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Abstract Multimedia applications and embedded plat-

forms are both becoming very complex in order to im-

prove user experience. Thus, multimedia developers need

high-level methods to automate time-consuming and

error-prone tasks. Dynamic dataflow modeling is at-

tractive to describe complex applications, such as video

codecs, at a high level of abstraction. This paper presents

a dataflow-based design approach to implement video

codecs on embedded multi-core platforms. First, we in-

troduce a custom architecture model to design low-

power multi-core chips based on distributed memory

and Transport-Triggered Architecture processor cores.

Then, we describe software synthesis techniques to im-

prove dynamic dataflow implementations. This method-

ology has been implemented into open-source tools and

demonstrated on video decoders based on the MPEG-
4 Visual standard and the new High Efficiency Video
Coding standard. The simulations achieve real-time de-
coding (40FPS) of high definition (720P) MPEG-4 Vi-

sual video sequences on a custom multi-core platform
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clocked at 1Ghz, which is an improvement of more than

100% over previously proposed implementations.

1 Introduction

Until recent years, the design of the next generation

of embedded systems was achieved by increasing chip

frequency. But, as for general-purpose computers, em-

bedded systems have hit the power wall of the semicon-

ductor technology, forcing chip manufacturers to look
towards multi-core architectures to improve the overall
system performance. As a result, embedded systems in-

tegrate more and more programmable processors, but

contrary to general-purpose computers, most of embed-

ded systems are tailored to specific tasks in order to

bridge the gap between hardware efficiency and soft-

ware flexibility.

In parallel, the increasing complexity of data-intensive
applications, such as video codecs, along with the emer-

gence of massively parallel architectures, has revived

the interest in dataflow programming. Indeed, dataflow

programming offers a flexible development approach

which is able to build complex and modular applica-

tions while modeling parallelism and communication.

The efficiency of traditional language programs being

the result of 50 years of work on compilers to mainly

exploit memory locality, abandoning memory-oriented

programming in favor of dataflow programming requires

the development of new compilation techniques to fully

benefit from the processor architecture.

In this work, we study the modeling and the im-

plementation of data-intensive embedded systems that

benefit from dataflow modeling so as to achieve perfor-

mance constraints imposed by the embedded market.

For instance, video decoders have to provide real-time



2 Hervé Yviquel et al.

frame-rates for high-definition video sequences. This

paper makes the following contributions:

– We introduce an architecture model dedicated to

dynamic dataflow programs that allows design-space

exploration of custom embedded multi-core plat-

forms. This architecture model is based on distributed

memory organization and exposed-datapath core ar-

chitecture so as to improve the global efficiency of

the platform (power consumption and decoding frame-
rate).

– We present a set of advanced software synthesis

techniques, based on preliminary work [34], that en-

hance the performance of implementations of dy-

namic dataflow programs using their specific prop-

erties and the flexibility of software systems over
hardware systems.

Our design approach has been implemented into

open-source tools and demonstrated on well-known video

decoders, including one based on the new High Effi-

ciency Video Coding (HEVC) standard. Using FPGA

prototyping and instruction-set simulation, we have eval-

uated the current top-level performance bound of their

implementations on a set of multi-core platforms that
target Integrated Circuit implementation.

The paper is organized as follows. First, the spe-

cific application model which supports our design ap-
proach is described in Section 2. Then, we introduce
in Section 3 the architecture model that has been de-

fined specifically for the application model. Next, we de-
scribe in Section 4 our software synthesis methodology
to implement dynamic dataflow programs on multi-core
platforms based on our architecture model. Section 5

presents experimental results and deeply analyzes our

implementations of video decoders. Finally, we conclude

in Section 7.

2 Application model

Our methodology relies on a programming model based
on the dataflow principle [19, 20]. Indeed, dataflow pro-
gramming offers a flexible development approach which

is able to build modular applications while expressing

parallelism and communication explicitly. Thus, dataflow

programming is very attractive to implement data-intensive

applications on embedded multi-core platforms.

2.1 Dataflow modeling

A Model of Computation (MoC) is an abstract speci-

fication of how a computation can progress. A MoC is

useful to define the semantics of a programming model,

i.e. the type of components it can contain and the way

they interact.
Existing dataflow MoCs can be split into two main

classes: The static MoCs [19] allow a predictable behav-

ior such as the scheduling can be done at compile time,

in other words statically-defined production/consump-

tion rates. The dynamic MoCs allow a data-dependent

behavior [20]. Paradoxically, most of the studies stay

focused on static dataflow programming [26, 2], even if

the development process of complex applications such

as video codecs is largely simplified by the expressive-

ness and the practicality offered by dynamic dataflow

programming. Indeed, modern video decoders support

advanced features that require a certain expressiveness.

For example, the frames of a video sequence can be

decomposed in pixel blocks of different sizes (like the

Coding-Tree Unit or the tiles of HEVC).

The need for a trade-off between expressiveness and

predictability has brought the definition of so-called

“quasi-static” dataflow models [5, 10, 3]. Quasi-static

dataflow differs from dynamic dataflow in that there

are techniques that statically schedule as many oper-

ations as possible so that only data-dependent opera-

tions are scheduled at runtime. However, even if they

seem promising, quasi-static models are not yet mature

enough. To our knowledge, quasi-static dataflow-based
implementations of complex applications, such as video
codecs, have not yet been demonstrated.

2.2 Dynamic dataflow programming

Dynamic dataflow programs rely upon a MoC called

Dataflow Process Network (DPN) [20], which is closely
related to Kahn Process Network (KPN) [16]. In this
model, an application is represented as a directed graph

G = (V,E), see Figure 1, such that V is a set of ver-

tices that represent computational units, called actors,

and E is a set of unidirectional edges that represent un-
bounded communication channels based on FIFO prin-

ciple. A FIFO channel e ∈ E can be empty, denoted

as ⊥, or can carry a possibly infinite sequence of data

X = [x1, x2, ...] wherein xi ∈ X are atomic data called

tokens.

Additionally to the KPN model, DPN introduces
the notion of firing. An actor firing is an indivisible

quantum of computation which corresponds to a map-
ping function f ∈ F , called action, of input tokens to

output tokens applied repeatedly and sequentially on
one or more data streams. This mapping is composed

of three ordered and indivisible steps: data reading,

then computational procedure, and finally data writ-

ing. These functions are guarded by a set of firing rules

R which specifies when the functions can be fired, i.e.
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Fig. 1: A simple network wherein the actors contain

their own state, actions and firing rules

the number and the values of tokens that have to be

available on the input ports to fire the actor. More for-

mally, every actor a ∈ V is associated with its own

set of firing function Fa, and firing rules Ra such that

Fa = [f1, f2, ..., fM ] and Ra = [R1,R2, ...,RN ] within
each function fi ∈ Fa is associated to a given firing rule

Ri ∈ Ra.

A firing rule Ri defines a finite sequence of pat-

terns, one for each input m of the actor such as Ri =

[Pi,1, Pi,2, ..., Pi,m] ∈ Sm. A pattern Pi,j is an accept-

able sequence of tokens in Ri on one input j from the in-

put m of an actor. It is satisfied if and only if Pi,j ⊑ Xj

where Xj is the sequence of tokens available on the jth

FIFO channel. The pattern Pi,j = ⊥ designates any

empty list where any available sequence on input j is

acceptable. The pattern Pi,j = [∗] is acceptable for any

sequence containing at least one token. The length of a

pattern Pi,j is denoted |Pi,j |.

An actor a ∈ V can fire when at least one of its

firing rules Ri ∈ Ra is satisfied. As a result, the DPN
model introduces non-blocking read to the semantic of

the FIFO channel. So that, an action can be executed

if and only if the input data available allow its entire

execution. When several firing rules are satisfied at the

same time, a single one is chosen based on predefined

priorities.

All along this paper, we consider only video de-

coders even if our approach can be applied to any data-

intensive applications. The application complexity has

to justify the use of dynamic dataflow modeling over

more restricted dataflow modeling that could allow more

efficient implementations.

2.3 Reconfigurable Video Coding

Few years ago, MPEG has introduced an innovative

framework, called Reconfigurable Video Coding (RVC)

[21], that can be considered as the first large-scale ex-

perimentation on dynamic dataflow programming. RVC

has been initially introduced to overcome the lack of

interoperability between the various video codecs de-

ployed in the market. The framework allows the devel-
opment of video coding tools, among other applications,
in a modular and reusable fashion thanks to a dataflow

programming language, and the support of a complete

development environment known as Orcc [33].

1 actor Abs() int I => uint O:

2 pos: action I:[u] => O: [u] end

3 neg: action I:[u] => O: [-u]

4 guard u < 0 end

5 end

6

7 priority

8 neg > pos;

9 end

10 end

Listing 1: Description of the absolute value actor

in RVC-CAL

The RVC framework includes a subset of CAL pro-

gramming language [11], known as RVC-CAL, to de-

scribe the behavior of the components of the appli-

cation, i.e. the actors, following the semantic of the

dynamic dataflow models. This language is a mixture

between imperative and functional programming lan-

guages that introduces useful abstractions for dataflow

programming. Comparing to the original CAL language,

RVC-CAL provides a precise type-system as well as

some practical features. The execution of an actor is

composed of a sequence of ordered steps, applied re-

peatedly:

1. First, the actor consumes, or not, a given amount

of data from its input ports.

2. Then, it may modify its internal state.

3. Finally, it produces, or not, a given amount of data

to its output ports.

As a consequence, describing an actor execution, such

the computation of the absolute value presented in List-

ing 1, involves the description of its interface such as

the input ports (I) and the output ports (O), its inter-

nal state that is modeled by a set of state variables,

as well as the procedural description of the computa-

tional steps and the internal scheduling that ordered

these steps (guards, priorities, etc).

2.4 RVC-based video decoders

The RVC working group has developed, in parallel with

the standardization process, some descriptions of MPEG

video decoders using the RVC framework, such as the

HEVC description which is presented in Figure 2. In

fact, since the standardization of H.261, all existing

ITU/MPEG video codecs have globally kept the same
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structure [23]. The difference between the standards

comes mainly from the evolutions of the algorithmic

part that offer an increasing compression rate. As a

result, the application graphs of all RVC-based video

codecs are quite similar to the structure of our HEVC

decoder [21]. The description is decomposed in 4 dis-

tinct parts:

1. The first part, called parser, extracts values needed

by the next processing steps from the coded bit-

stream. Entropy decoding techniques are used to

extract syntax elements whose values are then trans-

mitted to actors that are concerned.

2. A second part, known as residual, decodes the error
resulting of the image prediction using inverse trans-

forms, such as the well-know IDCT. The transforms

allow spatial redundancy reduction within the en-

coded residual image.

3. A next part, called prediction, performs the intra
and inter prediction. Intra prediction is done with

collocated blocks in the same picture whereas inter
prediction is performed as a motion compensation
with other pictures. The inter prediction also implies

the use of a buffer containing decoding pictures to

be able to perform the temporal prediction.

4. And, a last part, called filters, reduces the impact of
the prediction on the image rendering. For example,

the DeBlocking Filter (DBF) is used to smooth the
sharp edges between the macroblocks to improve the
quality of the decoded image.

RVC-based video decoders are described with an av-
erage granularity (at block level), contrary to the tra-

ditional coarse-grain dataflow (at frame level). On the
one hand, this fine-grain streaming approach induces
a high potential in pipeline parallelism and the use of

small communication channels, usually sized between

512 and 8192. On the other hand, a finest granularity

increases the cost of synchronization between the ac-

tors.

Intra

Prediction

Generate

InterInfo

Select 

CU

Inter

Prediction

Picture

Buffer

Inverse

Transform

DBF SAO

RESIDUAL

PREDICTION

FILTER

P
A
R
S
E
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Fig. 2: RVC description of an HEVC decoder

To increase the parallelism exposed within the de-

coder, the parser can separate the processing of each

image components, luma and chroma, in three parallel

paths (Y, U and V). The image components are then

merged back at the end of the processing. Table 1 sum-

marizes the properties of the experimented descriptions

of video decoders: Respectively, the name of the stan-

dard, the profile of the decoder, the parallelization of

the decoding for each component, the number of actors

and FIFO channels.

Codec Profile Version Actors FIFOs

MPEG-4 Visual SP Serial 15 38
Parallel 39 104

HEVC Main Serial 12 83
Parallel 25 185

Table 1: Statistics about the RVC-CAL description of

several MPEG video decoders

3 Architecture model

The development of a design flow targeting embedded

multi-core platforms requires the definition of an ar-

chitecture model that matches the behavior of the tar-

geted platform, while keeping a high-level of abstraction

and enough configuration options to allow design-space

exploration. Alternatively, architecture models can be

presented as customizable multi-core processor templates

that setup the main architectural aspects.

Considering the complexity of multi-core architec-

tures, together with the efficiency and the reliability

required by embedded systems, we propose to special-

ize our architecture model for the execution of dynamic

dataflow programs in order to take advantage of the

knowledge inherent to our application domain.

3.1 Processor Architecture

The processor cores underlying our abstract platform is

based on a VLIW-style architecture known as Transport-

Trigger Architecture (TTA) [9]. TTA processors resem-

ble VLIW processors in the sense that they fetch and

execute multiple operations statically each cycle. Thus,

TTA processors are able to take advantage of the low-

level parallelism while dataflow models expose explic-

itly high-level parallelism. A major difference with VLIW

processor, however, is that TTA processors have only

one instruction: move, which simply transfers data from

a processor internal place to another one. As a result,

the data transports between the register files and the
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function units are exposed similarly to the data stream

between the components of dataflow models.

Moreover, TTA processors are ideal for targeting

embedded systems. Corporaal states that direct pro-

gramming of the data transports reduces the register

file traffic when compared to VLIW [9], but however

makes the compiler design quite challenging, as it is the

compiler that schedules the data transports and makes

sure conflicts are avoided. Since the compiler makes
these decisions at design time, the run-time system is
simplified and hence there are savings on the processor

gate count and energy consumption.

As an example, Figure 3 presents a simple TTA-

based processor composed of three buses, one ALU, one
multiplier, one register file (RF), one load/store unit

(LSU) to manage RAM accesses, and one control unit
connected to the ROM containing the instructions. Like
most modern processors, TTA processors are based on
the Harvard architecture that physically separates stor-

age and pathway for instructions and data.

RAM ROM

ALU Mul
Load
Store
Unit

Register
File

Glogal
Control

Unit

Port
Socket
Connection
Bus

Fig. 3: A simple processor based on Transport-Trigger

Architecture

Moreover, the TTA-based Co-design Environment

(TCE) makes TTA processors extremely configurable

[13]. The TCE is a toolset for designing custom TTA

processors which includes a flexible compiler. The de-

signer can make the processor tiny and energy-efficient

or, if needed, increase the instruction-level parallelism

of the processor.

3.2 Predefined Configurations of Processors

Table 2 presents 4 predefined configurations of TTA-

based processors used during our experiments (respec-

tively Standard, Custom, Fast and Huge). The config-

urations characterize internal aspects of the processors

such as the number of fonctional units (FUs), ALUs,

multipliers and LSU, the number of integer and boolean

RFs as well as the number of registers they contain, and

the number of buses that interconnect all together FUs

and RFs. The connectivity of the interconnection net-
work is also characterized as Full or Custom. While a

Full connectivity does not limit the data movement be-

tween FUs and RFs, a Custom connectivity avoids the

decrease of the clock frequency when the complexity of
the interconnection network increases.

Processor Standard Custom Fast Huge

ALUs 1 2 3 12
Multipliers 1 1 1 8
LSUs 1+ 1+ 1+ 2+
Int RFs (32bits) 2x12 3x12 3x14 8x32
Bool RFs (1bit) 1x2 1x2 1x6 1x6
Buses 3 6 18 32
Connectivity Full Full Custom Full

Table 2: Comparison of 4 predefined processor configu-

rations

The first processor configuration, called Standard, is

almost equivalent to a RISC processor: inside the TTA

processor the interconnection network is composed of 3

buses that can provide two operands to the FU at each

clock cycle and move the result when it is available. The

3 last configurations, Custom, Fast and Huge, define

larger processors composed of several FUs and buses
able to take advantage of the instruction-level paral-

lelism of the application (like a VLIW processor). Con-
cerning the Huge configuration, its characteristics are

deliberately over-sized to acquire the maximal perfor-
mance, so this configuration is only used in simulation

purposes. The Fast configuration, introduced in [13],

provides clustered TTA-based processors that can reach
high-frequency with large potential of parallel comput-

ing. We assume that a chip composed of Fast TTA pro-
cessors can reach 1GHz using 40nm CMOS technology

such as demonstrated in previous work [18].

3.3 Dataflow-specific Memory Architecture

Now, we introduce an hybrid memory architecture spe-

cially designed for dataflow programs. To limit the tra-

ditional memory bottleneck, our architecture model con-

tains both shared and private memories. As shown in

Figure 4, the processors (P1, ..., Pk) have their own pri-

vate memories (M1, ...,Mk) used for executing their ac-

tors, but the processors are also connected, through

an interconnection network, to a set of shared mem-

ories (S1, ..., Sn) devoted to inter-processors communi-

cations.
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Fig. 4: An hybrid memory architecture dedicated to

DPN-based programs

Modeling multi-core platforms dedicated to the ex-
ecution of DPN-based programs [20] allows us to make

the following assumptions: Actors can only communi-

cate through communication channels. Thus, shared mem-

ories do not need to store data apart from the content

of FIFO-based communication channels, implemented

as circular buffers that are detailed later in Section 4.

However, the FIFO are mapped to local memory when

the two actors are mapped to the same processor. More-

over, the DPN model allows stateful actors. Thus, local
memories may have to store the current states of the
actors that are assigned to the processor to which they
are related. Additionally, local memories have to store

the heap and the call stack used during the execution

of the actions just as traditional programs.

In comparison with the global shared memory ar-

chitecture used in most general-purpose processors, this

hybrid memory architecture aims to take advantage of

the explicit communication of dataflow model to sep-

arate the local information from the communications.
As a result, data congestion is globally reduced so we
assume no conflict at all. Additionally, this architecture
reduces the power consumption of the chip since sev-

eral smaller memory components usually consumes less

power than a monolithic centralized memory compo-

nent [22].

Moreover, storing communication channels in shared

memory increases the flexibility of the platform. Know-

ing that a single memory component can contain multi-

ple channels, the compiler has to assign not only actors

to processors but also FIFO channels to memory com-

ponents. Actually, FIFO channels can be freely mapped

to memory components since they are not dependent

from each other. But, some architectural constraints

may have to be considered, such as the topology of the

interconnection network or the size of the memory com-

ponents.

4 Software synthesis of dynamic dataflow

programs

The main challenge that dynamic dataflow programs

have to face is the demonstration of efficient implemen-

tations that can achieve performance constraints im-

posed by modern applications. For instance, video de-
coders have to provide real-time frame-rates for high-
definition video sequences.

For that reason, this section presents a set of ad-

vanced software synthesis techniques based on prelim-
inary work [34] that enhance the performance of the
implementation of dynamic dataflow programs using

their specific properties and the flexibility of software

systems.

4.1 Specific FIFO channels

In theory, the DPN model defines FIFO channels with

unbounded capacity [20]. In practice, the FIFO chan-

nels are bounded to limit memory usage and avoid the

overhead of dynamic memory allocation. Actually, bounded
FIFO channels have been studied extensively, but the
DPN model has specificities that make their implemen-
tation quite challenging. An action is fired if and only

if its firing rule is valid. Thus, the implementation of

FIFO channels for DPN-based programs requires the
ability to check their state, i.e. the number of tokens

available, and to peek tokens from input channels, i.e.
checking values of incoming tokens without consuming

them, to evaluate action fireability and thus break con-

ventional FIFO principle.

Now, our dataflow applications also support broad-

casting communication following the 1-producer / N -
consumers scheme. Thus, actors can produce data that

are transmitted simultaneously to multiple target ac-

tors through a single port. In fact, the implementation

of the broadcasting is another critical point of commu-

nication in dynamic dataflow programs, especially for

our video decoding applications that have an extensive

use of broadcasting. As a result, the implementation of

our communication channels has to be able to efficiently

broadcast the data over several actors.

4.2 Branch-Free Communications

In software, FIFO channels are traditionally implemented

by a circular buffer allocated in a shared memory. Read
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and write are then achieved by accessing the buffer ac-

cording to read and write indexes that are updated af-
terwards. Moreover, the comparison of the indexes is
sufficient to know the state of the FIFO channel. Fi-

nally, a peek is a read without the update of the read

index, but any token can be peeked thanks to the full
accessibility of the shared memory. Using circular buffer

to implement FIFO channels avoids side shuffles of data
after each reading, but implies an advanced manage-
ment of memory indexes that can ultimately lead to

poor performance. For instance, the update of the in-

dexes may require checking if the end of the buffer is

reached to go back to the beginning.

1 transp: action

2 IN:[ src ] repeat 16 // Input pattern

3 ==>

4 OUT:[ dst ] repeat 16 // Output pattern

5 var

6 int(size =16) dst [16] =

7 [ src[ 4 * column + row ] :

8 for int row in 0 .. 3,

9 for int column in 0 .. 3

10 ]

11 end

Listing 2: Transposition of a 4x4 block in CAL

Avoiding checks on the position of the indexes is

however possible using absolute indexes with the cost

of additional modulo operations. Thus, performing read

and write increases the indexes infinitely until the over-

flow of the variables. Since computing the modulo is
costly on most processor architectures, it is translated

to a simple right shift by forcing the size of the buffer
to a power of two. Paradoxically, such a constraint on
the size of the communication channels does not have

a large impact on the memory usage, especially com-

pared to the large needs of video decoders. Indeed, the

initial sizes of our FIFO channels being reasonable, the

round-up to the next power of two is relatively small.

Broadcasting tokens can be implemented in two ways

according to the locations of the targets:

1. Asking the source actor to broadcast itself the to-

kens into multiple communication channels: While

the implementation is natural, the data are copied

for each target.
2. Using circular buffers with multiple read indexes,

the smallest one being the global index: While this

implementation reduces the data movements to max-

imum, the managing of the FIFO channels is compli-

cated and all the FIFO channels need to be mapped

on the same address space.

4.3 Copy-Free Communications

One of the high-level features of CAL is its ability to

describe multi-rate actions [11], i.e. actions reading and

writing pools of data at each firing, such as the very

simple example presented in Listing 2, a transposition

of 4x4 pixel block, that reads and writes 16 tokens by

firing. In fact, multi-rate actions are common for video

coding since the pictures are usually processed block af-

ter block. Following this semantic, the body of a multi-

rate action, such as the one described in Listing 2, is

translated into a function composed of 3 steps as follows
[24, 29]:

1. Reading: Incoming tokens are read in order from

the input FIFO channels and stored into the local

variables referenced by the input pattern. E.g., in

Listing 2, 16 tokens are read from the input port IN

and stored in the local array src.
2. Processing: The action is processed, as defined in

its CAL description, using the local variables refer-
enced into the input and output patterns as inter-

faces. As a consequence, the processing of data is

not necessarily described in order.

3. Writing:Outgoing tokens are written in order from

local variables referenced by the output pattern into

the output FIFO channels. E.g., in Listing 2, 16 to-

kens are written successively from the local array

dst to the output port OUT.

While this implementation stays respectful of the
FIFO principle, with the exception of the peeking, it

also involves two additional copies between the circular

buffers and the local variables (knowing that only one

copy is mandatory).

1 void transp () {

2 int indSrc , indDst;

3 for(int row = 0; row <=3; row ++) {

4 for(int col = 0; col <=3; col ++) {

5 indSrc = (IN ->rdInd + (4* col+row)) %

IN ->SIZE;

6 indDst = (OUT ->wrInd + (row *4+ col)) %

OUT ->SIZE;

7 OUT ->buff[indDst] = IN ->buff[indSrc ];

8 }

9 }

10 IN ->rdInd += 16;

11 OUT ->wrInd += 16;

12 }

Listing 3: Copy-free and branch-free action

Since our FIFO channels are implemented in shared

memory without access restriction, we can remove all

the additional copies to local buffers by accessing di-

rectly to the content of the FIFO channels within the

processing of the action. So, accesses to input and out-
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put variables, such as src and dst, are replaced by di-

rect accesses to FIFO channels, such as IN and OUT re-
spectively. Unfortunately, race conditions, i.e. synchro-

nization issues, can occur when the action processing

does not ensure that the FIFO accesses are performed

in order (such as the accesses to src). But, the DPN
model defines an action firing as a quantum of execution

[20], in other words an action firing is an atomic step
that cannot be interrupted. Thus, the FIFO indexes
can be updated just once at the end of the action with-

out changing the semantic of the application, such as

presented in Listing 3. Then, the implementation stays

respectful of the FIFO principle of the DPN model. In-

deed, other processors cannot access the FIFO rooms

involved by this processing since the FIFO indexes are

not updated until the action is entirely processed.

To summarize, the three first steps of action firing

(Reading, processing, and writing) can be merged to-

gether, reducing the memory footprint and the number

of instructions to implement the action, as long as the

FIFO indexes are updated after the action processing,

and thus let the other actors using newly produced data

and newly released rooms.

4.4 Aligned Communications

Our branch-free implementation prevents potential op-

timizations due to absolute indexes. In fact, the com-

piler cannot know if the access are aligned in the mem-

ory or if the end of the circular buffer is reached during

the execution of the current action. Thus, we gener-

ate two versions of all actions, standard (Listing 3) and
aligned (Listing 4), that are executed according to the
current position in circular buffers. Only two versions

are generated to limit the scheduling overhead, even for

more complex actions that may access to multiple in-

puts and outputs. Moreover, the accesses can be consid-

ered always aligned when the production/consumption

rates of the associated actions match with the size of

the FIFOs.

The aligned version of the action is called when-

ever the tokens are linearly accessible in all the buffer.

So, the relative indexes can be considered as invariant

in order to be computed only once at the beginning

of the action (similar to loop-invariant code motion).
Additionally, the aligned accesses to the circular buffer
are vectorizable since the width of the FIFO channels

within our applications are often inferior to the bus

width (8 or 16 bits are common values in video pro-

cessing). As a result this optimization is very powerful

for processors that exploits instruction-level parallelism

and word-level parallelism.

1 void transp_aligned () {

2 int IN_rdInd = IN ->rdInd % IN ->SIZE;

3 int OUT_wrInd = OUT ->wrInd % OUT ->SIZE;

4 int ind_Src , ind_Dst;

5 for(int row = 0; row <=3; row ++) {

6 for(int col = 0; col <=3; col ++) {

7 indSrc = IN_rdInd + (4* col+row);

8 indDst = OUT_wrInd + (row *4+ col);

9 OUT ->buff[indDst] = IN ->buff[indSrc ];

10 }

11 }

12 IN ->rdInd += 16;

13 OUT ->wrInd += 16;

14 }

Listing 4: Aligned action

4.5 Multi-level Dynamic Scheduling

As defined by Lee and Parks [20], the execution of a

DPN-based actor is modeled by the repeated evalua-

tion of the firing rules that are, in case of a success,

followed by the firing of the associated action. This

process is usually defined as the action scheduling. The

action scheduler can be implemented by a simple func-

tion that evaluates the firing rules in order [29] such as
presented in Listing 5. In theory, the scheduler evalu-

ates only two conditions to determine the fireability of

an action: the amount of tokens required in the input

channel (hasTokens), and the potential condition on the

values of tokens and/or state variables (isSchedulable).

In practice, the scheduler has also to ensure that enough

rooms are available in the output channels to allow the

firing of the action without blocking (hasRooms).

Additionally, the scheduler checks if a sufficient num-
ber of tokens are aligned in all the FIFO channels to

be able to execute the optimized version of the action

(areAligned). In some specific cases, we can directly in-

sure that the FIFO accesses will be always aligned. As

an example, the alignment is guaranteed when the con-

sumption/production rates are constant and divisor of
the size of the FIFO channel.

Apart from this internal scheduling, the execution

of a DPN program in a concurrent environment requires
actor scheduling to order and time the actor execution
in case there is more actors than processors. In previ-

ous works [32, 31], we have introduced run-time actor

mapping/scheduling strategies dedicated to DPN-based

actors. Our scheduling strategies execute the current

actor until it cannot fire anymore to exploit spatial and

temporal locality. Then, the scheduler switches to the

next actor which is chosen according to the strategy.

To conclude, the execution of DPN-based programs

involves a complex scheduling that has to be performed
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at runtime. While they are two distinct levels of schedul-

ing, actor scheduling and action scheduling, they are in-
timately related since the success of the action schedul-

ing within an actor is directly dependent on the produc-

tion/consumption performed by its predecessors/suc-

cessors. These schedulers have to be carefully designed

to not reduce dramatically the performance since they

are executed at run-time.

1 void Transpose4x4_0_scheduler () {

2 while (1) {

3 if (hasTokens(fifo_Src , 16) &&

isSchedulable_transp ()) {

4 if (hasRooms(fifo_Dst , 16)) {

5 goto finished;

6 }

7 // Fire the action

8 if (areAligned(fifo_Src , 16) &&

areAligned(fifo_Dst , 16))

9 transp_aligned ();

10 } else {

11 transp ();

12 }

13 } else { // Check the next action ...

14 goto finished;

15 }

16 }

17 finished:

18 return; // Return to actor scheduler

19 }

Listing 5: Action scheduler

5 Results

This section studies the implementation of dynamic

dataflow programs on TTA-based multi-core platforms.

In general, communication and synchronization are the

major sources of inefficiencies on every multi-core sys-
tem. Thus, we deeply analyze the internal behavior of
the applications (communication, decomposition, etc)

before presenting the global performance.

5.1 Experimental setup

The software implementations are generated by use of

the TTA back-end of Orcc [30], then the generated code

is compiled and simulated thanks to the TTA-based

Co-design Environment (TCE) [13]. The evaluation is

made thanks to the instruction-set simulator including
in the TCE.

The experiments have been conducted for some of

the RVC descriptions of video decoders that have been
introduced in Section 2.4, and using different video se-

quences. During all our experiments, all the FIFO chan-
nels in our applications are bounded to 8192 elements

in order not to impact on the results. In fact, this spe-
cific size of FIFOs allows the buffering of two of the
biggest pixel blocks defined in the HEVC standard, i.e.
Coding Tree Blocks containing 64x64 samples.

5.2 Analysis of Internal Communications

A major interest of dataflow programs is the explicit

communication between the components of the applica-

tion that makes them easier to analyze. In DPN-based

video decoders, communication rates are usually irreg-

ular and very sensitive to multiple factors (size of the

FIFO channels, actor scheduling, etc). But, communi-
cation rates become globally stable when the observed
time-slice is sufficient.

Figure 5 presents the communication rate observed

at each output port of actors within the MPEG-4 Vi-

sual and HEVC decoders during the decoding of few

frames of the tested video sequences. Figure 5 addi-

tionally presents the degree of broadcasting of the ac-

tors ports, i.e. the number of actors to which the ports

are connected, in order to highlight the duplication of
data.

We can clearly identify two categories of communi-

cations from the results presented in Figure 5:

– The video stream is characterized by a large amount

of data that usually goes through the decoder by a

single path (for instance parser_blkexp.QFS in Figure

5a). Besides, broadcasting the video stream involves

a large amount of data duplication but is only per-

formed one or two times (For instance motion_add.Vid

in Figure 5a), when the decoded frames are trans-
mitted to both the display and the image buffer used
by the inter prediction. This stream being clearly

the largest of the application, this specific broad-

cast can be the cause of a data congestion.

– The control communications are characterized

by a small amount of data disseminated through

multiple channels within the video decoder. A typ-

ical example is the transmission of the type of the

current block, parseheader.BTYPE in Figure 5a. A ma-

jor part of these communications is produced by the

parser which extracts the syntax elements from the

input stream to parametrize the actors. As opposed

to the video stream, broadcasting the control infor-
mation implies a smaller amount of data but more
consumers. For example, control tokens generated

by the parser may be transmitted to most of the

next actors, like Algo_Parser.CUInfo in Figure 5b, so

even a small amount of data can introduce a lot
of checks to control the state of the communication

channels.
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Fig. 5: Communication analysis (rates and broadcasting) within RVC-based video decoders

To sum up, the video stream is processed block af-
ter block through the actors which behave according to

control data. Moreover, the broadcasting may be an ad-

ditional source of bottlenecks, causing either data con-

gestions or management overheads.

5.3 Analysis of the Application Decomposition

Now, let us take a look at the application decomposi-

tion which is fundamental for targeting multi-core plat-

forms. Indeed, we need to balance the computation load

on the available processors to fully benefit from the par-
allelism.

Workload distribution We start by analyzing the distri-

bution of the computational workload within the video

decoders, i.e the computational workload of the actors.

The results for two video decoders, MPEG-4 Visual and

HEVC, are presented in Figure 6. The workloads are

evaluated for each actor independently in a standalone

simulation. In other words, each actor is simulated on

its own processor with all incoming data available, in

order to hide the impact of the stream dependences

within the network.

The results clearly show that our description of MPEG-

4 Visual is more equitably balanced than our descrip-
tion of HEVC. This difference can be partially explained
by the difference between the applications granularity,

for instance the inverse transforms, designed with 1 ac-

tor (the IDCT2D) in MPEG-4 Visual and with 12 ac-

tors (the ITs) in HEVC.

Moreover, it should be noted that the computational

workload could be balanced more equitably by increas-
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ing the coarse-grain parallelism in the decoder. In video

decoding, increasing the parallelism is usually achieved

by separating the decoding of the image components or

by splitting the image. On the one hand, the separa-

tion of the processing of the components is bounded by

the luma processing which is four times the complex-

ity of each chroma processing. On the other hand, the

decomposition of the image itself is restrained by the
spatial and temporal dependences resulting of the pre-
diction. Actually, parallel processing is one of the main

achievement of the emerging HEVC standard [27] that

introduces several advanced decomposition (wavefront,

tiles, etc).

Internal parallelism Thanks to the flexibility of TTA

processors in our design flow, we can also study the po-
tential parallelism within the actors. In fact, the prede-
fined processor configurations, presented in Section 3.2,

have all their own parallel processing capability, which

let us study the ILP potential within actors. Therefore,

Figure 7 presents the execution speedup of actors of the

two video decoders on Custom, Fast and Huge proces-

sors according to their execution time on a Standard
processor. As said previously, the Standard processor is

equivalent to a RISC processor that can only perform

one operation at a time because of its 3 buses. The ac-

tors are again executed in a standalone fashion to hide

stream dependence.

The results clearly show two types of actors. On

the one hand, actors that benefit well from the parallel

capabilities of TTA-based processors by presenting im-

pressive speedups that reach factors up to 3, such as the

one processing the inverse transform. We define them as

the compute-intensive actors. On the other hand, actors

that do not take advantage from the parallel capabil-

ities of TTA-based processors by presenting speedups

that hardly reach factors of 1.5, such as the ones in-

volved in entropy decoding. We define them as control-

intensive actors. However, some actors of the HEVC

decoder that are known to be compute-intensive have

not demonstrated large speedups, such as the predic-

tions and the loop filters. This can be explained by the

development state of the application.

From all these results, we can identify the traditional
bottleneck actors of our RVC-based video decoders: The

parser that is controlled by a complex scheduling (e.g.

the parser of our HEVC decoder contains about 200 ac-

tions), the buffer which is usually strangled by the num-

ber of hardly predictable memory accesses, and finally

the predictions as well as the loop filters that all involve

complex processing requiring careful implementations.

In conclusion, video decoders are now complex applica-

tions containing heterogeneous algorithms which make
their implementation so challenging.

For that reason, the actor mapping system included

in our design flow considers both the communication
rates and the computational decomposition for the de-
sign decisions, as explained in Section 5.4.

5.4 Analysis of performance

Finally, we analyze the global performance of our RVC-

based video decoders. Let us point out that a functional

implementation of a video decoder running on an em-

bedded multi-core platform is very difficult to obtain.

Indeed, debugging dataflow programs within embedded

multi-core platforms is a hard and time-consuming task
that requires an expertize from hardware and software
aspects. Moreover, the simulation speed is rapidly be-
coming one of the main limitations in front of the ap-

plication complexity.

The evaluated platforms are composed of Fast TTA
processors interconnected by shared memories follow-

ing the architecture defined in Section 3. We assume
that such platforms can be clocked at 1GHz. Indeed,
previous work has shown that the processor cores can
already reach 1GHz using 40nm technology [18]. Thus,

the results are obtained from a simulated execution, but

let us point out that successful implementations of the

MPEG-4 Visual decoder has already been synthesized

on two different FPGA boards clocked at 100MHz: Al-
tera Stratix III and Xilinx Virtex 6.

Maximal performance Table 3 summarizes the maxi-
mal decoding frame-rates achieved with our implemen-

tation on both the MPEG-4 Visual decoder and the

HEVC decoder. In order to get the maximal perfor-

mance, each actor is mapped to its own processor. Thus,

there is no need for an actor scheduling strategy: The

global scheduling is achieved by the action scheduler

that checks repetitively the validity of the firing rules.
Besides the functional demonstration, the results

also show a large difference of performance between the

two decoders, i.e. the frame-rate observed on MPEG-4

Visual is about 8 times better on sequences with identi-

cal definition. This can be explained by the performance

tuning that we have already made on the description of

MPEG-4 Visual, along with the algorithmic complex-

ity of the new standard and the development status of

our description of HEVC. Considering the current per-

formance, our implementation of HEVC cannot achieve

real-time decoding of high definition sequences.

However, these results open promising perspectives

about a more optimized implementation, that would
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Fig. 6: Repartition of the computational workload within our implementations of RVC-based video decoders
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Fig. 7: Exploring the parallelism potential of actors composing video decoders thanks to their execution speedup
on TTA-based processors using Custom, Fast and Huge configurations from a sequential execution with Standard

configuration

Decoder Sequence Size FPS

MPEG-4 Visual Foreman QCIF 1750
– 39 processors OldTownCross 720P 40
HEVC BasketBallPass 240P 40
– 12 processors KristenAndSarah 720P 5

Table 3: Maximal frame-rates achieved by our embed-
ded implementation using the Fast TTA configuration

clocked at 1GHz when each actor is mapped to its own
processor. These frame-rates have been evaluated dur-
ing an execution of the entire multi-core platform using
the instruction-set simulator.

include highly optimized assembly kernels (like most

commonly-used video codecs [15]). Knowing the high

parallel processing capabilities of TTA processors, such

assembly-level optimization can speed-up the decoding

suffisently to achieve real-time decoding. Moreover, pro-
cessing resources can be shared between the actors to
reduce the number of processor without impacting too

much the performance, as shown by the following para-

graphs.

Influence of the core number Now, let us take a look at

the influence of the number of processors available on

the platform. In fact, some of the actors have to share

the same processor in realistic implementations. Indeed,

the number of processors available must be limited so

as to reduce the power consumption of the platform.

As opposed to the previous experimentation, the ac-

tors are mapped by an automated system [31] which

takes into account the irregularity of our applications

thanks to a profiling step, as presented in Figure 8. Our



Embedded multi-core systems dedicated to dynamic dataflow programs 13

mapping system starts by analyzing the communication

rates and the computational loads, as we did respec-

tively in Section 5.2 and Section 5.3. Then, the system

tries to balance the computation load of the actors to

parallelize the work while reducing the inter-core com-

munications. For this purpose, we use multi-level graph

partitioning schemes implemented in Metis tool [17]. In

other words, two actors communicating a lot with each
other have more chance to be executed on the same
processor. Finally, the actors are scheduled locally on

each processor core by a simple runtime strategy known

as round-robin [32].
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Fig. 8: Actor mapping system based on computation
and communication analysis [31]

Figure 9 presents the influence of the number of pro-
cessors on the frame-rate of the MPEG-4 Visual de-
coder. In this case, we consider the decoding of a video

sequence with a smaller definition, i.e. foreman at QCIF

resolution, to reduce the simulation time. The decoding

is again simulated using the Fast configuration for the

TTA processors.
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Fig. 9: Influence of the number of processors on the
performance of MPEG-4 Visual decoder

First of all, the results clearly show that the accel-

eration rate is not linear according to the number of
cores. In fact, the form of the curve clearly shows the
limit of the coarse-grain parallelism (task-level) of the

application. Actually, the maximum decoding frame-

rate of our MPEG-4 Visual decoder is reached with 16

processors. Increasing further the number of processors

does not provide higher decoding frame-rate. These re-
sults can be explained by the complexity of the data
dependencies in video decoding (spatial and temporal).

Higher parallelism can be achieved thanks to parallel

decoding technics (framebase, tiles, wavefront, etc).

Thus, the maximum speedup in comparison with

the single processor execution is 8.1x, and achieved with

16 processors. Therefore, the maximum speedup achieved

with our embedded implementation is much bigger than

the maximum speedup achieved with the implemen-

tation on general-purpose processors (which seems to

be around 3x [31]). This can be mainly explained by

the fact that the communications between the cores

within our embedded implementation do not induce
any overhead compared to more conventional commu-
nication and memory schemes implemented in general-
purpose processors. To conclude, these results demon-

strate the interest of the dedicated memory organiza-

tion that we have designed specifically for our custom

embedded multi-core platforms (see Section 3.3).

6 Related work

Implementing video codecs using dynamic dataflow mod-

eling has already been heavily studied within the RVC

community. However, most of the studies do not tar-

get multi-core platforms based on distributed memory

organization, but platforms such as FPGA/ASIC [4, 1,

25] and general-purpose processors [29, 14]. In previous

work [30], we have already implemented an MPEG-4

Visual decoder on a platform composed of TTA proces-

sors interconnected by hardware FIFO channels. This

approach targets application-specific platforms which

makes it much less flexible than our new approach.

Outside of the architecture side, our software synthe-

sis which is also applicable on general-purpose proces-

sors has significantly improved the performance: We ob-

served an improvement of more than 100% of the de-

coding frame-rates over previous implementations (at

equal frequency) [34].

Other studies from the literature try to improve the

predictability of dynamic dataflow programs so as to

allow compile-time optimizations. Some of them deter-

mine the possible executions to prune all unreachable

execution paths in order to remove all unnecessary tests
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[7, 12]. However, they are limited by their need of in-

put data to perform their analysis, which makes them

unsafe in general case. Some other approaches try to re-

duce the number of tests performed during the schedul-

ing by detecting restricted dataflow models [28], or by

using actor machines that also considers the evalua-
tion results of previous firing rules [8]. However, these

techniques have not yet demonstrated performance im-
provements of tested applications.

Regarding the HEVC standard, to our knowledge all
existing software decoders are based on multi-threaded

implementations, such as the reference software (HM)

[6] and OpenHEVC [15]. Multi-threaded implementa-

tions assume that the architecture of the executing plat-

form is based on a global shared memory organization.

On the one hand, these implementations have been

demonstrated very efficient mainly due to the minimiza-

tion of data movements during the processing. On the
other hand, their parallelization is limited since embed-
ded platforms based on shared memory cannot scale
beyond a certain number of processor cores because of

power consumption.

To sum up, our work tries to bridge the gap between

the efficiency of low-level implementations and the flex-

ibility/reliability of high-level implementations in order

to facilitate the design of complex applications, such as

video codecs, on parallel embedded systems.

7 Conclusion

This paper presents a methodology based on dataflow

modeling to implement video codecs on embedded multi-

core platforms. We have introduced an architecture model

to design low-power multi-core platforms using a dis-

tributed memory organization that directly benefit from

the dataflow modeling. We have also presented advanced

software synthesis techniques to enhance the implemen-

tation of dynamic dataflow programs on embedded multi-

core platforms using branch-free, copy-free and aligned

implementations to tackle communication and compu-

tation issues. Our methodology has been validated both

on MPEG-4 Visual and HEVC decoders. The results

show an improvement of more than 100% of the frame-

rate over previously proposed dataflow implementations,

and achieve real-time performance on HD video sequences
using the MPEG-4 Visual decoder while keeping a high-
level of abstraction.
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7. Jani Boutellier, Mickaël Raulet, and Olli Silvén.

Automatic Hierarchical Discovery of Quasi-Static

Schedules of RVC- CAL Dataflow Programs. Jour-
nal of Signal Processing Systems, 71(1):35–40,

2013.
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Wipliez, and Mickaël Raulet. Efficient multicore

scheduling of dataflow process networks. In Signal
Processing Systems (SiPS), 2011 IEEE Workshop

on, pages 198–203, 2011.
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