
ETH Library

Physical layer development
framework for OsmocomBB

Journal Article

Author(s):
Kröll, Harald; Zwicky, Stefan; Weber, Benjamin; Benkeser, Christian; Huang, Qiuting

Publication date:
2013-12

Permanent link:
https://doi.org/10.3929/ethz-b-000071899

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Journal of Signal Processing Systems 73(3), https://doi.org/10.1007/s11265-013-0762-2

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000071899
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11265-013-0762-2
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


J Sign Process Syst (2013) 73:301–314
DOI 10.1007/s11265-013-0762-2

Physical Layer Development Framework for OsmocomBB

Harald Kröll · Stefan Zwicky · Benjamin Weber ·
Christian Benkeser · Qiuting Huang

Received: 26 October 2012 / Revised: 1 February 2013 / Accepted: 24 April 2013 / Published online: 29 May 2013
© Springer Science+Business Media New York 2013

Abstract The open source GSM protocol stack of the
OsmocomBB project offers a versatile development envi-
ronment regarding the data link and network layer. There is
no solution available for developing physical layer baseband
algorithms in combination with the data link and network
layer. In this paper, a baseband development framework
architecture with a suitable interface to the protocol stack of
OsmocomBB is presented. With the proposed framework,
a complete GSM protocol stack can be run and baseband
algorithms can be evaluated in a closed system. It closes the
gap between physical layer signal processing implementa-
tions in Matlab and the upper layers of the OsmocomBB
GSM protocol stack. An embedded version of the system
has been realized with FPGA and PowerPC to enable real-
time operation. The functionality of the system has been
verified with a testbed comprising an OpenBTS base-station
emulator, a receiver board with RF transceiver and our
developed physical layer signal processing system.

This work has been presented at the SDR 2012 Wireless Inno-
vation Forum Europe conference [1]. The open-source MatPHY
framework is licensed under the GPLv3 license and can be down-
loaded at: http://code.google.com/p/matphy.

H. Kröll (�) · S. Zwicky · B. Weber · C. Benkeser · Q. Huang
ETH Zurich, Integrated Systems Laboratory,
Gloriastrasse 35, 8003, Zurich Switzerland
e-mail: kroell@iis.ee.ethz.ch

S. Zwicky
e-mail: zwicky@iis.ee.ethz.ch

B. Weber
e-mail: weberbe@iis.ee.ethz.ch

C. Benkeser
e-mail: benkeser@ruag.com

Q. Huang
e-mail: huang@iis.ee.ethz.ch

Keywords Baseband signal processing · Physical layer
hardware architectures · OsmocomBB · GSM protocol
stack · L1CTL messages

1 Introduction

Recently, the open source community has discovered the
GSM protocol as an interesting exploration area, mainly
for security aspects. Among the various successful attempts
to implement open source software for several parts
of the GSM network, the community behind the Open
Source Mobile Communication Baseband (OsmocomBB
[2]) project offers implementations in C of the data link
layer (L2) and the network layer (L3) of the mobile sta-
tion (MS). These can be run on various MSs together with
the physical layer (L1), which is partially implemented on
a Digital Signal Processor (DSP), and partially in dedi-
cated hardware. To this end, the L1 source code running
on the DSP and the corresponding application interface
(API) have been analyzed by reverse engineering of chip-
sets used in specific legacy phones. Thus, OsmocomBB
is able to provide L1 source code cross-compiled for sev-
eral DSPs. In this way the L1 realization can be executed
directly on MSs. Lower-level parts of the L1 which are
implemented in dedicated hardware can be accessed via the
DSP’s API.

Unfortunately, it is very difficult to get insight to layers
below the API, which limits the scope of new applications
and implementations. Crucial tasks of the digital base-
band domain, such as channel equalization or decoding, are
mostly implemented as accelerators in dedicated hardware.
Therefore, they cannot be further investigated. This defi-
ciency exacerbates OsmocomBB to be used for (research)
activities on the physical layer, which includes analog and

http://code.google.com/p/matphy
mailto:kroell@iis.ee.ethz.ch
mailto:zwicky@iis.ee.ethz.ch
mailto:weberbe@iis.ee.ethz.ch
mailto:benkeser@ruag.com
mailto:huang@iis.ee.ethz.ch


302 J Sign Process Syst (2013) 73:301–314

digital front-end, baseband signal processing and L1 control
functionality.

The signal processing, hardware development, and com-
munication technology communities have strong interest in
an expandable baseband development framework with an
interface to L2 and higher layers of the GSM protocol stack.
OsmocomBB’s L1CTL protocol between L1 and L2 is well
defined, but there is no development environment availab-
le in an ubiquitous scientific computing language, such as
Matlab or GNU Octave, which can be connected to L1CTL.
A framework with an interface of this type simplifies the
validation of the functionality of baseband implementations
towards higher layers in a compact system without expensi-
ve measurement equipment. Baseband engineers can use Os-
mocomBB during the design process and during testing of
signal processing blocks that require interaction with L2/L3.

Contribution: in this paper, a Matlab-based physical
layer development framework architecture with an appropri-
ate interface to the L2/L3 implementation of OsmocomBB
is presented. The framework contains digital baseband pro-
cessing with corresponding L1 controller and time proces-
sing unit (TPU), as required for GSM receivers. The base-
band processing is partitioned into a digital front-end, detec-
tor and decoder unit. Each unit comprises a controller and so
called signal processing primitives, which carry out essen-
tial tasks like filtering, symbol detection, parameter estima-
tion, bit scrambling, and decoding. Functional verification
of the implemented framework and interface is performed
by processing recorded samples from a base transceiver sta-
tion (BTS). In addition, in order to enable real-time opera-
tion, an embedded version of OsmocomBB was built and a
VHDL implementation of the framework was developed
and mapped to FPGA. The embedded versions of L1 to L3
were executed on a testbed with a state of the art RF trans-
ceiver, receiving samples over the air interface from a BTS.

Outline: The paper is organized as follows. In Section 2
an overview on mobile phone architecture is given, and
the need for crossing the boundary between L1 and L2/L3
is substantiated. Fundamentals of the GSM air interface
between BTS and MS are explained in Section 3. An
interface that connects OsmocomBB with a physical layer
Matlab implementation is presented in Section 4. The Mat-
lab framework architecture and its operation is explained in
Section 5. Section 6 explains how the framework is mapped
to an FPGA and how an embedded version of L2,L3 was
built. The testbed setup is described in Section 6.2 and
Section 7 concludes the paper.

2 The Missing Link

The protocol stack for GSM is a layered architecture based
on the concepts of the ISO Open Systems Interconnection

(OSI) model with 7 abstraction layers. The layered struc-
ture allows the distribution of work to specialists that can
focus on a specific layer without having to consider the mul-
titude of problems and issues that occur in the remaining 6
layers. In particular, baseband signal processing algorithms
and architectures for the physical layer can be developed by
neglecting L2/L3 procedures or operations of even higher
layers. The separation of layers in the GSM standard has led
to the classical partitioning of hardware in mobile phones,
as depicted in Fig. 1.

Digital baseband signal processing tasks with low and
medium computational complexity are typically executed on
the Baseband Processor, a power-efficient DSP optimized
for mobile applications. The most complex parts of the digi-
tal baseband signal processing are usually directly mapped to
dedicated hardware accelerator blocks, in order to achieve
the required performance (e.g., bit error rate, throughput) at
reasonably low power consumption. Instead, L2 procedures
are suitable for an integration in software, because computa-
tional complexity is fairly low and high flexibility is requi-
red. Therefore, these tasks are typically realized on a reduced
instruction set microprocessor (RISC), the System Processor,
which is connected to the accelerators via the DSP’s API.

Although the strict separation of layers simplifies inde-
pendent development and integration of the specific layers,
it impedes optimizations and applications that require cross-
ing the layer boundaries. For example, hybrid automatic
repeat request (HARQ) which is a key feature of modern
mobile communication standards to enable high average
throughput, requires interaction between L2 and channel
decoding in the physical layer. The HARQ technique spec-
ified for GSM/EDGE [4] is called Incremental Redundancy
(IR). IR manages the storage of erroneously received data
packets and the combination of the stored data with re-
transmissions of the same data packet. The combination of
the received data packet with previously received and stored
data significantly increases the probability of correct decod-
ing.1 Therefore the average data throughput is increased.
Channel decoding is a computationally expensive baseband
signal processing task in the physical layer, whereas the
organization and controlling of re-transmissions, and the
memory management of the stored data blocks is a proce-
dure, that is typically controlled by L2/L3 layers (see for
example [3]). Therefore, in order to simulate the entire IR
functionality, in order to evaluate average receiver through-
put (with IR enabled) accurately, and in order to optimize
IR implementations, being able to operate across the layer
boundary between physical layer and upper layers is desired
from a designer’s point of view.

1Different puncturing schemes are usually used, in order to increase
the information gain with each re-transmission. Refer to, e.g., [5] for
further details.



J Sign Process Syst (2013) 73:301–314 303

Figure 1 A common GSM MS architecture. The physical layer is distributed over a DSP and hardware accelerators [3].

More than that, having access from higher layers to
the physical layer and vice versa renders new applications
possible. Physical layer procedures, intermediate results of
baseband signal processing blocks, or simply raw baseband
samples can be monitored from higher layers, which simpli-
fies debugging and enables new visualization opportunities
of physical layer operations. An example exploiting layer
crossing is user cooperation. In an exemplary user cooper-
ation scenario, several mobile devices Mi support a mobile
device M0 by acting as its remote antennas. Raw received
baseband samples of the mobile devices Mi are forwarded
from their physical layer to their application layer. From
there, a mobile application (app) organizes the transmis-
sion of these samples to M0 via an ad-hoc radio technology,
where the samples are combined in the physical layer. Vari-
ous combining schemes (e.g., [6]) can be applied in order to
improve the probability of correct decoding.

We conclude that there is a need to have access to the
physical layer in mobile phones and to be able to model
physical layer functions in combination with higher lay-
ers. In the following section we describe our approach of
interfacing OsmocomBB with a physical layer development
framework.

3 The GSM Um Air Interface

The Um air interface is defined as the air interface between
a MS and a BTS. It is based on a TDMA frame structure
where each frame is subdivided into 8 timeslots, each lasting
about 576.92 μs. A timeslot carries a GSM burst containing
156.25 symbols.2

Five burst types with different configurations are spec-
ified for GSM. Three of them are relevant for this work

2In basic GSM only GMSK modulation is supported, where symbol is
equal to bit.

and will be explained next. A normal burst (NB) consists of
two information blocks of 58 bits and a midamble (training
sequence) of 26 bits, which is known at the receiver such
that it can be used for channel estimation. The frequency
correction burst (FB) contains 142 logical ’zero’ bits, which
result in a complex sinusoid due to the nature of the GMSK
modulation. The main scope of the FB is to enable the MS
to synchronize to the carrier frequency. The synchronization
burst (SB) carries a 64 bit midamble for synchronization in
time and channel estimation, and 78 data bits, which pro-
vide the base station identification code (BSIC) and other
system information (SI). Each MS in a cell can adjust its
internal timebase to the timebase of the BTS by searching
for the beacon carrier, which carries the broadcast control
channel (BCCH). The beacon carrier is the carrier with
highest power transmitted from a BTS. The beacon carrier
broadcasts SI messages on radio blocks which consist of
four NBs, as well as FBs and SBs in a repeating pattern.
Thus, FB and SB are broadcast approximately every 47 ms
on the beacon carrier.

According to the GSM specifications, a MS shall keep
track of the time base by maintaining four counters in order
to guarantee correct receive and transmit timing. The quarter
symbol (QN) counter ranges from 0 to 624. The bit number
counter (BN) counts the bits of a burst (0 to 156) and the
timeslot counter (TN) counts the timeslots (0 to 7) within
a frame. The frame number counter (FN) reaches from 0
to 2048 · 52 · 26 − 1 (the number of frames in a hyper
frame). For more details on the GSM Um air interface refer
to [7].

4 Phyconnect: A New Interface for the L1CTL Protocol
between L1 and L2

The GSM specifications do not foresee a detailed proto-
col for the communication between L1 and L2. The GSM



304 J Sign Process Syst (2013) 73:301–314

Table 1 L1CTL message examples. Note that in the OsmocomBB
sourcecode the messages are denoted with a L1CTL prefix.

Functionality L1CTL messages

Reset PHY RESET REQ

RESET CONF

Synchronization FBSB REQ

FBSB CONF

Power Measurement PM REQ

PM CONF

Control Channel Mode CCCH MODE REQ

CCCH MODE CONF

Data indication DATA IND

standard [8] defines basic messages3 for the communication
with L2. They are subdivided into request (REQ), confirm
(CONF) and indication (IND) message types. The messages
of OsmocomBB’s L1CTL protocol are inspired from these
message types of the GSM standard. A set of examples for
L1CTL messages is given in Table 1.

The default OsmocomBB interface implementation
between L1 and L2, called osmocon, uses a serial link with
HDLC protocol [9] to load the cross-compiled software into
the phone’s DSP memory. Using L1CTL messages, this
software (often called firmware) communicates via osmo-
con with a Unix domain socket for the connection to L2/L3
running on a host computer.

In an attempt of replacing the DSP’s firmware with a
physical layer Matlab implementation, the Unix domain
socket needs to be connected to Matlab. Unfortunately,
Matlab does not directly support Unix domain sockets.
Therefore, an interface written in C is required for the socket
communication. One solution would be to have such an
interface embedded in a MEX function, such that it could
be called inside a Matlab script. Alternatively, the interface
could execute Matlab commands directly by means of Mat-
lab engine function calls. However, both MEX function calls
and Matlab engine function calls are blocking, which pro-
hibits parallel execution of L1CTL protocol handling and
baseband processing.

Instead, the interface phyconnect which we have devel-
oped for our physical layer development framework con-
nects the Unix domain socket to Matlab via a memory
mapped file, as depicted on the right hand side of Fig. 2.
In order to prevent accidental overwriting of data in the
memory, a handshake protocol has been implemented. Thus,
phyconnect sending data to Matlab waits first for Matlab to
retrieve any data in the memory mapped file. By the same
token, Matlab waits for the phyconnect process to retrieve
data first before overwriting it. The memory mapped file

3The basic messages are called primitives of the physical layer in the
GSM specifications [8].

has a total length of 880 bytes, which is used to build an
array of 220 entries of 32 bit unsigned integers. There are
entries for all information that needs to be accessible by
L1, phyconnect and L2, such as L1CTL message properties,
payload, and necessary information for the handshake pro-
tocol. Thus, the proposed interface is a flexible solution to
connect the L2/L3 layer of OsmocomBB with physical layer
implementations in Matlab.

In the following section, we present our framework archi-
tecture that uses phyconnect to enable the simulation of our
L1 realization in Matlab in combination with mobile (the
application running L2/L3) of OsmocomBB.

5 Matlab Framework Architecture

The architecture of our baseband signal processing frame-
work is shown in Fig. 2. It comprises a GSM physical
layer implementation, referred to as phydev, and the inter-
face phyconnect, which connects the mobile application of
OsmocomBB, as explained in the previous section. Phydev
is a Matlab realization of the physical baseband receiver
that is typically implemented on the baseband proces-
sor, assisted by accelerator blocks in dedicated hardware
(cf., Fig. 1). The main components of phydev are the L1
controller, the TPU and the three physical layer processing
units digital front-end (DFE), detector (DET) and decoder
(DEC). Note that this partitioning of the digital baseband
signal processing into DFE, DET and DEC is also suit-
able for an integration in hardware, where controlling blocks
that operate on the same input data type can be realized
efficiently. DFE primitives operate on a stream of
I-/Q-samples, which require no frame or burst alignment.
DET functions, instead, require synchronized and buffered
bursts of digital I-/Q-samples, typically at symbol rate
fsym = 270.833 Hz. The signal processing primitives
of DEC operate on demodulated radio blocks of seve-
ral hundred of bits. The bits are either represented by
hard-decisions, i.e., logic ’0’ or ’1’, or by soft-decisi
ons that represent the likelihood of a bit being rather
a ’0’ or a ’1’. Each physical layer processing unit con-
sists of an individual controller and several primitive func-
tions, that process specific signal processing tasks, such as
channel estimation or channel decoding.

5.1 L1 Controller

The L1 controller builds the connection between the inter-
face toward phyconnect and the main physical layer pro-
cessing units DFE, DET and DEC. The L1 controller
receives L1CTL messages from the socket of the interface
via memory mapped file and creates confirmation (CONF)
or indication (IND) messages for the layer above. The



J Sign Process Syst (2013) 73:301–314 305

Figure 2 Architecture of the framework phydev and the interface phyconnect connected to OsmocomBB’s mobile application via a memory
mapped file and a Unix domain socket.

L1CTL messages are split up into commands for the corre-
sponding DFE, DET and DEC controllers. These controllers
parse the command and execute a sequence of signal pro-
cessing primitives corresponding to an incoming command.
The results of the primitives are collected and sent back to
the L1 controller in a report. The L1 controller implements
the PHY finite state machine of a MS for GSM, as specified
in [8] and shown in Fig. 3.

After switching on the MS, the state machine starts
in the NULL state. From this, after having received a
PM REQ message, the cell search procedure starts. First,
the power levels of all possible GSM carriers are measured

Figure 3 PHY finite state machine with the states for the idle mode
and dedicated mode [8].

and reported to L2 in the search BCH state, in order to find
the beacon carrier.

Next, synchronization in time and frequency is per-
formed after having received a FBSB REQ message. The
controller sends corresponding commands to the units,
where the primitive functions necessary for synchroniza-
tion are executed, and evaluates the reports. In the BCH
state the system information carried on the BCCH chan-
nel is extracted from the reports and sent to L2/L3. At
this point the GSM state camping on any cell [10] is
reached.4

5.2 TPU

A TPU which keeps track of the four GSM timebase coun-
ters is necessary. Since several signal processing algorithms
do not run fast enough in Matlab to be executed in real
time, the TPU counters are emulated in software. This TPU
allows the simulation of the timing between execution of
signal processing blocks, controller procedures, and com-
munication with higher layers. Each controller is able to
read and update the TPU counter states. More specifically,
according to the TPU counter state, messages are forwarded
to the specific controllers of DFE, DET and DEC. The con-
trollers in DFE, DET and DEC call the primitives according
to the TPU counter states. At each call, the counters are
incremented according to a processing time allocated to
each primitive. This processing time is a measure for the
actual time required for a typical hardware implementation
(see Section 5.3.2).

4Note that the states of dedicated mode (see Fig. 3) are not imple-
mented in our framework so far.



306 J Sign Process Syst (2013) 73:301–314

5.3 Digital Front-End (DFE)

Tasks of DFE include decimation filtering, DC-offset com-
pensation, signal level measurements, carrier frequency
synchronization for the cell-search procedure, and coarse
synchronization in time. DFE is operating on a stream of
non-synchronized I-/Q-samples. To ensure that the execu-
tion of operations on I-/Q-samples is carried out at the right
time in this streaming based block, functions which provide
a result after a pre-defined number of samples are neces-
sary. The number of samples to be processed and other
primitive-specific parameters are input arguments of the
functions given from the DFE controller in terms of com-
mands. The output of the primitive functions is forwarded
to the DFE controller. The commands of the DFE controller
and the primitives of DFE are explained in the following
Sections 5.3.1 and 5.3.2 respectively.

5.3.1 Command Processing in the DFE Controller

The DFE controller receives the following commands from
the L1 controller, calls the required primitives, and sends
back a report.

• RXPWR (RX Link Level Measurement): MSs have to
measure the received signal power on all GSM carriers
served by the BTS, after power on as well as dur-
ing operation. These measurements are performed by
the PM meas() primitive function. The DFE controller
maps the result of the primitive to an integer value
RX LEV and computes the running average according
to the GSM specifications in [11], which is reported to
the L1 controller.

• FSYNCH FB (Frequency Synchronization): carrier fre-
quency synchronization is crucial during initial cell
search and also during normal operation. The first step
after power measurements is the decimation filtering on
behalf of the DEC flt() primitive. Subsequently the DC
offset is estimated and removed with the DC comp()
primitive. The next step for the cell search procedure
is the detection of the FB, transmitted on the bea-
con carrier. The finite state machine that corresponds
to the frequency synchronization procedure is depicted
in Fig. 4. FB detection is performed in the state
search FB until either a FB is detected or a time-
out is reached. Once a FB is found, the carrier fre-
quency offset is estimated and the FB found flag and
the estimated frequency offset are reported to the L1
controller.

• RX NB/RX SB (Normal burst / Synchronization
burst): the first steps when processing NBs or SBs are
the same as for the FSYNCH FB message. In addition,

Figure 4 Finite state machine for processing a FSYNCH FB message
in the DFE controller.

the RX signal power is estimated with the PM meas()
primitive for the automatic gain control (AGC).

5.3.2 Signal Processing Primitives in DFE

In this subsection, the signal processing primitives of the
DFE will be explained.

• DEC flt(): in our framework, we assume the input
I-/Q-samples to arrive 2× or 4× oversampled from the
analog to digital converter (ADC) and subsequent filter
stages. In order to downsample the signal to symbol rate
and avoid aliasing, decimation filtering is performed
via Dec flt(). The decimation filter of our framework is
implemented as finite impulse response (FIR) filter with
32 taps (real-valued coefficients). The filter can be con-
figured that decimation from 2× and 4× oversampling
ratio is supported.

• DC comp(): even state-of-the-art analog transceiver
IC’s for cellular communication do not provide a DC-
free signal to the digital baseband. The residual DC
offset can be dramatic and degrade detector perfor-
mance significantly. The DC offset of the input signal is
estimated by averaging over a given number of samples
and subsequently subtracted.

• PM meas(): the input arguments of PM meas() are the
number of samples to be processed and the frequency
of the carrier to be measured. The output of PM meas()
is the RMS power in dBm computed over the amount of
processed samples.

• FB det(): the FB is transmitted as a complex sinu-
soid, which enables a variety of detection strategies at



J Sign Process Syst (2013) 73:301–314 307

receiver side. In this primitive, FB detection is per-
formed according to [12], where the variance of the
phase of a complex sinusoid is estimated and compared
to a threshold value.

• FB est(): the carrier frequency offset is estimated from
the FB’s complex sinusoid by using the T&F estimator
from [13], which is based on angles of correlations. This
approach has a significantly lower computational com-
plexity when compared to costly periodogram-based
frequency estimators. By calling the FB est() primitive
function, this carrier frequency offset estimation algo-
rithm is executed by processing the number of samples
specified as input arguments. The output of FB est() is
the estimated carrier frequency offset.

5.4 Detector (DET)

The DET unit is operating on synchronized and buffered
bursts of I-/Q-samples at symbol rate. Its main task is the
equalization and demodulation of NBs and SBs. More than
that, the detection of the SB and the subsequent synchro-
nization in time is performed in DET. In the following
sections the command processing for the DET and its
primitives are explained.

5.4.1 Command Processing in DET Controller

The DET controller receives the following commands from
the L1 controller, calls and evaluates the corresponding
primitives, and sends back a report.

• TSYNCH SB (SB processing): after synchronization
in frequency has been achieved, time synchronization
needs to be performed. In GSM the detection of the SB
which is also broadcast on the beacon carrier allows
precise synchronization in time. A coarse timing esti-
mate is already provided by the FB detection (see
5.3.2) and given as input argument to the SB synch()
primitive. Thus, the SB detection needs only to be
performed on the part of the received samples, which
has been identified by the coarse synchronization as
potential SB. Once the exact location of the SB is
known, its channel impulse response is estimated by
use of the ChEst() primitive. Part of the GSM system
information is transmitted on the SB and needs to be
extracted during the cell search procedure. This payload
is demodulated by means of the Prefilter and Equal-
izer() primitives and a report is sent back to the the L1
controller.

• RX NB (Normal burst processing): similar to the
TSYNCH SB command, but without synchronization
procedure, the training sequence of the processed NB is

used to perform the channel estimation. Then, channel
shortening, channel equalization and symbol demodu-
lation are performed.

5.4.2 Signal Processing Primitives in DET

• ChEst(): in our implementation the channel profile is
estimated in a least-squares sense, as described in [14],
with the aid of the training sequence of each GSM burst.

• Prefilter(): the channel impulse response of a received
GSM signal might last over several symbol periods due
to inter symbol interference. In order to enable reduced
state sequence estimation (RSSE) in the equalizer, the
channel energy must be concentrated within the first
few channel taps. To this end, a channel shortening pre-
filter according to [15] is applied before equalization.

• Equalizer(): in the equalizer we employ trellis based
equalization and symbol demodulation. Since the num-
ber of trellis states in an equalizer based on maximum
likelihood sequence estimation (MLSE) [16] is pro-
hibitively large, especially for non-GMSK modulations,
RSSE according to [17] is used. A straight-forward
approach would process one single trellis with 148 sym-
bols. This approach has the drawback that the known
training sequence is processed although it is already
known at the receiver. We have implemented a reduced
complexity approach, where two sub-trellises with 58
symbols each are processed independently by using the
training symbols as additional tail bits.

• SB synch(): the position of the 64 bit extended training
sequence of the SB is detected accurately by performing
a correlation between the received signal and the known
training sequence. The output of this primitive is the
index with the highest correlation peak. It is assumed
that this index indicates the start of the SB what allows
precise burst and frame alignment.

5.5 Decoder (DEC)

The DEC signal processing unit performs functions such as
deinterleaving, bit swapping, demapping or channel decod-
ing with a Viterbi decoder. DEC receives bursts from DET
which consist of hard- or soft-decisions. Internally, DEC
processes radio blocks or SBs.

A framework of controller and primitives inside DEC
has been setup with the prospect of GSM extensions such
as EDGE or even Evolved EDGE. As a matter of proof,
the receiver in this work was built to be able to achieve a
camping on any cell state. Naturally, the DEC framework
is exploited only partially but can be enhanced with full
GSM functionality or even to the above mentioned GSM
extensions.



308 J Sign Process Syst (2013) 73:301–314

5.5.1 Command Processing in DEC Controller

There exist two different commands for DEC:

• SB DEC (Synchronization burst processing): this is
the command for the decoding of the SB. Only the
ChanDec() primitive is used.

• NB DEC (Normal burst processing): this command
is used for the decoding of traffic and control chan-
nel data. As a radio block consists of four bursts, a
NB DEC command is required four times in succes-
sion. Consequently, as long as a radio block is not yet
complete, the DEC controller calls only the Demult()
primitive. However, as soon as a radio block is com-
plete, the DeswapDemap(), Deint(), Depunc(), IR(), and
ChanDec() primitives are required, as well.

5.5.2 Signal Processing Primitives in DEC

• Demult(): the Demult() primitive collects equalized and
demodulated bursts until a radio block is complete
and can be further processed. In addition, it organizes
the demultiplexing of various bursts onto the correct
radio block for voice or multislot data traffic chan-
nels. However, the latter functionality has not yet been
implemented in this work.

• DemapDeswap(): this primitive extracts (demaps) a
portion of hard- or soft-decisions from a radio block.
This is necessary as not all hard- or soft-decisions
within a radio block can or need to be processed at
once. EDGE [5] radio blocks, for example, require that
the header portion of a radio block be processed first.
Only then, the remaining hard- or soft-decisions can be
further processed. However, only the case of SB and
BCCH carrier have been implemented in this work. The
demapping primitive can be combined with a swapping
operation. The latter consists of swapping bit posi-
tions within a radio block or withing a burst with the
help of lookup tables. However, SB and BCCH do not
require bit swapping operations. Correspondingly, this
operation was not further pursued in this work.

• Deint(): deinterleaver functionality is provided by this
primitive. The GSM specifications dictate interleaver
operations usually by a formula, sometimes by means
of a lookup table.

• Depunc(): radio blocks or parts thereof which were
punctured at the transmitter need to be depunctured
at the receiver. In case of soft-decisions, the puncture
inverse consists of zero insertions at the corresponding
bit positions. Nevertheless, BCCH radio blocks are not
punctured.

• IR(): IR operations, the combination of retransmitted
data with previously stored data, are performed by this

primitive. But, IR is not defined for the SB and BCCH.
Therefore, no further work was put into this primitive.

• ChanDec(): the data in GSM is encoded with a half rate
convolutional code. Parity bits are added for error detec-
tion. In ChanDec(), a Viterbi decoder decodes the radio
block. Subsequently, it performs a parity check.

5.6 Auxiliary Functions

In addition to the primitive functions, auxiliary functions
(labeled aux in Fig. 2) for common transceiver operations
like RF power control or oscillator tuning (DCXO tune) are
provided. In Matlab where no physical DCXO is present, the
frequency tuning was performed by rotation via a complex
exponential.

5.7 Examples of L1CTL Message Processing in Phydev

In this section, the processing of a FBSB REQ and the
reception of a BCCH radio block are explained. The latter
leads to a DATA IND message.

5.7.1 FBSB REQ

The processing of this message is depicted in Fig. 5.
After receiving a FBSB REQ message, the L1 controller

sends a FSYNCH FB command to DFE. DFE processes
the FSYNCH FB command and creates a corresponding
DFE rpt. After the L1 controller receives the DFE rpt, it
sends a RX SB command to DFE, which executes the
RX SB command and creates a corresponding DFE rpt
(not shown in Fig. 5). The RX SB chain with respect to
DFE is identical with the DFE part of Fig. 6 by replacing
the RX NB with a RX SB command. After the L1 con-
troller receives the corresponding DFE rpt, a TSYNCH SB
command is sent to DET. Again, as soon as the L1 con-
troller receives the DET rpt, it configures DEC with a
SB DEC command. Upon reception of the DEC rpt the
L1 controller generates a FBSB CONF message for higher
layers.

5.7.2 DATA IND

After synchronization in frequency and time, the L1 con-
troller knows according to its counter states and the GSM
specifications, when to receive the bursts pertaining to a
BCCH radio block. The steps until a DATA IND message is
created are depicted in Fig. 6.

Naturally, this behavior is only possible in the BCH state
(see Fig. 3). When the BN and FN counters reach the time
slot of the first burst of a BCCH radio block, the L1 con-
troller sends a RX NB command to DFE. Subsequently, is
sends a RX NB command to DET. Lastly, DEC receives



J Sign Process Syst (2013) 73:301–314 309

Figure 5 Processing of FBSB REQ message. The RX SB processing with respect to DFE is omitted. It is identical to the DFE processing in
Fig. 6, just that RX NB needs to be replaced with a RX SB command.

a NB DEC command. Next, when the BN and FN coun-
ters reach the time slot of the second burst of the BCCH
radio block, the commands for DFE, DET, and DEC are
repeated. This needs to be repeated two more times until

the radio block is complete. Only now, DEC can process
the radio block. Upon reception of the DEC rpt the L1
controller generates a DATA CONF message for higher
layers.

Figure 6 The reception of a BCCH radio block which leads to a DATA IND message: the commands for DFE, DET, and DEC must be sent
several times until a radio block is complete. Only then, DEC can start further processing.



310 J Sign Process Syst (2013) 73:301–314

6 Phydev and OsmocomBB Embedded

When running mobile and phydev on a PC, it is not possi-
ble to process received samples from a BTS in real-time,
since the execution of the signal processing primitives in
Matlab is not fast enough. Therefore, we have developed
an embedded system that allows real-time execution, where
mobile, phyconnect and phydev are implemented on FPGA
and PowerPC.

For the hardware implementation of phydev, we have
used a Xilinx ML605 development board that comprises
a Virtex6 FPGA.5 The ML605 is attached to a transceiver
board with a state-of-the-art multi-band RF transceiver,6 in
order to capture RF signals transmitted from a BTS over
the air, and convert them to baseband signals. The baseband
signals are processed by our phydev realization on Virtex6
FPGA, which is connected to a PowerPC core, where phy-
connect and mobile are running on an embedded Linux
(cf., Fig. 7).

To this end, the mobile application was ported to the
embedded Linux by cross-compiling the software for Pow-
erPC. This cross-compilation requires a reconfiguration of
the GNU/Autotools, that are used by OsmocomBB for the
building process. As the embedded Linux does not sup-
port shared libraries, only static libraries were used in the
building process. By assigning a new host argument to
the configure script and adding the disable-shared option,
tailored Makefiles for the PowerPC are generated.

In addition, phyconnect and a L1CTL test program (as
shown in Fig. 7) were built for the embedded Linux. With
the L1CTL test program, L1CTL messages can be sent via
phyconnect to the L1 controller running on the embedded
phydev. The L1 controller on the FPGA receives messages
from and sends messages to the embedded version of phy-
connect. Similar to the software implementation where a
memory mapped file is used for this message exchange, a
register bank implemented on the FPGA is mapped to the
address space of the CPU. Some of the registers are reserved
for the handshake protocol, resembling the communication
between Matlab and phyconnect over the memory mapped
file (cf. Section 4).

6.1 TPU Embedded

As previously explained, the L1 controller needs to have
access to GSM counters of the TPU. In our embedded

5Note that we have realized this embedded version of our system on
FPGA, because we are aiming at a baseband ASIC in the near future.
6IRIS305 RF Transceiver from Advanced Circuit Pursuit (ACP) AG,
Zollikon, Switzerland.

Figure 7 Embedded OsmocomBB, phydev and phyconnect. Phy-
dev is connected to phyconnect via the PLB and phyconnect to
OsmocomBB and the L1CTL Test application via UDP sockets.

hardware implementation, the GSM counters are divided
into two parts. The QN counter is directly coupled to the
26 MHz clock of the RF transceiver by counting 24 clock
cycles per quarter symbol (TPU 1). The second part (TPU
2) consists of BN, TN and FN counters and is directly inte-
grated into the finite-state machine of the L1 controller.
These counters are incremented based on timing events
which are generated whenever the QN counter is restarted
after having reached the maximal value of 624 at the end of
a timeslot.

Clearly, real-time processing requires real-time acquisi-
tion of baseband data. The RF receiver must be switched
on and off at the correct time instance to have the desired
part of the sequence of signal samples available in the base-
band. To this end, all interactions with the RF transceiver are
stored in an event table along with a time stamp. An event
is triggered as soon as the QN counter reaches the value
of the corresponding time stamp. Different event tables are
stored in TPU 1 and each table is dedicated to a specific
scenario, such as receiving a NB, transmitting a NB or
synchronization. Control registers in TPU 1 contain spe-
cific configuration values, that are accessed when certain
events are triggered. Thus, the required commands for the
RF transceiver IC are generated when a certain event is
triggered by reading the corresponding control register at
the moment of execution. With this approach, the L1 con-
troller can configure the commands generated by certain
events by simply updating the content of the control register
within TPU 1. The reset QN event, for example, evaluates



J Sign Process Syst (2013) 73:301–314 311

Figure 8 The embedded TPU consists of two parts: a cycle-true QN counter (TPU 1) and an event-based TPU 2 for BN, TN, and FN counters.

the content of the next table register before resetting the QN
counter. Thus, the L1 controller can bring the RF transceiver
to a different mode of operation by selecting a different
event table.

The example in Fig. 8 shows an event table for synchro-
nization in frequency and time (FBSB), as well as an event
table required for the reception of a NB. At the beginning

of the FB detection, the desired gain and frequency of the
RF transceiver is configured according to the correspond-
ing control registers. When the QN counter reaches time
stamp t2, the ADC is turned on and baseband data is directly
passed to phydev. At t3, the control register FB det is evalu-
ated. The QN counter is decremented to t3 − δ such that the
ADC stays turned on and as soon as FB det() has detected

Figure 9 Testbed architecture
with involved components.
Phydev, phyconnect and
OsmocomBB on Virtex6 and the
embedded Linux enable real-
time operation. Corresponding
implementation on the PC
allows offline operation.



312 J Sign Process Syst (2013) 73:301–314

a FB, the control register is updated and the TPU is com-
manded to continue to t4 where the ADC is turned off. The
DCXO of the RF transceiver is corrected according to the
result of FB est() before the ADC is turned on again to sam-
ple the SB. Before t8 is reached, the L1 controller must have
decided whether another synchronization run is required.
Otherwise, the value of the next table register is updated and
the TPU starts to operate in synchronized mode and event
tables for receiving or transmitting NBs are employed (e.g.
the NB-RX event table depicted in Fig. 8). The reset QN
command at the end of each table triggers an event towards
phydev which is used by TPU 2 to update BN, TN, and
FN counters.

6.2 Testbed Setup

The embedded version of our system has been integrated
in the testbed setup illustrated in Fig. 9. The testbed setup
allows the verification of our baseband signal processing
framework with real-world data.

The testbed contains a GSM BTS emulator, that has been
realized with the open source software OpenBTS [18] and
GNU radio running on a PC, and a USRP7 board with
antenna to transmit the signal over the air. The testbed
allows the operation in real-time with embedded phydev,
and phyconnect, as well as offline operation by running
L1/L2/L3 on a PC.

The baseband I/Q samples coming from the receiver
board are processed in real-time by our embedded system.
In offline mode, phydev, phyconnect and OsmocomBB run
on a PC and process samples recorded with the receiver
board, or samples generated with a GSM transmitter soft-
ware implementation in Matlab.

In both modes, the mobile application encapsulates the
down-link data in UDP packets via GSMTAP,8 which are
forwarded to the Wireshark [19] protocol analyzer running
on the PC for visualization. A picture of the testbed setup is
shown in Fig. 10.

The testbed setup has been used to verify the func-
tionality of our framework in combination with L2/L3 of
OsmocomBB by performing the initial cell search proce-
dure in GSM (cf. Section 5.1). To this end, the BTS emulator
transmits a standard-compliant GSM beacon carrier. The
signal is received and processed on the receiver board, as
previously described, and corresponding I/Q samples are

7Universal Software Radio Peripheral, from Ettus Research.
8A pseudo-header used to transport GSM frames of the Um air
interface over UDP/IP.

Figure 10 Setup of the testbed with USRP N200 BTS, PowerPC
module, ML605 FPGA board and receiver board.

loaded from the receiver board into phydev, where syn-
chronization in time and frequency is achieved. The GSM
system information broadcast on the beacon carrier is cor-
rectly extracted and propagated through OsmocomBB to
Wireshark, where the SI messages are displayed.

7 Conclusion

With the proposed baseband signal processing framework
we offer a versatile development and exploration environ-
ment targeting baseband implementations for DSPs, FPGAs
or ASICs. It is explained why it is favorable to develop base-
band algorithms and architectures within a complete system
enabling access to higher protocol layers. The framework
shows how the physical layer can be realized in Matlab
in order to obtain a viable environment for baseband algo-
rithm development prior the deployment on a hardware
platform. It is further illustrated how it can be connected
to OsmocomBB with a dedicated interface. In addition to
the offline version, we developed an embedded version of
the framework on FPGA and PowerPC, which is part of
a testbed that allows real-time operation with GSM sig-
nals transmitted by an OpenBTS base-station emulator over
the air.

Acknowledgments We would like to thank Dominic Just and Pirmin
Vogel for their valuable work during their student projects and Raphael
Rolny for this consultation regarding user cooperation. We thank ACP
AG for providing us the IRIS305 single-chip RF transceiver for our
testbed setup. In addition, we want to thank David Tschopp and



J Sign Process Syst (2013) 73:301–314 313

Dominik Riha for their support on the receiver board. This work was
funded by CTI, Switzerland, in collaboration with ACP AG.

References

1. Kröll, H., Benkeser, C., Zwicky, S., Weber, B., Huang, Q. (2012).
Baseband signal processing framework for the OsmocomBB GSM
Protocol Stack. In Wireless innovation forum European confer-
ence on communication technologies and software defined radio.
Brussles, Belgium.

2. OsmocomBB (2012). An Open Source GSM Baseband software
implementation. http://bb.osmocombb.org.

3. Chang, L.F., & Wang, Y. (2009). EDGE incremental redundancy
memory structure and memory management. US Patent App
(Vol. 12, 507, p 835).

4. 3GPP TR 44.060 (2009). General packet radio service (GPRS);
mobile station (MS) - base station system (BSS) interface; radio
link control / medium access control (RLC/MAC) protocol.
December.

5. Seurre, E., Savelli, P., Pietri, P.J. (2003). EDGE for mobile inter-
net. Norwood: Artech House Publishers.

6. Djeumou, B., Lasaulce, S., Klein, A.G. (2007). Practical quantize-
and-forward schemes for the frequency division relay channel.
EURASIP Journal on Wireless Communications and Networking,
2007, 2.

7. 3GPP TR 45.001. GSM/EDGE radio access network; physical
layer on the radio path; general description, November 2009.

8. GSM/EDGE layer 1; general requirements, December 2009.
9. ISO/IEC 13239. Information technology telecommunications and

information exchange between systems high-level data link con-
trol (HDLC) procedures, July 2002.

10. 3GPP TR 43.022. Functions related to mobile station (MS) in idle
mode and group receive mode, December 2009.

11. 3GPP TR 45.008. GSM/EDGE radio access network; radio sub-
system link control, November 2009.

12. Kröll, H., Zwicky, S., Benkeser, C., Huang, Q., Burg, A. (2012).
Low-complexity frequency synchronization for GSM systems:
Algorithms ad implementation. In IV international congress
on ultra modern telecommunications and control systems 2012
(ICUMT 2012) (pp. 175–180). St. Petersburg, Russia.

13. Tufts, D.W., & Fiore, P.D. (1996). Simple, effective estimation
of frequency based on Prony’s method. In Proceedings of IEEE
international conference on acoustics, speech, and signal process-
ing (ICASSP) (Vol. 5, pp. 2801–2804).

14. Yakhnich, E. (2001). Channel estimation for EGPRS modems. In
Vehicular technology conference, 2001. VTC 2001 spring. IEEE
VTS 53rd (Vol. 1, pp. 419–422). IEEE.

15. Gerstacker, W.H., Obernosterer, F., Meyer, R., Huber, J.B. (2000).
An efficient method for prefilter computation for reduced-state
equalization. In Personal, indoor and mobile radio commu-
nications, 2000. PIMRC 2000. The 11th IEEE international
symposium on (Vol. 1, pp. 604–609). IEEE.

16. Proakis, J.G. (1987). Digital communications. McGraw-hill.
17. Eyuboglu, M.V., & Qureshi, S.U.H. (1988). Reduced-state

sequence estimation with set partitioning and decision feedback.
IEEE Transactions on Communications, 36(1), 13–20.

18. OpenBTS. http://openbts.sourceforge.net, cited July 2012.
19. Orebaugh, A., Ramirez, G., Burke, J. (2007). Wireshark & ethe-

real network protocol analyzer toolkit. Syngress Media Inc.

Harald Kröll received his
Dipl.-Ing. degree (summa cum
laude) in Electrical Engineer-
ing from Graz University of
Technology in 2010. During
his Master’s thesis he worked
on Ultra Wideband Location
Fingerprinting at the Wire-
less Communications Group
at ETH Zurich. In the same
year he joined the Integrated
Systems Laboratory (IIS) at
ETH Zurich where he is work-
ing towards a PhD degree. His

research interests include signal processing and physical layer archi-
tectures for wireless communication systems such as Evolved EDGE
and LTE-Advanced.

Stefan Zwicky received the
MSc degree in Information
Technology and Electrical
Engineering in 2007 from
the Swiss Federal Institute
of Technology, Zurich. He
then joined Celestrius AG,
an ETH-spinoff in the field
of MIMO wireless commu-
nication, where he worked
in the digital ASIC develop-
ment. He is currently a PhD
student in the Integrated Sys-
tems Laboratory (IIS) at ETH

Zurich. His research interests include signal processing for mobile
communication systems and the design of VLSI circuits and systems.

Benjamin Weber received his
BSc and MSc in Electrical
Engineering and Information
Technology from the Swiss
Federal Institute of Technol-
ogy (ETH) in August 2010
and in June 2012, respectively.
Currently, he is a PhD student
at the Department of Infor-
mation Technology and Elec-
trical Engineering at ETH,
more particularly, at the Inte-
grated Systems Laboratory.
His research interests include

low-power physical layer architectures, open-source protocol stacks,
and cross-layer optimization in cellular communications.

http://bb.osmocombb.org
http://openbts.sourceforge.net


314 J Sign Process Syst (2013) 73:301–314

Christian Benkeser was born
in Bhl/Baden, Germany, in
1977. He received his Dipl.-
Ing. degree in electrical engi-
neering from the Karlsruhe
Institute of Technology (KIT),
Germany, in 2004. In the same
year, he joined the Integrated
Systems Laboratory (IIS) of
the Swiss Federal Institute
of Technology (ETH) Zurich,
Switzerland, from where he
graduated with the Dr. sc.
degree in 2009.

From 2004 to 2009, he was a research assistant with the IIS, and
a consultant for Advanced Circuit Pursuit (ACP) AG, an IC company
in RF transceivers for cellular communications. From 2009 to 2012 he
held positions as postdoctoral researcher at IIS and as senior design
engineer at ACP AG. During this time he was leading a group of sys-
tem and design engineers developing VLSI circuits and systems for
wireless communications. In 2013, he joined RUAG Space, an inde-
pendent supplier of space technology, where he is currently working as
system engineer for opto-electronical systems for space applications.
His research interests include signal processing, circuits and systems
for wireless communication and space applications.

Qiuting Huang received his
Ph.D. degree in applied sci-
ences from the Katholieke
Universiteit Leuven, Belgium,
in 1987. Between 1987 and
1992 he was a lecturer at
the University of East Anglia,
Norwich, UK. Since January
1993, he has been with the
Integrated Systems Labora-
tory, Swiss Federal Institute
of Technology (ETH), Zurich,
where he is Professor of Elec-
tronics. In 2007 he was also

appointed as a part-time Cheung Kong Seminar Professor by the Chi-
nese Ministry of Education and the Cheung Kong Foundation and has
been affiliated with the South East University, Nanjing, China.

Prof. Huang’s research interests span RF, analog, mixed analog-
digital as well as digital application specific integrated circuits and
systems, with an emphasis on wireless communications applications in
recent years. He has published widely on those topics in leading solid-
state circuits conferences and journals. He is a member of the technical
program committees of the International Solid-State Circuits Confere-
nce (ISSCC) and the European Solid-State Circuits Conference (ESS-
CIRC). He is also a member of the executive committee of ISSCC.


