

R5R4R3R2

.......................

The 9 reference values

for SAD2

The 9 reference values

for SAD9

Figure 5. The 3×3 sub-aperture, the 5×5 reference picture, and the

reference values required for the computation of SAD1, SAD2,

…SAD9

 6

1 1 1 2 2 3 3 4 6 5 7 6 8

7 11 8 12 9 13

SAD P R P R P R P R P R P R

P R P R P R

            

    
 (5)

2 1 2 2 3 3 4 4 7 5 8 6 9

7 12 8 13 9 14

SAD P R P R P R P R P R P R

P R P R P R

            

    
 (6)

..........................

9 1 13 2 14 3 15 4 18 5 19 6 20

7 23 8 24 9 25

SAD P R P R P R P R P R P R

P R P R P R

            

    
 (7)

3.4 The SAD unit

The main building blocks of the SAD unit are the

Reference Register unit, the Absolute Differences unit, the

SAD Controller unit, and the Minimum Finder unit, as can

be seen in Figure 6. in case of 3×3 sub-aperture. The

Reference Register stores the reference values and

generates the appropriate reference window for a certain

pixel of the sub-aperture. The Absolute Differences unit

calculates the partial SAD or Absolute Difference (AD)

values for the computation of the SAD. The Minimum

Finder unit defines the smallest SAD value and 4-

connected neighbors. SAD Controller unit controls the

operation of the SAD unit. In addition to these elements,

the SAD unit also contains an accumulator register array

and some BlockRAMs. The size of the accumulator

register array and the number of BlockRAMs is defined by

the size of the SAD value array, whereas the depth of the

BlockRAMs is specified by the number of the sub-

apertures in the lenslet array rows. The accumulator unit is

responsible for the addition of the computed AD results.

The calculated AD results (SAD results in case of the last

row of the sub-aperture) are shifted from the accumulator

register array into the BlockRAMs at the end of the

processing of the actual row of the sub-aperture.

BlockRAM0

BlockRAM1

BlockRAM2

Reference Register

Acc

8

Acc

5

Acc

3

Acc

2

Acc

9

Acc

1

Acc

7

Acc

4

Acc

6

ReferenceIn

L
o

a
d

R
o

w
_

s
h

if
t

L
e

ft
_

s
h

if
t

S
h

if
t_

e
n

PixelIn

Result

1- 4-7

Result

3- 6- 9

Result

2- 5- 8

Absolute Differences

unit

S
ta

rt
_

c
a

lc

0

0

0

SAD Controller

W
ri

te
_

a
d

d
r

S
h

f/
L

d
_

a
c

c

R
e

a
d

_
a

d
d

r

In
p

u
t_

s
e

l

M
in

im
u

m
 F

in
d

e
rRow_pos

Col_pos

Start_min

In
p

s
e

l

In
p

s
e

l

In
p

s
e

l

Last_sap

Lasr_row

First_row

S
A

D
o

u
t

S
A

D
o

u
t

S
A

D
o

u
t

O
u

te
r_

lo
g

ic

Figure 6. The architecture of the SAD unit in case of 3×3 sub-

aperture

The SAD unit is started when a row of a sub-aperture

arrives at the Arranged data FIFO unit (see Figure 4). The

Reference Register unit is started by the SAD Controller

unit to generate the required reference values for the

calculation of the AD results when the first pixel has

arrived. Meanwhile, the Absolute Differences unit is also

started to calculate all of the required absolute difference

values. This unit has only two clock cycles latency.

Results are stored in the accumulator array. If the next

pixel has arrived, all the AD values in connection with this

pixel are computed and added to the partial results stored

in the accumulator array. At the end of the actually

processed row of the sub-aperture, the content of the

accumulator is shifted into the BlockRAMs. For the first

row of the sub-aperture, the accumulator array is filled

with zeros; in the other cases, the partial results computed

with the previous row of the next sub-aperture are loaded

into the accumulator. This is necessary for the accumulator

to be up-to-date, and hold the partial results for next sub-

aperture. The reinitialization of the values in the Reference

Register is also performed during this time.

The SAD value calculation of the sub-aperture is

finished when the last row of the sub-apertures is

processed. The minimum of the SAD values and its

4-connected neighbors are determined by the Minimum

Finder unit, which also specifies the locations of these

values in the sub-aperture. When all of the SAD values are

computed the results can be read from the BlockRAM

memories in a column-wise order. The smallest values in

each column are determined in parallel by using a tree of

comparators, while the minimum of the whole area is

determined serially. Therefore the latency of the Minimum

Finder depends on the size of the SAD value array. After

 7

the computation of the SAD values of the last sub-aperture

in the actual row, the minimum values and the 4-connected

neighborhood can be read out from the BlockRAMs,

according to the locations specified by the Minimum

Finder unit. These values are sent to the Xilinx

MicroBlaze processor for further processing.

The implemented SAD unit operates on twice higher

clock frequency than the data bus of the CMOS sensor.

The size of the reference image, which defines the size of

the SAD value array, the size, and number of the sub-

apertures is parametrizable in the Very High Speed

Integrated Circuits Hardware Description Language

(VHDL) description of the unit, according to the

wavefront sensing algorithm, where 8×8 to 32×32 sub-

apertures are required. Additionally, several SAD units can

work in parallel by slicing the input image and using more

Shuffle units.

3.5 The Reference Register unit

The Reference Register stores the reference values and

generates the appropriate reference window for a certain

pixel of the sub-aperture. The S×S reference window

moves from left to right during the computation, as shown

in Figure 5. In order to make the implementation simpler

and to use the shift register resources in the FPGA, the

reference window is fixed and the reference values are

shifted in our system. Utilizing the shift registers requires

less area and routing resources than using a simple register

array. For further optimization, the non-used part of the

reference array is stored in BlockRAM. The required nine

reference values in the example above are always placed

on the upper left side of the reference array in a 3×3

window. The architecture of the Reference Register unit is

shown in Figure 7. in case of a 5×5 reference picture. This

unit contains a shift register array to store and shift the

reference values. The size of the array is defined by the

size of the reference image. The array is filled up with the

reference values in the initialization phase. To compute the

SAD values the data stored in the reference array should

be shifted circularly, with respect to the position of the

incoming pixels. Thus, the Reference Register unit has

three operation modes: 1) load, 2) left shift, 3) row shift. In

the load mode, the reference values are loaded into the

bottom right register (Reg25) and shifted left in the register

chain pixel-wise; data from the leftmost registers (Reg21,

Reg16, Reg11, Reg6, Reg1) are shifted to the rightmost

registers (Reg20, Reg15, Reg10, Reg5) a row above. In the

left shift mode, values in the registers are shifted circularly

in the same row. Finally, the row shift mode is very similar

to the load mode, except in the case of the lower right

register (Reg25) which is loaded with the contents of the

upper left register (Reg1).

S
h

ift

s
e

l

Dataout

1-4-7

Dataout

2-5-8

Dataout

3-6-9

D
a
ta

in

Shift_en
Load
Left_shift
Row_shift

Reg

6

Reg

5

Reg

4

Reg

3

Reg

2

Reg

11

Reg

10

Reg

9

Reg

8

Reg

7

Reg

15

Reg

14

Reg

13

Reg

12

Reg

25

Reg

24

Reg

23

Reg

22

Reg

20

Reg

19

Reg

18

Reg

17

Reg

16 S
h

ift

s
e

l

S
h

ift

s
e

l

S
h

ift

s
e

l

S
h

ift

s
e

l

Reg

1

Reg

21

BlockRAM

Figure 7. The architecture of the Reference Register unit for the case

of a 5×5 reference image

The detailed steps of moving the reference values can

be seen in Figure 8, in case of the aforementioned

example. In the 1st clock cycle, when the first pixel of the

first sub-aperture has arrived, the reference values are not

shifted, because they are in the proper position. In the 2nd

clock cycle, the reference values are shifted one position to

the left, as can be seen in Figure 8. In the 3rd clock cycle,

when the third pixel of the first sub-aperture is available,

also a left shift of the reference values is carried out.

Before the calculation of the AD results of the second sub-

aperture, the reference values should be shifted back to the

initial position. This is done under the 4th, 5th clock cycle,

as shown in Figure 8. In the 6th clock cycle the calculation

of the first row of the second sub-aperture may start.

During this calculation the reference values are shifted, as

described previously. In the 11th clock cycle the

calculation of the first row of the third sub-aperture may

start. In this case, the reference values are not only shifted

left, but also started to shift up. This is required to prepare

the proper reference window for the processing of the next

row of the first sub-aperture. After the 13th clock cycle, an

initialization phase is also required until all values from

the second row are shifted up to the first row of the array.

 8

1 2

2221

3 4 5

16 17 18 19 20

23 24 25

2 3

7 8

2322

4 5 1

9 10 6

12 13 14 15 11

17 18 19 20 16

24 25 21

3 4

8 9

2423

5 1 2

10 6 7

13 14 15 11 12

18 19 20 16 17

25 21 22

1
st

 clock cycle 2
nd

 clock cycle 3
rd

 clock cycle

4 5

9 10

2524

1 2 3

6 7 8

14 15 11 12 13

19 20 16 17 18

21 22 23

4
th

 clock cycle 5
th

 clock cycle

1 2 3

6 7 8

11 12 13

16 17 18

21 22 23

4

9

24

14

19

5

10

25

15

20

...

11
st

 clock cycle 12
th

 clock cycle 13
rd

 clock cycle

14
th

 clock cycle 15
th

 clock cycle

1 2

2221

3 4 5

16 17 18 19 20

23 24 25

3 4 5

8 9 10

13 14 15

18 19 20

23 24 25

6

11

1

16

21

2

7

22

12

17

4 5 6

9 10 11

14 15 16

19 20 21

24 25 1

7

12

2

17

22

3

8

23

13

18

5 6 7

10 11 12

15 16 17

20 21 22

25 1 2

8

13

3

18

23

4

9

24

14

19

6 7 8

11 12 13

16 17 18

21 22 23

1 2 3

9

14

4

19

24

5

10

25

15

20

11 12

16 17

76

13 14 15

18 19 20

21 22 23 24 25

1 2 3 4 5

8 9 10

12 13

17 18

87

14 15 16

19 20 21

22 23 24 25 1

2 3 4 5 6

9 10 11

13 14

18 19

98

15 15 17

20 21 22

23 24 25 1 2

3 4 5 6 7

10 11 12

...

41
st

 clock cycle 42
nd

 clock cycle 43
rd

 clock cycle

14 15

19 20

109

16 17 18

21 22 23

24 25 1 2 3

4 5 6 7 8

11 12 13

15 16

20 21

1110

17 18 19

22 23 24

25 1 2 3 4

5 6 7 8 9

12 13 14

44
th

 clock cycle 45
th

 clock cycle

13 more clock cycles to initialize the reference values

6 7 8 9 10

11 12 13 14 15

6 7 8 9 10

11 12 13 14 15

Figure 8. The data movement in the 5×5 reference register array

This process is fulfilled under the 14th, 15th, clock cycle.

The process described previously from the 1st to the 15th

clock cycle is repeated until the last row of the last sub-

aperture is available in the 41st clock cycle. At this point a

row shift is carried out under the 41st, 42nd, 43rd, 44th, 45th

clock cycles for positioning the reference values. After the

45th clock cycle, the first half of the array and the second

half of the array are in swapped positions, as represented

in Figure 8. Consequently, these values should be shifted

back to their initial positions in order to start the

processing of the next sub-aperture row. This process here

requires 13 clock cycles.

3.6 The Absolute Differences unit

The Absolute Differences unit is responsible for

calculating the absolute differences between the reference

and the input images. This unit is built up from an array of

processing elements. The number of the processing

elements is defined by the size of the sub-aperture.

Therefore, all AD values can be calculated in parallel. The

structure of the processing element can be seen in Figure

9.

Subtractor

(Ref- Inp)

Inverter

Adder

Mux

Reference

pixel

Input

pixel

1

Selector

Figure 9. The structure of a processing element in the Absolute

Differences unit

A processing element first calculates the difference

between its inputs, then inverts the result, and adds 1 to it,

generating this way the 2’s complement form of the

calculated difference. Finally, using a Selector signal –

according to the MSB bit of the difference – the 2’s

complement as the absolute value of the difference or the

difference is presented on the output. This unit has only

two clock cycle latency.

4 RESULTS

An FPGA-based adaptive optic system was constructed

and the architecture of the wavefront sensor system was

implemented on a Spartan-3 XC3S4000 FPGA by using

VHDL. The main block of this system is the SAD unit,

which is responsible for the calculation of the SAD values.

The implemented SAD unit is fully parametrizable with

respect to the size and the number of sub-apertures. The

unit can be parameterized in the VHDL code of the unit

before the synthesis process, according to the wavefront

sensing algorithm where 8×8, to 32×32 sub-apertures are

required. The size of the reference image, which defines

the size of the SAD value array, is also parametrizable.

 9

The maximal size of the sub-aperture is limited by the area

requirement of SAD units on the FPGA.

The number of the applicable sub-apertures is bounded

by the row length of the CMOS sensor. The 18Kb

BlockRAMs used in the SAD unit is large enough to store

the entire row of the computed SAD values. The size of

the sub-apertures is important, since it defines the required

number of BlockRAMs and other logic resources on the

FPGA. The performance of the SAD unit is investigated in

case of different sub-aperture and reference image sizes.

Static timing analysis of the placed and routed designs

show that the speed of the SAD unit can attain the 120

MHz operating frequency in all cases. The Flip-Flop

resource utilization of the implemented SAD unit on the

Spartan-3 XC3S4000 FPGA can be seen in Figure 10.

Flip-Flop resource requirement

100

1000

10000

100000

8x8 12x12 16x16 20x20 24x24 32x32

Size of the sub-aperture

N
u
m

b
e
r

o
f
F

lip
-F

lo
p
s

2x2 4x4 6x6 8x8 12x12

16x16 20x20 24x24 28x28 32x32

Figure 10. The Flip-Flop resource requirement of the SAD unit in case

of different size of SAD value array

Figure 10 shows that the Flip-Flop resource requirement

of the SAD unit increases quadratically, according to the

size of the sub-apertures, but it does not depend on the size

of the SAD value array. This is the cost of the high-level

parallelism. If the size of the sub-aperture increases, then

the number of required Flip-Flops also extends, because of

the increasing number of accumulator registers, reference

registers, and adders. The same behavior can be obtained

in case of the 4-input LUT and BlockRAM resource

requirement of the SAD unit. In order to achieve even

faster performance, several SAD units can be used in

parallel. The number of realizable SAD units in case of the

Spartan-3 XC3S4000 and Virtex-4 XC4VLX200 can be

seen on Table 1. For a fair comparison the Virtex-4 family

was chosen, because the architecture of Virtex-5 and

Virtex-6 families is considerably different from that of the

Spartan-3. The number of realizable SAD units is

determined by BlockRAM resources on the FPGA in case

of SAD value arrays smaller than 12×12. For larger SAD

value arrays, the bottleneck is the number of available

Flip-Flops on the device.

Sub-aperture

size in pixels

(S×S)

Spartan-3

XC3S4000

Virtex-4

XC4VLX200

8×8 11 37

12×12 7 23

16×16 4 13

20×20 3 9

24×24 2 6

28×28 1 4

32×32 1 3

TABLE 1. THE REALIZABLE NUMBER OF SAD UNITS (REFERENCE PICTURE

SIZE IS (2S-1)×(2S-1))

The number of clock cycles that a SAD unit requires to

calculate the SAD values changes according to the size of

the sub-apertures, as shown in Table 2 in case of maximal

SAD value array size; thus, the number of real-time

manageable sub-apertures is different. It also shows the

number of sub-apertures and the area of the sub-apertures

compared to the surface of the CMOS sensor which can be

computed in real-time using one SAD unit. One SAD unit

running at 120MHz clock frequency can handle 2171 8×8

sub-apertures on each frame of the CMOS sensor in real-

time. However, this is only 42.6% of the surface of the

CMOS sensor, but it requires only 8.72% of the FPGA

resources. Therefore, using three SAD units on the

Spartan-3 FPGA, the whole surface of the CMOS sensor

can be processed in real-time. By using 32×32 sub-

apertures, 127 sub-apertures can be handled in real-time.

This makes it possible to process the 39.64% of the entire

surface of the CMOS sensor. Using higher performance

Virtex-4 XC4VLX200, three SAD units like this can be

implemented, as shown on Table 1.

Sub-aperture

size in pixels

(S×S)

Required

number of

clock cycles

Maximum

number of sub-

apertures/frame

Percentage

of the

CMOS

surface

8×8 120 2171 42.60%

12×12 156 941 41.35%

16×16 496 522 40.78 %

20×20 780 331 40.39%

24×24 1128 228 40.10%

28×28 1540 167 39.86%

32×32 2016 127 39.64%

TABLE 2. THE TEST RESULTS OF ONE SAD UNIT (REFERENCE PICTURE

SIZE IS (2S-1)×(2S-1))

Additionally, the clock frequency of the SAD unit on

this architecture can be increased to 230 MHz, according

to the results of the static timing analysis. Therefore,

applying this FPGA, also the whole surface of the CMOS

sensor can be processed in real-time using 32×32 sub-

apertures.

 10

Our results are compared to a correlation-based

wavefront sensor system described in [20]. This system is

implemented on a Xilinx Virtex-4 SX35-10, in which the

processing core operates on 100MHz clock frequency. For

better comparison, also the clock frequency of our SAD

unit is decreased to 100MHz. The comparison of the SAD

unit implemented on Spartan-3 XC3S4000 and the

correlation-based system is shown in Table 3.

CMOS area: 256x256

Sub-aperture: 8x8

(in pixels)

CMOS area: 512x512

Sub-aperture:16x16

(in pixels)

Corr. SAD Corr. SAD

Slices 5431 2769 9932 10186

LUTs 10161 3435 18607 12093

Flip-flops 2096 3615 5981 13615

Time 2.89ms 1.267ms 18.1ms 5.238ms

AT 15.69 3.51 179.76 53.35

TABLE 3. COMPARISON OF THE DIFFERENT IMPLEMENTATIONS.

The results show that the Area*Time (AT) parameter of

our SAD-based wavefront sensor system is smaller than

the correlation-based system described in [20]. In case of

8×8 sub-apertures, the AT parameter of our SAD unit is

22% of the correlation-based system. This ratio increases

when larger sub-apertures are used. In 16×16 case, the

performance difference is 29% between the two types of

implementation. Thus SAD based solution provides

similar accuracy [21] but it can be computed more

efficiently. The performance of our system can be further

increased by using more SAD units. Additionally, its

operating frequency is also higher, especially in case of the

Virtex-4.

Even though FPGA-based SAD implementations [15,

22, 23] have been published in different journals and

books, systems like this were, generally, constructed on

Altera FPGAs. Consequently the comparison of the Altera-

based solutions with our Xilinx-based system may be not

reliable, due to the architectural differences, but the overall

performance of our implementation seems to out-perform

them. However, our special purpose SAD architecture

shows superior performance (16x16 sub-aperture: 10,186

slices and 496 clock cycles comparing to the published

9,478 slices and 1,600 clock cycles) with respect to the

comparable motion estimation processor SAD

implementations [23].

5 CONCLUSION

Our wavefront sensor system is based on the high-speed

and highly parallel SAD calculation unit implemented on a

Spartan-3 FPGA. This system can be used with a wide

range of applicable lenslet arrays, since it is fully

parametrizable with respect to the size and the number of

sub-apertures and the reference image size. The

performance of the system was tested on sub-apertures and

reference images of different sizes, which defines the size

of the SAD values array.

The results show that the resource requirement of the

introduced SAD calculation unit increases quadratically

according to the size of the sub-apertures which is the

price of the high-level parallelism. Fortunately the size of

the SAD value array does not influence the area

requirement significantly. Considering 8×8 sub-apertures,

the entire surface of the CMOS sensor can be processed in

real-time, using three SAD units on the Spartan-3

XC3S4000 FPGA. In case of higher resolution sub-

apertures, the real-time processable CMOS surface is

reduced. Notwithstanding, applying higher performance

FPGAs (Virtex-4) makes it possible to handle the whole

area of the CMOS sensor real-time. In case of 8×8 sub-

apertures 4.4 times performance gain can be achieved

compared to the correlation-based wavefront sensor

architecture. This difference is further increased when

larger sub-apertures are used (see in Table 3). Our parallel

SAD FPGA-based implementation architecture provides

an efficient high-speed wavefront sensor whose

performance is higher than that of the counterparts applied

so far.

The rapid development of the FPGA technology offers the

possibility to construct intelligent, programmable, very

high-frame rates, and high-resolution cameras, diminishing

the required communication bandwidth by on-camera

processing in the control systems where high performance

imaging sensors are used.

6 ACKNOWLDGEMENT

The research was supported by the OTKA Grant No.: K

61965. Hardware engineering work, including final PCB

design, was accomplished by CORTEX Ltd. We express

our gratitude to Andras Radványi, and special thanks are

due to Zsolt Vörösházi and Beáta Vajda who helped us to

complete the paper, and the helpful comments and

suggestions of the reviewers are kindly acknowledged.

7 REFERENCES

[1] Dayton, D., Gonglewski, J., Restaino, S., Martin, J., Philips, J.,
Hartman, M., Kervin, P. Snodgress, J. Browne, S., Heimann, N.,
Shilko, M., Pohle, R., Carrion, B., Smith, C. and Thiel, D.,
“Demonstration of new technology MEMS and liquid crystal
adaptive optics on bright astronomical objects and satellites,” Opt.
Express 10, 1508-1519 (2002).

[2] Richards, K., Rimmele, T., Hill, R., Chen, J., “High speed low
latency solar adaptive optics camera”, Proc. SPIE, 5171, 316-325
(2004).

[3] Zhaoliang Cao, Lifa Hu, Dayu Li, and Li Xuan, “Adaptive optics
imaging system based on a high-resolution liquid crystal on silicon
device,” Opt. Express 14, 8013-8018 (2006).

[4] D. W. de Lima Monteiro, G. Vdovin, P. M. Sarro, “High-speed
wavefront sensor compatible with standard CMOS technology, “
Sensors and Actuators A: Physical,, 109 (3), 220-230 (2004)

 11

[5] Poyneer, L.A., Palmer, D.W., LaFortune, K. N., Bauman, B.,
“Experimental results for correlation-based wavefront sensing,”
Advanced Wavefront Control: Methods, Devices, and Applications
III. Proc. SPIE, 5894, 207-220 (2005).

[6] Chang-Hui Rao, Wen-Han Jiang, Cheng Fang, Ning Ling, Wei-
Chao Zhou,Ming-De Ding, Xue-Jun Zhang, Dong-Hong Chen, Mei
Li, Xiu-Fa Gao and Tian Mi “A Tilt-correction Adaptive Optical
System for the Solar Telescope of Nanjing University” Chin. J.
Astron. Astrophys. 3 (6), 576–586 (2003).

[7] Serati, S., Xiaowei, X., Mughal, O., Linnenberger A., “High-
resolution phase-only spatial light modulators with sub-millisecond
response,” Proc. SPIE, 5106, 138-145 (2003).

[8] Rodríguez-Ramos, L. F., Marichal-Hernández, J.G., Rosa, F.,
“Modal Fourier wavefront reconstruction on graphics processing
units,” Advances in Adaptive Optics II. Proc. SPIE, 6272, 627215
(2006).

[9] Marichal-Hernandez, G., Rodriguez-Ramos, J.M., and Fernando
Rosa, J., ”Modal Fourier wavefront reconstruction using graphics
processing units,” Journal of Electronic Imaging 16(2), 023005
(2007).

[10] Rosa, F.L., Marichal-Hernandez, J.G., Rodriguez-Ramos, J.M.,
“Wavefront phase recovery using graphic processing units (GPUs),”
Optics in Atmospheric Propagation and Adaptive Systems VII.
Proc. SPIE, 5572, 262-272 (2004)

[11] Saunter C.D., Love G.D., Johns, M., Holmes, ” FPGA technology
for high speed, low cost adaptive optics” Proc. SPIE 5th
International Workshop on Adaptive Optics in Industry and
Medicine (2005).

[12] Rodríguez-Ramos, L.F., Viera, T., Herrera, G., Gigante, J.V., Gago,
F., Alonso, Á., “Testing FPGAs for real-time control of adaptive
optics in giant telescopes,” Advances in Adaptive Optics II. Proc.
SPIE, 6272, 62723X (2006).

[13] Rodríguez-Ramos, L.F., Viera, T., Gigante, J.V., Gago, F., Herrera,
G., Alonso, Á., Descharmes, N., “FPGA adaptive optics system test
bench,” Astronomical Adaptive Optics Systems and Applications II.
Proc. SPIE, 5903, 120-128 (2005).

[14] Saunter C.D. and Love, G.D., ”Low cost, high speed control for
adaptive optics,” Proc. SPIE 6th International Workshop on
Adaptive Optics for Industry and Medicine. (2007).

[15] Wong, S., Vassiliadis, S., Cotofana, S., “A sum of absolute
differences implementation in FPGA hardware” Euromicro
Conference Proc. 28, 183–188 (2002).

[16] http://www.microdisplay.com

[17] Jason Porter, Hope Queener, Julianna Lin, Karen Thorn, Abdul A.
S. Awwal “Adaptive Optics for Vision Science: Principles,
Practices, Design and Applications” Wiley, (2006)

[18] http://holoeye.com/download_area.html

[19] http://www.xilinx.com/

[20] Trujillo J.S., Valido, M.R., Rodríguez Ramos, L.F., Boemo, E.,
Rosa, F., Rodríguez Ramos, J.M., “Real time phase-slopes
calculations using FPGAs”, Proceedings of SPIE, 7015.

[21] R. Sridharan, A. Raja Bayanna and P. Venkatakrishnan
“Simulations of Solar AO Systems” Springer Berlin, Science with
Adaptive Optics (2005)

[22] Ambrosch K., Humenberger, M., Kubinger, W., Steininger, A.,
“SAD-Based Stereo Matching Using FPGAs”, Springer, Embedded
Computer Vision, (2008)

[23] Li, B.M. and Leong, P.H. “Serial and Parallel FPGA-based Variable
Block Size Motion Estimation Processors” Journal of Signal
Processing Systems 51, 77–98 (2008).

