Programmable ASIPs for Multimode MIMO
Transceiver

Shahriar Shahabuddin, Olli Silvén, and Markku Juntti

Abstract—Application specific instruction-set processors
(ASIP) are a programmable and flexible alternative of
traditional finite state machine (FSM) controlled register-
transfer level (RTL) designs for multimode basedband systems.
In this paper, we present two ASIPs for small scale multiple-
input multiple-output (MIMO) wireless communication systems
that demonstrate the soundness and effectiveness of ASIPs for
this type of applications. The first ASIP is programmed with
multiple MIMO symbol detection algorithms for 4 X 4 systems.
The supported detection algorithms are minimum mean-square
error (MMSE), two variants of the selective spanning with
fast enumeration (SSFE) and K-best list sphere detection
(LSD). The second ASIP supports MMSE and zero-forcing
dirty paper coding (ZF-DPC) algorithms for a base station
(BS) with 4 antennas and for 4 users. Both ASIPs are based
on transport triggered architecture (TTA) and are programmed
with a retargetable compiler with high level language to meet
the time-to-market requirements. The detection and precoding
algorithms can be switched in the respective ASIPs based on the
error-rate requirements. Depending on the algorithms, MIMO
detection ASIP delivers 6.16 - 66.66 Mbps throughput at a clock
frequency of 200 MHz on 90 nm technology. The precoder ASIP
provides a throughput of 52.17 and 51.95 Mbps for MMSE
and ZF-DPC precoding respectively at a clock frequency of 210
MHz on 90 nm technology.

Index Terms—MIMO, OFDM, ASIP, TTA, VLSI.

I. INTRODUCTION

The demand for multimode physical layer algorithm im-
plementations has been growing recently for cognitive and
adaptive wireless systems. The traditional finite state machine
(FSM) controlled register-transfer level (RTL) or fixed hardware
designs provide high data rate, use less logic gates and
consume less power. The drawback of the fixed hardware
implementation is that it operates on a fixed set of parameters
and it is very difficult to modify the design in the future.
Therefore, the non-programmable designs may not be the best
choice for a multimode wireless systems where flexibility is
a key requirement. It is possible to have different hardware
accelerators to support different modes and parameters, but
the whole system can become too large to accommodate all
the accelerators. Moreover, the whole design and verification

S. Shahabuddin and M. Juntti is with Centre for Wireless Com-
munications, University of Oulu, Oulu - 90570, Finland, e-mail: first-
name.lastname @oulu.fi

O. Silvén is with Department of Computer Science and Engineering,
University of Oulu, Oulu - 90570, Finland, e-mail: firstname.lastname @oulu.fi

The research is supported by Academy of Finland and 5G Communication
with a Heterogeneous, Agile Mobile network in the Pyeongchang wlnter
Olympic competitioN (5G CHAMPION) project.

The detector implemented in this paper builds upon the ASIP presented
at International Conference on Cognitive Radio Oriented Wireless Networks
[1]. The precoder implemented in this paper builds upon the ASIP to be
presented at European Conference on Networks and Communications [2].

process can be very costly due to longer design time. Another
solution is to implement the algorithms as software to program
the digital signal processor (DSP) or microcontroller units
(MCU). At first sight, the software implementation is ideal
for flexible wireless systems, where the parameters and the
algorithms are changed by software. However, it is very difficult
to achieve the required rate for high speed applications with
DSPs, as their architectures not tailored for any particular
algorithm.

Application specific instruction-set processors (ASIP) that
are customized for a small set of algorithms can be an ideal
choice for multimode wireless systems. The software-hardware
codesign method, which is typically used for an ASIP design,
can be used to exploit the flexibility of software or high speed
of the hardware whenever necessary. An ASIP customized for a
small set of algorithms is an attractive solution in terms of cost,
silicon area and high throughput. Most importantly, an ASIP
reduces the design risk where the instruction memory can be
loaded with new programs or control instructions. The control
instructions can be easily obtained by a retargetable compiler
for that particular customized architecture. It should be noted
that the motivation for designing an ASIP is not to outperform
pure monolithic hardware accelerators in terms of throughput.
The motivation behind designing an ASIP is to demonstrate the
price of programmability and flexibility does not exceed their
benefits. In other words, a reasonable throughput/area efficiency
can be obtained without compromising programmability.

In this paper, we present two ASIPs that supports two key
functionalities of the baseband signal processing chain, namely,
multiple-input multiple-output (MIMO) symbol detection and
precoding. The processors are based on the transport triggered
architecture (TTA). TTA is an exposed datapath processor
design philosophy where the programs directly control the
internal transport buses for a processor and computation
happens as a side effect of the data transfer [3], [4]. The TTA
ASIP typically consists of multiple data buses and function
units (FU) that provides the opportunity of instruction level
parallelism (ILP). The TTA ASIPs are thus particularly suited
for high speed digital signal processing. The TTA based
codesign environment (TCE) tool enables the designer to write
an application with a high level language and design the target
processor in a graphical user interface at the same time [5].
The ASIPs presented in this paper are designed with the help
of TCE.

The first ASIP supports at least three MIMO symbol
detection algorithms for a baseband receiver. A plethora
of application specific integrated circuit (ASIC) and ASIP
implementations supporting a single MIMO detection algorithm
can be found in the literature [6]-[10]. A few digital very

large scale integration (VLSI) implementations for multimode
MIMO detection can also be found in [11]-[14] We present a
MIMO detector ASIP that supports minimum mean-square error
(MMSE), 8-best list sphere detection (LSD) and two variants
of selective spanning for fast enumeration (SSFE) detection
algorithms. The ASIP delivers 6.16 - 66.66 Mbps throughput
at a clock frequency of 200 MHz on 90 nm technology.

Our second ASIP supports multiuser MIMO (MU-MIMO)
broadcast precoding for a base station (BS) transmitter. The
dual-mode ASIP is programmed with MMSE and zero- forcing
dirty paper coding (ZF-DPC) algorithms. The ASIP also
supports norm-based scheduling and QR decomposition. A
norm-based scheduler is used in this work that selects 4 user
indices out of a total 20 users. The precoder ASIP provides a
throughput of 52.17 and 51.95 Mbps for MMSE and ZF-DPC
precoding respectively at a clock frequency of 210 MHz on
90 nm technology.

A. Outline

The paper is organized in the following way: The system
models for detection and precoding are presented in Section II.
The detector and precoder algorithms are presented in Sec-
tion III and III-B respectively. The error-rate performance is
presented in Section IV. The processor design methodology
and the ASIP architectures are presented in Section V. In
Section VI, the performance of the processors is discussed and
the conclusion is drawn in Section VIIL.

B. Notation

Boldface lowercase and boldface uppercase letters stand for
column vectors and matrices, respectively. For a matrix, A, we
denote its Hermitian transpose by A’. We use Ay, for the
entry in the kth row and Ith column of the matrix A. The real
and imaginary part of a complex-valued matrix A are denoted
by R(A) and I(A), respectively. The identity matrix is I and

{5-norm of the vector a is ||all2 = /D x |ak|?.

II. SYSTEM MODELS
A. System model for Data Detection

We consider a MIMO system that employs orthogonal
frequency-division multiplexing (OFDM) with M, transmit
antennas, which are sending data over the channel, and Ny
receive antennas such that Ny > M. A layered space-time
architecture is applied at the transmitter and two streams of
data bits are encoded horizontally according to the 3GPP Long
Term Evolution (LTE) standard [15].

N
N L cawm .
s |- | IFFT
) Encoder N Interleaver | Modulator :
R
] |)
SISO De- Soft .
Lol FET
Decoder || interleaver | | P/ Detection | .
| |

Fig. 1: System model for MIMO detection.

Each stream of the encoded data bits is interleaved, mapped
to constellation points and multiplexed onto two different layers.
The symbols are transferred to the time domain with an IFFT
and sent over the channels. In the receiver end, the received
symbols are first transferred to the frequency domain by a
FFT. We assume perfect channel state information (CSI) and
synchronization, as well as a sufficiently long cyclic prefix
that can eliminate the inter-symbol interference. A soft output
MIMO symbol detector is used that provides the log-likelihood
ratio (LLR) for the decoder. A block diagram of the system
model is presented in Fig. 1. By omitting the subcarrier index,
the standard input-output relation per subcarrier can be written
in the real domain as

y = Hx 4+ n, (1)

where y € R?M4 is the received signal vector, x € R?Ma ig
the transmit symbol vector, H € R?N¢*2Ma jg the channel
matrix, and n € R?M¢ i the circularly symmetric complex
white Gaussian noise vector with zero mean and 032 variance.

B. System model for Precoding

We consider a single cell downlink channel with a M),
antenna BS serving a total IV, single antenna users. The set U/
consists of the integer indices of all users in the system. At
any given instant, the BS transmits data for a subset A C U
where |A| = M,. A is the active user set that consists of the
indices of the multiplexed users at a given scheduling instant.
A is selected by a norm-based scheduler where the norm of
all user channels are calculated and M, user indices with the
highest norm are selected [16].

The BS transmits to M, different active users through M,
antennas at any time instant. However, the transmitted signals
for different users interfere with each other and thus corrupt
the signal designated to any particular user. Thus, the received
signal for user k can be expressed as

re = bflde +) _bi'd; + 2,
Jj#k

)

where by, € CMr*1 ig the channel vector between the BS and
user k, d, € CMr*1 ig the transmitted signal for user k and
zp, 1s zero mean Gaussian noise.

The transmitted vector for user k is obtained by multiplying
the precoding vector wj and symbol uy as

3)

The precoding vector wy, is applied to avoid the interference
caused by other transmitted signals.

We stack the channel vectors to form a channel matrix
B € CM»*M» and precoding vectors to form the precoding
matrix W € CM»*Mp and thus the input-output relation can
be written as

dk = WrUL.

r=BWu+w, €]

where u is a vector of the original symbols , w is the noise
vector and r is the received signal vector.

Typically, precoders are designed with respect to a total
power constraint of the form

E|d|? = T{WW#} < P, 5)

where total power, P > (. Total power constraint simplifies
the design problem and leads to simple precoders.

III. DETECTION AND PRECODING SCHEMES

A. Detection Schemes

The function of the MIMO detector is to estimate the
transmitted signal vector x and to feed the soft output to
the decoder. We apply QR decomposition on the augmented
channel matrix H as

H
H= =
oalanm,

]T

where Q; = [QZ, Qf,]" is an orthogonal matrix and Ry
denotes an upper triangular matrix. The dimensions of matrices
Qada de and & are 2Nd X 2Md, 2Md X 2Md and QMd X 2Md
respectively. The input-output relationship can be transformed
into y = Rgx +n where y = QaTdy and n contains noise
Q7' n and additional self inteference. A modified MMSE has
been discussed in [17] and [18] where the QR decomposition
is used on augmented channel matrix to compute the MMSE
equalization based detection. The MMSE detector is obtained
from,

gvmst = (1/0)QuaQlyy = (1/04) Quay .- (N

The signal-to-interference-plus-noise ratio (SINR) vector p can
be computed as p; = 1/(q;ql) —1 where q; is the i-th column
of Qpq. The max-log approximated LLR can be computed from
the SINR and % following [19].

The K-best list-sphere detection (LSD) algorithm is a
breadth-first suboptimal tree search MIMO symbol detection
algorithm. The algorithm keeps a total K number of child
nodes with the smallest accumulated Euclidean distances at
each level. When going from ¢ + 1 to ¢, the K nodes at level
7+ 1 expands to a total K C' child nodes at level 7. The child
nodes are sorted according to their accumulated Euclidean
distance and K child nodes are kept at level i. The rest of
the nodes are deleted before spanning for next level. The K
smallest accumulated Euclidean distances and corresponding
symbol vectors are used as the final candidate list to compute
the LLR.

SSFE is a breadth-first suboptimal tree-search detection
algorithm that has a regular and deterministic dataflow [20].
SSFE can be characterized with a spanning vector m =
[m1,ma,,man,]. The spanning vector indicates the number
of child nodes that span from the parent node on each level.
Contrary to the K-best algorithms, the nodes are never deleted.
Therefore, the sorting and deletion is not present in the SSFE
algorithm, which reduces algorithm complexity.

B. Precoding Schemes

Transmitter precoding is an alternative of receiver optimiza-
tion to combat multiple access interference in a synchronous
multiuser channel. Transmitter precoding is a linear transfor-
mation of the transmitted signals that minimizes the mean
squared errors at all the receivers. We use a regularization of
the pseudo-inverse of the multiuser channel to compute the
MMSE precoding matrix as

WMMSSE = BH(BBH —|— (121)71. (8)

where o? is the regularization factor. A non-zero regularization
factor can be used to allow a measured amount of multi-user
interference. An extended channel matrix can be formed to
solve the MMSE problem in the following way
BH
B =] . 9)

H _
{B aINp} < BY = LIN
P

The right pseudo-inverse of the extended channel matrix
takes the following form where the upper half of the equation
is the same as MMSE precoder expression of (8).

W] . (10)

a(BBH + o?1)7!

We apply QR decomposition on the Hermitian transpose of
extended channel matrix H as

BH

OzINp

QapRyp
QuRy

H

(an

=Q,R, == [

| S

From (11) and &_1 = 1Qy, we get

1
Wwumse = aQainf;-

A similar approach is taken in [21] to simplify the MMSE
precoding applying QR on extended channel matrix. The
regularization factor is traditionally calculated as

(12)

Mo?
2 P
o =7, (13)
where 012) is the noise variance and P is the power constraint.

Dirty paper coding (DPC) is a highly nonlinear technique and
its implementation is a very challenging problem [22]. Zero-
forcing dirty paper coding (ZF-DPC) is a reduced complexity
suboptimal DPC scheme that was first proposed in [23]. The
channel matrix is decomposed to a lower triangular matrix
L € CMXM and a unitary matrix Q € CM*M (o apply
the ZF-DPC. It converts the symbol vector such a way that
multiplying the symbol vector with L creates a diagonal matrix
[24]. Afterwards, the modified symbol vector is multiplied by
Hermitian transpose of the unitary matrix, Q¥ and transmitted
over the channel. A new symbol vector i to convert the non-
diagonals of L to zero can be obtained as

i—1
]

J

‘ S

izt
U; = Ui — _Z_Ulj, (14)

o~

where u is the original symbol vector. ZF-DPC pre-cancels
the interference without any loss of information.

IV. ERROR-RATE PERFORMANCE
A. MIMO Detection

We compare the performance of MMSE, 8-best and 16-
best LSD and three variants of SSFE namely [11111111],
[11111222] and [111112223] in a 3G LTE based MIMO-OFDM
Matlab simulator. We assume 4 x 4 MIMO systems where
16-QAM and 64-QAM are applied. A 5 MHz bandwidth
corresponding to 512 OFDM subcarriers is considered. One
frame is equal to one OFDM symbol in the simulator. Thus,
one frame consists of 512 subcarriers where 300 subcarriers
are loaded with data and the rest are used as a guard interval.
In the simulation, the mobile velocity is set at 3 kmph and

TABLE I: Simulation and Channel Model Parameters

512 (300) active
Turbo Coding

Number of subcarriers
Channel coding

Coding Rate 172
Symbol duration 7139 s
Symbol time 66.7 1 s
Cyclic prefix duration 4.69 1 s
Modulation 16 QAM and 64 QAM
user velocity 3 kmph
Channel model TU
Number of paths 6
path delays [0 ... 2510] ns
path power [0 ... -20] dB
BS azimuth spread 2°/5°
MS azimuth spread 35°

the turbo decoder performs 6 iterations. We did not use any
internal quantization for the turbo decoder. A 6-tap typical
urban (TU) Vehicular A channel is assumed. The channel
with base station (BS) azimuth spread of 5° is considered as
moderately correlated channel, and with 2° as highly correlated
channel. A list of the parameters for the simulations is presented
in Table I. The bit error-rate (BER) performance of the detectors
are shown in Figs. 2-4.

The detectors are simulated in an uncorrelated channel with
16-QAM and 64-QAM in Fig. 2. It can be observed that the
MMSE and SSFE with a spanning vector of [11111222] exhibit
performance similar to each other. Therefore, the detector with
the lower complexity, i.e. MMSE, can be used instead of SSFE
with [11111222] in this scenario. The SSFE with [11111111]
can be used if the BER requirement is relaxed.

In Fig. 3, the detectors are simulated for a moderately
correlated channel for 16-QAM and 64-QAM. For 64-QAM,
LMMSE and SSFE with [11111111] requires very high SNR
and thus not suitable for this scenario. The SSFE with
[11111222] provides noticable performance gain over MMSE.
In Fig. 4, the detectors are simulated for a highly correlated
channel for 16-QAM. All the detectors presented here requires
very high SNR for 64-QAM and not presented in Fig. 4. The
LMMSE and SSFE with [11111111] exhibit very high SNR
requirements even for 16-QAM.

The error-rate results are useful to select the detection
algorithm for a specific channel condition and modulation
order. We notice that SSFE with [11112223], 8-best and 16-
best LSD provides similar performance in all the simulations.
Therefore, the 8-best LSD with the lowest list size out of these

10°

-5-MMSE

-©-8-best LSD

4 16-best LSD

- SSFE [11111111]
SSFE [11111222]

SSFE [11112223]

101

BER

102}F

| | | | | | | |
6 8 10 12 14 16 18 20 2 24 2 28
SNR [dB]

Fig. 2: Error-rate performance of the detectors in an uncorre-
lated channel.

BER

-8-MMSE
102F |-©-8-bestLSD

- 16-best LSD

- SSFE [11111111]
SSFE [11111222]
SSFE [11112223]

09 ‘ ‘ ‘ ‘ ‘ ‘ | ‘ !
10 12 14 16 18 20 22 24 26 28 30
SNR[dB]

Fig. 3: Error-rate performance of the detectors in a moderately

correlated channel.

three high performance detectors is used in this work. SSFE
with [11111111] and [11111222] and MMSE are also selected
as they operate on different SNR ranges. More simulation
results can be found in [25].

B. Precoding

We present the BER performance of ZF, MMSE and ZF-DPC
precoders for various SNR in Fig. 5. An additive white Gaussian
noise (AWGN) channel is used and the BER is averaged over
100 000 Monte-Carlo trials. A norm-based scheduler is used
to select four users out of N = 20 users. The modulation
schemes are 16-QAM and 64-QAM. It can be seen from Fig.
5 that ZF-DPC performs better than MMSE for higher order
modulations. ZF-DPC provides almost 3 dB gain over MMSE
for 64-QAM in the high SNR region.

V. APPLICATION SPECIFIC PROCESSORS
A. Transport Triggered Architecture

TTA is a processor design philosophy where the program
directly controls the internal data transport between different

10° T

-8-MMSE
-6-8-best LSD

%% 16-best LSD

- SSFE [11111111]
SSFE [11111222]
SSFE [11112223)

3 \ \ | | |
16 18 20 22 24 2 28 30
SNR [dB]

Fig. 4: Error-rate performance of the detectors in a highly
correlated channel.

10°

0 5 10 15 20 25 30 35 40
SNR [dB]

Fig. 5: Error-rate performance of the precoders in an uncorre-
lated channel.

function units (FU) of a processor. A typical processor consists
of FUs to perform computation, register files (RF) to store
the data and control unit for program flow control. Buses,
ports and sockets make the interconnection network of the
processor. The conventional reduced instruction set computer
(RISC) or complex instruction set computer (CISC) exectues
instructions sequentially and thus, they are not suitable for high
speed digital signal processing. The advantage of ILP can be
utilized with very long instruction word (VLIW) architecture
that can execute several instructions in a single cycle. The TTA
can be viewed as exposed datapath VLIW architecture that
eliminates some of the bottlenecks of VLIW. The visibility
of the interconnection network of TTA allows the designer to
accurately control the operations. The TTA utilizes the concept
of software bypassing, where operands can bypass the register
files and move directly to the destination FU. The register
pressure is low in TTA due to frequent data transport between
the FUs. Due to the exposed datapath, the designer can reduce
the load on the buses of the interconnection network and raise
the maximum clock freugency of the architecture.

In a TTA processor, one of the input ports of a FU is marked

as a triggering port. A FU starts the computation when data
is written on the triggering port. The TTA processor works
with a single move instruction and does not require a complex
instruction decoding unit. Most of the instructions scheduling
decisions are taken at compile time which further reduces the
processing logic of the TTA processor [3], [4].

A simple TTA processor is shown in Fig. 6. The processor
includes three buses that are represented by three black
horizantal lines. The vertical rectangular blocks going through
the buses represent the sockets. The arrow above the socket
shows whether a socket is an input or output. The processor of
Fig. 6 consists of several FUs such as load-store unit (LSU),
an adder (ADD), a multiplier (MUL) and a RF.

LSU ADD MUL RF
Instruction 1
fetch & H 2
decode
oor® 3

Fig. 6: Part of a TTA processor.

The smaller square with the cross inside the FUs indicates
the triggering port. The connections between the FUs and the
buses are illustrated by black dots in the sockets. If all the
buses and FUs are connected, then the compiler has complete
freedom in optimizing data moves. However, a fully connected
processor may lead to high fan-out and low maximum clock
frequency in synthesis.

B. Design Methodology

TCE provides an open source toolset for designing, imple-
menting and simulating a TTA processor. The toolset includes
a graphical processor design tool (ProDe) with an extensive
library of function units [5]. TCE also includes a retargetable
compiler called tcecc to compile high level language (C/C++,
OpenCL) to low level TTA machine code for a particular TTA
processor. A graphical and command line simulator is provided
to analyze the execution of the program on the processor with
detailed information about the resource usages and cycle counts
during the execution.

If the designed processor does not meet the target perfor-
mance, the designer can go back to the source code and
design the processor again. In order to find the actual run
time, the processor must be synthesized or mapped on a field
programmable gate array (FPGA). A hardware database (HDB)
is provided in TCE that includes VHDL description for some
common FUs, RFs, sockets etc. TCE also allows the designer
to build more complex SFU to reduce the processing latency.
In that case, the designer has to write the VHDL description for
the SFU and add it in the HDB. The VHDL description of the
entire core can be generated by the processor generator (ProGe)
tool. This VHDL can be simulated, tested and synthesized with
third party tools. A diagram of the TTA processor design
methodology is given in Fig. 7.

High Level Language

Custome
TCE tool Processor Design Tool Operation
chain (Prode) Set Editor

(OSED)

Processor Slmulator with
GUI

Processor Generator
(ProGe)

Retargetable Compiler)

AN YN N YN |

Hardware
Database

3" party Simulation and Synthesis
tool Tool

Fig. 7: TTA processor design methodology.

C. Used Case 1: Detector ASIP

A 16-bit fixed point TTA ASIP is designed to support the
MMSE, 8-best LSD, SSFE with spanning vectors [11111111]
and [11111222] for 4 x 4 MIMO systems. The 16-bit word
length with 5-bit integer and 10-bit fraction has been used
extensively in several implementations. We invite interested
readers to go through [9] and [25] where the word length
studies for these algorithms have been done. The detector ASIP
includes LSU, arithmetic logic unit (ALU), global control unit
(GCU) and RFs. The multimode detector takes Rg, y and
Quq as inputs. Several LSU units are used to support memory
accesses. LSU can be read the memory in three clock cycles and
write in a single cycle. The ALU unit is used to perform basic
arithmetic operations like addition, subtraction etc. Operations
like shifting right or left are also included in the ALU. We
also added several other arithmetic units to utilize the ILP
supported by a TTA procoessor. The GCU is used to support
jump and branching. Twenty eight buses are used in the design.
Several RFs are used to save the intermediate results. A single
Boolean register file is included in the processor design. MMSE
detection only needs the conventional arithmetic units. Thus,
we do not include any SFU to accelerate the MMSE.

A single cycle SFU called slicer is designed to accelerate the
program execution of SSFE detection. The slicer unit selects a
set of closest constellation points such that the partial Euclidean
distance increment is minimized at each level. The slicer SFU
takes two inputs where the first input defines the number of
symbol candidates as outputs. The second input defines the
value needed to be sliced. The slicer has three outputs that
can deliver a maximum of three best symbol candidates. In
the real valued signal model, 16-QAM and 64-QAM have
four and eight symbol candidates respectively. However, due
to the structure of the level update vector used in this work,
three output is sufficient for the slicer. The rest of the SSFE

calculation is done with the multipliers and adders of the ASIP.

A hardware sorter is designed as a SFU for the 8-best LSD

algorithm. We use an insertion sorter that keeps the list in
order all the time. A new value is compared to all the elements
in parallel and the comparisons indicate where the new value
should be stored or discarded. An example structure of a 4-
value sorter is presented in Fig. 8. The earlier values are stored

Input

[y
Vv

Control

*l v

vy
\%

v

Eas
[Eal

L >

Fig. 8: Insertion sorter (ISORT) SFU.

in a register array such that the input and output of consecutive
registers are connected. A simple combinational logic controls
the multiplexers that selects the new inputs to be stored in the
registers. The rest of the K -best algorithm is calculated with
the general FUs.

D. Used Case 2: Precoder ASIP

The precoder ASIP is designed to support norm-based
scheduler, QR decomposition, MMSE and ZF-DPC precoding
for a BS with M = 4 antennas that serves M active users out
of a total N = 20 users. A 32-bit fixed point TTA processor
is designed for precoding. The ASIP includes traditional LSU,
ALU, GCU and RFs. We use complex arithmetic units, such
as, complex adders and multipliers where 16-bits are used for
both real and imaginary parts.

Two SFUs are designed to accelerate the norm-based
scheduling. A SFU called MGN is designed to calculate
the absolute value of any complex number. Two real valued
multipliers are used inside the MGN to compute the square
of real and imaginary parts of the inputs. An insertion sorter
SFU, very similar to the one described in Section V-C, is used
for precoding. The insertion sorter takes the summation of
absolute values and the corresponding indices as inputs at a
time and keeps the indices of four highest values in sorted
order.

The reciprocal of the norm of a vector is needed in QR
decomposition. We design a three cycle inverse square root
unit called ISQRT in this work. The architecture of the ISQRT
unit is shown in Fig. 9.

A look-up table (LUT) is used to hold the precomputed
inverse square root values of all possible integers of the fixed

LUT

Fig. 9: Inverse square root (ISQRT) SFU.

point input. A 5-bit integer is used for the fixed-point input
and thus, a LUT of size 2° is used for ISQRT. The output of
the LUT x is used as an initial guess for the Newton-Rhapson
method. A single iteration of the Newton-Rhapson is used to
find the square root of any input a as

x1 = 20(1.5 — .5 % a * (x0)?). (15)

Three real multipliers are used in ISQRT and two registers are
used in between to shorten the critical path. A similar approach
is taken to design a real-valued division circuit that is needed
for ZF-DPC precoding.

The channel vectors of N = 20 users are stored in a memory.

LSU is used to read from memory and a first-in-first-out (FIFO)
memory buffer is used to write the output of the processor. Due
to the data dependency of QR algorithm, it is not possible to
utilize more than four multipliers in an instant. Therefore, four
complex-multipliers are included in the ASIP. The real division
unit is used for the ZF-DPC calculations. Sixteen buses are
used to support ILP and reduce the latency. Fifteen RFs are
used to save the intermediate results in this work.

E. Challenges and Solutions of Detector-Precoder ASIP Design

The most challenging task of an ASIP design using TCE is
the partitioning of software and hardware. It is not a simple task
to determine which part of the algorithm should be executed by
software and which part by hardware. The biggest bottleneck of

high level software languages arises from loops and branches.

A typical loop executes comparison, addition or subtraction
and jump instruction for each step. Therefore, a large loop
increases the number of instructions several times. The software
execution of branches also might take a few cycles and it is
difficult for the compiler parallelize such instructions.

The use of SFUs is also not straightforward because a
designer needs to identify which part of the algorithm should

be accelerated with a SFU and how big the SFU should be.

The SFUs are absolutely necessary to increase the throughput
of an ASIP. However, the algorithm specific SFUs reduce
the programmability. For a multimode implementation, the
programmability or flexibility is essential. Thus, a designer
must keep the number of SFUs limited even though it can limit
the throughput. The word length is also a drawback for the
TCE based ASIP implementations. It is not simple to support
FUs and buses with different word length. Besides, it is easier
to use the commonly used data types rather than any arbitrary
or user-defined data types.

We use only a few SFUs to accelerate the detection and
precoding. Thus, our implementations are very flexible. We
use 16-bit and 32-bit processors, and thus data transport

between the FUs and buses are supported by common data
type in C language. We conduct numerous simulations to find
the necessary number of buses that can provide satisfactory
utilization of FUs and SFUs. We unroll the software partially
so that the computations associated with every step of loops
can be reduced. Most of the branch instructions are replaced
with SFUs that contain multiplexers.

VI. RESULTS AND DISCUSSION

The ASIPs are synthesized using UMC 90-nm low-leakage
standard cell library (FSDOK_A Core Cell). Synopsys
Design Compiler is used to estimate gate count and maxi-
mum achievable clock frequency. The operating conditions
(temperature, operating voltage, manufacturing process quality)
for synthesis are set to default value (TCCOM). The 16-bit
detection ASIP takes an area of .293 mm? that is equivalent to
73 212 two-input drive-strength-one NAND gate equivalents.
The maximum achievable clock frequency is 200 MHz. The
critical path of the ASIP is located in the ISORT unit. It should
be noted that the reported area of our implementation does
not consider layout constraint. The latency and throughput of
the different detection algorithms for 64-QAM is presented in
Table II1.

A comparison with different other implementations is pre-
sented in Table II. The detector ASIP provides low throughput
but also consumes less area. For an OFDM based system,
several of this ASIP can be used to process different OFDM
tones. Therefore, we invite readers to focus on the hardware
efficiency (throughput/area) in the comparison table. Chen et al.
proposed a reconfigurable ASIP (rASIP) that supports MMSE,
MMSE successive interference cancellation (SIC) and Markov
chain Monte Carlo (MCMC) detection [11]. The rASIP is
constructed with a reconfigurable architecture coupled with
a processor designed by the LISA toolset [26]. The ASIP
provides superior hardware efficiency than our design in case
of MMSE detection. However, the reconfigurable part of the
rASIP consumes the majority of the logic gates. Thus, our
design provides more flexibility with comparable performance.

Ahmed et al presented an ASIP to support multi-tree
selective spanning (MTSS) detection for different level update
vectors [13]. Sheikh et al presented an architecture to support
different configurations of K-best list sphere detection (LSD)
[12]. Even though the algorithms can be tuned to provide
different performance, the implementations rely only on a
single algorithm. We argue that such designs are best suited
for an ASIC. Yan et al presented a dual-mode architecture
that supports MMSE and K -best LSD in [14]. The architecture
is non-programmable and takes a large area. Our design
provides a better compromise between flexibility and hardware
efficiency. It should be noted that [11] and [14] also includes
the preprocessing circuitry, so the comparison in Table II is not
entirely fair. Instead of traditional ASIPs, a no instruction based
computer (NISC) based approach was introduced in [27] for
an iterative MIMO equalizer and demapper. A NISC approach
eliminates the custom instruction set. The compiler is respon-
sible for scheduling operations and decoding them into control
words (CWs). The group of control signals are packed in the

TABLE II: Comparison of Mutimode Detectors

[11] [12] [13] [14] Proposed

Technology [nm] 65 22 40 65 90

Clock freq. [MHz] 400 1000 600 550 200

Core area® [mm?] 1.1 (2.1%) 0.03 (0.5%) 6.45 (12.53%) 0.293

Cell area® [kGE] 525 125 - 31325 73

Preprocessing Included Not included | Not included Included Not included
Algorithm MMSE SIC MCMC K-best MTMS MMSE | K-best | SSFE [..1] | MMSE | SSFE [...2] | K-best
Throughput® [Mb/s] 600 124.67 18.75 3200 2057 3300 2640 66.66 42.85 11.76 6.16
Scaled throughput® [Mb/s] | 433.33 90.03 13.54 782.22 914.22 2383 1920 - -

Scaled throughput
Jarea® [Mb/(s xkGE)] 0.8248 | 0.1714 | 0.0258 6.256 0.7609 | 0.6130 0.9132 0.5870 0.1611 0.0844

@Technology scaling to 90 nm assuming A ~ 1/s2 and ¢ ~ 1/s.

TABLE III: Latency and throughput of different detection

algorithms for 64-QAM

Algorithm Clock Cycle | Throughput
SSFE [11111111] 72 66.66 Mbps
MMSE 112 42.85 Mbps
SSFE [11111222] 408 11.76 Mbps
8-best LSD 778 6.16 Mbps

CWs that are loaded to the datapath components at every cycle.
However, the implementation in [27] is not a true multimode
detector because only the MMSE detection is supported. The
system model is also different as [27] assumes an iterative
turbo equalizer, while this paper assumes a non-iterative MIMO
detection; i.e. no feedback loop exists between detection
and decoding. The MMSE equalization part of the NISC
architecture achieves 162.8 and 12.2 mega symbols per second
for block fading and fast fading respectively. The equalizer
takes an area 0.126 mm2 and for a 16-QAM modulation scheme
the scaled throughput for the NISC equalizer is 7.8226 Mbps.
It should be noted that [12] and [27] achieves significantly
higher scaled throughput than the multimode implementations.
The architectures that support several algorithms ([11], [14]
and proposed) achieves lower scaled throughput because the
whole design cannot be optimized for a single algorithm. A
homogeneous multiprocessor system consisting of several TTA
processor proposed in this paper can increase the throughput.
The TTA cores of the multiprocessor can process several
OFDM subcarriers in parallel. For example, the scaled MMSE
throughput of [11] can be reached with a multiprocessor
consisting of ten proposed TTA cores. The ten cores take
a total area of 2.93 mm? which is comparable to the 2.1 mm?
of [11]. Similarly, 55 cores working on the same number of
OFDM subcarriers can reach the scaled throughput of the ASIC
presented in [14]. The total multiprocessor area is 16.11 mm?
that is comparable to the 12.53 mm? of [14].

The 32-bit precoder ASIP takes an area of 0.44 mm? that
is equivalent to 110 031 2-input NAND gate equivalents. The
maximum achievable clock frequency is 210 MHz. The critical
path of the ASIP is located in the complex multiplier. The
latency associated with different parts of the precoder ASIP
is provided in Table I. Memory access is a costly operation
and can increase the latency significantly. For example, the
scheduler needs to access the memory 80 times to read channel

vectors of N = 20 users. QR decomposition also needs
to access memory frequently and thus increase latency. The
number of clock cycles needed for MMSE and DPC are nearly
equal. However, DPC needs an extra division unit.

TABLE IV: Latency of different parts of the Precoder Chain

Algorithm Clock Cycle
Norm-based Schduling 102
QR 187
QR (extended) 340
MMSE 92
DPC 97

A handful hardware implementation can be found for
small scale MU-MIMO precoding. A DPC precoder based on
nested trellis is implemented on FPGA in [28]. A Tomlinson-
Harashima (TH) precoder is designed in [29] where the LQ
decomposition is implemented in ASIP and the other parts
are implemented as monolithic hardware. A fixed sphere
encoder (FSE) based precoder is presented in [30]. The
performance of the precoders are listed in Table V. The
proposed ASIP provides higher throughput than the FPGA
implementation presented in [29]. The FPGA implementation
of [30] provides significantly higher throughput. However,
the design is optimized for 6 x 6 MIMO configuration. In
addition, our precoder ASIP is more realistic as it considers
scheduling unlike the other implementations and more flexible
as it is programmable. The existing small scale precoders are
implemented for different algorithms, platforms and different
MIMO configurations. Therefore, it is very difficult to compare
our ASIP to the existing implementations fairly.

The focus for detection and precoding has been shifted to
the large-scale MIMO systems lately. Prabhu et al presented
a baseband chip that supports massive MIMO detection and
precoding in [31]. The precoder is designed for 128 transmit
antennas and 8 users. The chip achieves 300 Mbps data rate on
real measured channels. A massive MIMO ASIP for a similar
configuration could be explored for a future work.

The system models and the architectures for ASIPs presented
in this paper significantly deviates form each other. Therefore,
we presented two separate multimode designs to demonstrate
the soundness and effectiveness of a programmable acceleartor.
Due to the commonalities between detection and precoding, it is
possible to create a joint architecture. A single ASIP supporting

TABLE V: Performance of small scale precoders

Reference Architecture MIMO Algorithm | Throughput

Proposed TTA ASIP 4x4 MMSE 52.17 Mbps

Proposed TTA ASIP 4x4 ZF-DPC 51.95 Mbps
[29] ASIP & VLSI 4x2 TH N/A
[28] FPGA - DPC 51 Mbps
[30] FPGA 6 x 6 FSE 559 Mbps
[31] ASIC 128 x 8 MMSE 300 Mbps

data detection in the uplink and precoding in the downlink could
be a natural direction for future research. A soft-core processor
implementation on a FPGA platform that supports detection
and precoding can be another interesting direction of research.
The traditional soft-core processors are vendor specific and
can only be used on the products provided by that vendor. On
the other hand, the hard processor cores limited in numbers
and can not be scaled to match the application. Also, the fixed
hard cores can lead to difficulties in interconnection routing
between the core and other logic. A TTA ASIP can work as a
soft-core processor and can provide additional support other
than detection and precoding. However, the current hardware
database for common units provided with TCE is not targeted
for recent FPGAs. Thus, the current implementations might
lead to poor timing results for a FPGA.

This paper demonstrated the opportunities presented by
ASIP designs for a multimode basedband signal processing
system. The multimode designs are needed for adaptive or
cognitive systems where the user want to switch the detection
or precoding algorithms based on the channel condition. These
implementations are also useful to system-on-chip (SoC) or
FPGA vendors who can offer the developers with accelerators
supporting a small set of algorithm. An ASIP is the natural
choice for multimode systems and this paper demonstrated two
such scenarios.

VII. CONCLUSIONS

We presented two ASIPs for small scale MIMO symbol
detection and precoding. The first ASIP supports several
MIMO detection algorithms namely MMSE, 8-best LSD and
two variants of SSFE. The detector ASIP delivers 6.16 -
66.66 Mbps throughput at a clock frequency of 200 MHz
on 90 nm technology. The hardware efficiency of our design
provides more flexibility and comparable throughput to the
existing multimode architectures. The precoder ASIP provides
a throughput of 52.17 and 51.95 Mbps for MMSE and ZF-DPC
precoding respectively. We have shown two examples of how
an ASIP design can be a viable alternative for traditional FSM
controlled RTL designs for an adaptive or multimode baseband
signal processing system.

REFERENCES

[1] S. Shahabuddin, J. Janhunen, E. Suikkanen, H. Steendam, and M. Juntti,
“An adaptive detector implementation for mimo-ofdm downlink,” in Intl.
Conf. Cog. Radio Wireless Net., June 2014, pp. 305-310.

[2] S. Shahabuddin, O. Silvén, and M. Juntti, “Asip design for multiuser
mimo broadcast precoding,” in European Conf. Net. and Commun., June
2017.

[3] H. Corporaal, “Design of transport triggered architectures,” in Proc.
Great Lake Symp. on VLSI, Mar 1994, pp. 130-135.

[4]
[5]

[6]

[7

—

[8

—_

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

——, Microprocessor Architectures: From VLIW to Tta. New York,
NY, USA: John Wiley & Sons, Inc., 1997.

O. Esko, P. Jadskeldinen, P. Huerta, C. S. de La Lama, J. Takala, and
J. 1. Martinez, “Customized exposed datapath soft-core design flow
with compiler support,” in Proc. Intl. Conf. Field Prog. Logic App., ser.
FPL ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
217-222. [Online]. Available: http://dx.doi.org/10.1109/FPL.2010.51

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “Vlsi implementation of mimo detection using the sphere
decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp.
1566-1577, July 2005.

C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 2, pp. 290-300, Feb. 2008.

C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-
input soft-output MIMO detection using MMSE parallel interference
cancellation,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1754-1765,
May 2011.

J. Janhunen, T. Pitkanen, O. Silven, and M. Juntti, “Fixed- and floating-
point processor comparison for mimo-ofdm detector,” IEEE J. Sel. Topics
Signal Process., vol. 5, no. 8, pp. 1588-1598, Dec 2011.

J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myllyla,
“Application-specific instruction set processor implementation of list
sphere detector,” in Proc. Annual Asilomar Conf. Signals, Syst., Comp.,
Nov 2007, pp. 943-947.

X. Chen, A. Minwegen, S. B. Hussain, A. Chattopadhyay, G. Ascheid,
and R. Leupers, “Flexible, efficient multimode mimo detection by using
reconfigurable asip,” IEEE Trans. VLSI Syst., vol. 23, no. 10, pp. 2173—
2186, Oct 2015.

F. Sheikh, C. H. Chen, D. Yoon, B. Alexandrov, K. Bowman, A. Chun,
H. Alavi, and Z. Zhang, “3.2 gbps channel-adaptive configurable mimo
detector for multi-mode wireless communication,” J. Sig. Processing
Syst., vol. 84, no. 3, pp. 295-307, 2016.

U. Ahmad, M. Li, A. Amin, L. V. Perre, R. Lauwereins, and S. Pollin,
“An energy-efficient reconfigurable asip supporting multi-mode mimo
detection,” J. Sig. Processing Syst., vol. 85, no. 1, pp. 5-21, Oct. 2016.
Z. Yan, G. He, Y. Ren, W. He, J. Jiang, and Z. Mao, “Design and
implementation of flexible dual-mode soft-output mimo detector with
channel preprocessing,” IEEE Trans. Circuits Syst. I, vol. 62, no. 11, pp.
2706-2717, Nov 2015.

3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical channels and modulation,” 3rd Generation Partnership
Project (3GPP), TS 36.211, Jan. 2016. [Online]. Available: http:
/Iwww.3gpp.org/ftp/Specs/html-info/36211.htm

S. Han, C. Yang, M. Bengtsson, and A. I. Perez-Neira, “Channel norm-
based user scheduler in coordinated multi-point systems,” in Proc. IEEE
Global Telecommun. Conf., Nov 2009, pp. 1-5.

D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Mmse extension
of v-blast based on sorted qr decomposition,” in Proc. IEEE Veh. Technol.
Conf., vol. 1, Oct 2003, pp. 508-512 Vol.1.

P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and
W. Fichtner, “Gram-schmidt-based qr decomposition for mimo detection:
Vlsi implementation and comparison,” in Asia Pacific Conf. on Circuits
and Syst., Nov 2008, pp. 830-833.

I. B. Collings, M. R. G. Butler, and M. McKay, “Low complexity receiver
design for mimo bit-interleaved coded modulation,” in Proc. IEEE Int’l
Symp. Sprd Spec. Tech. and App., Aug. 2004, pp. 12-16.

M. Li, B. Bougard, E. E. Lopez, A. Bourdoux, D. Novo, L. V. D. Perre,
and F. Catthoor, “Selective spanning with fast enumeration: A near
maximum-likelihood mimo detector designed for parallel programmable
baseband architectures,” in Proc. IEEE Int’l Conf. Commun. (ICC), May
2008, pp. 737-741.

C. W. Chen, H. W. Tsao, and P. Y. Tsai, “Equal-rate qr decomposition
based on mmse technique for multi-user mimo precoding,” in Proc. IEEE
Int’l Symp. Personal, Indoor and Mobile Radio Commun., Sept 2013,
pp. 435-440.

A. D. Dabbagh and D. J. Love, “Precoding for multiple antenna gaussian
broadcast channels with successive zero-forcing,” IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3837-3850, July 2007.

G. Caire and S. Shamai, “On the achievable throughput of a multiantenna
gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp.
1691-1706, July 2003.

L. N. Tran, M. Juntti, M. Bengtsson, and B. Ottersten, “Beamformer
designs for miso broadcast channels with zero-forcing dirty paper coding,”
IEEE Trans. Wireless Commun., vol. 12, no. 3, pp. 1173-1185, March
2013.

http://dx.doi.org/10.1109/FPL.2010.51
http://www.3gpp.org/ftp/Specs/html-info/36211.htm
http://www.3gpp.org/ftp/Specs/html-info/36211.htm

[25]

[26]

[27]

[28]

[29]

(30]

[31]

E. Suikkanen, J. Janhunen, S. Shahabuddin, and M. Juntti, “Study
of adaptive detection for mimo-ofdm systems,” in 2013 International
Symposium on System on Chip (SoC), Oct 2013, pp. 1-4.

H. M. Anupam Chattopadhyay and R. Leupers, LISA: A Uniform ADL for
Embedded Processor Modelling, Implementation and Software Toolsuite
Generation. Morgan Kaufmann, jun 2008, ch. 5, pp. 95-130.

M. Rizk, A. Baghdadi, M. Jezequel, Y. Mohanna, and Y. Atat, “Design
and prototyping flow of flexible and efficient nisc-based architectures
for mimo turbo equalization and demapping,” Electronics, vol. 5, no. 3,
2016. [Online]. Available: http://www.mdpi.com/2079-9292/5/3/50

P. Bhagawat, W. Wang, M. Uppal, G. Choi, Z. Xiong, M. Yeary, and
A. Harris, “An fpga implementation of dirty paper precoder,” in Proc.
IEEE Int’l Conf. Commun. (ICC), June 2007, pp. 2761-2766.

K. Shimazaki, S. Yoshizawa, Y. Hatakawa, T. Matsumoto, S. Konishi, and
Y. Miyanaga, “A vlsi design of an arrayed pipelined tomlinson-harashima
precoder for mu-mimo systems,” in Asia-Pac. Sig. Inf. Proc. Assoc. Conf.,
Oct 2013, pp. 1-4.

M. Barrenechea, L. Barbero, M. Mendicute, and J. Thompson, “Design
and hardware implementation of a low-complexity multiuser vector
precoder,” in Conf. on Design and Arch. for Sig. and Img. Processing,
Oct 2010, pp. 160-167.

H. Prabhu, J. N. Rodrigues, L. Liu, and O. Edfors, “3.6 a 60pj/b 300mb/s
128x8 massive mimo precoder-detector in 28nm fd-soi,” in Proc. IEEE
Int’l Solid State Circuits Conf. (ISSCC), Feb 2017, pp. 60-61.

http://www.mdpi.com/2079-9292/5/3/50

	Introduction
	Outline
	Notation

	System models
	System model for Data Detection
	System model for Precoding

	Detection and Precoding Schemes
	Detection Schemes
	Precoding Schemes

	Error-rate Performance
	MIMO Detection
	Precoding

	Application Specific Processors
	Transport Triggered Architecture
	Design Methodology
	Used Case 1: Detector ASIP
	Used Case 2: Precoder ASIP
	Challenges and Solutions of Detector-Precoder ASIP Design

	Results and Discussion
	Conclusions
	References

