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Abstract Electroencephalography (EEG) signals arise

as a mixture of various neural processes that occur in

different spatial, frequency and temporal locations. In

classification paradigms, algorithms are developed that

can distinguish between these processes. In this work,

we apply tensor factorisation to a set of EEG data

from a group of epileptic patients and factorise the

data into three modes; space, time and frequency with

each mode containing a number of components or sig-

natures. We train separate classifiers on various feature

sets corresponding to complementary combinations of

those modes and components and test the classification

accuracy of each set. The relative influence on the clas-

sification accuracy of the respective spatial, temporal

or frequency signatures can then be analysed and use-

ful interpretations can be made. Additionaly, we show
that through tensor factorisation we can perform di-

mensionality reduction by evaluating the classification

performance with regards to the number mode compo-

nents and by rejecting components with insignificant

contribution to the classification accuracy.

Keywords tensor factorisation · multiview · EEG ·
epilepsy

This work has been supported by the EPSRC, UK, Grant No.
EP/K005510/1.

L. Spyrou
Department of Computer Science
University of Surrey
E-mail: l.spyrou@surrey.ac.uk

S. Kouchaki
Department of Computational and Evolutionary Biology
University of Manchester

S. Sanei
Department of Computer Science
University of Surrey

1 Introduction

The application of tensor factorisation to signal pro-

cessing has has found recent applications to several ar-

eas such as antenna array processing, biomedical signal

processing, feature extraction, and classification [12,23,

11]. A tensor is a multi-way representation of data or

a multidimensional array. Each direction in the ten-

sor is called mode or way. Using tensor factorisation,

the true underlying structure of that data can be pre-

served. Tensor factorisation methods has been shown to

be powerful tools to describe signals which in general

change in time, frequency, and space. Tensor analysis

can provide a good way to discover the main features of

the data and extract the hidden underlying information

especially in the case of having big data size.

Several tensor based methods have been suggested

for decomposition and multi-way representation of data.

Tucker decomposition [35,24] is one of the common ten-

sor factorisation which is a generalisation of singular

value decomposition (SVD) to higher order tensors. Us-

ing the Tucker model, data are decomposed into a num-

ber of factors and a core tensor of lower dimensions than

the original data. Therefore, as suggested in [10], it can

be employed to compress the high dimensional data to

extract significant features.

The application of tensor decomposition can be sig-

nificant for biomedical signals, such as EEG, where

many transient events and movement related sources

and artifacts are involved and most sources are inher-

ently nonstationary. Moreover, the related brain neu-

ral process exhibit specific space-time-frequency loca-

tions. EEG signals in particular, consist of multichannel

recordings with good temporal resolution which sub-

sequently offers good time-frequency resolution. The

application of tensor analysis is then natural and the
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data can be factorised into space, time and frequency

modes [45,13,20,1]. Unlike those studies, we perform

tensor factorisation within a machine learning context

and the utility of the method is enhanced when consid-

ering multi-subject data where data can be factorised in

the group level, identifying common components [34].

Typically, in EEG classification tasks, data are col-

lected for each subject in an offline manner and then a

pattern classification algorithm is trained on user spe-

cific data. This has the benefit of adapting the algo-

rithm to the exact patterns of that user. However, such

a procedure is time consuming and delays the actual

use of the system. To overcome this problem, subject-

independent (SI) algorithms can be useful. Such meth-

ods have the advantage of being used immediately with-

out having to know any prior knowledge or subject spe-

cific data information, albeit with reduced performance.

To alleviate this problem a new direction of SI identi-

fication for EEG, using tensor factorisation has been

suggested here.

Interictal epileptic discharges (IEDs) are sharp tran-

sients of electrical activity that occur in the period be-

tween seizures of epileptic patients and provide clinical

information regarding the type and location of seizures.

IED analysis can provide useful presurgical informa-

tion. IED detection methods can be categorised in sev-

eral groups. They are typically based on methods such

as template matching [27,44,38,18], classification [46,

26], through independent component analysis (ICA) [22,

14], signal modelling [19] and many other methods [36]

in common with the well established field of spike de-

tection [42,41]. The common characteristic of all these

methods is that a description of an IED/spike signal is

obtained either through modelling or through the use

of real data and some similarity-based algorithm devel-

oped in order to detect those signals. This is often facil-

itated by obtaining useful representations of the signal

that can better exploit its structure. The feature rep-

resentations that are useful for IED detection has been

a rather unresolved issue [36]. They can be grouped

into the following categories: a) Mimetic, where the ex-

tracted features are designed to mimic human evalua-

tion and methodology for the presence of a spike [17,

2], b) Time-Frequency represenations such as Wavelet,

Fourier, or Hilbert transform have been used in IED de-

tection and with much success in EEG signal process-

ing in general [6,4,3,37], c) Non-Linear features such as

Hjorth parameters, fractal dimension, mean energy [8]

and through d) decomposition methods such ICA [39,

29] and kernel type methods[43].

An epileptic scalp and intracranial EEG dataset of

18 patients is utilised in this work which consists of mul-

tiple interictal epileptic discharge (IED) events per sub-

ject. There are two primary goals in this study. Firstly,

the use of tensor factorisation in order to enable the de-

tection of the specific IED data signatures that exist in

the group level. That way, a clinician can choose which

specific type or property of the signal they require to be

detected. Secondly, the estimation of a subspace that re-

duces the dimensionality of the classification task. Both

of these methodologies are evaluated in a SI framework

demonstrating the generalisation performance of our

proposed algorithms. In Section 2 we describe the scalp-

intracranial EEG dataset while Section 3 describes the

theory behing tensor analysis and factorisation. Sec-

tion 4 describes the preprocessing steps used to facil-

itate tensor decomposition and classification and the

algorithm that detects the obtained modes and com-

ponents. Section 5 shows results of multiview classifi-

cation and dimensionality reduction on both scalp and

intracranial EEG. Section 6 discusses the results while

Section 7 concludes the paper.

2 Dataset

2.1 Recording

The study included 18 patients studied with scalp EEG

and simultaneous intracranial multicontact foramen ovale

(FO) recordings. For the intracranial data, two flexible

bundles of 6 electrodes each were inserted through the

left and right FO under general anaesthesia and fluo-

roscopic control, following the technique recommended

by [40]. Each individual electrode consisted of a 0.1 mm

fully insulated stainless steel wire. Recording contacts

of the 3 deepest electrodes were 3 mm long and those
of the most superficial electrodes were 5 mm long. Dis-

tance between contiguous electrodes was 10 mm except

for the two most superficial electrodes whose interelec-

trode distance was 15 mm. For each electrode bundle,

the two deepest electrodes lay next to medial tempo-

ral structures. The positions of the FO bundles were

confirmed with post-insertion radiography.

For scalp EEG, 20 standard chlorided silver cup

electrodes were applied according to the Maudsley elec-

trode placement system [28,16,21,31]. The advantage

of the Maudsley System with respect to the standard

10−20 System is that it provides more extensive cov-

erage of the lower part of the cerebral convexity and

adapts itself to cranial asymmetries [9], increasing the

sensitivity for recording from basal sub-temporal struc-

tures. This system is essentially similar to 10-20 system,

naming of electrodes is identical, but mid-temporal,

posterior-temporal and occipital electrodes in the Maud-

sley System are approximately 20 mm lower than in the

10−20 System.
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Cable telemetry of 32 channels was used for data

acquisition (Telefactor Beekeeper system). Data were

digitised at 200 Hz and bandpass filtered (high pass cut-

off frequency at 0.3 Hz and low pass cut-off frequency

at 70 Hz). The system input range was 2 mV and data

were digitised with a 12 bit analog-to-digital converter

(an amplitude resolution of 0.488 mV). From each pa-

tient, a period of 20 min of intracranial EEG recordings

were transcribed onto a digital file.

3 Methods

3.1 Tucker model

The Tucker factorisation was introduced in [35] and

later refined in [25]. It is a generalisation of SVD to

higher dimensions. As an example, Tucker [35] models

each element of a four-way tensor X with I1, I2, and

I3 factors in first, second, and third modes respectively

similar to the SVD as:

xijkl ≈
∑I1

i1=1

∑I2

i2=1

∑I3

i3=1
u(1)ii1u(2)ji2u(3)ki3gi1i2i3l

(1)

where i, j, k, l are the indices of the four modes. Equa-

tion (1) can be rewritten in tensor form as:

X ≈ G×1 U1 ×2 U2 ×3 U3 (2)

As can be seen, the Tucker model decomposes a ten-

sor into a core tensor (G) multiplied by a matrix (U1,

U2, or U3) along each mode.

Using the unfolded version of tensor X, Tucker model

can be shown as

X(1) = U1G(1)(U3 �U2)T + E(1),

X(2) = U2G(2)(U3 �U1)T + E(2),

X(3) = U3G(3)(U2 �U1)T + E(3)

(3)

The Tucker model parameters can be optimised us-

ing alternating least squares (ALS) by considering all

except the parameter at each optimisation step [30] as:

U1 = X(1)(G(1)(U3 �U2)T )†,

U2 = X(2)(G(2)(U3 �U1)T )†,

U3 = X(3)(G(3)(U2 �U1)T )†,

G = X×1 U†1 ×2 U†2 ×3 U†3

(4)

Fig. 1 Representation of 4-way tensor built for each subject.

By imposing the orthogonality constraint on all the

modes, SVD can be used to update Tucker3 parameters

as:

U1 = LSing(X(1)(U3 �U2)T ),

U2 = LSing(X(2)(U3 �U1)T ),

U3 = LSing(X(3)(U2 �U1)T ),

G = X×1 UT
1 ×2 UT

2 ×3 UT
3 ,

(5)

where LSing(·) stands for left singular vectors of the

input matrix. Equation (5) is called higher order or-

thogonal iteration (HOOI) and may converge to a local

optimum solution.

3.2 EEG tensor factorisation

In this work, the EEG data of each subject are con-

verted to a 4-way tensor X(i) ∈ RNs×Nt×Nf×Ni where i

is the subject index and Ns, Nt, Nf , Ni are the spatial,

time, frequency, and trial dimensions as illustrated in

Fig. 1. The trial dimension contains both IED and non-

IED segments (c.f. Section 4.1). In order to extract the

common information for a group of K subjects, the in-

dividual tensors are concatenated (as suggested in [10])

along the forth dimension (Fig. 2) resulting in a group

level tensor Xg ∈ RNs×Nt×Nf×N1:K where N1:K is the

total number of trials of the K subjects.

We use the Tucker model for tensor factorisation

into 3 modes (space, time, frequency) and a core tensor.

Each mode is set to consist of a number (Is, It, If ) of

components. Therefore, for a tensor X (Xg or X(i)),

the decomposition can be described as:

X = G×1 Us ×2 Ut ×3 Uf (6)

where G ∈ RIs×It×If×N shows the core tensor, Us ∈
RNs×Is , Ut ∈ RNt×It , and Uf ∈ RNf×If are the spa-

tial, temporal and frequency modes respectively. When
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Fig. 2 Concatenating the data along the forth dimension
and factorising the resulting group level tensor using Tucker
decomposition.

performing tensor factorisation on Xg, the core sub-

tensors of individual subjects can be selected by choos-

ing the trials that correspond to that subject: G(i) ∈
RIs×It×If×{Ni}. These core tensors describe the contri-

bution of the obtained group level modes to the data

of individual subjects and also are used as features for

classification (c.f. Section 4.1).

Additionaly, for any predefined modes Us, Ut, and

Uf the core tensor of a subject -j- can be obtained by:

G(j) = X(j) ×1 UT
s ×2 UT

t ×3 UT
f (7)

where G(j) shows the core tensor obtained by project-

ing the data X(j) of subject j onto the space spanned

by Us, Ut and Uf . These modes can be obtained from

the factorisation procedure of the K training subjects.

That way, the data of a test subject can be evaluated

in terms of the common charecteristics of a training set

of K subjects.

Tensor factorisation enables the following two im-

portant methods for EEG data:

1. By choosing specific components (Ls ⊆ 1 : Is, Lt ⊆
1 : It, Lf ⊆ 1 : If ) of each mode the classifica-

tion scheme can be targeted to detect only those

components (see Figure 4). Therefore, classification

performance can be evaluated for different aspects

of the data (Section 4.2).

2. Since the dimension of the core tensor is G(i) ∈
RIs×It×If×Ni , we can perform dimensionality re-

duction by selecting the number of components of

each mode i.e Is, It, If to be smaller than the di-

mensions of the original representation Ns, Nt, Nf .

Similarly, by evaluating the classification accuracy

for different components separately, we can discard

Fig. 3 Example IED discharge for one subject. Channels are
superimposed on the same plot and the signal is an average
over all IED segments.

those which do not reach a significant classification

accuracy (Section 4.3).

4 Classification schemes

4.1 Pre-processing and classifier

An expert epileptologist inspected the intracranial data

and marked the timing information where the intracra-

nial data exhibited visually noticable epileptic discharges.

The raw scalp and intracranial EEG data were band-

pass filtered in the [1 70]Hz range and notch filtered

at 50 Hz. Then, the data were sliced in a ±162.5ms

window centered on the intracranial timing scores and

baselined on the preceding 162.5ms with the resulting

signal finally being linearly detrended to remove un-

desired drifts. An example IED can be seen in Figure

3. Non-IED segments were also obtained from time seg-

ments where there are no scored IEDs. For each subject,

the number of sliced IED and non-IED segments was

chosen to be the same. The spectrogram method was

used to convert the time-domain signal into time fre-

quency features with a hanning-tapered window length

of 80ms and an overlap of 50% between windows. These

time frequency features are obtained for each IED and

non-IED segment. Each IED event then consists of 756

(12 FO channels × 7 temporal × 9 frequency) features

for intracranial and 1260 (20 scalp channels × 7 tem-

poral × 9 frequency) features for scalp data.

Classification of a subject’s EEG data is performed

by using as features the obtained core tensor for that

subject: G(i) (as well as using the original represen-

tation X(i) for comparison purposes only). We employ

regularised linear logistic regression in order to train

classifiers that can distinguish between IED and non-

IED events both for the core tensor features and for the

original representations. Logistic regression has been

widely used in EEG data obtaining state of the art per-

formance [15]. One benefit of logistic regression is that

it provides a natural way to express the class member-
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ship probability from the observed data. The estimation

of the classifier is performed by minimising a quadrati-

cally regularised logistic regression loss function where

there is a trade-off in classification accuracy against

over-fitting and generalisation performance. The reg-

ularisation parameter, which controls the trade-off is

estimated with cross-validation [33]. Cross validation

(CV) is a method for model selection that works by

partitioning the training data in a number of comple-

mentary subsets (folds). In k-fold cross-validation the

data are split into k subsets. Each subset is used once to

validate the model, while the rest k−1 subsets are used

to train the classifier. For each fold we test the following

regularisation parameters [125, 25, 5, 1, 0.2, 0.04, 0.008]

scaled by 10% of the variance of the data and select

the one that achieves the highest performance. Signif-

icance testing of classification accuracies is performed

with the binomial proportion confidence interval [5].

In order to facilitate SI classification of the IEDs

and evaluate the generalisation performance of our al-

gorithm we split our dataset of 18 patients into training

and test sets. Each training set consists of the data from

all subjects except the data of a single test subject. We

perform this leave-subject-out procedure for each sub-

ject resulting in 18 different training-test combinations.

4.2 Multiview Classification

In this work, multiview classification entails the evalu-

ation of classification performance for specific compo-

nents of the obtained modes through tensor factorisa-

tion. In group level analysis, the multiview paradigm

consists of choosing a subset of the components from

the group level tensor factorisation. For each training

set as described in Section 4.1, we perform the factori-

sation of Equation (6) by using the group level tensor

Xg and extract a core tensor for each training sub-

ject and common spatial, time and frequency modes.

We further select the desired subsets of the core ten-

sor corresponding to various selections (views) of fac-

tor components (Ls ⊆ 1 : Is, Lt ⊆ 1 : It, Lf ⊆ 1 : If ).

For example, the influence of the 1st spatial compo-

nent on the classification accuracy can be examined by

selecting Ls = 1, Lt = 1 : It and Lf = 1 : If . The

core tensors G(i)(Ls, Lt, Lf ) that correspond to our se-

lection of Ls, Lt and Lf are used to train classifiers

C(i)(Ls, Lt, Lf ) that correspond only to them. Then,

the trained classifiers are used to classify the test data

for the same Ls, Lt, Lf by obtaining G(test)(Ls, Lt, Lf )

through Equation 7. By training separate classifiers for

different selections of Ls, Lt, Lf different aspects of the

data can be evaluated separately. An important fea-

ture of our multiview classification scheme is that apart

Fig. 4 The procedure of subject-independent detection of
specific components through the selection of spatial, tempo-
ral and frequency components: Ls, Lt, and Lf respectively.
Each training subject’s (i = 1 : K) are converted to their
core tensors through group level tensor factorisation. Separate
classifiers Ci are trained for each subject and then combined
in an ensemble with the average sum rule. Unseen data from a
test subject are similarly converted to features corresponding
to the same selection of components and subsequently classi-
fied with the ensemble classifier. This procedure is repeated
for all test subjects.

from the classification accuracy the algorithm outputs

the probability that a segment is an IED. As a result,

each view can be assigned a certainty value regarding its

discriminability for IEDs. A summary of the proposed

procedure can be seen in Fig. 4. These subject-specific

classifiers are combined according to the average-sum

rule [32] in order to classify the test data. We also train

classifiers on unfactorised data in order to be able to

contrast the performance of the various feature sets

with the original representation.

4.3 Dimensionality reduction

We demonstrate two ways that dimensionality reduc-

tion can be achieved through tensor factorisation. Firstly,

we estimate the classification accuracy for an increasing

number of components of each mode Is, It, If . The clas-

sification accuracy for each case is then evaluated and

a certain point can be chosen that achieves a smaller

number of features without reducing the accuracy. Sec-

ondly, we show that rejecting components that do not

achieve a significant classification accuracy in the train-
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S−1 S−2 S−3

S−4 S−5 S−6

Fig. 5 Group level spatial components for the scalp data ob-
tained through tensor factorisation. Each topography shows
a common spatial characteristic between the patients’ EEG
data. It can be seen that expected spatial signatures were
identified by the tensor factorisation procedure, such as left
and right lateralisation of S-4 and S-5.
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Fig. 6 Group level temporal components obtained through
tensor factorisation. Each plot shows a common temporal
characteristic between the patients’ EEG data. Different ac-
tivities peaking at around the middle of the segment were
identified in accordance with the various expected IED mor-
phologies.

ing set results in a small but significant increase in clas-

sification accuracy in the training set and equivalent

performance on the test set.

5 Results

5.1 Factor analysis

In this section we show the obtained components of 6

spatial, time and frequency modes of the group level

tensor in Figures 5, 6 and 7 respectively.
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Fig. 7 Group level temporal components obtained through
tensor factorisation. Each plot shows a common frequency
characteristic between the patients’ EEG data.

5.2 Multiview classification

We demonstrate results for both scalp and intracranial

data highlighting the utility for both datasets. For scalp

data, the classification accuracy for the components of

the frequency and temporal modes can be seen in Tables

1 and 2. The column ’benchmark’ denotes the accuracy

of the original representation (i.e. without tensor fac-

torisation) for both tables. The columns F-1 to -6 and

T-1 to -6 the classification accuracy when only that

component is used of that mode. For example the col-

umn F-1 denotes the accuracy when Lf = 1, Ls = 1 :

6, Lt = 1 : 6. It is observed that different components

of different modes have different classification accuracy

for different subjects. For intracranial data, we show the

group average ratio of IEDs that were detected accord-
ing to their brain lateralisation (Figure 8). It is a known

characteristic that IEDs of the same subject can origi-

nate from different sides of the brain for different trials.

The identification of which side the IED belongs to was

performed in a post-hoc fashion by picking the side of

the brain that the IED exhibits the highest amplitude

(resulting in right- and left-sided segments). This infor-

mation was not used in the training of the classifiers.

SP-2 exhibited the highest detection rate for the right-

sided segments, 88%, while the detection rate was 10%

for left-sided segments.

5.3 Dimensionality reduction

In Figure 9 we show the group average classification

accuracy with respect to the number of components

(Is, It, If ).

In Table 3 the within subject classification accuracy

for the 6 spatial segments of the scalp data in columns
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left-trials right-trials
0

0.2

0.4

0.6

0.8

1
SP-1

SP-2

SP-3

SP-4

Fig. 8 Proportion of intracranial IEDs that were detected for
each of the subject-independent classifiers trained separately
on the 4 spatial components. The IEDs were split into left-
and right-sided segments according to the side of the brain
they had the highest amplitude. SP-2 provides the highest
discriminability for distinguishing left from right segments.
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Fig. 9 Classification accuracy by progressively increasing the
number of components (Is, It, If ) from 3 to 216. We show the
group average accuracy of the test set (thick) and training set
(dashed). A ceiling level can be observed at 64 features where
classification accuracy does not increase any further.

(S-1 to -6) is shown. In the column denoted as ‘reduced’

we show the accuracy when we perform the dimension-

ality reduction method of Section 4.3. The spatial com-

ponents that did not reach a significance classification

accuracy at a 99% confidence were rejected and shown

in bold. When performing that method for components

from all three modes the resulting subject independent

group accuracy was 65.9% while on the full original rep-

resentation it was 66%.

6 Discussion

Tensor factorisation enables the visualisation of multi-

way EEG data and it can be considered the multiway

extension of principal component analysis. As seen from

Figures 5, 6 and 7 the obtained components of the spa-

tial, temporal and frequency modes identified the main

characteristics of the data. For example, the S-4 de-

scribes activity originating from the right side of the

brain. An important characteristic of our methodology

is that the data a test subject can be projected to the

modes obtained from tensor factorisation from a dif-

ferent subject or subjects. This way, the test subject’s

data can be evaluated with regards to that subject or

group.

In a machine learning context, tensor factorisation

allows the training of classifiers that operate on the pro-

jection of a test subject’s data to a subset of the modes.

It is clear from Tables 1 and 2 that different components

of the frequency and temporal modes obtain different

classification accuracies. A typical application would be

to evaluate the discriminatory characteristics of a sub-

ject’s data with respect to the modes extracted from a

training group. In our epileptic scalp EEG dataset the

frequency component with the highest and most con-

sistent accuracy was F-1, a very typical IED frequency

profile. By extracting the corresponding values from the

core tensor we observed that the values for IED seg-

ments were much higher than for non-IED segments.

Similarly, in the temporal domain (Table 2) the com-

ponents T-1 to -3 obtained the highest performance.

From Figure 6 we can see that these components ex-

hibit spike like characteristics. Since each subject has

their highest accuracy in one or two of those three, we

can subsequently group the patients according to their

temporal IED profile. Finally, for each view, our algo-

rithm outputs the posterior probability that a segment

is an IED. As seen from Tables 1 and 2 the two highest

average probability views (shown in bold) coincide with

the two highest accuracy views in most cases. That en-

ables the user of such a system, an epilepsy clinician in

this case, to select the views with the highest probabil-

ity in an unsupervised fashion. Although this procedure

does not increase the classification accuracy it is useful

to estimate the important characteristics of the dataset

that is analysed.

Furthermore, for the intracranial dataset, the pro-

posed procedure was able to identify a spatial compo-

nent that could determine the side of the brain that

the target signal occured (see Figure 8). That was done

without using any such information in the algorithm de-

velopment and was a result of the tensor factorisation

method. This has implications for epileptic data detec-

tion where the IEDs display variable locations and more

generally for brain data when they exhibit multimodal

characteristics.

In terms of dimensionality reduction, tensor factori-

sation was able to reduce the features required on the

scalp EEG dataset from 1260 to 64 without any loss in
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average classification accuracy. Similarly, we proposed

an automatic method which rejects components that do

not achieve a significant classification accuracy on the

training set. That way the algorithm achieved similar

accuracy (65.9%) on the test as the original represen-

tation (66%).

7 Conclusions

We developed a combined tensor factorisation and ma-

chine learning framework that allows enhanced analysis

of EEG data. Firstly, a classification methodology was

developed that can facilitate separate processing of the

main factors underlying multiway data. Tensor factori-

sation using the Tucker decomposition model was used

here to extract meaningful features from our multiway

epileptic data. Within that framework it was possible

to compare the contribution of those factors to the final

classification accuracy. As was observed in our epilep-

tic dataset, patients exhibited variable performance for

different underlying factors. Such information is hid-

den when multiway data are not separated into factors.

This can be generalised in the EEG field in cases that

the detection of particular neural processes of a par-

ticular task is desired. Furthermore we proposed two

ways that the dimensionality of the data can be re-

duced an issue which is becoming increasingly impor-

tant for real world applications. Both of these method-

ologies can be extended to the EEG field for a variety

of different datasets and tasks such as brain computer

interfaces. It can also be extended to Big Data appli-

cations as well and can reduce the distributed load in

large scale systems [7].
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Table 1 Classification accuracy for scalp data (%) when no tensor factorisation is performed denoted as ‘benchmark’, and
when each of the 6 components of the frequency mode are evaluated separately (F-1 to -6). The classification accuracy is
evaluated with the subject-independent methodology of Figure 4. In bold, we show the two components that resulted in IED
detections with the highest average posterior probability.

Subject Benchmark F-1 F-2 F-3 F-4 F-5 F-6
1 70 68 38 60 56 63 73
2 79 77 70 65 55 62 69
3 60 62 54 61 50 53 62
4 70 66 62 54 54 49 57
5 61 56 47 50 50 50 59
6 69 68 55 62 59 58 65
7 64 59 53 57 51 53 60
8 59 58 52 52 50 49 56
9 67 64 52 60 53 52 56
10 79 73 60 70 61 63 75
11 61 58 57 56 52 52 53
12 72 69 67 56 53 51 57
13 66 65 55 56 56 53 60
14 59 58 59 57 52 51 54
15 45 49 47 50 52 55 45
16 73 73 62 54 54 53 57
17 70 73 62 55 58 53 57
18 64 61 52 51 58 52 56

Table 2 Classification accuracy for scalp data (%) when no tensor factorisation is performed denoted as ‘benchmark’, and
when each of the 6 components of the temporal mode are evaluated separately (T-1 to -6). The classification accuracy is
evaluated with the subject-independent methodology of Figure 4. In bold, we show the two components that resulted in IED
detections with the highest average posterior probability.

Subject Benchmark T-1 T-2 T-3 T-4 T-5 T-6
1 70 43 70 67 55 59 53
2 79 66 76 76 59 63 56
3 60 48 59 55 57 53 52
4 70 65 56 60 45 54 49
5 61 56 52 57 50 51 52
6 69 51 67 67 49 57 54
7 64 58 55 61 51 56 48
8 59 60 52 54 47 51 46
9 67 56 62 62 52 57 55
10 79 51 75 77 57 69 57
11 61 60 56 56 50 51 52
12 72 67 68 53 58 48 56
13 66 50 59 64 45 58 48
14 59 56 56 54 50 54 50
15 45 50 47 49 51 48 53
16 73 58 65 59 51 56 50
17 70 62 64 59 48 58 54
18 64 59 52 57 50 55 55
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Table 3 Within subject classification accuracy of the six components of the spatial mode (S-1 to -6) for scalp data. Rejected
components for each subject are shown in bold according to a 99% confidence level criterion. The significance level is different
for each subject since the number of trials is different.

Subject Benchmark Reduced S-1 S-2 S-3 S-4 S-5 S-6
1 80 83 81 65 55 64 62 58
2 83 86 78 57 60 68 64 59
3 59 62 62 57 48 59 51 50
4 73 73 73 56 50 58 58 53
5 55 63 63 52 55 59 50 53
6 74 76 74 61 57 55 53 57
7 60 63 60 56 54 53 53 56
8 65 64 65 57 53 54 50 51
9 70 68 66 56 60 55 58 58
10 82 82 84 61 69 64 59 53
11 63 63 62 52 60 51 52 55
12 74 74 73 61 57 55 61 61
13 72 72 69 56 55 64 59 56
14 59 59 59 53 49 54 54 50
15 48 56 50 51 54 51 50 56
16 77 77 77 58 55 53 52 61
17 75 74 75 53 54 61 55 56
18 62 65 64 56 56 59 60 56

mean 68.4 70 68.6 56.6 55.6 57.6 55.6 55.5


