
High performance FPGA-oriented Mersenne Twister
Uniform Random Number Generator

Pedro Echeverría • Marisa López-Vallejo

Abstract Mersenne Twister uniform random number
generators are key cores for hardware acceleration of
Monte Carlo simulations. In this work, two different
architectures are studied: besides the classical table-
based architecture, a new architecture based on a circu­
lar buffer and especially targeting FPGAs is proposed.
A 30% performance improvement has been obtained
when compared to the fastest previous work. The ap­
plicability of the proposed MT architectures have been
proven in a high performance Gaussian RNG.

1 Introduction

The outstanding integration densities of current tech­
nologies allows configurable logic to be used as powerful
platforms for hardware acceleration. This is the case of
numerous Monte Carlo simulations where the models
of the system under study can imply great complexity.
Parallelism is intrinsic to Monte Carlo as it is based on
the replication of the same model with different under­
lying variables, the random numbers, and making them
ideal for parallel architectures.

In this context, uniform random number generators
(URNG) play a key role when developing hardware ac­
celerators for Monte Carlo simulations. URNGs are the
base element for any random number generation, as it is
the case of Gaussian RNGs (GRNGs) which are widely
used in this type of simulations. Any URNG used as
basic core in a hardware accelerator must provide ran­
dom samples with a throughput that does not limit the
frequency of the whole Monte Carlo simulation. Fur­
thermore, it should require as less resources as possible

Department of Electronic Engineering. Universidad
Politécnica de Madrid, UPM (Spain).
E-mail: {petxebe, marisa}@die.upm.es

because resources may be required by the model to sim­
ulate or for replicating the whole Monte Carlo system.
Finally, it should provide high-quality random samples
as the quality of the random numbers directly impacts
on the result accuracy.

Previous work on URNGs using FPGAs can be split
into two fields, the development of specific URNGs for
FPGAs, and the adaptation of software URNGs to FP­
GAs. In the first field we can outstand several works
from D. B. Thomas et al as [1,2], where different URNGs
are proposed, studied and developed featuring the spe­
cific resources and architecture of FPGAs.

Here we concentrate on the second field, the adap­
tation of software URNGs, due to practical issues like
compatibility and application debugging. When devel­
oping a hardware accelerator a desired feature is the
complete compatibility between the original software
application and the accelerated one. Furthermore, the
complete compatibility easies the hardware application
debugging. Compatibility implies obtaining the same
sequence of random numbers. In this work we focus on
a very well known generator, the Mersenne Twister [3]
which is broadly used in computational science based on
Monte Carlo simulations due to its far above the ground
quality, superb period and high performance [3].

Previous works in this field [4-6] are based on the
most used Mersenne Twister configuration for 32 bits
samples, the MT19937, due to its high quality and the
simplifications introduced by its set of parameters. How­
ever, none of these previous implementations fulfills the
desired characteristics. [4] and [5] present a slow clock
rate, while in [6] the first part of the algorithm, the ini­
tialization, is not implemented in hardware, being thus
an incomplete generator. It is an important issue be­
cause if the initialization phase has to be carried out in
software it complicates the interface with the hardware

http://upm.es

accelerator (the whole initialization table is transferred
to hardware instead of just the seed).

In this work we present two complete MT URNGs
based on the same set of parameters, MT19937, but
now designed to fulfill the above mentioned features:

1. All in hardware.
2. Able of generating one sample per cycle.
3. Highly efficient in area and performance.

The proposed architectures take advantage of the
FPGA structure and resources. Following this idea, in
addition to the classical memory table implementation
a new architecture is proposed, specifically designed to
avoid the use of FPGA internal RAMs as these re­
sources become essential for some simulation models.

Finally, the proposed MT architectures have been
used in a high performance GRNG to validate their
applicability and study the area cost they imply.

The paper structure is as follows: Section 2 briefly
summarizes the Mersenne Twister algorithm. In sec­
tion 3 the proposed hardware architectures are exposed,
while their experimental results and integration within
a GRNG are analyzed in section 4. Finally some con­
clusions are drawn.

2 M e r s e n n e T w i s t e r A l g o r i t h m

The MT generator [3] is a general and highly parame-
terizable URNG based on a linear recurrence between
vectors of w bits. The algorithm is split into three dif­
ferent tasks:

1. Initialization: generation of the first n vectors of the
recurrence from a seed.

2. Obtaining the linear recurrence.
3. The tempering of the generated variables from the

linear recurrence.

First, an initialization from the seed is needed as the
linear recurrence requires a work area of n variables of
w bits. This initialization takes the seed as the first
element of the recurrence, x0, while the other n - 1
variables are generated following:

Xi = 1812433253 x (x¿_i © (x¿_i » 30)) + i

Once the first work area is obtained with the initial
n variables, the random numbers are calculated follow­
ing equation:

xk+n = xk+m © (xk\Xk+l)J^ (1)

where A is a matr ix while xu
k s tands for the (w - r)

most significant bits of xk and x'k+l means the r less
significant bits of xk+1.

F i g . 1 Mersenne Twister general Architecture

Finally, to improve the statistical properties of the
generator the numbers generated in the recurrence are
modified, tempered, with a bitwise multiplication by a
w × w binary matrix (T):

z = x k + n T (2)

being z the output of the generator.

2.1 MT 19937 Algorithm Simplifications

The complexity of the algorithm and its computational
charge is mainly due to the two matr ix multiplications
in equations 1 and 2. However, both multiplications are
greatly simplified with a correct selection of the ele­
ments of the matrixes. This is what happens with the
MT19937 set of parameters .

For the linear recurrence multiplication, when the
matrix A follows the form:

A =
\aWl, (aW2 , ..., ao) J

its multiplication (xl\x'k+l)A is reduced to:

(>fcl4+i) » 1 when xk+1(0) = 0

((xl\x'k+1) » 1) © a when x f c + i (0) = 1

where a is the wth row of matr ix A.

For the tempering matr ix multiplication, again the

matr ix T is selected in such a way tha t this multiplica­

tion is simplified into several logical bitwise operations:

V = xk+n © (xk+n » u)

yi = y © ((y < < s) && b)

yi = y\ © ((y < < t) && c)

z = 2/2 © (y > >)

As just seen, MT URNG depends on multiple pa­
rameters (w, n, m, r, a, u, s, b, t, c, l) corresponding
MT19937 to the set (32, 624, 397, 31, 9908BODF, 11,
7, 9D2C5680, 15, EFC60000, 18).

Table 1 Hardware Mersenne Twister Results.

F P G A
M H Z
DSPs

B - R A M s
Slices

[4]
N / A
38.4
N / A
N / A
420

[5]
Virtex-E

24.2
N / A
N / A
330

[6]
V4Fx100

265
0
4

128

Th is W o r k
C B

V4Fx100
339.3

3
0

810

V5Fx200
418.6

3
0

272

3P_Table
V4Fx100

345.9
3
4

183

V5Fx200
417.3

3
2

96

3 Hardware Architecture

Figure 1 shows the general hardware architecture of
the MT URNG. In addition to the logic devoted to
the previously described tasks, it requires a memory
element for storing the samples composing the n x w
work area of the linear recurrence. Not depicted in the
figure, a small control logic is also needed to handle the
two possible scenarios, the initialization and the linear
recurrence with the tempering.

The hardware must be able of generating one sam­
ple per cycle at a high clock rate. If we focus on the
linear recurrence and the tempering both tasks can eas­
ily fulfill the criteria of obtaining one sample per cycle
while achieving a high clock rate. The matrix multipli­
cations reduction to bitwise operations ensures fast dat­
apaths as these operations perfectly suit FPGA tech­
nology. Furthermore, due to the depth of the work area
and the dependencies among samples, the logic of both
tasks can be pipelined to increase the clock rate.

The initialization task, besides its bitwise opera­
tions, also requires a 32 bit multiplication and a 32 bit
addition. These two operations compose a slow data­
path with much more logic than the other two tasks.
Although initialization stops working once the first n
samples are generated, the clock rate of the MT gen­
erator is also determined by this logic and therefore,
pipelining this task is a must.

The other key element in the hardware architecture
is the storage element needed for the n x w work area of
the linear recurrence. There are two suitable options: a
storage table, figure 2(a), which is the solution adopted
in previous works, and a circular buffer, the new solu­
tion proposed in this work, see figure 2(b).

In the first case, a three port storage table with two
read and one write ports is needed (3P_Table from now
on). In an FPGA, this three port table has a direct
translation into two dual port tables implemented by
embedded Block-RAMs plus the logic required for up­
dating the indexes for the table addresses.

A second option is the use of a circular buffer (CB)
of registers taking advantage of the fixed relationship
between the indexes of the words and considering that
each step of the recurrence xk is replaced by xk+n in

—fr JC

'. L P 5
l*i

j 2*

(a) 3 port table.

F i g . 2 M T architectures.

(b) Circular Buffer M T .

the work area. This way, the linear recurrence (L. R. in
figure 2(b)) and the buffer of registers can be considered
as a circular buffer where the linear recurrence is car­
ried out by some combinational logic between the input
and the output of the buffer. Hence the architecture is
simplified as no logic for the table indexes is needed.

4 Implementation Results

Table 1 summarizes the results for the implemented
MT and two Xilinx FPGAs (Virtex 4-Fx100 and Vir-
tex 5-Fx200) as well as the results published in previous
works. The results for our work are Post Place & Route
using ISE 11 environment.

Outstanding maximum speeds have been achieved,
418.6 MHz for Virtex 5, and 345.9 for Virtex 4. More in
detail, and for the same FPGA (Virtex 4 Fx100), the
3P.Table architecture outperforms the fastest previous
work clock rate [6] in a 30.5%, even though that work
did not implement the initialization task. It can be also
seen that this performance does not come at the cost of
resources. The increase of slices (183 to 128) and DSPs
(3 to 0) are mainly due to the initialization stage and
not to the performance improvement.

4.1 Architectures Comparison

The main reason to consider to select between storage
table or circular buffer of registers is the resource us­
age, as the Block RAMs required in the 3P_Table archi-

Table 2 Vir tex 5 FX200 - GRNG Results

CDF-1

Taus88
M T 3P_T
M T C B

Slices
946 (3.1%)

1024
966
1125

B R A M
5 (0.5%)

5
7
5

DSP
10 (2.6%)

10
13
13

M H z
280.5
280.9
281.1
281.4

tecture become logic slices for the CB implementation.
However, this effect is highly related to the FPGA fam­
ily and the model selected, as will be analyzed next.

Regarding Virtex 4 devices, four BRAMs are re­
quired (1.06% of the total BRAMs), whose replacement
increases in 682 the required slices (1.61% of the total).
However, for Virtex 5, on the one hand the CB archi­
tecture benefits from the fact that the number of LUT
inputs increases to six with respect to the four inputs
LUTs in Virtex 4. Thereby, the implementation of the
work area in logic is drastically more compact in Vir­
tex 5. On the other hand, 3P_Table implementation also
benefits from the increase of Block RAM capacity, now
requiring just two BRAMs, representing a 0.44% of the
total BRAMs. In this case the increase of slices (87)
just represents a 0.28% of the total. This slice increase
represents just a 0.28% of the total slices, being this
percentage smaller than the 0.44% of the total BRAMs
represented by the two BRAMs.

4.2 Using an MT URNG in a Gaussian RNG

As URNGs are base elements for obtaining generators
from other distributions, i t is desirable to study the im­
pact of the designed MT URNGs when used on other
hardware generators providing commonly used distri­
butions in Monte Carlo simulations. This is the case of
the Gaussian RNGs (GRNG), so we have included our
MT URNGs in a GRNG [7] that previously used a Taus-
worthe combined generator (Taus88) [8]. The Taus88
URNG presents high performance and very low use of
resources, although its quality is not very good [1].

The gaussian generation method of [7] is the inver­
sion method. This method ensures that the transformed
distribution, the gaussian, inherits the statistical prop­
erties of the base RNG, the uniform, and therefore i t
is necessary a high quality URNG to achieve a high
quality GRNG.

Table 2 summarizes the results obtained in terms of
slices, BRAM DSPs and clock frequency. To better an­
alyze the impact of using the MT URNG, the first row
presents the requirements of the inversion (C D F - 1)
method without URNG. Next rows collect information
for the whole GRNGs including the three different URNGs.
As seen in the table, the impact of using a much better

URNG (MT) in the GRNG is not very significant tak­
ing into account that most GRNG logic is devoted to
the inverse CDF function, which requires a small per­
centage of the resources of the FPGA. Furthermore, the
GRNG working frequency is not limited by the URNG.

5 Conclusions

Due to its combination of features (high quality, superb
period and high performance) the Mersenne Twister
URNG is an ideal core for Monte Carlo simulation.

This work provides two efficient implementations of
the MT URNG specifically designed for FPGAs dif­
fering both implementations in the storage element se­
lected for the linear recurrence work area. With a care­
ful design of the logic, and a pipelined implementation
of the initialization task, our architectures present a
performance improvements of a 30% with respect to
the previous fastest work. The proposed MT architec­
tures have been used in a high performance GRNG to
prove their applicability.

Acknowledgements

This work has been funded by BBVA contract P060920579
and Cicyt project TEC2009-08589.

References

1 . D. B. Thomas and W . Luk, “High quality uniform random
number generation using lu t optimised state-transition
matrices,” Journal of VLSI Signal Proccessing, vol. 47, pp.
77–92, 2007.

2. ——, “”fpga-optimised uniform random number genera­
tor using luts and shift registers”,” in Intl. Conf. on Field
Programmable Logic and Applications, 2010, pp. 77–82.

3. M . Matsumoto and T . Nishimura, “Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo­
random number generator,” ACM Transactions on Model­
ing and Computer Simulation, vol. 8, no. 1 , pp. 3–30, 1998.

4. V . Sriram and D. Kearney, “ A n area t ime efficient field
programmable mersenne twister uniform random gener­
ator,” in Intl. Conference on Engineering of Reconfigurable
System and Algorithms, 2006, pp. 244–246.

5. S. Chandrasekaran and A . Amira, “High performance
FPGA implementation of the mersenne twister,” in In­
ternational Symposium on Electronic Design, Test & Appli­
cations, 2008, pp. 482–485.

6. T . Xiang and K. Benkrid, “Mersenne twister random num­
ber generation on FPGA, CPU and GPU, ” in NASA/ESA
Conference on Adaptative Hardware and Systems, 2009, pp.
460–463.

7. P. Echeverr´ıa and M . L´opez-Vallejo, “ F P G A gaussian ran­
dom number generator based on quintic hermite interpola­
t ion inversion,” in IEEE International Midwest Symposium
on Circuits and Systems, 2007, pp. 871–974.

8. P. L’Ecuyer, “Maximal ly equidistributed combined taus-
worthe generators,” Mathematics of Computation, vol. 65,
no. 213, pp. 203–213, January 1996.

