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Abstract
Although functional magnetic resonance imaging (fMRI) data are acquired as complex-valued
images, traditionally most fMRI studies only use the magnitude of the data. FMRI analysis in the
complex domain promises to provide more statistically significant information; however, the noisy
nature of the phase poses a challenge for successful study of fMRI by complex-valued signal
processing algorithms. In this paper, we introduce a physiologically motivated de-noising method
that uses phase quality maps to successfully identify and eliminate noisy areas in the fMRI data so
they can be used in individual and group studies. Additionally, we show how the developed de-
noising method improves the results of complex-valued independent component analysis of fMRI
data, a very successful tool for blind source separation of biomedical data.
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1 Introduction
FMRI is a well established tool for noninvasive investigation of brain function. It measures
the hemodynamic response related to neural activity in the brain or spinal cord of humans or
other animals [1].

FMRI is natively acquired as complex-valued spatiotemporal data; however, usually only
the magnitude images are used for analysis. The phase images are usually discarded, since
their noisy nature poses a challenge for successful study of fMRI when the processing is
performed in the complex domain [2]. Recent studies have identified the presence of novel
information in the phase, which can be utilized to better understand the brain function [3].
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Moreover, data-driven techniques, such as independent component analysis (ICA), provide
flexible models and have shown substantial promise for studying the magnitude and
complex-valued fMRI data [4–6]. These studies have shown the importance of developing
robust algorithms for de-noising complex-valued fMRI data.

Some complex-valued fMRI studies partially alleviate the noise issue by using smaller less
noisy portions of the data, as done in [2]. In [4], the authors use a heuristically motivated
thresholding and edge erosion technique, which fails to eliminate unreliable voxels—3D
pixels—in high contrast areas of the complex images. In this paper, we develop a phase de-
noising method that employs a physiologically justified approach to remove the noise.

Our quality map phase de-noising (QMPD) method allows the effective identification and
elimination of noisy regions in the complex-valued fMRI data. Phase quality maps have
been used in complex-valued signal applications such as radar to identify noisy areas in the
phase [7]. Here, we demonstrate the usefulness of phase quality maps to detect noise due to
aliasing and measurement errors, and develop an effective method to use these maps to
eliminate corrupted regions in complex-valued fMRI data. To show the effectiveness and
benefits of this method, we use it as a preprocessing step in complex-valued ICA of fMRI
data. In this study, we choose a complex-valued ICA algorithm that uses nonlinear
decorrelations with a sigmoid nonlinear function introduced in [5]. The results show
significant improvement in performance over the heuristically motivated thresholding and
edge erosion technique introduced in [4].

In Section 3, we describe the quality maps, how to calculate them, and how we use them to
detect and eliminate unreliable volumes in the fMRI data using the QMPD method. The
results from denoising fMRI data using QMPD are shown in Section 4. The benefits of the
QMPD method on the performance of ICA of fMRI data are shown in Section 4.3. The ICA
results are presented using an innovative visualization method based on Mahalanobis
distance (Zc), first introduced in [8], which incorporates both the magnitude and the phase in
one measure in the estimation of voxels of interest. In [8], we also sucessfully applied some
of the techniques described here in the pre-processing steps of a group ICA study that focus
on alleviating the inherent phase ambiguity of complex-valued ICA.

2 Background
2.1 ICA of fMRI Data

Independent component analysis has emerged as an attractive analysis tool for discovering
hidden factors in observed data and has been successfully applied for data analysis in a wide
array of applications [9–11]. Especially in the case of fMRI analysis, it has proven
particularly fruitful [12,13]. By using a simple generative model based on linear mixing,
ICA yields two varieties of decompositions of the fMRI data: spatial ICA and temporal ICA.
Spatial ICA has so far dominated the application of ICA to fMRI due to the nature of its key
assumption that the data set consists of spatially independent components, which are linearly
mixed and spatially fixed [14,15]. Localization and connectionism, two of the main
characteristics of the brain [16] imply that different areas of the brain are responsible for
different functions and there is either highly localized or functionally distributed activity in
spatially independent areas.

We can form a matrix X ∈ ℂT×V using the fMRI data such that the lth row is formed by
flattening the volume image data of V voxels, at time instant l. In spatial ICA of fMRI data,
we assume a simple linear mixing model such that X = AS, and determine both the
activation maps and the corresponding waveforms, i.e., both S and A, typically without
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constraining either. The additional assumption we impose is that the rows of matrix S
represent observations of statistically independent random variables.

Thus, spatial ICA finds systematically nonoverlapping, temporally coherent brain regions
without constraining the temporal domain. A principal advantage of this approach is its
applicability to cognitive paradigms for which detailed a priori models of brain activity are
not available. Following its first application by McKeown et al. [13], ICA has been
successfully used in a number of exciting fMRI applications, especially in those that have
proven challenging with the standard regression-type approaches. These include
identification of various signal types (e.g., task-related, transiently task-related, and
physiology-related signals) in the spatial or temporal domain, analysis of multisubject fMRI
data, incorporation of a priori information to improve the estimates, clinical applications,
and for the analysis of complex-valued fMRI data. A comprehensive review of ICA
approaches for fMRI data along with main references in the area is given in [17].

In spatial ICA, the number of components corresponds to the number of time-points, which
in general are in the order of 100s, and for temporal ICA, they correspond to the number of
voxels that are much higher. Hence, in both cases, a principal component analysis (PCA)
stage traditionally precedes the ICA algorithm that is used to whiten the data and to
determine the effective model order. Information theoretic criteria such as Akaike’s
Information Criterion, and the Minimum Description Length (MDL)—or the Bayesian
Information Criterion—arise as natural solutions for determining the effective order of the
components [18].

2.2 Complex ICA
For complex ICA, if we use the notation based on random variables, we start with the
generative model, x = As, where x, s ∈ ℂN and A ∈ ℂN×N, and achieve demixing by
estimating a weight matrix W such that u = Wx = PΛs. Here, P, a permutation matrix,
represents the permutation ambiguity and Λ, a diagonal matrix, represents the scaling
ambiguity of ICA, which has a magnitude and phase term in the complex-valued
implementation of ICA. The entries of the multivariate vector x represent the mixture
random variables and are replaced by the given observations for the application in question,
e.g., by the volume image at time l for fMRI data analysis.

To achieve independence of the sources sk that form the source vector s, an appropriate
measure of independence has to be selected to compute the demixing matrix W.
Determining statistical independence requires computation of higher-order statistics in the
data, e.g., higher order moments and/or cumulants. Various practical ways of generating
higher order statistics exist, either explicitly as in the approaches based on cumulants (e.g.,
JADE [19]), or implicitly through the use of nonlinear functions (e.g., Infomax [9]).

ICA approaches that rely on nonlinear functions to implicitly generate the higher-order
statistics to achieve independence offer practical and effective solutions to the ICA problem.
They have been observed to be less sensitive to outliers (i.e., bounded and slowly growing)
and seem to be more reliable when estimating task-related and transiently-related sources
when compared to other approaches based explicitly on cumulants [20]. Two such popular
approaches are based on maximum likelihood (ML)—which can be shown to be equivalent
to information maximization and nonlinear decorrelations—and maximization of negentropy
(MN), which can be shown to be equivalent to ML when the demixing matrix is constrained
to be unitary [21]. For both ML and MN, the algorithms are optimal when the form of the
nonlinear function used in the cost function matches the form of the probability density
functions (pdf) of the sources sk = sk,re + jsk,im, which in the complex case are described by
the joint density p(sre,sim). However, as discussed in [5], a number of simple functions from
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the trigonometric family provide robust and effective solutions for the ICA problem in the
complex domain as in the real case, or simple adaptive mechanisms can be employed to
estimate the independent components in a deflationary mode as discussed in [22]. The
developments in both [23] and [22] do not make any assumptions such as the circularity—
rotation invariance—of source distributions, an assumption common in complex ICA,
making these approaches more suitable to applications such as fMRI data. Since very little is
known about the nature of the fMRI data when used in its native complex form, it is
desirable to avoid making additional assumptions such as the circularity of source
distributions.

3 Quality Map Phase De-noising (QMPD)
3.1 Phase Residues

The phase obtained from complex images can be derived ambiguously as modulo 2π of the
actual—principal—value, and it is usually displayed in the interval (−π,π]. Assuming that
phase aliasing does not occur during the collection process is equivalent to constraining
phase jumps between adjacent pixels to less than ±π radians per sample everywhere [24].
Ideally, any absolute jump greater than π is due to phase wrapping, though varying noise,
measurement errors and aliasing could also introduce actual jumps greater than π.

The border lines between two adjacent pixels where the signal has undergone a relative
rotation of more than π (in either direction) are cutlines [25], and it is at the borders of these
cutlines that residues, inconsistencies or poles, as they are known in the literature, occur.
The two poles at the corners of a cutline are of opposite sign, and are hence called dipoles.
There are various ways to identify and locate these cutlines, as discussed in detail in [24].
Residues—dipoles—caused by aliasing, noise or other defects tend to have high phase
gradients in their vicinity. In our application, we use quality maps to identify these
unreliable high gradient regions that should be eliminated from further processing.

3.2 Quality Maps and Masks for Phase De-noising
Quality maps are arrays of values that define the quality or goodness of each pixel in a given
phase image [24], and are extensively used in phase unwrapping methods. In our de-noising
application, we are interested in using quality maps that assign bad quality values to noisy
areas in the complex images, therefore they should identify volumes in the data where the
pixel phase values and their gradients exhibit high variation.

We use the phase derivative variance (PDV) map [24] in the QMPD method, based on the
quality of results obtained in our study when comparing this map to others, and the fact that
the PDV map is considered to be extremely robust in identifying noisy areas in phase images
[24]. The PDV map is calculated as a root-mean square measure of the variances of the
partial derivatives in the x- and y-directions of the phase image, such that high values
represent low quality. In the PDV map, the (m,n)th pixel value is computed as

(1)

where for each sum the indexes (i, j) range over the k × k window centered at the pixel

(m,n). The terms  and  are the partial derivatives—wrapped phase differences—of the
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phase. The terms  and  are the averages of these partial derivatives in the k × k
windows.

We, additionally, studied the following quality maps as candidates for QMPD: the phase
variance map [24], the maximum phase gradient map [7], the pseudocorrelation quality map
[24], and the second difference quality map [26]. Empirical results showed that the obtained
maps were mostly similar to the PDV map; however, they were not as robust as the PDV
map in clearly identifying noisy and unreliable pixels in regions of high contrast to noise
ratio (CNR) in the complex images.

Quality maps are used to develop binary quality masks, which assign a “0” to unreliable
pixels that should not be further analyzed. These quality masks are obtained by thresholding
the quality maps. Simple thresholding values can easily be acquired by visually inspecting
the quality values that are assigned to the majority of the gray matter areas of the brain.
These areas exhibit low phase variation when compare to their surroundings, e.g., skull and
background of the fMRI slices [3]. Pixels with very small values—0.2 radians in our
implementation—in the PDV map correspond to areas of low phase gradients and hence,
can usually be considered as having good quality. Additionally, we can implement the
automatic threshold selection method described in [24, p. 85], and obtain similar threshold
values.

3.3 QMPD Implementation
The steps of the QMPD method are summarized in Algorithm 1. The first step is to calculate
the PDV quality map for each fMRI 2D slice image at every time point for the data collected
from a specific subject. In the second step, we threshold all the obtained PDV quality maps
to obtain a binary PDV mask for every time point, as described in Section 3.2. A value of
“1” should indicate that a voxel has good quality.

It is desired at this point to obtain a single binary quality mask for every fMRI 2D slice that
can be applied to all the time points. The third step is to do a logical AND operation, across
the time dimension, to all the obtained PDV masks. This step allows only voxels with good
quality across the time dimension to survive the threshold.

In the fourth step, we perform a morphological closing operation, which consists of a
morphological erosion step followed by a dilation step using a disk-shaped morphological
structuring element with a two voxel diameter. This step eliminates any non-contiguous
voxels in the background of the slices that may have survived the previous step. At this
point, the resulting single quality masks, for every 2D fMRI slice, clearly highlight areas of
high quality.

After obtaining the final quality masks, we multiply them with the original real and
imaginary 2D fMRI slices. The final step consists of smoothing the resulting complex
image. This smoothing step is common in fMRI analysis, since it helps to improve the CNR,
but it is important to apply it after de-noising the fMRI data, since the smoothing filter can
adversely spread the detrimental effects of the noisy areas to adjacent voxels. A typical
smoothing filter utilizes a 10 × 10 × 10 mm3 full width at half-maximum Gaussian kernel.

4 Results
In Section 4.1, we introduce the fMRI data used in the results presented in this paper. In
Section 4.2, we present the results of the QMPD method when applied to the complex-
valued fMRI data. Finally, in Section 4.3 we show how the introduced de-noising and phase
correction methods improve the performance of complex-valued ICA of fMRI.
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4.1 fMRI Data
The dataset used in this paper is from sixteen subjects performing a finger-tapping motor
task while receiving auditory instructions. The paradigm involves a block design with
alternating periods of 30 s ON (finger tapping) and 30 s OFF (rest). The experiments were
performed on a 3T Siemens TRIO TIM system with a 12-channel radio frequency (RF) coil.
The fMRI experiment used a standard Siemens gradient-echo EPI sequence modified to
store real and imaginary data separately. The data was pre-processed for motion correction
and spatial normalization into standard Montreal Neurological Institute space using the
MATLAB Toolbox for Statistical Parametric Mapping (SPM).1

As an example, the phase and magnitude from subject one at the first time point (out of 165
time points) is displayed in Figs. 1 and 2. Starting from the top left slice and then moving
right and down, we can see the slices as if were going from the top of the head towards the
neck. Phase images were zero padded to add separation between slices for display purposes.

4.2 De-noising Results
4.2.1 QMPD Quality Maps and Masks—Figure 3 shows the PDV maps calculated for
the phase image slices of subject one shown in Fig. 1. The PDV maps were calculated by
using Eq. 1 with k = 3, which defines the smallest possible square window that can be used
to calculate variances. The maps are converted to Z-scores and thresholded at |Z | > 1 to only
show areas of bad quality displayed over the background anatomical image. Z-score is a
dimensionless quantity that measures how many standard deviations an observation is above
or below the mean of the entire dataset. It can be seen that the PDV maps assign low quality
values to the background of the slices and even to some areas inside the high CNR regions.
These low quality areas inside the brain gray matter will be shown to contain phase residues
and noisy artifacts in Section 4.2.2.

Figure 4 shows the quality masks obtained after applying the QMPD thresholding step to the
PDV maps used to create Fig. 3. We can see that there are some background voxels near the
corners of the slices that were erroneously assigned as good quality voxels. These erroneous
good quality voxels are eliminated after applying the QMPD logical AND and
morphological closing operation steps. In Fig. 5, we can see the resulting quality binary
masks obtained for each fMRI slice after applying the QMPD method to the fMRI data of
subject one. These masks are then used to de-noise the complex-valued fMRI slices across
all the time points.

4.2.2 QMPD De-noising Examples—In Figs. 6, 7, and 8, we show an example of the
results of multiplying the obtained PDV quality mask by the magnitude, phase, and residue
images, respectively, of fMRI slice number seven shown in Fig. 1. The area inside the brain
gray matter eliminated by the mask in this slice belongs to the orbitofrontal cortex, which is
well known to suffer from susceptibility artifacts from the air in the sinuses. Although this
area was inside a high CNR region, the quality mask clearly indicated that it was noisy and
unreliable. Figure 8, confirms that all the phase residues are eliminated by the QMPD
method.

In Fig. 9 we present a QMPD mask obtained from the data of all the subjects in our
experiment using the approach for groups of subjects as discussed in [8]. This approach is
used to combine the QMPD mask of multiple subjects into a single one that can then be used
to identify good quality voxels across all subjects. It can clearly be seen that the eliminated
regions in the fMRI slices correspond to known physiologically noisy areas like the large

1SPM, URL: http://www.fil.ion.ucl.ac.uk/spm/software/spm5
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susceptibility artifacts around the nasal and frontal sinuses, the ear canal, the large vessels
on the base of the brain, the Willis circle (large arteries) and the draining veins such as the
transverse sinus.

4.3 QMPD Complex-Valued ICA of fMRI Results
We demonstrate the importance of denoising using QMPD when it is used in a
preprocessing step in analysis of the complex-valued fMRI data. When performing spatial
ICA of fMRI data [17], we use PCA to reduce the dimensionality of the complex-valued
fMRI data. The number of effective components is selected as 30 using the MDL criterion
for complex valued data as in [4]. We then apply complex-valued ICA using nonlinear
decorrelations with a sigmoid nonlinear function [5]. Estimated sources in ICA are usually
presented using Z-score thresholded magnitude images to highlight the voxels of interest,
therefore ignoring the phase information. The visualization method we use here takes into
account the phase by using a two dimensional Mahalanobis distance metric in the real and
imaginary data of the estimated sources given by

(2)

where ŝk,i = [ŝk,i,re,ŝk,i,im]T; and μk and Ck are the corresponding mean and covariance of the
estimated sources. If the covariance matrix is the identity matrix, the Mahalanobis distance
reduces to the Euclidean distance. The Mahalanobis distance is equal to the absolute value
of the Z-score metric when the data is univariate. Therefore, the obtained Zc maps are
usually thresholded using the same typical values used in practice to threshold Z-score maps
when working with magnitude only fMRI data, e.g., 2, 3 and 4.

The obtained spatial independent components were compared to the components obtained
by the ICA algorithm after using a heuristic magnitude thresholding and edge erosion
(MTEE) method, previously used in [4]. This method uses a magnitude mask that is created
by assigning a “1” to a voxel with a magnitude higher than the average magnitude of all the
slices. This mask only eliminates low CNR regions in the fMRI data and ignores areas
affected by susceptibility and under sampling issues that occur inside high CNR regions.

The normalized correlation value between the QMPD binary masks and the MTEE masks
for the fMRI slices of this subject was 0.93. The QMPD masks covered 0.23% less area than
the MTEE masks. These differences are due to the fact that high CNR regions, with phase
residues, are not filtered out by the MTEE masks. Similar correlation results were obtained
for the rest of the subjects.

To evaluate the performance of the QMPD and the MTEE method, we focus on the
differences in the estimation of two functionally interesting components: a temporal lobe
and a motor-task related component. Figure 10a shows the Mahalanobis distance (Zc), phase
and magnitude spatial maps of one of the obtained spatial components, associated with the
performed task. The Zc map was thresholded at Zc > 2 to identify voxels of interest. This
component corresponds to the spatial activation map of the temporal lobe, which is coupled
to the auditory instructions of the finger-tapping motor task. Figure 10b shows the temporal
lobe Zc, phase and magnitude spatial activation maps obtained by the ICA of the MTEE pre-
processed fMRI data. The segmentation of the temporal lobe is not as clear and is noisier
than the results obtained with the QMPD method. Table 1 shows the number of active
voxels, and the maximum and mean of the Mahalanobis distance values in the temporal lobe
for both algorithms. Although the MTEE method has a slightly higher maximum
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Mahalanobis distance value, it can be clearly seen that the QMPD method sucessfully
identified more voxels of interest with higher overall values.

In Fig. 11, we show a motor task-related component obtained from another subject using the
QMPD and the MTEE methods, respectively, for pre-processing in a complex-valued ICA
application with the circular nonlinear function proposed in [27]. This spatial component
was chosen because it had the highest regression coefficient when regressed with the
calculated ideal temporal hemodynamic response. Average results from this sujbect and
other nine are presented in Table 2. The ICA results obtained with the QMPD method once
again provides higher overall Zc values and a larger number of active voxels (17% more) as
compared to those obtained with the MTEE method.

The difference in performance using QMPD preprocessing is not as significant for the task-
related, motor component, when compared to the temporal lobe component. However, it is
important to note that using ICA, the task-related component was estimated consistently in
most of the cases, whereas this was not the case for the temporal lobe component.
Additionally, the thresholding metric that we have introduced for the spatial maps, the
Mahalanobis Z-score is also important in successfully extracting the task-related active
voxels from the noisy and bad quality voxels that may survive in the background using the
heuristic MTEE preprocessing method.

In most of our experiments the MTEE failed to estimate other relevant components, such as
the temporal lobe, in some of the subjects. Additionally, in some experiments the obtained
components look noisier and physiologically meaningless when compared to the QMPD
method results.

5 Discussion
We implemented a simple, yet effective, method to robustly denoise fMRI complex-valued
data. The QMPD method accurately identifies and eliminates areas of the fMRI images that
are corrupted by noise, measurement errors, and aliasing. QMPD can be used as a pre-
processing step by any fMRI complex analysis algorithm. QMPD should always be applied
prior to the typical smoothing step, which improves the CNR of fMRI data, to avoid
spreading the detrimental effects of the noisy regions to adjacent voxels. In this paper, we
showed how QMPD provides significant improvement in the sensitivity of complex-valued
ICA results compared to a previously implemented pre-processing method. Even though
using QMPD, we might be working with smaller number of voxels, we obtain higher
activation levels and larger areas of meaningful activation. Other studies using complex-
valued fMRI data either segmented specific areas of the brain or only used the magnitude
image, thus not only partially de-noising the data, but also possibly losing clean data. QPMD
thus provides the ability to work with all the good quality voxels, and hence improves the
statistical power of the complex analysis algorithms.
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Figure 1.
Phase image (in radians) of 9 out of 46 slices corresponding to the first time point of subject
one.
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Figure 2.
Magnitude slices of subject one overlayed over an anatomical background image.
Magnitude data was change to Z-scores and thresholded at |Z| > 1.
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Figure 3.
PDV maps of phase images in Fig. 1. The maps were converted to Z-scores and thresholded
at |Z| > 1 for display purposes.
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Figure 4.
Binary (white = 1) PDV quality masks obtained from thresholding the PDV maps used to
create Fig. 3.
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Figure 5.
Binary (white = 1) quality masks obtained after applying the QMPD method to the fMRI
data of subject one.
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Figure 6.
Magnitude image of slice seven of subject one, at time point one, before and after
multiplication by the quality mask.
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Figure 7.
Phase image (in radians) of slice seven of subject one, at time point one, before and after
multiplication by the quality mask.
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Figure 8.
Phase residues image (in radians) of slice seven of subject one, at time point one, before and
after multiplication by the quality mask.
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Figure 9.
QMPD mask obtained for all 46 slices obtained from multiple subjects. Eliminated regions
correspond to known physiologically noisy areas like the large susceptibility artefacts
around the nasal and frontal sinuses (a), the ear canal (b), the large vessels on the base of the
brain (e), the Willis circle (c) and the draining veins, such as the transverse sinus (d).
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Figure 10.
Temporal lobe Zc, phase and magnitude spatial activation map obtained from ICA algorithm
using the a QMPD and the b MTEE method in the pre-processing steps. Voxels with a Zc
greater than 2 and good quality were identified as voxels of interest.
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Figure 11.
Zc, phase and magnitude of motor task related component obtained from ICA algorithm
using the a QMPD and the b MTEE method in the pre-processing steps. Voxels with a Zc
greater than 3 and good quality were identified as voxels of interest.
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Table 1

Results of complex-valued ICA using QMPD and MTEE for pre-processing.

Pre-processing method Active voxels Maximum Zc score Mean Zc score

MTEE 492 10.40 2.90

QMPD 956 6.93 3.53

The number of active voxels is calculated by counting the number of voxels with a Zc > 2 in the temporal lobe area.
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Table 2

Results of complex-valued ICA using QMPD and MTEE for pre-processing in ten subjects.

Pre-processing method Active voxels Maximum Zc score Mean Zc score

MTEE 619 13.27 4.77

QMPD 712 11.68 5.09

The number of active voxels is calculated by counting the number of voxels with a Zc > 3 in the motor task identified voxels.
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Algorithm 1

QMPD

1 Calculate PDV quality map (Pvu) of each 2D fMRI slice v at every time point u using Eq. 1;

2 Threshold all Pvu by r (see Section 3.2) to obtain binary mask: Bvu;

3

Keep all voxels with good quality across time dimension: ;

4 Perform morphological closing operation to eliminate non-contiguous voxels in non-brain areas in Qv;

5 Multiply complex-valued (real and imaginary) fMRI slices v by corresponding Qv mask;

6 Apply smoothing filter to surviving voxels.
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