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Abstract In this paper we present techniques for detecting and locating transient pipe burst
events in water distribution systems. The proposed method uses multiscale wavelet analysis
of high rate pressure data recorded to detect transient events. Both wavelet coefficients and
Lipschitz exponents provide additional information about the nature of the signal feature
detected and can be used for feature classification. A local search method is proposed to
estimate accurately the arrival time of the pressure transient associated with a pipe burst
event. We also propose a graph-based localization algorithm which uses the arrival times of
the pressure transient at different measurement points within the water distribution system
to determine the actual location (or source) of the pipe burst. The detection and localization
performance of these algorithms is validated through leak-off experiments performed on the
WaterWiSe @SG wireless sensor network test bed, deployed on the drinking water distribu-
tion system in Singapore. Based on these experiments, we also present a systematic analysis
of the sources of localization error.

Keywords Multiscale wavelet analysis - transient detection - pipe burst - burst localization

1 Introduction

Urban utilities such as drinking water distribution systems (WDSs) are critical infrastruc-
tures that increasingly large numbers of residents rely on daily. As populations in cities grow,
the demand on these critical infrastructures also grows and the need for real-time monitoring
and maintenance becomes vital to ensure efficient, reliable operation and timely response to
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infrastructure failure. Wireless sensing technology has advanced to the point that the deploy-
ment of dense networks of low-cost devices for real-time infrastructure monitoring is now
feasible. When combined with appropriate data processing techniques, the increased den-
sity and availability of these measurements enables improved response, management and
prediction of infrastructure failures.

For water utility operators, the ability to detect and localize pipe bursts and leaks quickly
is important. Sudden pipe bursts can occur in high-pressure water transmission mains and
distribution pipelines. Bursts can be very expensive due to the outage time while the dam-
aged pipe is repaired, the cost of repair, and damage to surrounding property and facilities.
As a result, it is advantageous to minimize the detection and location time after the burst
event occurs. Since the pipes in a water distribution network are pressurized, many burst
events can be detected as transients against the background pressure levels in the WDS.

In this paper we present a technique for detecting and localizing events in a WDS based
on pressure traces gathered by a dense wireless sensor network (WSN). Our event detection
technique uses wavelet-based multiscale analysis of a pressure signal to detect transients.
Due to the impulsive nature of noise present in the pressure transients, the first step in this
analysis is to apply wavelet de-noising. We then obtain wavelet decomposition of the de-
noised signal. The wavelet coefficients are used to identify features at a range of scales. We
then apply temporal consistency rule across scales to differentiate between coherent signal
features and noise. The next step uses the wavelet coefficients and the Lipschitz exponent
to obtain additional information about the nature of the signal which is used for feature
classification. If a burst transient event is detected, the multiscale analysis is combined with a
focusing algorithm to estimate accurately the arrival time of the burst transient. The focusing
algorithm determines the arrival time of the pressure transient at the measurement points
starting from a rough estimate.

For localization, we present a graph-based search algorithm which uses the arrival times
of the transient at the measurement points to localize the event. This search algorithm is split
into a coarse global search and a fine local search.

Our contributions are as follows:

1. The identification and application of appropriate event detection techniques to high-rate
pressure data;

2. The design and implementation of novel event detection and localization algorithms and
integration into a dataflow for on-line operation;

3. The evaluation of the proposed event detection and localization algorithms on realistic
data traces gathered from in-situ experimentation;

4. The systematic analysis of sources of error in the results.

The rest of this paper is organized as follows: Section 2 gives more detail on pipe bursts
and existing event detection/localization techniques, with specific reference to water distri-
bution systems; Section 3 presents our wavelet-based event detection scheme and Section 4
presents our graph-based localization algorithm. Section 5 presents evaluation of the detec-
tion and localization techniques, including performance and error source analysis. Finally,
Sections 7 and 8 draw conclusions and identify areas for future work.

2 Background

Pipe breaks and bursts occur in pressurized water pipes over time due to the cumulative
effects of corrosion, structural fatigue due to fluctuations of fluid pressure or environmental
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factors causing movements in the supporting soil mass. As pipes age, they become increas-
ingly susceptible to bursts and leaks [9]. Pipe burst events result in a sudden change in the
flow through the pipe producing a pressure transient which propagates along the pipeline.
This pressure pulse travels in both directions away from the burst origin at the speed of
sound in water (wave speed of the pipe). The pulse is reflected by pipe junctions and end-
points in the physical network, and its speed is altered by the pipe material and diameter as
it travels through the network. The transient is also attenuated by friction in the pipes, caus-
ing dispersion that reduces the slope or steepness of the transient wavefront. The pressure
transient, when detected at a number of measurement points can provide information on the
location of the burst (see Figure 4 for an indicative set of pressure traces).

The burst (and subsequent leak) also create distinct acoustic emissions, changing the
background acoustic signature of the pipe [1]. There is significant literature and established
practice for determining accurately the location of existing leaks using the cross correlation
of ground-level (microphone) or insertion-based acoustic measurements (hydrophone) [6,
2]. However, in order to detect and localize instantaneous burst events (and hence give a
starting point to accurately locate the leak), it is advantageous to use pressure measurements.
This is because pressure transients are less readily attenuated and the pressure signature is
relatively unaffected by background noise (e.g., traffic) than acoustic emissions, increasing
the distance over which they can be reliably detected.

Event detection in general is an elaborately studied research area [4]; specifically in
the context of a WDS, Misiunas et al. propose a method for detecting the pressure transient
associated with a burst event using the cumulative sum (CUSUM) change detection test [10].
In situations where the measurement data contains a high level of noise, they propose a noise
pre-filtering using an adaptive Recursive Least Squares (RLS) filter.

A common way to detect a transient in additive noise is to filter the signal, then compare
the output to a threshold, and declare each threshold crossing as an arrival of a transient. In
addition, since in most real world signals, singularities do not occur at a single resolution,
multiscale analysis is required. Multiscale analysis is directly related to wavelet analysis. In
wavelet analysis, a one dimensional signal is mapped into a time-scale representation using a
bank of bandpass filters. Wavelet analysis for singularity or transient detection has been used
with many types of time-series data such as seismograms [15] or pulmonary microvascular
pressure signals [7]. Wavelet analysis has also been proposed to detect transients in pressure
signals for leak detection and location in water pipelines [13].

In the case of an ideal step edge, the position of the transition corresponds to the ex-
tremum of the response of the bandpass filter to the signal. This extremum propagates when
the scale (frequency) parameter is changed. Such techniques perform well when dealing
with isolated singularities. However, in the case of a noisy singularity, as generally encoun-
tered in most physical phenomena, the singularity can be detected only over a limited range
of scale. In the case of two noisy close singularities for example, the simple scale by scale
analysis will detect many wrong positions at fine scales corresponding to a response both to
the noise input and to the singularities to be detected. At a coarser scale, only one event at
an inaccurate position will be detected due to the blurring effect. This explains the need for
an algorithm that extracts relations between features at different levels of scale and uses this
to perform transient event detection.

Techniques for detecting and locating pipe bursts in WDS have also been studied in the
literature, although most of these techniques consider single pipelines and have not been
applied to network systems [12,11]. Methods have been proposed for burst (or leak) local-
ization. However very few have been proposed in the context of a large network. In addi-
tion, most have been validated using simulated data [11], in controlled laboratory environ-
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ments [13,10], or in transmission pipelines which are immune from pressure variations due
to demand fluctuations [9]. To our knowledge this is the first instance of event detection and
localization algorithms being validated on a real urban-area WDS.

Misiunas proposed a search-based burst localization technique [9]. In this technique, the
search is first performed globally over all nodes in the network. In the (optional) second step,
additional nodes are placed along each of the pipes, if the burst is inferred to have occurred
along the pipe, and the global search procedure is repeated. The objective function in the
search procedure consists of two parts: one based on the arrival times of the transients and
the other based on the wave transmission coefficients. In the second step, for each pair of
adjacent nodes, one additional node is placed along the connecting pipe. Since both steps of
this algorithm perform a global search, a high density of nodes in the network is required to
achieve good localization accuracy.

3 Wavelet-based Event Detection

In a WDS, typical events of interest to detect include leaks, pipe bursts and planned system
operations (such as valve closures). Most of these events can be detected as transients in
pressure within the WDS. Slow leaks, valve and other maintenance operations typically
result in transients that can be detected over a time scale of minutes or hours. Conversely,
pipe burst events result in a sudden change in the flow through the pipe, producing a pressure
transient which must be detected over time scale from milliseconds to seconds. In this paper,
we assume that pressure has been sampled at 250 Hz in order to adequately capture the
transients at all time scales. Appropriate down-sampling is applied for longer time-scale
transients.

Figure 1 shows an outline of the proposed wavelet analysis based event detection scheme.
The data acquired by the pressure sensors can contain impulsive noise as well as signatures
due to operational events, so the first step in the wavelet analysis is to preprocess the raw
pressure signal. We apply wavelet de-noising to the 250 Hz raw pressure signal. This de-
noised pressure signal is used for detecting burst transients. In addition, the de-noised pres-
sure signal is low-pass filtered (for anti-aliasing) and downsampled to 1/30 Hz for detecting
slow transients (such as slow leaks and valve operations).

The pressure signal is then decomposed into approximation and detail coefficients. In
the first few decomposition levels, extremes of the details are both due to noise and sig-
nal features. As the scale increases, noise extremes decay while extremes of the noise-free
signal remain. A 4-level decomposition was found to be a good fit for the pressure data be-
ing analyzed. Noise at each level is estimated based on the standard deviation of the detail
coefficients and is used as threshold for the detail coefficients. The clipped details and ap-
proximation coefficients are used to reconstruct the de-noised signal. The de-noised signal
is decomposed into 4 levels for further analysis.

In the next step, we identify signal features by considering the detail coefficients at lev-
els 3 and 4 (d3 and d4), since the extremes of the details up to level 2 were found to be
the result of both noise and signal features. It has been shown that the detail coefficients
associated with signal features are retained or enhanced over scales while those due to noise
decay rapidly with scale [8]. The signal features are identified by looking at groups of detail
coefficients with significant amplitude. The amplitude of the most significant coefficient in
each group and the corresponding time index are recorded. Among these groups we com-
pare the magnitude of the significant coefficients across scales. If the coefficient magnitudes
are retained or enhanced as we move to higher levels, the feature (or group) is identified



Burst Event Detection and Localization 5

Raw pressure signal

A 4

Signal pre-processing

y

Wavelet decomposition

A 4

Identify signal features

A 4

Temporal consistency of features

A 4

Signal feature classification

A 4

Event source localization

Fig. 1 Wavelet-based event detection scheme.

as a possible signal feature. Figure 2 illustrates the wavelet analysis for a typical pressure
transient signature due to an emulated burst event.

We next check the temporal consistency of each of the identified features across scales.
However, since the signal is down-sampled as we go higher in the decomposition levels, a
signal feature (such as a burst transient) which is represented by m samples at level (N — 1)
detail, would be represented by only around m/2 samples at level N. Thus, the temporal
spread of a feature (At) across N levels of scale must satisfy the following condition:

At <2V T, (1)

where 7 is the sampling period. This allows us to distinguish useful signal transitions from
noise.

The wavelet coefficients provide additional information about the identified signal fea-
tures which can be used for feature classification. It is well known that the local singularity
of a signal can be described with the Lipschitz exponents [8]. The Lipschitz exponent (o)
of a signal feature, around time #;, can be approximated as [5]:

o= ]Og2 Mj-H — logzMj 2)
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Fig. 2 Multiscale wavelet analysis: Identifying signal features.

where M; = |W; [pa(tsr)]| is the local wavelet transform modulus maxima of the de-noised
pressure signal p, around time £, ¢ at scale 2/. In addition, the sign of the extremum values of
the detail coefficients indicate whether the edge is ascending or descending. When observed
at the measurement points, a burst event produces a negative pressure drop, followed by
reflections of the original transient from pipe junctions and endpoints, eventually returning
to the baseline pressure in the pipe. The magnitude and temporal spacing of the negative
detail coefficients, representing the gradual rise in pressure as it returns to the baseline,
allow us to identify burst transients.

Detecting the transient at a number of measurement points can provide enough infor-
mation to determine the location of the burst. In order to localize the burst event, we must
accurately estimate the arrival time of the burst transient at each of the measurement points.
It is shown, in Figure 2, that extremum of the detail coefficients at level 4 determines the
approximate position of the transient. We then start from this level and move to lower levels
to improve the arrival time estimate of the transient since its position is affected after each
low pass filtering operation. The initial coarse time estimate is used to perform detection
at the lower scale level (or finer resolution) in a thin region around the previous position,
giving the most accurate estimate of the arrival time.

4 Graph-based Search Algorithm for Burst Localization

When we have several arrival time estimates of the same burst event, the observations can
be fused to provide an estimate of the burst location within a search space. Since the burst
location is constrained, i.e. it must lie somewhere on a pipe within the boundaries of the
pipe network, we must first define an appropriate representation for the network in order to
define the search space. The following definitions allow us to model the pipe network as a
graph (refer to Figure 3 for a visualization):

— Nodes: pipe junctions, endpoints and measurement points (or deployed pressure sensor
locations),
— Edges: pipe sections which connect the nodes,
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- Edge weights: travel time (t,,) for the edge (or pipe section), 7, = L,/C, where L, is
the length of the pipe section and C), is the wave speed.

Using the graph model, we propose to determine the burst location using the difference
in the arrival times of the burst transient at the measurement points in the WDS. In order
to localize a burst event using this approach, the burst transient has to be detected at two or
more measurement points. We assume that the measurement points are time synchronized
and gather time tagged data.

We formulate the problem as follows: the burst event occurs at time 7z which is not
known a priori. If the burst transient is detected at nodes j and k at times ¢; and f;, respec-
tively, the travel times from the burst location to the measurement points #; — fg and #; —tp
cannot be determined. However, since the measurements are time synchronized, the differ-
ence between the arrival times #; — #; is known. It is likely that this difference is unique for
bursts occurring at different points in the network. Assuming the pipe parameters and wave
speeds are known, it is possible to calculate the shortest travel time between any two nodes
in the system, for example using Dijkstra’s algorithm [3]. Let 7j; represent the travel time
from node j to k. If the burst occurs at node i, where i = 1,...,N (N = number of nodes in
the network) then:

(tj—1x) — (7ij — k) = 0. 3)

However, due to timing, measurement and other errors, the left-hand side of (3) will never
be zero. Thus, to identify the burst location, a search algorithm is proposed. The search is
divided into two steps:

— Step 1: Search for the node nearest to the burst location
In this step, we assume that the burst event occurred at one of the nodes in the network.
Based on (3), for each node i in the network we compute a score (or error metric) s;
given by:

si= Y |t — 1) — (zj— )| “)
Jj.k€Sp
j#k
where Sp is the set of measurement points (or sensors) that detected the burst transient.
Smaller residual value s; indicates higher probability that the burst occurred at node
i. Thus, the node with the minimum score is selected as the node nearest to the burst
location, which we denote as node np.

— Step 2: Search for the burst location along pipe sections connected to the nearest node
In this step, a new set of virfual nodes is placed along the pipe sections (i.e., along
the edges in the graph model) connected to the node np determined from Step 1. This
amounts to a local search around the node estimated to be closest to the burst location.
The new nodes are placed using a distance step-size which is dependent on the time
resolution of the pressure data (i.e., sampling period 7;) and wave speed in the pipe
section. The shortest travel times from the new set of nodes to the measurement points
are recalculated and used to compute the scores (4). Finally, the node with the minimum
score is chosen as the most probable burst location.

The first step of the search algorithm for burst localization described above performs a coarse
global search over all nodes in the network. The second step performs a local search around
the nearest node estimate to determine the most probable burst location along the pipe sec-
tion.
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o M1

Scale

(a) Pipe network layout for a portion of the WDS. (b) Corresponding graph model for
a portion of the WDS.

Fig. 3 Pipe network layout and the equivalent graph model for a portion of the WDS. M1, M2 and M3 are
the three measurement points (sensors) and B is actual location of the burst events. The expected travel paths
from B to the three measurement points are shown in solid lines. The dashed path indicates a possible second
path from B to M3.

5 Experimentation and Results

The performance of the proposed event detection and localization algorithms is verified
through leak-off experiments performed on the WaterWiSe@SG test bed deployed on the
water distribution system in Singapore [14,1]. The test bed consists of wireless sensors
measuring hydraulic and water quality parameters in real-time. Pressure measurements are
recorded at a sampling frequency of 250 Hz, and the wireless sensors are synchronized
to a common time frame using the Pulse Per Second (PPS) feature of their on-board GPS
modules.

The bursts were emulated using a 2-inch diameter solenoid valve with a nominal opening
time of 0.1 sec. A globe valve was used to control the discharge rate. Fire hydrant plugs were
used as connection points for the burst emulation equipment. The part of the distribution
network where the bursts were created consist of 500 mm steel and 300 mm ductile iron
pipes with estimated wave speeds of 1030.3 m/s and 1088.7 m/s, respectively (wave speed
estimation is discussed further in Section 6.2). The pipe network layout for the test bed
and the equivalent graph model are shown in Figure 3, covering an area of around 1 km?.
The bursts were created at location B. Three of the measurement points (or pressure sensors)
M1, M2 and M3, part of the WaterWiSe @SG test bed, were within range to be able to detect
the burst transients. Nine burst events were created during the evening from 20:00 to 22:00
hours. The discharge rate was 9 L/s for events 1-4, 7 L/s for event 5 and 5 L/s for events 6-9.

5.1 Detection Performance

The pressure data from the 2 hour experimentation period was analyzed using the multiscale
wavelet algorithm, implemented in Matlab. A typical pressure transient signature at the three
measurement points from one of the emulated burst events is shown in Figure 4. As a point
of comparison to existing approaches, we also implemented the CUSUM change detection
test [10]. It was noted by the authors that the CUSUM technique is susceptible to false pos-
itives, caused by non-burst pressure transients such as pump shutdowns, valve operations or
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Fig. 4 Pressure transient signature at the three measurement points from one of the emulated burst events.

Measurement True False Missed
point detections  detections  events
Multiscale Ml 9 1 0
wavelet M2 9 0 0
analysis
M3 9 0 0
CUSUM Ml 9 18 0
change
detection test M2 o 8 0
M3 9 12 0

Table 1 Burst event detection results.

sudden increases in demand. This is because the CUSUM test detects burst transients based
only on the rate of change criterion and does not attempt to classify the transient signatures.
The threshold & and drift v parameters, of the CUSUM test were tuned such that all the
emulated bursts were detected. The detection results, for the 2 hour period with 9 control
events, using the above two methods are shown in Table 1. The detection performance is
judged based on the following three metrics:

— True detections: Emulated burst events that were detected correctly.

— False detections: Detected transient events that were not part of the emulated burst
events.

— Missed events: Emulated burst events that could not be detected.

The wavelet-based algorithm was able to detect all the 9 events at M1, M2 and M3, how-
ever there was one false detection at M 1. The feature classification step using the wavelet
coefficients and the Lipschitz exponents allows us to distinguish bursts from other transient
events.
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Arrival time difference (in sec
Burst event ( )

Localization error (in m)
2 —Ivn vz —Im1 M3 —Im2

1 0.22569 0.50659 0.28090 48.94
2 0.23283 0.58026 0.34743 46.36
3 0.23760 0.62510 0.38750 43.79
4 0.30847 0.50630 0.19783 10.30
5 0.25034 0.51397 0.26363 36.06
6 0.32349 0.58760 0.26411 2.72
7 0.19798 0.46865 0.27067 61.82
8 0.26800 0.67075 0.40275 28.33
9 0.20791 0.54931 0.34140 59.24

Expected time
differences 0.32255 0.53128 0.20873

Table 2 Burst localization results.

5.2 Localization Performance

After a burst transient is detected, the extremum of the detail coefficients is tracked across
levels to estimate the arrival time of the transient. The arrival times from the three measure-
ment points are provided to the burst localization algorithm. The approximate graph model
for the localization algorithm consists of 8 nodes: 3 measurement points and 5 main pipe
junctions, shown in Figure 3(b). In addition, the distances between adjoining nodes and wave
speed estimates for the different pipe sections are known. The localization results are shown
in Table 2. The expected arrival time differences for (M1,M2) and (M1,M3) are 0.32255 sec
and 0.53128 sec, respectively. The average localization error, based on these experiments, is
37.5 m. Although this is not accurate enough to determine the exact location of the burst, it
can help identify the section of the pipe that has to be isolated. A pipe section of this length
can be inspected for leaks in a small amount of time using established leak-detection tech-
niques such as acoustic correlators. The location time will be significantly reduced using the
proposed techniques when compared to current practice.

6 Localization Error Analysis

In this section we discuss some of the sources of error in burst localization and attempt to
quantify their impact on the localization result.

6.1 Time Synchronization

Time synchronization is very important for relating events observed in the data gathered
across a sensor network. The time synchronization accuracy that is required in a sensing
system depends on data usage. In this case, accurate time synchronization is vital to cor-
relate pressure transients in order to localize a leak or burst event. Since the wave speed
propagation carrying a pressure transient in a pipe is in the region of 1000 m/s, every mil-
lisecond of accuracy is important. We examine the Network Time Protocol (NTP) logs to
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Fig. 5 Comparative local clock offset values when PPS/GPS is used and when only Internet NTP servers are
used, both taken from the same node, over a six-day period. Note that the offset values, and hence clock error,
are two orders of magnitude higher when only Internet accessible NTP servers are used.

quantify the stability of the PPS method and relate this to the potential localization error.
NTP changes the local clock time to best match the reference time, so a stable clock will
see small adjustments, whereas a highly variable reference clock will see large adjustments,
potentially making the local clock unstable for fine grained measurements. Figure 5 shows
the stability of local clock changes when PPS GPS data is provided to NTP (top plot), and
when the only reference time source is an Internet-based NTP server (bottom plot). The
x-axis is time, and the y-axis represents the amount by which NTP has changed its local
clock to best match the reference clock. Both sets of data were taken under normal node
operation over a six day period. We see that under normal operation (with the PPS input),
the clock changes made by NTP are within 1 ms. In comparison, the Internet reference
timings arrive over a highly variable network connection (in terms of latency) to reach the
node. The clock changes made by NTP reflect this, being around +130 ms, or two orders of
magnitude larger than when using PPS.

Since the main motivation for time synchronization in this case is for event detection and
localization, it follows that errors in timing observed by NTP affect the accuracy bounds of
localization. Using the wave speed estimates, we can estimate the relative impact of the
clock offsets on distance estimation and therefore the localization results. Table 3 shows
the error that could be induced using the PPS signal from a GPS module to synchronize a
node’s local clock. We see that if the local clock is offset from the reference time by £1 ms,
this translates to a worst-case uncertainty of 1.09 m. This is acceptable given the inter-node
distances along pipelines are of the order of 500 m (thus 1.09 m error is just 0.2% of the
inter-node distance).
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Estimated Distance estimation error

\sNae\Si PPS/NTP  NTP server
P (£1ms) (& 130 ms)

500 mm Steel 1030.3 m/s 1.03 m 133.94 m
300 mm  Ductile iron ~ 1088.7 m/s 1.09 m 141.53 m

Pipe Pipe
diameter material

Table 3 Worst-case error induced in distance estimation by using the PPS GPS signal for on-node clock
synchronization.
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Fig. 6 Wave speed estimates as a function of the distance of the measurement point from the burst location.

6.2 Wave Speed Estimation

The wave speed in a pipe depends on parameters such as the pipe dimensions (diameter
and thickness), pipe material and properties of the fluid flowing through the pipe (water
with entrained air). We performed a separate set of emulated burst experiments which were
used for estimating wave speeds in the pipe sections. In these experiments, burst events
were emulated at various locations within the test bed. In addition to the burst emulation
equipment, a mobile sensor node (recording pressure data) was also attached to the fire
hydrants at each of these locations. This sensor node allows us to record the time at which
the burst transient originated from the source. We then use the time at which the transient is
detected at the other measurement point(s) along the same pipe section to compute the wave
speed estimate for that pipe section.

The results from these experiments are shown in Figure 6, where we plot the wave
speed estimates for both the 300 mm ductile iron and 500 mm steel pipes as a function of
the distance of the measurement point from the burst location. It is seen that most wave
speed estimates are in the region of 1000 m/s for both pipe types. We use the mean value
of these estimates as the wave speeds for the localization experiments (reported earlier in
Section 5).
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Fig. 7 Localization error as a function of the wave speeds.

Next, assuming that the wave speed estimates obtained using the above method are ac-
curate, we attempt to relate error in wave speed estimation to the localization error. Any
error in wave speeds, other parameters being constant, would translate to an error in the
expected arrival time differences which can be assumed to be linearly related to the local-
ization error. This linear relationship between the localization error and the error in arrival
time differences (rms error) is empirically obtained using an /1-norm fit for the localization
results presented in Table 2. Thus, the effect of wave speed estimation error on localization
is shown in Figure 7. It can be seen that even a 10% error in wave speed estimation can
severely degrade the localization performance.

6.3 Arrival Time Estimation

The burst arrival time estimation is challenging due to two effects: (i) interfering transients
and (ii) attenuation of the pressure transient as it propagates along the pipes causing disper-
sion. During our experiments, the burst transient appeared to take two paths to reach M3
which interfere with each other. The two paths from B to M3 are shown on the network
layout in Figure 3(a). This is also illustrated in Figure 8 with the detail coefficients regis-
tering the two transient arrivals. The time difference between the two transient arrivals is
around 0.4 s which matches well with the difference in the two path lengths of around 500
m. Thus, in cases where two arrivals were detected, the first arrival time was used for the
burst localization. The arrival time estimation problem is also exacerbated by the fact that a
burst-induced transient is attenuated by friction in the pipes, causing dispersion that reduces
the slope or steepness of the transient as it propagates.
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(a) Burst transient recorded at M3 showing two arrivals via different paths.
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(b) Wavelet detail coefficients.

Fig. 8 Illustration of two interfering transients: Transient recorded at M3 and the corresponding detail coef-
ficients.
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6.4 Sensor Locations and Inter-node Distance Measurement

The inter-node distances and locations of the measurement points were obtained via survey-
ing techniques such as GPS. Typical standalone GPS survey units can result in positioning
errors of around £5 m.

6.5 Sensitivity Analysis

In the preceding sub-sections we identified the sources of localization error and quantified
the effect of each parameter (to an extent independently) on the localization performance.
We next attempt to visualize the sensitivity of the localization result to variation in the wave
speed and arrival time estimates. We perform Monte Carlo simulations assuming worst case
errors of £100 ms in arrival time estimation and +100 m/s in wave speed estimation. The lo-
calization result from each simulation is mapped to the nearest junction or vertex in the pipe
network model and at the end of all the simulation runs a probability map of the localization
result is generated providing a confidence measure for the results. The result from 675 such
simulation runs is shown in Figure 9. It can be seen that the probable burst locations are
within 100 m of the actual burst location and the most probable burst location is around 56
m from the actual burst location. Thus, the localization results are within acceptable error
limits even with large estimation errors.

7 Future Work

The algorithms and results presented here are based on two sets of experiments where the
bursts were emulated above ground using a solenoid-activated valve. The results indicate
that the proposed techniques hold promise. The next program of tests will include more
realistic emulation of underground pipe bursts and comparison of acoustic and pressure
transient detection methods. The long-term goal is to establish limits on detection capabil-
ities relating to the burst size and distance from the source of the burst. In addition, we are
also working on extending the wavelet-based event detection scheme and graph-based lo-
calization algorithm to some of the slow transient events such as slow leaks, valve and other
maintenance operations.

8 Conclusion

The wavelet-based burst event detection and graph-based localization technique presented
in this paper shows promise for continuous monitoring of transient events in a water dis-
tribution network. The technique is based on real-time continuous monitoring of pressure
and can minimize the detection and localization time of these events. The technique was
verified using the WaterWiSe @SG test bed deployed on the water distribution network in
Singapore. The technique was shown to be robust to impulsive noise and able to distinguish
burst transients from other operational events. Only three measurement points are sufficient
to uniquely determine the location of the burst. A systematic study of the sources of local-
ization error was also presented.
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(b) Zoomed-in view of the localization result.
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Fig. 9 Localization result as a probability map providing a confidence measure. Probable burst locations are
indicated by circles around the system nodes and the color of these circles gives the confidence measure (or

probability) of that being the burst location.
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