J Sign Process Syst (2018) 90:913-929
DOI 10.1007/s11265-017-1267-1

P N
@ CrossMark

Image Processing Units on Ultra-low-cost Embedded
Hardware: Algorithmic Optimizations for Real-time

Performance

Suraj Nair! - Nikhil Somani! - Artur Grunau? - Emmanuel Dean-Leon? - Alois Knoll?

Received: 18 August 2016 / Revised: 17 March 2017 / Accepted: 12 July 2017 / Published online: 1 August 2017

© Springer Science+Business Media, LLC 2017

Abstract The design and development of image processing
units (IPUs) has traditionally involved trade-offs between
cost, real-time properties, portability, and ease of program-
ming. A standard PC can be turned into an IPU relatively
easily with the help of readily available computer vision
libraries, but the end result will not be portable, and may
be costly. Similarly, one can use field programmable gate
arrays (FPGAs) as the base for an IPU, but they are expen-
sive and require hardware-level programming. Finally, gen-
eral purpose embedded hardware tends to be under-powered
and difficult to develop for due to poor support for run-
ning advanced software. In recent years a new option has
surfaced: single-board computers (SBCs). These generally
inexpensive embedded devices would be attractive as a plat-
form on which to develop IPUs due to their inherent porta-
bility and good compatibility with existing computer vision
(CV) software. However, whether their performance is suf-
ficient for real-time image processing has thus far remained
an open question. Most SBCs (especially the ultra-low-cost
ones which we target) do not offer CUDA/OpenCL support
which makes it difficult to port GPU-based CV applica-
tions. In order to utilize the full power of the SBCs, their
GPUs need to be used. In our attempts at doing this, we have
observed that the CV algorithms which an IPU uses have to
be re-designed according to the OpenGL support available

P4 Suraj Nair
suraj.nair @ tum-create.edu.sg

' TUMCREATE, Singapore, Singapore

Technische Universitdt Miinchen, Miinchen, Germany

on these devices. This work presents a framework where a
selection of CV algorithms have been designed in a way that
they optimize performance on SBCs while still maintaining
portability across devices which offer OpenGL ES 2.0 sup-
port. Furthermore, this paper demonstrates an IPU based on
a representative SBC (namely the Raspberry Pi) along with
two CV applications backed by it. The robustness of the
applications as well as the performance of the IPU are eval-
uated to show that SPCs can be used to build IPUs capable
of producing accurate data in real time. This opens the pos-
sibilities of large scale economically deployment of vision
system especially in remote and barren lands. Finally, the
software developed as a part of this work has been released
open source.

Keywords Embedded vision - Image processing units -
Human tracking

1 Introduction

The term image processing unit (IPU) lacks a formal defi-
nition in computer vision (CV) literature. It has been used
only in a generic sense to describe components carrying
out image processing tasks: a camera developed for space-
crafts [1], image compression [2], or a multimedia processor
accelerating image transformations in hardware [3].

We propose that an image processing unit be defined as
a device that combines the following functions:

— image acquisition, for instance from an attached camera
— 1image processing for obtaining high-level information
required by a specific CV application

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-017-1267-1&domain=pdf
mailto:suraj.nair@tum-create.edu.sg

914

J Sign Process Syst (2018) 90:913-929

— remote access to processed image data and extracted
image characteristics

Consequently, IPUs are closely related to smart cameras.
Every smart camera has an embedded IPU at its core, and
adds a layer of CV logic on top of it. An IPU, however,
does not have to be an embedded device, and is not an
active system that generates events or makes decisions on
its own [4]. Both PC-based and embedded IPUs find appli-
cations in industrially-relevant areas: machine vision, video
surveillance, and human-computer interfaces. Improving
their performance [5], and reducing their cost [6] and power
consumption [7] has been a research focus.

Current-generation [PUs are either specially-
programmed heterogeneous embedded systems combining
field-programmable gate arrays (FPGAs), digital signal
processors (DSPs) and microprocessors; or PCs running
CV software, frequently accelerated by exploiting general-
purpose computing on graphics processing units (GPGPU)
techniques. The former are employed when portability is
paramount, the latter when ease of programming is the
primary concern.

Despite continuing improvements, IPU development has
always been an exercise in trade-offs. Compact IPUs are
difficult to program since widely available CV software
does not run on FPGAs or DSPs, which instead must
be programmed using such low-level languages as VHDL
and assembly. At the same time, PC-based IPUs are too
unwieldy for many applications. Moreover, the need for pro-
cessing to have real-time performance effectively precludes
the use of inexpensive hardware.

Nevertheless, ongoing developments in the single-board
computer (SBC) space have the potential to disrupt estab-
lished TPU design and development practices. The SBC
market has seen rapid growth in recent years due to the
release of the Raspberry Pi,! a $35 computer (Fig. 1).
As hardware specifications and software compatibility of
SBCs improved, so did their feasibility for computer vision
applications.

Currently, SBCs are a platform that promises to offer the
best of two worlds: the ease of programming of PCs, and
the small footprint of FPGAs and DSPs. Consequently, they
would be perfectly poised for development of portable, low-
cost IPUs if it were not for their performance. Unfortunately,
while existing CV software can often be ported to run on
modern SBCs, their CPUs are not fast enough to achieve
real-time processing.

Luckily, modern SBCs are composed of not only a CPU,
but also many auxiliary multimedia processors, including
a graphics processing unit (GPU). As a result, selected
GPGPU techniques could be used to offload certain kinds

"http://www.raspberrypi.org/

@ Springer

Figure 1 Raspberry Pi Model B. Photograph by Jwrodgers (CC BY-
SA).

of computation onto a GPU — in much the same way as CV
applications are optimised to run on mobile devices [8] —
considerably improving the image processing performance
of SBCs.

Given all of the above facts, it should be clear that the
process of developing IPUs could be simplified and stream-
lined. The use of SBCs for this purpose holds a lot of
promise, even though the adequacy of their performance
remains an open question. Constant progress in this area
has thus far not prompted the CV community to build a
real-time, SBC-based IPU, mainly due to the fact that stan-
dard CV algorithms would have to be adapted to run on it
efficiently. In addition one can observe that although pop-
ular SBCs like the Raspbery Pi have evolved in terms of
CPU power, the GPU architecture still remains unchanged.
This fact reiterates the necessity of CV algorithms which are
reengineered and optimised for low cost SBCs.

Consequently, in this paper we demonstrate that SBC-
based IPUs are feasible by implementing and evaluating an
IPU based on the Raspberry Pi along with two example
CV applications that use it to extract high-level information
from camera images.

We selected the Raspberry Pi (Model B) for this task
because it can be considered representative of existing SBCs
performance- and capability-wise. However, there are good
reasons why one might prefer it for development over sim-
ilar or more powerful computers. For example, at $35 the
Raspberry Pi is one of the cheapest SBCs available today,
and its performance/price ratio is unrivalled.

More importantly, however, the Raspberry Pi has —
partly because its main focus is on education — by far
the biggest and most thriving community of all SBCs. The
advantages of this should not be underestimated: software
support is first-class, one can easily find an answer to vir-
tually any question regarding the computer, and there are
countless projects pushing the Raspberry Pi to its limits.

At the core of the Raspberry Pi (Model B) is the Broad-
com BCM2835 system on a chip (SoC) which consists of
an ARM1176JZF-S 700 MHz processor, a VideoCore IV

http://www.raspberrypi.org/

J Sign Process Syst (2018) 90:913-929

915

GPU, and 512 MB of RAM. Due to its low frequency, and
the fact that it only has a single core, the CPU’s performance
is not good enough to achieve real-time processing in CV
applications without delegating some of the work to other
processing units. Fortunately, the VideoCore IV GPU sup-
ports OpenGL ES 2.0, which allows the Raspberry Pi to use
its GPU for general-purpose computation by framing image
processing algorithms as rendering operations.

2 Related Work

The shortcomings of current approaches to IPU develop-
ment are widely acknowledged, and there have been several
attempts to improve selected aspects of the situation. For
instance, [9] introduced a new high-level methodology for
implementing vision applications on smart camera plat-
forms. It proposed a holistic approach to designing and
programming heterogenous embedded IPUs that results in a
simpler development process.

An FPGA-based IPU built using commercial off-the-shelf
components was described in [1]. Its design indicates that
it is possible to create “small, low-cost, high-performance”
IPUs, although they still have to be programmed using
various low-level languages.

Several specialised CV systems integrating SBCs in
some capacity have appeared in recent years. For example,
[10] describes a project in which a stereo vision applica-
tion for small water vehicles was developed by combining
a Raspberry Pi with a PC-104 unit. All image processing
was done on the SBC using the OpenCV library. Sadly, due
to the fact that only the CPU was utilised, the application
operated at a rather low framerate of 2-3 frames per second
(FPS).

Similarly, [11] outlines an embedded IPU developed to
provide visual odometry and localization of moving objects
for unmanned aerial vehicles. It ran feature detection and
parameter estimation algorithms on an overclocked Rasp-
berry Pi. Although implementation details of the system
were not divulged, it is known that it processed captured
camera images at approximately 1 FPS.

Finally, there have been successful attempts to acceler-
ate augmented reality applications on smart phones using
GPGPU techniques. For instance, [12] compared 2 imple-
mentations of the SURF local feature detector: the one
that ships with the OpenCV library, and a custom version
designed to run on low-power GPUs and written in OpenGL
ES GLSL. A range of mobile devices was used to bench-
mark the 2 implementations, and the results showed that the
GPU version was up to 14 x faster.

There was also a related project, documented in [13], that
dealt with creating panoramic images in real-time on mobile
devices. It used the FAST corner detector for feature point

extraction, and a motion model to track camera orientation.
The use of OpenGL shaders in the project’s implementation
allowed it to process high-resolution images (2048px x512px)
at 20 FPS on a Samsung Galaxy S2.

Considering the state of the art, the primary contribution
of this work is twofold. First of all, we demonstrate how
CV algorithms can be adapted to run on SBCs to achieve
real-time performance, thus making SBC-based IPUs feasi-
ble. Second, we describe how multiple networked IPUs can
be used to carry out computation in parallel, which further
improves the performance of CV systems.

3 Algorithm Adaptation Strategies

Having selected the Raspberry Pi to be the SBC on which
the 2 test applications would run, we needed to decide what
techniques to use to implement the required CV algorithms.
The approach outlined in this section tried to balance good
performance with ease of programming.

Non-critical algorithm fragments, such as pre- and post-
processing of small amounts of data, could be allowed to
execute on the CPU. We decided to use OpenCYV, the well-
known open source library of CV functions, for selected
small tasks. Although it lacked hardware acceleration on the
Raspberry P4, it did not introduce any bottlenecks due to the
limited amount of work it was given.

Most image processing operations, however, had to be
optimised in order to get satisfactory performance. In such
cases OpenGL ES 2.0, or more specifically its shading lan-
guage, GLSL, can be used to send data to be processed on
the Raspberry Pi’s GPU.

3.1 OpenGL ES 2.0 Pipeline

As OpenGL ES 2.0 GLSL’s main purpose is graphics ren-
dering, computer vision algorithms need to be expressed in
terms of drawing 3D shapes and manipulating the result-
ing pixels. Fortunately, the problem of accelerating image
processing algorithms using OpenGL is well understood
and solutions have been described [14—17]. Consequently,
this section only briefly describes how OpenGL-based
GPGPU works.

The rendering process of OpenGL ES 2.0 consists of
many stages, as illustrated on Fig. 2. When a draw call is
issued, every vertex to be rendered first goes through a ver-
tex shader. There its properties, such as position and colour,
may be modified. Next vertices are assembled into primi-
tives (e.g. lines or triangles). The visibility of the resulting
shapes is then tested and they are culled or cropped if they
lie outside of the viewport.

Subsequently, remaining primitives are rasterised, i.e.
turned into fragments which may eventually become pixels.

@ Springer

916

J Sign Process Syst (2018) 90:913-929

Figure 2 Processing pipeline of

OpenGL ES 2.0. Programmable
stages have a blue background.

o

Vertex
Shader

Primitive
Culling &

:}44%>[:Primitive
A bl
ssemby Clipping

O, Framebuffer
Operations

Fragments are first processed by a fragment shader which
either decides their final colour, or discards them. Additional
specialised per-fragment operations may further reduce the
number of fragments that become visible. Finally, fragments
reach a framebuffer where they either replace or are blended
with its existing contents to become pixels.

Two of the stages mentioned above are programmable:
vertex shading and fragment shading. They execute cus-
tom code to carry out their functions. As a result, they can
be used for many kinds of calculations unrelated to graph-
ics rendering, provided it is possible to formulate those
calculations in terms of vertex and fragment processing.

One of the first things that need to be established when
implementing algorithms in OpenGL ES 2.0 GLSL is how
data that needs to be processed will be uploaded onto the
GPU. Shaders have access to various sources of data, all of
which are shown on Fig. 3.

Each data source has distinct characteristics and is suit-
able for storing and providing different types of data. Every
vertex processed by a vertex shader has a set of vertex
attributes associated with it. They store properties such as
position or colour that usually need to change per vertex.
For each vertex it processes, the vertex shader may gener-
ate varying variables that are propagated by interpolation to
all fragments of the primitive to which the vertex belongs.
This is the only way to share data between a vertex and a
fragment shader.

Textures and uniform variables are accessible from both
vertex and fragment shaders. Textures are 2D arrays that can
be used to store large amounts of data, e.g. per-fragment
properties. Uniform variables, on the other hand, contain

IIIIHH!IIIEEIII
Vertex Vertex Varying Fragment
Attributes Shader Variables Shader
Uniform
Variables

Figure 3 Data sources accessible to OpenGL ES 2.0 vertex and
fragment shaders.

@ Springer

Rasterisation

Per-Fragment Fragment
Operations Shader

arguments that can change at most once per rendering call.
As a result, they are often used to parameterise algorithm
runs.

Finding the right way of expressing CV algorithms using
vertex and fragment shaders, and feeding them data to be
processed, is key to exploiting GPUs to improve computing
performance. The sections that follow will describe how the
algorithms needed by the test applications were adapted to
offload most of their work onto the Raspberry Pi’s GPU by
utilising OpenGL ES 2.0.

4 Algorithm Adaptation Challenges

While implementing the required CV algorithms, we
encountered several limitations of the Raspberry Pi that
complicated the development to various degrees. Some of
them can be attributed to the embedded nature of the Rasp-
berry Pi, whereas others are a direct result of its low
cost. What is more, they could be roughly divided into
2 categories: limitations related to OpenGL ES 2.0, and
challenges associated with compilation and debugging.

As an example of an OpenGL ES 2.0-related limita-
tion, the VideoCore IV GPU provides only 8 texture units.
As they are the only location where large amounts of data
can be stored, the number of data batches—such as camera
frames—that can be processed togethes is rather low. This
precludes the use of the GPU in certain types of background
modelling, e.g. 1-G and Gaussian mixture models.

Moreover, the overall number of texture accesses in a sin-
gle shader execution cannot exceed 64. This limit is further
decreased proportionally to the shader’s number of instruc-
tions, i.e. the more complex a shader is, the fewer texels it
can access. As a result, reduction algorithms can only oper-
ate on texel blocks sized up to 8 x8, which becomes 4x4 in
practice. This usually results only in lower performance, but
certain histogram generation algorithms need to be able to
reduce blocks the size of a histogram, which makes it impos-
sible to create histograms with more than a dozen buckets
using such methods on the Raspberry Pi.

Another limitation of the OpenGL ES 2.0 implementa-
tion available on VideoCore IV is the fact that the only
way to return data from the GPU’s programmable units
is to render into a single output texture. Consequently, a

J Sign Process Syst (2018) 90:913-929

917

vertex shader cannot return values directly: instead, it must
forward its results through a fragment shader. On top of
that, all data returned from a fragment shader must fit into 1
texel. This makes some calculations more difficult to imple-
ment in GLSL than they should be because dummy frag-
ment shaders and multiple rendering passes are needed to
produce results.

Finally, the above problem is exacerbated by the lack
of floating-point textures on the Raspberry Pi. As a result,
texels are restricted to storing single-byte values. While
floating-point data can still be uploaded onto the GPU using
vertex attributes, without floating-point textures it is only
possible to return small-range integers from OpenGL ES
2.0. This reduces arithmetic precision to levels at which sta-
tistical computation — which could be used in background
modelling — is unfeasible.

Challenges associated with compilation arise from the
Raspberry Pi’s relatively slow CPU. Developing directly on
the SBC becomes impractical before long due to the fact that
it takes several seconds to compile and link even the sim-
plest programs. Building more complex applications, such
as OpenCV, can easily take many hours. Cross-compilation
is therefore of special importance when developing for the
Raspberry Pi: it is the only way to avoid lengthy build cycles
and get feedback quickly when writing software.

Debugging is another area where the Raspberry Pi
doesn’t offer the best experience. Some useful diagnostic
tools, such as Valgrind, do not work on the SBC at all. Oth-
ers, such as the GNU Debugger, are very slow and require
special configuration to work around certain quirks of the
Raspberry Pi. All in all, debugging applications developed
for the SBC is much more cumbersome than it would be on
aPC.

5 Examples of Adaptated Algorithms
5.1 Colour Space Conversion

Colour space conversion is the primary building block of
all other image processing algorithms discussed in this
chapter. Due to the fact that it is a simple image trans-
formation, it lends itself to straightforward implementation
using OpenGL ES 2.0. For this work, shaders converting
between the following colour spaces were written: RGB,
YUYV, YCoCg, and HSV.

The input to the algorithm is a texture containing raw data
from a captured video frame and a uniform variable specify-
ing what conversion to execute. The output is a texture of the
same frame in a different colour space. Each input texture
element (texel) can be mapped independently and in paral-
lel using a selected conversion function. Such processing is
best done by creating a fragment for every input texel and
pushing it through a fragment shader that performs specific
colour transformation.

A common technique to generate a set of fragments that
cover a whole texture is to simply draw a full-screen rect-
angle the size of the texture. It will then be automatically
broken up into the necessary fragments in the rasterisation
process.

The functions used to transform texel colours are uni-
versally simple, sometimes to the point of requiring only
a single matrix multiplication. Listing 1 shows an example
fragment shader defining and using such a function.

5.2 Colour Thresholding

Colour thresholding is used extensively by the simple smart
camera test application (see Section 6.1). It builds on colour

Listing 1 Fragment shader
converting from the RGB to the
YUV colour space.

uniform sampler2D texture;
varying vec2 textureCoordinates;

const mat3 rgb2yuvMatrix = mat3(

0.299, 0.587, 0.114,
-0.14713, -0.28886, 0.436,
0.615, -0.51499, -0.10001

)

vec3 rgb2yuv(in vec3 rgbColor) {
return rgb2yuvMatrix * rgbColor;

}

void main(void) {
vecd color = texture2D(texture,

vec3 yuvColor

gl_FragColor =

}

textureCoordinates);
rgb2yuv (color.rgb);

vec4 (yuvColor, 1);

@ Springer

918

J Sign Process Syst (2018) 90:913-929

space conversion: thresholding is done in the HSV colour
space. The algorithm is another example of an image trans-
formation, and as a result can be expressed in OpenGL ES
2.0 without difficulty.

The algorithm takes as input a texture containing HSV
data from a captured video frame and two uniform variables
specifying the lower and upper thresholds for the Hue, the
Saturation, and the Value channels, respectively. In the case
of colour thresholding, processing follows the same pattern
as with colour space conversion: a particle is created for
every input texel, and a fragment shader decides how to
transform it.

The fragment shader used to threshold captured video
frames is shown on Listing 2. It works by comparing each
texel’s HSV colour to a given lower and upper threshold.
The texel is then kept as is if its colour lies between the 2
thresholds, or discarded — leaving transparent background
it its place — if it does not.

5.3 Background Subtraction

Background subtraction is an image transformation algo-
rithm that analyses all pixels of an image to determine which
ones belong to the background and should be discarded.
As a result, it can be expressed in OpenGL ES 2.0 quite
naturally. The specific algorithm we implemented was 1-G
background subtraction [18].

1-G background subtraction first of all needs to build
a background model that describes — using one Gaussian
per texel’s channel — change characteristics of the back-
ground. This model is created before processing starts by
capturing several frames containing no foreground objects

Figure 4 Captured video frame before and after background
subtraction.

and finding, for every channel at each texel coordinate, a
normal distribution that best fits the channel’s values at
that coordinate across all captured frames. This background
model generation is executed on the CPU; the GPU is not
involved due to its limitations described in the previous
section (Fig. 4).

The Gaussians that model background for the purpose of
1-G background subtraction have their parameters estimated
using the maximum likelihood method. Background model
generation and subsequent background subtraction operate
on texels whose values are represented in the YCoCg colour
space. This choice of colour space results in changes in
luminance and chromaticity being considered separately,
which in turn makes background subtraction more robust.

Once a background model has been created, it is serialised
into 2 textures: one storing the means of all Gaussians, one

Listing 2 Fragment shader
filtering out fragments whose
colour lies outside a specified
threshold.

uniform sampler2D texture;
varying vec2 textureCoordinates;

uniform vec3 lowerHsvThreshold;
uniform vec3 upperHsvThreshold;

void main(void) {

vec3 hsvColor

bvec3 lowerThreshold

bvec3 upperThreshold

texture2D (texture,
textureCoordinates).xyz;
bvec3(step(lowerHsvThreshold,
hsvColor));
bvec3(step (hsvColor,
upperHsvThreshold));

if (all(lowerThreshold) && all(upperThreshold))

gl_FragColor

else
discard;

vec4 (color, 1.0);

@ Springer

J Sign Process Syst (2018) 90:913-929

919

containing their variances. They become, together with a
texture containing YCoCg data from a video frame to be
processed, input to the background subtraction process. To
execute it, the standard technique of creating a particle for
every input texel, and letting a fragment shader transform it,
is used.

The function that classifies texels as foreground or back-
ground bases its decisions on their deviation from the
background model. For each fragment, all channels of the
corresponding texel are compared with the mean values
stored in the background model at the texel’s coordinates.
If the channel’s values lie within 3 standard deviations —
as recorded in the second texture of the background model
— of their associated mean values, the texel is considered
background and discarded. Otherwise, it is output without
modification as foreground.

5.4 Occlusion Testing

When a test application is tracking multiple targets, it must
be able to detect when they start occluding each other in, or
leaving the field of view of, any camera used. This informa-
tion is needed for the application to know which cameras
cannot see certain objects, and should not be relied upon
when tracking those objects.

Occlusion testing is relatively easy to implement on the
GPU due to the fact that the functionality is often used
in computer graphics and is therefore available as part of
OpenGL ES 2.0. To exploit it one only needs to pre-process
their input data before passing it to OpenGL ES 2.0, and
then post-process results retrieved from the GPU.

The occlusion testing algorithm implemented as part of
this work takes only 1 input: a set of vertex attributes spec-
ifying the locations of all currently tracked targets. The
algorithm’s output is a list of floating-point numbers that
contains an entry for each target indicating its visibility
percentage.

The algorithm’s operation involves 2 steps. To begin
with, a destination texture the size of a camera frame is
created. Next, each target’s pose is projected onto that tex-
ture as a filled polygon of a different colour. At this point,
OpenGL ES 2.0 automatically calculates each polygon’s
distance from the camera, and uses a technique called depth
buffering to ensure that polygons closer to the camera are
drawn on top of those farther away.

Finally, the resulting texture is fetched from the GPU,
and the number of texels of each colour is counted. Each
obtained count is then associated with a target based on their
common colour, and divided by the number of pixels the
target’s pose was expected to generate. This step produces
a list of target visibility percentages, which the algorithm
subsequently returns (Fig. 5).

Target visibility:

. 100%
[l 100%
B 0%
B sox%

Figure 5 Target poses are drawn in order of their distance from the
camera (left); next, the percentage of visible pixels is computed for
each pose (right).

5.5 Foreground Coverage

Foreground coverage computation is a typical example of a
reduction algorithm. As a result, there exist best practices
[19, 20] that can be applied to implement it using OpenGL
ES 2.0. At its most basic, the algorithm requires 2 inputs:
an RGB foreground texture, and a set of vertex attributes
specifying the location of a scan grid cell whose foreground
coverage is to be computed. The output of the algorithm is,
unlike all previously discussed algorithms, a single number
derived from all relevant input texels. As a result, determin-
ing foreground coverage is considerably more complex than
the simple image transformation analysed so far.

Here the foreground coverage of a 3D Polygon (scan
grid cell) projected on a 2D surface is computed. The spe-
cific method used to compute foreground coverage of a scan
grid cell involves several steps. First of all, the inputs need
to be combined and pre-processed to make them ready for
reduction. This is achieved by projecting the cell onto the
foreground texture, cutting out the resulting 2D polygon,
and colour-coding the polygon’s area and any foreground
texels it contains using red and green, respectively. Figure 6
illustrates the transformation.

Next, the pre-processed texture undergoes reduction
based on a pyramid approach [19]. To begin with, it is
divided into square blocks of 16 texels. Next, a fragment
is generated for every block by drawing a fullscreen rect-
angle that is 1/16th the size of the texture. Each fragment
is then processed by a shader that averages the colour val-
ues (red and green) of its corresponding texels to produce
a new texel. Finally, all values returned from the fragment
shader are collected into a temporary texture that is 16 times
smaller than the pre-processed texture. The whole process
is visualised on Fig. 7.

The reduction operation is repeated several times, with
each temporary result texture becoming the input of

@ Springer

920

J Sign Process Syst (2018) 90:913-929

Figure 6 Foreground texture with a scan grid cell marked (left) is
pre-processed to prepare it for reduction (right).

the next iteration. Eventually, the original texture (sized
640px x480px) is turned into an average texture small
enough (40px x30px) to be post-processed on the CPU. At
that point, the last result texture’s data is fetched from the
GPU into a pixel array. The colour values of the retrieved
pixels are subsequently averaged to produce a single mean
pixel. Figure 8 shows the individual reduction steps.

Due to the way colour channels were assigned at the
pre-processing stage, the value of the red channel of the
computed mean pixel can be interpreted as the percentage
of frame image taken up by the scan grid cell whose fore-
ground coverage is being determined. Similarly, the green
channel’s value is the percentage of frame image filled by
the foreground contained in that cell. If we divide the lat-
ter number by the former one, we will arrive at the fraction
the algorithm is looking for: the foreground coverage of the
grid cell provided for processing.

While the described implementation of the foreground
coverage algorithm exhibits good performance, but would
incur too much overhead if used to process in one run the
hundreds of cells that make up a scan grid: several render-
ing passes followed by a data fetch from the GPU would be
needed per cell.

Figure 7 4 blocks of 16 texels
are reduced to 4 texels by
averaging.

GPU
640 160 40
480 ' 120 ' 30
CPU
M 40
ean
(R, G, B, A) . 30 < Pixel
transfer

Figure 8 Several reduction steps are required to compute the average
colour of a 640px x480px texture.

Fortunately, it is possible to optimise the algorithm to
process scan grid cells in batches. First of all, the fact that
only 2 colour channels are needed to compute foreground
coverage of a single cell can be exploited: data associated
with 2 cells can be stored in one texture at the pre-processing
stage if the blue and the alpha channels are used for the
second cell.

Moreover, as the input texture’s size (640px x480px) is
well below the maximum supported by OpenGL ES 2.0
(2048px x2048px), several pre-processed textures can be
tiled and stored in one big texture sheet for the purpose of
reduction. Benchmarking revealed that using a 4x4 sheet
in this manner gives best results. Combining both optimi-
sations allowed us to process 32 cells at a time, greatly
increasing performance of foreground coverage computa-
tion.

5.6 Histogram Generation

Since histograms find many uses in graphics and CV appli-
cations, and because generating them on the GPU is not
trivial, some research into accelerating histogram gener-
ation using GPGPU techniques has has been carried out

@ Springer

J Sign Process Syst (2018) 90:913-929

921

Figure 9 Colour-thresholded texture with a projected model marked
(left) is pre-processed to prepare it for histogramming (right).

over the years [21-23]. While most presented methods
require Nvidia CUDA, several could be implemented on the
Raspberry Pi using OpenGL ES 2.0.

The histogram computed here is a 2D Joint Probability
Histogram. In our implementation we initially intended to
follow the approach described in [22]. It is based on the idea
of dividing the image to be histogrammed into blocks the
size of the desired histogram, generating local histograms
for those blocks, and combining them using a reduction
technique similar to the one described in Section 5.5.

However, due to the problems mentioned in Section 4,
the approach introduced in [23] was taken in the end. The
inputs of the resulting algorithm, in its standard version, are:
an HSV foreground or thresholded texture, and a set of ver-
tex attributes specifying the pose of the object model whose
projected region histogram is to be computed. The output
of the algorithm is, unlike all previously discussed algo-
rithms, a 2D array of floating-point numbers representing
the generated histogram.

The algorithm consists of a number of steps. First of
all, the inputs need to be combined and pre-processed.
This is achieved by projecting the object model whose pro-
jected/warped region histogram is being generated onto the
input texture, cutting out the resulting 2D polygon, and
removing all channels apart from hue and saturation from
the created texture. Figure 9 illustrates the transformation.

Next, an output texture in which a histogram will be
stored on the GPU is set up. It has the same size as the his-
togram, i.e. 10x 10 in our case. Each of its texels is treated
as a histogram bucket: its initial value of 0 gets incremented
by 1 for every fragment rendered into it.

Afterwards, a set of points covering the the pre-processed
texture are drawn. A special vertex shader is then used to
transform them: it selects a bucket in the output texture for
each point based on the the hue and the saturation of its
corresponding texel from the pre-processed texture. Raster-
isation turns these points into fragments that increment the
values of their assigned buckets in the output texture. This
main stage of the algorithm is illustrated on Fig. 10.

Finally, the output texture is fetched from the GPU,
and turned into a 2D array of floating-point numbers that
represent the normalised result histogram.

As was the case with foreground coverage computa-
tion, the described implementation of histogram generation
exhibits good performance, but would incur too much over-
head if used to process in one run the tens of projected
models regions produced by algorithms such as particle fil-
ters [24] on each iteration: several rendering passes followed
by a data fetch from the GPU would be needed per par-
ticle. Fortunately, the technique described in the previous
subsection can be used to process particles in batches.

6 Experiments and Evaluation

We developed an IPU based on the Raspberry Pi run-
ning the described algorithms, and evaluated them through

Figure 10 Rendered points are
assigned to histogram buckets,
and rasterised into fragments to
increment their values.

l

saturation

— 5

v

hue

@ Springer

922

J Sign Process Syst (2018) 90:913-929

experiments conducted on 2 CV applications dealing
with detection and tracking. The two applications oper-
ated in dissimilar environments under distinct assump-
tions, and dealt with different types of targets (inanimate
objects versus humans). The experiments were performed
both on synthetic video streams aswell as ones from a
multi camera setup in a real environment. Synthetic data
was used to facilitate zero error ground truth for eval-
uating the accuracy of the tracking. Poisson noise was
added to synthetic data in order to recreate camera noise.
A snapshot from the synthetic and real world experi-
mental setup for the two applications is illustrated in
Fig. 11.

The algorithms in the test applications were based on
the work in [25] and were effectively re-engineered and
optimised for the IPU architecture. Their adapted imple-
mentations, simplified to adjust them for our use cases, are
briefly discussed in this section.

Trackers in both test applications are built around simi-
lar colour-based particle filters. However, while in the first
simple smart camera application 2D positions and scales of
targets were tracked, the second test application’s tracker
handled 3D target locations. Still, the particle filter imple-
mentations used in the two cases were modeled on the
same systems, described in [26] and [24], and are discussed
together in the following paragraphs.

To generate a new set of particles — representing
hypotheses about a target’s location — in every iteration
of tracking, each particle filter used by the 2 test appli-
cations employed a simple prediction model which added
white Gaussian noise to a re-sampled set of particles from
the previous iteration. Next, histograms of the new particles
were obtained by executing the histogram generation algo-
rithm described in Section 5.6. Each particle’s histogram
was then compared with the reference histogram of the
tracked target, and their Bhattacharyya distance B [27] was
computed. Finally, particle likelihoods were evaluated under
a Gaussian model in the overall residual:

P(sl) = exp(—1B?)

(a)

(b)

where s/ is the ith particle in the th iteration, and A
corresponds to the covariance.

Once particle likelihoods were available, the particle
filter assigned weights to the particles based on their likeli-
hoods. The estimated target pose was then computed as the
weighted average of all particles:

5 = E S,
i

where w§ is the weight of the ith particle in the ¢th iteration.
After every iteration, the particle set was deterministi-
cally re-sampled to maintain a good distribution of particles.
The initial set of particles was derived from the target’s
detection pose.
The following subsection provide discussion on the two
applications and their evaluation results:

6.1 Single IPU Based Detection and Tracking

This application involved a standalone camera based IPU
running tracking and detection algorithms. It was imple-
mented to determine whether a single SBC could pro-
cess camera images, and run high-level algorithms on the
extracted data simultaneously. The detector used by the sim-
ple smart camera application performed contour detection
on a colour-thresholded image. If a large enough contour
was found, the detector instantiated a tracker for it and
switched the application into tracking state.

The data set used to evaluate was an animation of a ball
moving against a vibrant, static background. It was pro-
grammatically generated and consisted of 660 frames sized
640px x480px. As the data set was computer generated,
zero-error ground truth for it was known.

A video showing the application being executed on a live
camera is attached and also available online http://youtu.be/
kwmSKxxhAsg. The evaluation video showing the applica-
tion running on the benchmarking sequence is attached and
also available online http://youtu.be/CZyW8a5zezw.

The application was executed on the animation data set
and the tracked target positions it generated were recorded.

Figure 11 Overview of developed applications: a Tracking a ball in 2D. Tracking multiple people in 3D using 4 cameras over b synthetic and

c real sequences.

@ Springer

http://youtu.be/kwmSKxxhAsg
http://youtu.be/kwmSKxxhAsg
http://youtu.be/CZyW8a5zezw

J Sign Process Syst (2018) 90:913-929

923

Table 1 Mean and mean absolute tracking error observed when the
application was executed on the animation data set.

Target property Mean error Mean absolute error

(standard deviation) (standard deviation)

X coordinate 0.4px (5.6px)
1.3px (4.8px)

—0.002 (0.027)

4.4px (3.4px)
3.9px (3.1px)
0.021 (0.017)

Y coordinate
Scale

Next, they were compared to the ground truth to calcu-
late position and scale tracking errors. The mean and mean
absolute tracking error observed are listed in Table 1.

The size of the ball tracked by the application was
128pxx 122px. Taking that into consideration, the mean
absolute tracking error along the X and the Y axes was
less than 5% of the target size. Performance measurements
showed that the IPU took less than 100ms (usually around
50ms) to process a single frame.

6.2 Multiple Human Tracking Using Distributed IPUs

This application deals with detection and tracking of
humans using multiple cameras. It involves 4 IPUs con-
nected to a master node that requests high-level image
information from them and applies detection and tracking
algorithms to it. This scenario was designed to test how
well SBC-based IPUs perform in distributed environments,
where they act as data pre-processing modules for external
processing nodes. The real environment consisted of 5x5
meter area observed using a 4 camera setup. Within this
area, 3 humans move in close proximity to each other. The
animated sequence was generated using Blender? modeling
an environment with 5 targets from the perspective of 4 cam-
eras located in different corners of the lab. It consisted of
900 frames (sized 752pxx480px) per camera. As the data
set was computer generated, zero-error ground truth for it
was known.

This application performed detection and tracking in 3D.
The detector included more logic. It was connected to 4
IPUs, and asked them to execute—on the same scan area—
the foreground coverage algorithm described earlier. It then
iterated through all cells of the scan area, and if any had
foreground coverage above 70% on at least 3 IPUs, it was
considered a potential location of a human target. Next,
the detector filtered out those potential targets which were
occluded on some of the IPUs that reported high fore-
ground coverage for them. Finally, a tracker was instantiated
for each target that passed that test. A master node then
combined and ran detection and tracking algorithms on
high-level image information received from the 4 IPUs to

Zhttp://www.blender.org

decide whether any human-sized objects were visible, locate
them, and track their changing positions in real time as long
as they stayed in view.

A video showing the application being executed in the
real environment is attached and can be found online
http://youtu.be/4ZxP4nR 1r81. In addition, a video show-
ing results from the animated sequence used for bench-
marking is attached and available online http://youtu.be/
NSTznYNcrlY.

Contrary to the previous one this application was evalu-
ated with greater detail. The individual aspects are discussed
below:

— Data Sets: Two data sets, originating from [28], were
used to evaluate the application. The first one was a
video sequence generated using Blender, modeling a
lab environment with 5 targets from the perspective of
4 cameras located in different corners of the lab. It
consisted of 900 frames (sized 752px x480px) per cam-
era. As the data set was computer generated, zero-error
ground truth for it was known. A video showing the
application being executed with the data set is available
on line [29]. The second data set was a video recording
of a real-world lab environment from the perspective
of 4 cameras located in different corners of the lab.
It consisted of 2700 frames (sized 752pxx480px) per
camera. 3 targets appeared in the data set, however no
ground truth was available to evaluate how well they
were tracked.

— Tracking Accuracy: First of all, the application was
run with different configurations of the particle filter
to decide how many particles to use for target tracking
with the first data set. In each run the the length of every
target’s first path tracked after detection was recorded.
Figure 12 shows how the observed lengths change in
relation to the number of particles used.

40

T T
Number of particles:
32 o

35 48 o
64 D

30+ 80 I |
96 .

25 - 112 o |

128 mmm
20

15

10

Length of first tracked path (m)

Target

Figure 12 Mean length of the path tracked between a target was
detected for the first time and lost, depending on the target and the
number of particles used for tracking. To obtain these results the appli-
cation was executed on the first data set 5 times for each number of
particles.

@ Springer

http://www.blender.org
http://youtu.be/4ZxP4nR1r8I
http://youtu.be/NSTznYNcr1Y
http://youtu.be/NSTznYNcr1Y

924

J Sign Process Syst (2018) 90:913-929

Target 1 tracking error (X axis)

Target 1 tracking error (Y axis)

400 T T T T T T T T 400 T T T T T T T T
tracking error tracking error
300 | mean error value i 300 b mean error value i
mean +/- stddev mean +/- stddev
- 200 —~ 200 + 4
£ £
= 100 L A | = 100 1
g L h TN i g
] 0 Fj I 1] ‘1 IR ' o 0
2 2
< -100 [~ < -100 q
S S
e e
= -200 - = -200 q
-300 |- ~q -300 ~q
-400 L L L L L L L L L 400 L L L L L L L L L
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
Frame number Frame number
Target 2 tracking error (X axis) Target 2 tracking error (Y axis)
400 T T T T T T T T 400 T T T T T T T T
tracking error tracking error
300 - mean error value i 300 b mean error value i
mean +/- stddev mean +/- stddev mmmm
- 200 q = 200
< 100 i < 100
g I 3
] 0] 0
o o
< c
~ -100 ~q ~ -100
S S
o °
= -200 ~q = -200
-300 | ~q -300 | 4
400 L L L L L L L L L 400 L L L L L L L L L
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
Frame number Frame number
Target 3 tracking error (X axis) Target 3 tracking error (Y axis)
400 T T T T T T T T 400 T T T T T T T T
tracking error tracking error
300 b mean error value i 300 b mean error value i
mean +/- stddev === mean +/- stddev ==
— 200 — 200 4
£ £
5 100 £ 100
= =
2 2
] 0] 0|
o o
c c
~ -100 ~ -100
]]
c e
= -200 = -200
-300 |- ~q -300 |- ~q
400 L L L L L L L L L 400 L L L L L L L L L
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
Frame number Frame number
Target 4 tracking error (X axis) Target 4 tracking error (Y axis)
400 T T T T T T T T 400 T T T T T T T T
tracking error tracking error
300 | mean error value i 300 b mean error value i
mean +/- stddev mean +/- stddev
—~ 200 - ~q - 200
E €
< 100 | N) | 1 & 10
= =
e <
] 0 5] 0}
j=2) j=2)
c c
< -100 ~q < -100
S S
e e
= 200 | B F 200
-300 |- ~q -300 |- ~q
-400 L L L L L L L L L 400 L L L L L L L L L
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
Frame number Frame number
Target 5 tracking error (X axis) Target 5 tracking error (Y axis)
400 T T T T T T T T 400 T T T T T T T T
tracking error tracking error
300 b mean error value i 300 b mean error value i
mean +/- stddev = mean +/- stddev =
= 200 q = 200
E E
T 100 | | ~q T 100
2 2
5] 0] 0|
o o
c c
~ -100 ~ ~ -100
S S
o o
= -200 - ~q = -200
-300 | ~q -300 | ~q
400 L L L L L L L L L 400 L L L L L L L L L
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900

Frame number

Frame number

Figure 13 Tracking error on the x and the y axis for the 5 targets from the first data set. The mean error and its corresponding standard deviation
are also marked on all plots.

@ Springer

J Sign Process Syst (2018) 90:913-929

925

Table 2 Mean and mean absolute tracking error observed when the
application was executed on the first data set.

Target Coordinate ~ Mean error Mean absolute error
(standard deviation) (standard deviation)
1 X 8 mm (76 mm) 59 mm (48 mm)
Y —8 mm (71 mm) 54 mm (46 mm)
2 X 7 mm (74 mm) 58 mm (46 mm)
Y —24 mm (61 mm) 50 mm (42 mm)
3 X 4 mm (64 mm) 50 mm (40 mm)
Y —7 mm (54 mm) 43 mm (34 mm)
4 X 1 mm (74 mm) 57 mm (47 mm)
Y —7 mm (66 mm) 51 mm (42 mm)
5 X —1 mm (79 mm) 60 mm (52 mm)
Y 8 mm (76 mm) 57 mm (50 mm)

Running time (ms)

Running time (ms)

The collected data indicates that when a very low
number of particles (e.g. 32) are used for tracking, tar-
gets are invariably lost rather quickly. Medium particle
counts (such as 48, 64, 80) resulted in tracked paths
that were longer, but still varied considerably due to tar-
gets being prematurely lost. Only the last three particle
counts tested (96, 112, 128) consistently yielded long
paths lasting until the end of the data set. Consequently,

IPU 1
70 T T A T
processing —
60 setup
50

100 400 500

Frame number

600 700

IPU 3
70 T T T
processing ——
60 setup m—
50

100 200 300 400

500
Frame number

600 700 800 900

Running time (ms)

Running time (ms)

70

60

70

60

50

40

30

20

10

96 particles (3 batches for the purpose of histogram gen-
eration) were used for tracking as that number provided
a good trade-off between accuracy and performance.

Next, the application was executed on the first data
set and the tracked target positions it generated were
recorded. They were then compared to the ground truth
to calculate position tracking errors. The 5 targets were
detected in frames 63, 63, 190, 190, and 309. All of
them were tracked until the end of the data set.

Figure 12 shows how close tracked target positions
follow ground truth locations. The difference between
the two was calculated and plotted on Fig. 13 to visu-
alise the tracking error. The mean and mean absolute
tracking error observed when the application was exe-
cuted on the first data set are also listed in Table 2.

The observed tracking errors are in line with the
results reported in [28]. The standard deviation of the
tracking errors remains below 100mm, and the mean
absolute tracking error is less than 60mm.
Performance: While the application was being executed
on both data sets, the performance of the algorithm
implementations it used was measured and recorded.
Figures 14 and 15 illustrate how the performance of his-
togram generation changes while running detection and
tracking throughout the first and the second data set,
respectively. The plots are split into 2 areas to visualise

IPU 2
T

T T
processing m—
setup

900

200

300

400
Frame number

500 600 700 800

IPU 4
T

T T
processing mm—
setup m—

100 200 300 900

400
Frame number

500 600 700 800

Figure 14 Time needed to generate histograms for 96 particles used to track targets throughout the first data set. The overall value for each frame
consists of the setup and the processing time.

@ Springer

926 J Sign Process Syst (2018) 90:913-929

IPU 1 IPU 2
140 T T T 140 T T T
processing — setup m— processing m— setup —

120
m m
£ 100 £
[} [
£ £
(=)} (=)}
= =
c c
c =
=] =]
[~4 [~4

500 1000 1500 2000 2500 500 1000 1500 2000 2500
Frame number Frame number
IPU 3 IPU 4
140 T T T 140 T T T
processing m— setup m— processing —— setup —
m m
£ £
[[
£ E
D oD
j= j=
£ £
= =
3 3
[~4 [~4
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Frame number Frame number

Figure 15 Time needed to generate histograms for 96 particles used to track targets throughout the second data set. The overall value for each
frame consists of the setup and the processing time.

the time each of the 2 main stages of histogram gen- a smaller scan area: 12x11 cells (3.6mx3.3m) versus
eration takes. In the setup phase points covering all 20x20 cells (bmx 6m) for the first data set.
particles are created and uploaded onto the GPU. At The figures included in this section indicate that the 2
the processing stage the points are scattered to generate most time-consuming algorithms are foreground cover-
histograms on the GPU. age computation and histogram generation. The former
The time needed to generate histograms for a set of was executed at set intervals: every second for the first
particles varies due to the fact that targets change their data set, and every 2s for the second data set. As a result,
distance from the IPU’s cameras, which in turn causes its relatively high running time was amortised over sev-
projected particle image sizes to fluctuate as track- eral frames, and did not significantly affect the overall
ing progresses. Bigger particle images require more performance of the application.

points to be rendered, which increases the setup and the
processing times. The sudden rises and drops on the
plots can be explained by new targets being detected: 100 - roreotound coverage w1
this happened in frames 63, 190, and 309 of the first ' e e o]
data set; and frames 185, 554, and 986 of the second background subtraction E===
data set.

The times observed with the first data set are lower
than the times for the second one because in the for-
mer video cameras are located further away from the
scan area, resulting in smaller projected target and
particle sizes.

The observed performance of other algorithms used
by the application, as well as the time required to upload 1
frame data onto the GPU, are plotted on Fig. 16.

Foreground coverage computation takes less time gjgure 16 Average time spent executing the remaining algorithms
with the second data set due to the fact that it requires used by the second test application on both data sets.

10}

Running time per frame (ms)

simulation video real-world video

@ Springer

J Sign Process Syst (2018) 90:913-929

927

In contrast, histogram generation was executed every
frame once the first target was detected and the tracking
phase started. Its mean running time was 39ms with the
first data set, and 72ms with the second one. Even after
adding the frame data upload and background subtrac-
tion times, the IPU took on average less than 100ms to
process a single frame.

7 Software

The software developed as a part of this project has be
released open source and hosted on github. The source code
and setup documentation can be found under https://github.
com/cognitivesystems/smartcamera.

8 Conclusions

The implemented applications exhibited high detection and
tracking accuracy. The observed tracking errors were as low
as those reported by other sources for similar data sets. This
is a strong indicator that the algorithms implemented to run
on the Raspberry Pi-based IPUs produced good quality data
and could be used in real-world scenarios.

Performance of the implemented algorithms was also
determined to be satisfactory for the most part. The major-
ity of them took only a negligible amount of time to execute
on frames of standard resolutions, while others (e.g. his-
togram generation and foreground coverage computation)
could have their running times reduced by carefully adjust-
ing such application parameters as the size of the scan area
or the number of particles used for tracking.

All in all, there is a strong case for the feasibility of SBC-
based IPUs from the ease of programming, performance,
and robustness standpoints. When their price and portabil-
ity are taken into consideration, they become an attractive
choice that is likely to become popular in the near future.

Acknowledgements This work was financially supported by the
Singapore National Research Foundation under its Campus for
Research Excellence And Technological Enterprise (CREATE) pro-
gramme.

References

1. Kimura, S., Miyasaka, A., Funase, R., Sawada, H., Sakamoto,
N., & Miyashita, N. (2011). High-performance image acquisi-
tion & processing unit fabricated using COTS technologies. IEEE
Aerospace and Electronic Systems Magazine, 26, 19-25.

2. Choy, C.S., Chan, WK., & Lam, W. (1992). An image processing
unit using an ICT chip set. In TENCON °’92. Technology enabling
tomorrow: computers, communications and automation towards

4.

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

the 21st century. 1992 IEEE region 10 international conference,
(Vol. 2 pp. 1003-1007).

. Freescale Semiconductor (2009). Image processing unit v3

(IPUV3) library.
Shi, Y., & Real, ED. (2010). In Smart cameras: fundamentals and
classification. US: Springer.

. Holzer, M., Schumacher, F., Greiner, T., & Rosenstiel, W. (2012).

Optimized hardware architecture of a smart camera with novel
cyclic image line storage structures for morphological raster scan
image processing. In IEEE International conference on emerging
signal processing applications (ESPA), 2012 (pp. 83-86).

. Chan, W.K., & Chien, S.Y. (2006). High performance low cost

video analysis core for smart camera chips in distributed surveil-
lance network. In [EEE 8th workshop on multimedia signal
processing, 2006 (pp. 170-175).

. Casares, M., & Velipasalar, S. (2010). An adaptive method for

energy-efficiency in battery-powered embedded smart cameras. In
Proceedings of the fourth ACM/IEEE international conference on
distributed smart cameras. ICDSC 10 (pp. 167-174). New York,
NY, USA: ACM.

. Cheng, K.T., Yang, X., & Wang, Y.C. (2013). Performance opti-

mization of vision apps on mobile application processor. In 20th
international conference on systems, signals and image processing
(IWSSIP), 2013 (pp. 187-191).

. Roudel, N., Berry, F,, Serot, J., & Eck, L. (2010). A new high-level

methodology for programming FPGA-based smart camera. In
13th euromicro conference on digital system design: architectures,
methods and tools (DSD), 2010 (pp. 573-578).

Neves, R., & Matos, A. (2013). Raspberry pi based stereo vision
for small size ASVs. In Oceans - San Diego, 2013 (pp. 1-6).
Reboucas, R.A., Eller, Q.d.C., Habermann, M., & Shiguemori,
E.H. (2013). Embedded system for visual odometry and localiza-
tion of moving objects in images acquired by unmanned aerial
vehicles. In Il Brazilian symposium on computing systems engi-
neering (SBESC), 2013 (pp. 35-40).

Hofmann, R., Seichter, H., & Reitmayr, G. (2012). A GPGPU
accelerated descriptor for mobile devices. In IEEE international
symposium on mixed and augmented reality (ISMAR), 2012
(pp- 289-290).

. Reinisch, G., Arth, C., & Schmalstieg, D. (2013). Panoramic map-

ping on a mobile phone GPU. In IEEE international symposium
on mixed and augmented reality (ISMAR), 2013 (pp. 291-292).
Singhal, N., Park, I.K., & Cho, S. (2010). Implementation and
optimization of image processing algorithms on handheld GPU. In
17th IEEE international conference on image processing (ICIP),
2010 (pp. 4481-4484).

Fung, J., & Mann, S. (2004). Computer vision signal processing
on graphics processing units. In IEEE international conference
on acoustics, speech, and signal processing, 2004. Proceedings.
(ICASSP ’04), (Vol. 5 pp. 93-96).

Jargstorff, F. (2004). 27. In A framework for image processing.
Addison-Wesley Professional (pp. 445—467).

Fung, J. (2005). 40. In Computer vision on the GPU. Addison-
Wesley Professional (pp. 649-666).

Benezeth, Y., Jodoin, PM., Emile, B., Laurent, H., & Rosen-
berger, C. (2010). Comparative study of background subtraction
algorithms. Journal of Electronic Imaging, 19, 033003.

Strengert, M., Kraus, M., & Ertl, T. (2006). Pyramid methods in
GPU-based image processing. Proceedings Vision, Modeling, and
Visualization, 2006, 169—-176.

Horn, D. (2005). 36. In Stream reduction operations for GPGPU
applications. Addison-Wesley Professional (pp. 573-589).
Nugteren, C., van den Braak, G.J., Corporaal, H., & Mesman, B.
(2011). High performance predictable histogramming on GPUs:
Exploring and evaluating algorithm trade-offs. In Proceedings of

@ Springer

https://github.com/cognitivesystems/smartcamera
https://github.com/cognitivesystems/smartcamera

928

J Sign Process Syst (2018) 90:913-929

the fourth workshop on general purpose processing on graphics
processing units. GPGPU-4 (pp. 1:1-1:8). New York: ACM.

22. Fluck, O., Aharon, S., Cremers, D., & Rousson, M. (2006).
GPU histogram computation. In ACM SIGGRAPH 2006 Research
posters. SIGGRAPH ’06. New York, NY, USA: ACM.

23. Scheuermann, T., & Hensley, J. (2007). Efficient histogram gener-
ation using scattering on GPUs. In Proceedings of the 2007 sym-
posium on interactive 3d graphics and games. i3d *07 (pp. 33-37).
New York: ACM.

24. Pérez, P., Hue, C., Vermaak, J., & Gangnet, M. (2002). Color-
based probabilistic tracking. In Heyden, A., Sparr, G., Nielsen,
M., & Johansen, P. (Eds.) Computer vision — ECCV 2002. Volume
2350 of lecture notes in computer science (pp. 661-675). Berlin:
Springer.

25. Nair, S., Panin, G., Wojtczyk, M., Lenz, C., Friedlhuber, T., &
Knoll, A. (2008). A multi-camera person tracking system for
robotic applications in virtual reality TV studio. In IEEE/RSJ
International conference on intelligent robots and systems, 2008.
IROS 2008 (pp. 3990-3996).

26. Nummiaro, K., Koller-Meier, E., & Van Gool, L. (2002). Object
tracking with an adaptive color-based particle filter. In Van Gool,
L. (Ed.) Pattern recognition. Volume 2449 of Lecture Notes in
Computer Science (pp. 353-360). Berlin: Springer.

27. Bhattacharyya, A. (1946). On a measure of divergence between
two multinomial populations. Sankhyi: The Indian Journal of
Statistics, 401-406.

28. Nair, S. (2012). Visual tracking of multiple humans with machine
learning based robustness enhancement applied to real-world
robotic systems. Dissertation, Technische Universitdt Miinchen,
Miinchen.

29. Nair, S., & Grunau, A. (2014). Human tracking simulation. https://
www.youtube.com/watch?v=NSTznYNecrlY.

Suraj Nair received his PhD
in Robotics from the Tech-
nische Universitdt Miinchen
(TUM), Germany. His thesis
was focused in the area of
computer vision applied to
real world industrial robotic
systems. During his research
career, he has been involved
in numerous research projects
most of which were industry
driven. His activities have
been closely connected to
industry in Germany and
worldwide. Suraj served as
the project lead from TUM-
fortiss in the prestigious EU FP7 project SMErobotics. He has
also been active in the area of medical robotics and was one of the
founding members of the iRAM!S project. He currently serves as a
Principal Investigator at TUMCREATE, Singapore. He also serves
as a Co-Principal Investigator for the SERC Industrial Robotics Pro-
gramme. His primary research interests are computer vision, artificial
intelligence, autonomous vehicles and robotics.

@ Springer

Nikhil Somani is a Ph.D. stu-
dent at the Technische Univer-
sitit Miinchen (TUM) since
2013. He is currently work-
ing at the Cognitive Systems
and Robotics group at TUM-
CREATE in Singapore as the
head of robotics system archi-
tecture. He received his Bach-
elor’s degree from IIT Kharag-
pur, and Masters degree in
Computer Science from TUM
in 2011 and 2013 respectively.
His research interests include
computer vision, robot motion
control, cognitive robotics and
human-robot interaction.

Artur Grunau has been a
software engineer at Microsoft
since 2014. He currently
works on database systems
powering the Bing search
engine. He received his
Bachelor’s degree from the
Jagiellonian University and
Master’s degree in Computer
Science from the Technische
Universitdt Miinchen in 2010
and 2014, respectively. His
professional interests include
distributed systems, program-
ming language design, and
data analysis.

Emmanuel Dean-Leon (m)
studied Mechatronics at the
Center for Research and
Advanced Studies of the
National Polytechnic Insti-
tute (CINVESTAV-IPN) in
Mexico, where he received
his doctorate in 2006. He
received the “Arturo Rosen-
blueth” Award in 2006 for
the best PhD Theses. In 2009
he performed a postdoctoral
research project at the Depart-
ment of Computer Science,
TUM. Since 2012, he has
been involved in several EU
projects related to advanced industrial robot applications. Since
2013 he has been a senior researcher at the Chair for Cognitive
Systems in the Department of Electrical and Computer Engineering,
TUM. His research interests include robotics, robot modeling and
low level control design/implementation, sensor fusion, physical
human-robot-interaction, and cognitive systems.

https://www.youtube.com/watch?v=NSTznYNcr1Y
https://www.youtube.com/watch?v=NSTznYNcr1Y

J Sign Process Syst (2018) 90:913-929

929

Alois Knoll received his
diploma (M.Sc.) degree in
Electrical/Communications
Engineering from the Univer-
sity of Stuttgart and his PhD
degree in Computer Science
from the Technical University
of Berlin. He served on the
faculty of the computer sci-
ence department of TU Berlin
until 1993, when he qualified
for teaching computer science
at a university (habilitation).
He then joined the Technical
Faculty of the University of
Bielefeld, where he was a full
professor and the director of the research group Technical Informatics
until 2001. Between May 2001 and April 2004 he was a member of the
board of directors of the Fraunhofer-Institute for Autonomous Intelli-
gent Systems. At AIS he was head of the research group “Robotics
Construction Kits”, dedicated to research and development in the area
of educational robotics. Since autumn 2001 he has been a professor of
Computer Science at the Computer Science Department of the Tech-
nische Universitaet Muenchen. He is also on the board of directors
of the Central Institute of Medical Technology at TUM (IMETUM
Garching). Between April 2004 and March 2006 he was Executive
Director of the Institute of Computer Science at TUM. His research
interests include cognitive, medical and sensor-based robotics, multi-
systems, data fusion, adaptive systems and multimedia information
information.

@ Springer

	Image Processing Units on Ultra-low-cost Embedded Hardware: Algorithmic Optimizations for Real-time Performance
	Abstract
	Introduction
	Related Work
	Algorithm Adaptation Strategies
	OpenGL ES 2.0 Pipeline

	Algorithm Adaptation Challenges
	Examples of Adaptated Algorithms
	Colour Space Conversion
	Colour Thresholding
	Background Subtraction
	Occlusion Testing
	Foreground Coverage
	Histogram Generation

	Experiments and Evaluation
	Single IPU Based Detection and Tracking
	Multiple Human Tracking Using Distributed IPUs

	Software
	Conclusions
	Acknowledgements
	References

