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Abstract

The integration of FPGA-based accelerators into a complete heterogeneous system is a challenging task faced by many
researchers and engineers, especially now that FPGAs enjoy increasing popularity as implementation platforms for efficient,
application-specific accelerators for domains such as signal processing, machine learning and intelligent storage. To lighten
the burden of system integration from the developers of accelerators, the open-source 7aPaSCo framework presented in this
work provides an automated toolflow for the construction of heterogeneous many-core architectures from custom processing
elements, and a simple, uniform programming interface to utilize spatially distributed, parallel computation on FPGAs.
TaPaSCo aims to increase the scalability and portability of FPGA designs through automated design space exploration,
greatly simplifying the scaling of hardware designs and facilitating iterative growth and portability across FPGA devices and
families. This work describes TaPaSCo with its primary design abstractions and shows how TaPaSCo addresses portability
and extensibility of FPGA hardware designs for systems-on-chip. A study of successful projects using TaPaSCo shows its
versatility and can serve as inspiration and reference for future users, with more details on the usage of TaPaSCo presented
in an in-depth case study and a short overview of the workflow.
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1 Introduction

Compared to modern software development methods it
has been and still is very hard to achieve scalability and
portability for FPGA-based solutions.

While microprocessor instruction set architectures have
become commodity and are nowadays mostly interchange-
able due to high-level software programming abstractions
and powerful compilers, FPGA development is still very
close to the metal. An FPGA design based on one gener-
ation of FPGAs from one vendor is often difficult to port
to the next generation, let alone to an FPGA of a differ-
ent vendor. Even using a larger device in the same FPGA
family often poses hardware architecture design challenges
that require considerable reengineering to efficiently utilize
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the resources available on the larger chip. To make mat-
ters worse, there are significantly fewer engineers trained in
FPGA technology than software engineers — and software
engineers are already hard to come by for many companies.
From the perspective of small or medium-sized companies,
these factors make FPGA development slow, difficult, and
often render it entirely infeasible.

The FPGA community has made considerable progress
to remedy these problems over the past two decades:
The standardization of the synthesizable subsets of the
most common hardware design languages, VHDL and
(System-)Verilog, provides at least a minimal foundation
for portability between logic synthesis tools and later
place-and-route steps of the FPGA vendors. To further
raise the level of abstraction, there is a huge body of
research concerned with high level synthesis (HLS): HLS
approaches aim to allow the use of higher level languages
for hardware construction, both using new languages and
novel concepts, for instance, BlueSpec [7] or CAash [5], as
well as traditional software programming languages, such
as, C/C++ [10, 32, 73], Java [23, 31], and more recent
parallel programming models, such as OpenCL [35] or
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OpenMP [62]. Unfortunately, engineers trained in Bluespec
or Chisel are even harder to find than “regular” HDL
developers, and none of the HLS approaches have yet
reached a level of stability, maturity and performance on par
with compilers in the software development world.

This paper presents TaPaSCo, the Task Parallel Systems
Composer, an open source toolchain addressing these
challenges. TaPaSCo consists of a scriptable toolflow for
the automated construction of heterogeneous, many-core
System-on-Chip hardware architectures, and a set of APIs
to facilitate task parallel computing on TaPaSCo FPGA
accelerator designs. However, it shall be noted that its
main contribution is not in either of these fields —
instead, TaPaSCo aims to harness and amplify the power
of existing tools and approaches by providing the missing
glue between state of the art HLS tools and modern parallel
computing paradigms and languages: It allows the designer
of FPGA accelerators to raise their level of abstraction
and disregard many specific features of the target FPGA
by delegation of optimizing these choices to TaPaSCo’s
automated design space exploration. TaPaSCo simplifies
re-targeting existing designs to new FPGAs and boards
without requiring changes to the accelerators themselves.
Furthermore, this allows to postpone the selection of
a concrete target technology until much later in the
design process. TaPaSCo’s APIs complete the picture by
providing the necessary foundations to implement higher-
level runtimes (e.g., OpenCL, OpenMP) for platform-
agnostic application software.

The rest of this paper is organized as follows: Section 2
contains a brief survey of related work, Section 3 introduces
TaPaSCo and its primary design abstractions. Specifically,
showing how TaPaSCo addresses portability, scalability and
extensibility of FPGA hardware designs for systems-on-
chip. The tool is actively used in a variety of projects,
some of which are discussed in Section 4. The process
of including RISC-V softcores, which are originally not
designed to be used with the tool, as a PE in a TaPaSCo
design, is presented in Section 5, including the actual
commands for using the tool. The paper closes with an
overview of the active development of the open-source tool
TaPaSCo in Section 6 and concludes in Section 7.

2 Related Work

With the availability of VLSI FPGA designs in the
1990s came an interest in reconfigurable, general purpose
computing on such architectures. Programmability was
quickly identified to be one of the core bottlenecks for
wide-spread adoption: FPGA programming required a
highly specialized skill set at the intersection of electrical
engineering and computer science, which was hard to
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find. The fact that the design methodologies involved
in designing computing architectures to be executed on
an FPGA were intended for traditional chip production
(cf. [22]), with slow iteration cycles and long turn-
arounds, did not help either. These problems started
the research into High-Level Synthesis (HLS) tools to
synthesize behaviorally equivalent hardware from high-
level programming languages (such as C, C++, or domain-
specific languages). Obviously, solving the data path
synthesis problem is only half a solution: In order to
provide convenient access to the generated accelerators,
one needs to carefully integrate the accelerators into the
overall system architecture, with high-speed access to
memories, communication to the host CPU, and other basic
infrastructure, which has a significant impact on the overall
performance of the system.

2.1 Earlier Works

Many early works were therefore concerned with solving
the problem of cache-coherent memory accesses [45, 71],
and on-chip bus topologies to support reconfiguration of
accelerators in predefined slots [41, 47]. Integration of
custom accelerators into the host system as hardware
threads was first proposed in [55], then extended upon in
BORPH [61], ReconOS [47], FUSE [36] and LEAP [19].
Being the other half of the HLS solution to the problem
sketched above, these works appeared in close relation
to the growing maturity in academic and commercial
HLS compilers such as Garp [9], Streams-C [20, 24],
ROCCC [25], Comrade [21], Nymble [32], Bambu [56],
LegUp [11] and Vivado HLS [73]. Nane et al. gave an
excellent overview of the vast landscape of tools available
by 2015 [50].

The work described in this paper builds upon this area of
research and aims to further remove entry barriers to FPGA
computing, and give researchers a fast-track to generate
high performance accelerator architectures. It is, however,
not focused on HLS itself; instead, it was initiated to address
common problems occurring when employing these tools:
When trying to assess the performance of HLS tools, one
can either stop in simulation at the cycle count level (often
using far-from-realistic assumptions about the behavior of
memory in a real system), or perform the experiments
on real hardware. The latter, however, requires one to
implement the entire hardware and software stack required
to run the experiments. Not only is this approach tedious and
error-prone, but most importantly, the impact of the system
design on overall performance and characteristics greatly
reduces the comparability of different implementations.

This problem is precisely what motivated the work on
ThreadPoolComposer [42], the authors’ first effort in this
area. TaPaSCo is based on ThreadPoolComposer, which is
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in turn is closely related to previous work on ReconOS [47],
hthreads [54], and FUSE [36]. ThreadPoolComposer aimed
to provide both programming and hardware abstractions
to increase FPGA developer productivity. But unlike
the other approaches, ThreadPoolComposer focused on
typical high-performance computing systems using a
mainstream, non-modified Linux kernel, and catering
for commercial (OpenCL, OpenMP, X10 [12, 14]) and
academic (FastFlow [2]) parallel programming frameworks.

2.2 Recent Works

In [28], ThreadPoolComposer was extended with automated
design space exploration capabilities to increase scalability
of the designs even further. TaPaSCo extends this sig-
nificantly by providing a fully asynchronous job launch
interface, support for a memory hierarchy of device-local
and Processing Element (PE)-local memories, a unified
kernel module interface, and offering support for a wide
range of FPGA families from small embedded to high per-
formance segments with PCle Gen3/4-based data transfers
(currently supported boards: Digilent ZedBoard, Digilent
PyNQ, AVNET Ultra96, Xilinx ZC706, Xilinx ZCU102
UltraScale+ MPSoC, Xilinx VC709, Xilinx VCU118, NetF-
PGA SUME, Xilinx Alveo U250/U280). The addition of
PE-local memories draws from scratchpad approaches (cf.
[1, 19, 76]) and was essential for later work, e.g., an eval-
uation and survey of FPGA-compatible RISC-V cores in
[27].

Both ThreadPoolComposer and TaPaSCo aim to exploit
the optimization opportunities enabled by processing
complete SoC designs for full reconfiguration, instead of
using partial reconfiguration at runtime, an area in which
ReconOS [47] excels: The ReCoBus-Builder generates a
hot-pluggable bus architecture in which accelerators can be
attached and detached at runtime, establish point-to-point
connections with memories or other accelerators (similar
to memory-mapped AMBA AXI protocols), and use local
and shared scratchpad memories. A similar approach is
taken by the ARTICo® framework [58], which focuses
on compute intensive applications on distributed sensor
networks and cyber-physical systems. Like ReconOS, it also
supports partial reconfiguration at runtime to enable hot-
swapping of accelerators, but aims at applications often
performed by DSPs, which are typically absent in edge
computing devices. The ARTICo® scheduling model is
based on vectorization and instruction level parallelism: it
allows to distribute a workload stream to a dynamic number
of accelerators at runtime, utilizing both pipelining and
parallel execution of the accelerators. For edge-computing
devices memory is at a premium, which makes partial
reconfiguration an excellent technique. Partial bitstreams
are significantly smaller than full bitstreams, allowing

the device to store more accelerator types and adapt
dynamically to the runtime compute load. However, partial
reconfiguration also has several important disadvantages.
Since the partially reconfigurable resources are locked in
place on the FPGA, it places severe constraints on the place-
and-route stage, which results in sub-optimal area utilization
and less re-use compared to complete-design workflows.
For the same reason, it is often difficult to achieve
high operating frequencies across the reconfiguration
borders. Furthermore, it is challenging to accommodate
truly heterogeneous accelerators which may have a large
variation in accelerator sizes, since all accelerators have to
fit in the same reconfigurable space/area/slot. In contrast,
TaPaSCo aims at high-performance computing workloads,
where storage space for the configurations is not limited
in practice, but where optimization of the overall clock
frequency is paramount, making partial reconfiguration a
less attractive feature.

In [72], Wenzel et al. make a case for moving the
tradeoff between synthesis time and runtime in the opposite
direction: RapidSoC aims at speeding-up turnaround times
for the synthesis of softcore-based SoCs, at the expense of
reduced operating frequency. While not suitable for high-
performance computing, this approach allows to employ
custom-tailored computing solutions for a much wider
scale of applications than would otherwise be economically
feasible.

The complex tradeoffs involved in every FPGA design
are examined further in [49] where the authors evaluate
different time and space sharing strategies to deploy FPGAs
as compute resources in cloud computing setups in the
most efficient ways possible. In this scenario, the FPGA’s
utilization as a compute resource can be optimized by
sharing the device among multiple distinct users at the
same time. TaPaSCo also aims to accommodate truly
heterogeneous workloads, but the underlying assumption
is that they belong to a single application/user; while
varying workloads in different phases of the application
can still be covered by multiple TaPaSCo designs and full
reconfiguration, it is assumed that the overall workload
structure is known at synthesis time.

Redsharc [59] is an academic hardware/software system
design framework with a similar approach as TaPaSCo;
it shares concepts such as the grouping of heterogeneous
PEs into clusters, and uniform, scriptable construction of
cluster groups into architectures. However, the Redsharc
source is not publicly available, is not portable and does
not support current hardware. Furthermore, Redsharc is
focused on hardware architectures processing regular data
streams, whereas TaPaSCo explicitly supports more general
hardware that also allows random-memory accesses.

TaPaSCo generates computing architectures for the task
parallel model of computation by instantiating multiple,

@ Springer



548

J Sign Process Syst (2021) 93:545-563

independent instances of accelerator cores. A similar
approach is found in the ARACompiler [13], which only
runs on the Xilinx ZC706 SoC board, but supports
accelerator-side paging in interaction with a Linux OS
running on the on-chip ARM CPU.

Whereas TaPaSCo supports both HLS and HDLs to
define the accelerator cores, CMOST [78] generates a
full system architecture from a C program by revisiting
approaches found in HLS compilers [9, 11, 21]: It extends
the loop unrolling and extraction techniques based on the
polyhedral model to task based parallel computing, with
similar split into a hardware-dependent and a hardware-
independent part of the generated designs, support for SoCs
and some PCle-based systems (e.g., Xilinx VC707). Due
to this approach, CMOST is limited to C programs and
precludes many parallelization opportunities on the host
side.

The topic of Design Space Exploration (DSE) is a
cross-cutting concern in all FPGA research; the approach
implemented in TaPaSCo is tuned toward this specific
application, but precursors and similar ideas can be
found throughout the literature. Recently, Lo and Chow
explored the impact of high-level synthesis directives in
general using a DSE approach [46], whereas Xu et al.
implemented a parallel auto-tuning algorithm [75], similar
to the batch approach in TaPaSCo. Sotiriou-Xanthopolous et
al. presented a DSE approach for virtual platform simulators
in [67], which allows to simulate different design variations
from a single bitstream and estimate performance w.r.t. to
energy efficiency, performance, and area consumption. The
estimation method is similar to TaPaSCo’s out-of-context
synthesis, but the focus of the overall framework is on
the acceleration of virtual platform simulation for ASIC
designs.

An approach that is more similar to TaPaSCo than the
previously described solutions is the relatively new ESP
platform [48]. Like TaPaSCo it enables the composition
of SoCs from different sources. For example, ESP
allows the use of SystemVerilog, VHDL and Chisel for
accelerator design using HDL. Apart from those, C/C++
and SystemC are supported for HLS-based accelerator
design. Lastly, ESP also allows the automatic generation
of accelerators from machine learning frameworks, such as
Keras, Tensorflow or PyTorch. The models are transformed
into accelerators using the hls4ml-framework [16]. All
resulting accelerator designs are stored in an IP-library,
which can then be used for rapidly prototyping SoCs. It is
also possible to include processor cores within the overall
SoC-design, which can then be programmed in software.
Just like TaPaSCo, ESP provides a software stack that
enables interfacing with the corresponding accelerators.
Specific drivers for communicating with the different
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accelerators are automatically generated from provided
templates. While portability is also a goal for ESP, it
currently only supports the Xilinx VC707, VCU118/128,
as well as the Virtex7/Virtex Ultrascale-based proFPGA
boards. In comparison, TaPaSCo supports similar devices,
but also includes entry-level boards such as the Digilent
PyNQ/ZedBoard.

Another comparable work is the open-source project
Connectal [40], which automatically generates hard-
ware/software interfaces to FPGA-based accelerators.
Using a BlueSpec Verilog (BSV)-based interface declara-
tion, Connectal automatically creates a BSV-based wrapper
for the accelerator, as well as a C++ wrapper that allows
communicating with the accelerator from user-space. Con-
nectal also works platform-independently and currently
supports a number of Xilinx Zyng/Virtex7-based boards
(Digilent ZedBoard/Zybo, Xilinx ZC702/706, VC707/709
and NetFPGA SUME).

With regards to the automatic generation of SoC-based
multi-core RISC-V systems (cf. Section 5), Chipyard [3]
offers functionality similar to TaPaSCo. It allows the
integration of several RISC-V processor cores within a
single SoC. In addition to the supported RISC-V cores
(BOOM, Ariane [77] and Rocket [4]), accelerators can also
be included in the designs. Most notably, the Nvidia Deep
Learning Accelerator (NVDLA) is also supported. Chipyard
leverages the Chisel3 HDL [6] for composition, simulation,
and integration on a target FPGA. With this approach,
SoC simulation can also be performed using FireSim [39],
which enables FPGA-accelerated simulation of the resulting
design using cloud resources provided by Amazon AWS F1
instances. With regard to the system composition, a similar
approach is used by the HERO framework for research in
RISC-V-based manycore SoCs [44].

2.3 Commercial Tools

High-level synthesis (HLS) tools are a major enabler for
making FPGA-based reconfigurable computing accessible
to developers with a software background. A first major
push in commercial HLS tools for FPGAs occurred in
2010 with Xilinx’s FPGA-vendor supported tool Vivado
HLS. This tool has formed a key pillar of our design flow
since the early days of ThreadPoolComposer, with TaPaSCo
further automating some steps of the HLS process for the
convenience of the user.

Building on Vivado HLS, Xilinx introduced FPGA
vendor-supported SoC design tools in the forms of SDSoC
and SDAccel, in 2015 and 2016, respectively, which
bear some similarity to TaPaSCo. Both also allowed to
compose SoC designs from individual kernels, but each was
specialized for different domains and FPGA platforms. In
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contrast to TaPaSCo, no single tool could be used to target
both embedded platforms (e.g., Zynq-7000, Zynq MPSoC)
and data-center FPGAs (e.g., Virtex 7, UltraScale+).

SDSoC and SDAccel were later unified by Xilinx,
with the addition of other components such as the open-
source Xilinx Runtime (XRT), in the Vitis tool [74], which
was announced in 2019. Vitis adopted a similar design
methodology to the one used by TaPaSCo: Both tools
support the kernel implementation in either a hardware
description language, such as Verilog or VHDL, or in
C/C++-based HLS, and both approaches allow for the
combination of kernels developed with either one of those
approaches. With the v++ link command, Vitis allows to
combine multiple instances of different kernels into a single
design, and automates the connection with the hardware
platform. This is similar to TaPaSCo’s compose command
(see Section 5 for more details). While TaPaSCo focuses
on and optimizes for an architecture where kernels may
access the FPGA memory randomly, and where all data
is transferred via memory, Vitis also supports streaming
kernels.

For both Vitis and TaPaSCo, the host software is usually
developed in C/C++, using the OpenCL or XRT API for
Vitis, or the TaPaSCo API for TaPaSCo.

With Vitis, commercial tool development has caught
up with the approach followed by ThreadPoolCom-
poser/TaPaSCo since 2015. But even so, TaPaSCo still
maintains a lead over Vitis with its automated design-
space exploration capabilities, and the flexibility provided
by TaPaSCo’s powerful plug-in extension mechanism.

With the plug-in and feature mechanism implemented
in the platform scripts, the hardware platform (sometimes
also called shell or base design), into which kernels
are automatically integrated, can easily be customized by
enabling or disabling features or plugins. This, for example,
allows to investigate the impact of a cache system on the
current design by simply enabling the cache feature.

With its open-source nature, the TaPaSCo hardware
platforms can easily be customized by extending the
existing platform scripts, e.g., to add networking interfaces,
as was done in [30], black-box extension of existing
cores with caches or queues, using infrastructure cores
to change the interconnect (e.g., switching between buses
and networks-on-chip) between processing elements, and
the use of interface adapters to communicate with third-
party IPs. TaPaSCo’s customizability is a key capability to
enable high performance for a diverse range of computing
approaches.

For more complex use-cases, deciding on a good SoC
architecture while considering multi-dimensional trade-
offs, e.g., between FPGA area, clock frequency, throughput
etc. is a difficult problem. For example, in many cases
it will not be obvious how many instances of a kernel

should be placed on a specific FPGA platform, or what the
optimal operating frequency of a design is for achieving
maximal throughput. TaPaSCo’s automatic design space
exploration allows to automatically investigate multiple
SoC architectures at different trade-off design points (see
Section 3.4 for more details). The design-space exploration
capabilities in Vitis are currently limited to examining
different implementation strategies, e.g., for mapping,
placement, and routing, for a given SoC architecture.

Intel, the second major FPGA vendor, on the other
hand provides the Open Programmable Acceleration Engine
(OPAE) [34]. However, OPAE is solely a software runtime
to facilitate interfacing with accelerators. The actual
FPGA bitstreams still need to be generated by traditional
development tools from Intel, where the SoC composition
is not automated by OPAE. Intel’s Quartus tool provides
some design-space-exploration capabilities, however only
in a single domain and for a single kernel.

3 TaPaSCo

TaPaSCo consists of two main parts: An automated
toolflow to generate System-on-Chip (SoC) designs based
on custom processing elements (PEs, e.g., described in
Verilog/VHDL, Bluespec, Chisel, or generated using HLS),
and a general application programming interface (API)
and accompanying libraries to facilitate platform-agnostic
software development. In the following, Section 3.1 will
focus on the former, Section 3.2 on the latter. Section 3.3,
Section 3.4 and Section 3.5 describe how TaPaSCo
addresses the central issues of portability, scalability and
extensibility for future proofing FPGA designs.

3.1 Hardware Design Abstractions

TaPaSCo hardware designs as shown in Fig. 1 consist of a
configurable number of processing elements (PEs); PEs of
the same kind are grouped into PE clusters, which are in
turn grouped into the Architecture of the design. Finally, the
Platform instantiates board- or FPGA-specific resources to
implement data and control accesses, as well as signaling,
thus leading to the complete system shown in Fig. 2.
TaPaSCo hardware designs are based on three funda-
mental abstractions (ordered by scope): Al: T-model of
processing elements, A2: Architecture, and A3: Platform.
Each of the abstractions is implemented as a set of
scripts in TaPaSCo: A1 consists of scripts to configure the
interface generation of supported HLS compilers. A2 is
implemented in a modular Tcl script to perform the wiring
of PEs into clusters, and clusters into an Architecture, using
suitable bus topologies. The fundamental idea is to keep
the Architecture independent of the target FPGA, making it
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Figure 1 Processing elements of same kind are grouped into clusters
using channel aggregators for the three basic channels, e.g., AXI4
Interconnects and interrupt controllers.

reusable across targets. A3 finally connects the Architecture
to the surrounding hardware components of the target FPGA
board. The scripts currently utilize the Vivado Tcl APIs
to automate the wiring of high pin-count interfaces (e.g.,
AXI4).

The T-model, named for its T-shape shown in Fig. 3,
defines the interface requirements for a TaPaSCo PE module
and abstracts from implementation details. Each PE in the
T-model requires three basic channels: 1. a control channel
to communicate with the host, 2. a signaling channel to
indicate completion, and 3. a data channel to access data.

The exact nature of the channels (e.g., AXI4, Avalon,
Wishbone, NoC, .. .) is determined by A2, the Architecture:

Figure 2 Using the T-model to

TaPaSCo supports heterogeneous PE architectures, i.e.,
groups of different PE kinds scaling linearly. To achieve
this, PEs are grouped into PE clusters, each cluster
containing all PEs of a kind and abstracting away the
concrete number of individual PEs. The T-shape is repeated
in a fractal-like fashion here: Each cluster itself is T-shaped,
and can be wired like the PEs themselves (see Fig. 1).

On the outermost platform-independent level, this
process is repeated across clusters. The collective term
used to describe the automated wiring of all three
levels is Architecture, i.e., the organization and wiring
of PEs into a heterogeneous pool as shown in Fig. 2.
In TaPaSCo, Architectures are designed to be platform-
agnostic: Whatever protocol or technique is used to actually
perform the wiring, this part of the design should remain
portable.

TaPaSCo currently uses an Architecture based on AMBA
AXI4: All control interfaces are AXI4Lite slaves, all
memory interfaces are AXI4 masters, signaling is done
via a single wire interrupt line. AXI4 Interconnects are
used for both slave and master interfaces at the cluster
and Architecture levels to wire the connections. Note that
TaPaSCo’s blackbox approach regarding the PE internals is
suitable to support many different compute architectures:
The AXI-based architecture has been used both in the
random-access architecture discussed in Section 5 for near-
data processing, as well as for a complex high-performance
Stereovision accelerator based on a systolic array [28]. It
would also be entirely possible to use TaPaSCo to connect
only a single PE (containing a full architecture inside), see
Section 4 for an example. TaPaSCo does not impose a
model on the PE, it only focuses on providing easy spatial
replication and convenient access from software.

The outermost abstraction is called the Platform: All
parts of the hardware design which are specific to the
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target board (e.g., the FPGA, pin constraints, peripherals,
memory) are generated by the Platform abstraction.
Minimally, a Platform must connect the control interfaces
to the host, provide some memory shared between PEs
and the host, and an interface toward the host for PE
signals. Furthermore, all peripherals and other infrastructure
are instantiated here (e.g., memory controllers, interrupt
controllers). Platform scripts can be seen as smart base
designs: They instantiate target-specific infrastructure, but
retain a significant amount of configurability without
requiring manual intervention by the user.

Originally, both ThreadPoolComposer and TaPaSCo
used a fixed address map scheme to facilitate communi-
cation between host and PEs. Now TaPaSCo solves this
more elegantly by storing the on-chip address map in a
custom hardware module generated on the fly during com-
position. This address map is then queried at runtime by
the software layers. This approach yields great flexibil-
ity: E.g., every kind of PE may have a different number
and/or differently sized control interfaces. It is also possi-
ble to integrate custom, user-defined infrastructure modules
and use the TaPaSCo software layers to communicate with
them: The TaPaSCo scripts for Architecture and Platform
are skeletons providing numerous injection points for exten-
sions, where plug-ins can be inserted to modify the design in
flight.

The goal of TaPaSCo is to provide a framework that
allows for fast SoC-generation for a wide range of FPGA
platforms. By offering flexibility with regard to the size of
the control interface (e.g., the number of writable registers),
TaPaSCo allows users to easily use the tool-flow without the
need for additional wrapping logic around the PEs. In the
case of the configuration interfaces, this generalization does
not have a measurable performance impact, as TaPaSCo will

Completion signals to host

only write the registers actually requested by the user for
each PE.

Example 1 1If a PE does not have a TaPaSCo-compatible
register interface (see [57] for a more detailed description
of the register conventions used by TaPaSCo), a plug-in
can automatically instantiate a suitable wrapper to enable
TaPaSCo to continue with the automated wiring.

A different example can be found in the zedboard
Platform: The Digilent ZedBoard [15] has an on-board
OLED display that can be used to show the number of com-
pletion signals at each slot; this is achieved by a plug-in that
instantiates the corresponding display controller and wires
it to the design. Such modifications are common, espe-
cially when exploring different variations of a design, e.g.,
using different DMA engines. To simplify the use of such
plug-ins, TaPaSCo provides support for so called features:
Features can be defined using a simple, but consistent key-
value syntax and can be queried by plug-ins during com-
position. This allows the user to easily pass configuration
values, and enable or disable specific plug-ins.

The hardware design abstractions described in this
section enable TaPaSCo to provide a fully automated
toolflow for composing hardware designs, which is one
of the most important features of TaPaSCo. The TaPaSCo
hardware design flow is depicted in Fig. 4 and shows how
a complete design can be assembled from the individual
PEs. For HLS-based PEs, TaPaSCo will first execute the
vendor high-level synthesis (e.g., Vivado HLS), using the
C/C++ sources provided by the user. For HDL-based PEs or
softcores, this step is not required, instead they are expected
to be provided in the IP-XACT format produced by many
hardware design tools (e.g., Vivado).

y o Y LLS 0111
crcn HLS E o b é E TaPaSCo P&R o
HLS C/C++ IP-XACT FPGA Design Device
or HDL Core IP Cores Bitstream

Figure4 TaPaSCo hardware design flow, producing a complete FPGA bitstream from the individual user-provided PE definitions.
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After the user has specified the desired composition
of the hardware design, i.e., the architecture, the kind of
PEs, number of PEs per kind, operating frequency and
(optionally) target platform, TaPaSCo will create a complete
FPGA SoC-design, using the hardware abstractions and
mechanisms described in this section. Eventually, TaPaSCo
will invoke the vendor’s synthesis tool (e.g., Vivado) to
perform synthesis, placement and routing for the target
FPGA, yielding the final bitstream that can be used to
program the FPGA. The entire design process can often be
initiated with a single command, as we will demonstrate in
the example in Section 5.3.

3.2 Software Design Abstractions

Key to providing a productive environment for FPGA
developers is to eliminate as many manual tasks as
possible that are not directly related to the problem
at hand. Specifically, this includes handling low-level
communications with the hardware. Using an automated
process, as described in Section 3.1, to construct hardware
designs has the benefit of yielding very regular designs,
which can consistently be used in software without
requiring repetitive manual protocol implementations.

The core abstraction for the application programming
interface (API) of TaPaSCo is the task-parallel model:
Every computation is broken into fasks, which can execute
in parallel. Each work item of a task is split into a
number of individual jobs, each of which can be computed
independently. This model is widely used in heterogeneous
computing, because it accommodates different computing
architectures by abstracting computation from concrete
algorithm: The user submits jobs to the abstract machine,
which are then processed by any of its available PEs,
regardless of their internals. Even the original interface
defined by TaPaSCo’s predecessor ThreadPoolComposer
was already sufficiently portable to also support execution
on digital signal processors (DSPs), without having to
change the host code (cf. [57]).

In TaPaSCo’s software framework, a task corresponds to
a cluster, and a job corresponds to one execution of a single
PE. At this granularity, a domain expert can develop the
core application by defining tasks and splitting work items
into jobs; this is the top-most, user-facing API that TaPaSCo
defines (for a concrete usage example see Section 5).

To implement this rather abstract API, TaPaSCo inter-
nally mirrors the abstractions of the hardware design (see
Fig. 5): The TaPaSCo library is concerned with the Archi-
tecture. It manages PEs and the address map, performs the
communication required to transfer data and arguments,
launch a job, and wait for the result(s).

In order to implement the interactions in a platform-
agnostic manner, the TaPaSCo library is implemented on top
of the platform library, which encodes primitive operations,
such as accessing a PE’s registers, or allocate/free and
read/write device-accessible memory. This allows any
Architecture to be used on any Platform with the same user
application code.

The platform library operations themselves are realized
using an operating system layer implemented in the
TaPaSCo loadable kernel module (TLKM): Without going
into unnecessary details, TaPaSCo uses a fixed set of
ioctl commands, which need to be implemented at
most once for each Platform (often code can even be
shared among families of devices). The commands are
sufficiently generic to accommodate a wide variety of
transport mechanisms, from shared memory (e.g., Zyngq,
MPSoC) to PCle Gen3 (e.g., VC709). Please see the
documentation at [68] for more details on the internal APIs.

3.3 Portability

The overall approach outlined in Sections 3.1 and 3.2 has
proven to be very useful to isolate the domain expert (i.e.,
the application developer) from the details of the chosen
target platform: A TaPaSCo application’s code does not
need to be changed when executing on a different TaPaSCo
platform.

A

User Ap- TaPaSCo API

tapasco_create_device(...)
tapasco_acquire_job_id(...)
tapasco_launch_job(...)

plication : Platform API

tapasco_wait_for_job(...)

Operating%
System%

Hardware : & Device

Kernel Module

RTL Simulator

platform_read_ctl(...)
platform_write_ctl(...)
platform_read_mem(...)
platform_write_mem(...)

Figure 5 Software Layer Hierarchy in TaPaSCo: The top-level API
provides task-parallel abstraction, the Platform API realizes a thin
user-space layer above either a the operating system primitives
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implemented in the TaPaSCo Loadable Kernel Module (TLKM), which
in turn interacts directly with the device(s), or, alternatively, b inter-
faces with a RTL simulator of the hardware design.
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This also applies to the hardware level: If a hardware
module conforms to the TaPaSCo interface requirements,
it can be used on any supported platform. Furthermore,
TaPaSCo was designed to be easily extensible to new
platforms: Within one year of TaPaSCo’s initial presentation
in [43], the number of supported platforms has doubled
from seven to fourteen. The list of of supported platforms
ranges from small embedded boards using Zynq devices, up
to high-performance PCle-based expansion cards with large
UltraScale+ FPGA devices.

3.4 Scalability

Scaling a TaPaSCo design, e.g., from using five PEs of a
certain kind to 30 PEs, requires only automated rebuilding
of the hardware design via TaPaSCo. Everything else,
including the application code, does not need to be changed
and will adapt automatically to the new design.

Furthermore, additional support for design space explo-
ration in TaPaSCo simplifies a crucial task in optimization:
When designing an SoC with a large number of PEs, there
will always be a trade-off between the number of PEs in the
design and its operating frequency. More PEs means more
potential for spatial parallelism and better area utilization;
however, with increasing area, path lengths in the design
also increase, making timing closure increasingly more dif-
ficult to achieve. Finding a good trade-off for any given
application can be a very tedious and slow trial-and-error
process.

TaPaSCo supports the user by providing an automated
design space exploration (DSE) along the three axes of
operating frequency, area utilization, and use of design
variants. Each axis can be separately activated or deactivated
in a DSE run, e.g., to determine only the highest operating
frequency for a fixed number of PEs, or to find the maximal
number of PEs that will fit on a given device at a fixed
operating frequency.

The algorithm first computes upper and lower bounds
for each activated axis. For the operating frequency,
TaPaSCo uses an out-of-context synthesis run (abbreviated
as OOC here) to perform a full place-and-route on
an otherwise empty target FPGA. Since this design is
almost unconstrained, this yields an overly optimistic
approximation of the achievable operating frequency. The
lower bound is usually determined by the target FPGA,;
by default, TaPaSCo cuts off at 50 MHz, discarding
compositions with a lower operating frequency.! The
remaining interval is then divided evenly in 5 MHz steps

I'The 50 MHz cut-off point has been chosen based on the application
scenarios investigated so far. However, thanks to TaPaSCo’s extensible
design, this could easily be changed in the implementation and could
be customized on a per-platform basis.

by default, each step being the frequency component of a
coordinate in the discrete design space.

Bounds for area utilization are also based on out-of-
context synthesis: OOC yields an estimate of the area
used by each kind of PE. The area utilization for the
entire design is then estimated using a stoichiometric linear
extrapolation based on the number of PEs of each kind and
an estimation for the architectural overhead. By default,
TaPaSCo assumes zero overhead, making a very optimistic
approximation. This is justified, as modern place-and-route
tools perform very extensive optimizations and can compact
similar circuits very aggressively, sometimes yielding lower
values for area utilization than the linear extrapolation
would suggest. Since these optimization efforts are very
hard to estimate a-priori for any given design, TaPaSCo
compensates by using an optimistic approximation of the
design overhead instead, to avoid discarding viable designs
prematurely. To increase or decrease the area utilization,
the initial composition is scaled linearly in the number of
PEs. This yields the area component of the design space
coordinates.

Design variants specified by the user represent different
implementations of the same PE kind, e.g., using more
Block RAM, or more pipeline stages, or different sizes
of FIFOs. For each cluster, a single variant is chosen;
the design variants are then generated combinatorially by
combining with every variant of every other PE kind in the
composition. This yields the choice of a design variant as
the third coordinate component within the design space.

Due to combinatorial explosion, the size of the design
space quickly exceeds the limits for brute force exploration.
To counter this, TaPaSCo supports different heuristic
functions to evaluate each element in the design space, and
then explores batches of elements ordered by their score. At
each step, the design space is pruned, e.g., discarding the
elements which have a lesser score than the best element
found so far.

Overall, the runtime of the automatic design-space
exploration is still highly dependent on the user design,
target platform and number of dimensions to explore,
and can vary between a few hours and several days.
To accelerate this process, TaPaSCo supports parallel
investigation of multiple design-points (the number can be
specified by the user) in a high-performance computing
cluster-setup, employing the Slurm Workload Manager
[60]. This feature was used for the extensive design-space
exploration in [28]. The design points found by the TaPaSCo
DSE that yielded the highest framerates for that application
were non-obvious solutions that would have been difficult to
choose manually even for experienced hardware designers.

Example 2 Assume the user specifies an initial composition
consisting of three different PE kinds, called A, B and C,
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with two PEs in the A cluster, four PEs in the B cluster,
and six PEs in the C cluster. In TaPaSCo syntax this
would be expressed as [A x 2, B x 4, C x 6];in
the following, such a configuration is called a composition.
When scaling linearly, the smallest composition with the
same ratios containing all PEs is thus [A x 1, B x
2, C x 3]. Also assume that TaPaSCo has determined
via OOC that the largest composition fitting on the target
FPGAis [A x 3, B x 6, C x 9]. This would yield
three viable compositions in the design space. Furthermore
assume that the OOC for A has given us an fp,x of 100
MHz, 75 MHz for B and 150 MHz for C. Since all PEs are
clocked at the same frequency, B provides the upper bound
on frequency at 75 MHz. Leaving the lower cut-off at the
50 MHz default yields six frequency coordinates: 50 MHz,
55 MHz, 60 MHz, 65 MHz, 70 MHz and 75 MHz. Finally,
assume that only A has variants, called A0 and A1l. Thus,
the design space TaPaSCo will explore will contain a total
of 36 elements (listed in Table 1).

Details of the actual DSE algorithm, including the
heuristics used for pruning the search space, have been
presented in [29].

3.5 Extensibility

Given the vast variety of scenarios in which FPGAs are
often used, it is impossible for a generic toolchain such as
TaPaSCo to anticipate and support every use-case out of
the box. Instead of a one-size-fits-all approach, TaPaSCo
aims for a high degree of modularity and extensibility in all
parts and aspects. Using plug-ins and features to customize
the hardware design generated by TaPaSCo has already
been discussed in Section 3.1. Adding new Platforms or

Table 1 Initial design space for TaPaSCo DSE run.

Architectures is very easy as well. But one of the core goals
of TaPaSCo is to provide a re-usable foundation for further
work and to eliminate some of the tedious work for every
prototyping engineer or researcher. Therefore, most parts of
TaPaSCo are designed in a modular fashion and allow for
their standalone usage.

Example 3 Some people may not be interested in using
the task-parallel abstractions provided by the TaPaSCo
API, but would still like to use the rest of the toolchain
to iterate their designs more quickly; in this case, the
Platform API can be used on its own to directly interact
with the hardware. For others, the TaPaSCo API may not
be sufficiently abstract yet; in this case, TaPaSCo can
be used as a foundation for implementing more complex
environments and frameworks, such as OpenMP (cf. [62]),
or OpenCL.

4 TaPaSCo Success Stories

TaPaSCo and its direct predecessor ThreadPoolComposer
(TPC) [42] have successfully been used for a number of
applications. As TaPaSCo is available on a broad range of
different platforms, from small, power-efficient boards to
large, datacenter-scale devices, the application scenarios of
TaPaSCo are likewise very diverse, ranging from embedded
computer vision to high-performance computing (HPC),
distributed data analytics, and machine learning.

This section presents some of the concrete applications
using TaPaSCo and describes how these applications exploit
the scalability and portability provided by TaPaSCo, as
well as other, more specific features. The description in
this section is intended as a reference and also inspiration

R 1

F
50 [A0 x 1, B x 2, C x 3]
[Al x 1, B x2,C x 3]
55 [A0 x 1, B x 2, C x 3]
[Al x 1,B x2,C x 3]
60 [A0 x 1, B x 2, C x 3]
[Al x 1, B x2,C x 3]
65 [A0 x 1, B x 2, C x 3]
[Alx 1,B x2,C x 3]
70 [A0 x 1, B x 2, C x 3]
[Alx 1,B x2,C x 3]
75 [A0 x 1, B x 2, C x 3]
]

[Al x1,Bx2,C x3

[AOx 2, B x4,C x 6]
[Al x2,B x4,C x 6]
[AOx 2, B x4,C x 6]
[Al x2,B x4,C x 6]
[AO x 2, B x4,C x 6]
[Al x2,B x4,C x 6]
[AOx 2, B x4,C x 6]
[Al x2,B x4,C x 6]
[AOx 2, B x4,C x 6]
[Al x2,B x4,C x 6]
[AOx 2, B x4,C x 6]
[Al x2,B x4,C x 6]

A0 x 3,B x6,C x9]
Al x3,B x6,C x9]
A0 x 3,B x6,C x9]
Al x3,B x6,C x9]
A0 x 3,B x6,C x9]
Al x3,B x6,C x9]
A0 x 3,B x6,C x9]
Al x3,B x6,C x9]
A0 x 3,B x6,C x9]
Al x3,B x6,C x9]
A0 x 3,B x6,C x9]

[
[
[
[
[
[
[
[
[
[
[
[A1 x3,B x6,C x9]

F = Target Design Frequency, R = Replication Factor.

@ Springer



J Sign Process Syst (2021) 93:545-563

555

for future users of TaPaSCo, detailing how to use some of
TaPaSCo’s unique features.

4.1 Integration of High-Level Synthesis

One possible entry point to TaPaSCo’s automated toolflow
is the use of high-level synthesis, compiling a high-level,
behavioral description of an algorithm into an actual FPGA-
based accelerator.

In [8], Brugnoni et al. discuss some of the challenges
posed to developers with a strong software background
that try to use C/C++-based high-level synthesis to
create a heterogeneous system with accelerators. Next to
many pitfalls related to the performance of the generated
accelerator, the integration of the accelerators into a single,
heterogeneous system-on-chip is identified as one of the
biggest challenges for users of high-level synthesis who
are not also experienced FPGA designers. According
to their study and evaluation, TaPaSCo is very well
suited to overcome this problem and to make FPGA-
based accelerators more accessible for software developers.
By providing a fully automated flow from a behavioral
algorithmic description to a fully integrated accelerator,
TaPaSCo enables users with little or no knowledge about
hardware development and embedded system design to
leverage the power and flexibility of FPGAs.

For performance optimization of their example algo-
rithm, Brugnoni et al. used an iterative development pro-
cess. During such a process, it is important to be able to
quickly assess the accelerator, not only its performance,
but also with regard to hardware resource consumption
and operating frequency. In their research on high-level
synthesis scheduling algorithms [52, 53], Oppermann et
al. used TaPaSCo for exactly this purpose: Harnessing
the easy-to-use out-of-context synthesis feature that is part
of TaPaSCo’s high-level synthesis and import flow (cf.
Section 3.4), it was possible easily to evaluate a large num-
ber of examples and scheduler configurations with regard
to effects of the scheduling algorithm on resource require-
ments and the critical path delay in hardware.

Another example for the integration of HLS-generated
accelerators into heterogeneous systems with TaPaSCo can
be found in [63]. The HLS compilation flow described there
generates multi-core, multi-threaded hardware accelerators
from OpenMP parallel loops. In that work, TaPaSCo was
not only used to integrate and interface with the generated
accelerators, but also extended to better suit the needs of
the application: In order to reduce the pressure of multi-
threaded accesses on the memory subsystem and reduce
memory access latency, the TaPaSCo base architecture was
extended to include small, thread-private caches inserted
between accelerator and the FPGA’s external DDR memory.

In a truely heterogeneous setup that combines HLS-
generated accelerators with other accelerators such as
GPUs, the integration of all these different accelerators
into a single application can be challenging. Ideally, all
accelerators should expose a single, unified interface for
offloading computations from the application onto these
accelerators. One candidate for such a unified interface are
the device offloading constructs first introduced in version
4.0 of the OpenMP standard. The OpenMP device directives
and clauses clearly define a device offloading execution
model and provide means to specify which and how to
transfer data between host application and accelerator.

Based on TaPaSCo, the work in [62] developed one
of the first prototypes for OpenMP device offloading to
FPGA-based accelerators: First, the clang compiler was
extended with an FPGA-specific OpenMP toolchain that
leverages TaPaSCo’s automated HLS toolflow to run Xilinx
Vivado HLS for OpenMP target regions in the input code,
eventually yielding a complete bitstream without manual
intervention by the user.

For the interfacing with the accelerator at runtime,
LLVM’s OpenMP runtime was extended with a plug-in
that, based on TaPaSCo’s portable software API, controls
data allocation and -transfers as well as execution of the
accelerator. In summary, the clang integration and runtime
plug-in enable users to create and interface with HLS-
generated FPGA accelerators solely using the directives
defined in the OpenMP standard. This is also good example
of how TaPaSCo can be integrated into a larger toolflow and
runtime setup.

4.2 Custom HDL-based Accelerators

However, the challenge of integrating an accelerator into
a heterogeneous system is not only faced by HLS users,
but also by developers of custom accelerators written
in hardware description languages such as Verilog or
Bluespec. With its second entry-point based on packaged IP
cores, TaPaSCo can also be used for the integration of such
custom accelerators.

An example of this usage scenario in the context
of accelerators for machine learning workloads can be
found in [64, 65], where a custom accelerator for the
inference in Sum-Product Networks (SPN), a class of
probabilistic models, was presented. This work is also an
excellent example for the high efficiency and low overhead
of the TaPaSCo framework: Through full pipelining of
the accelerator, including the interface to external DDR
memory generated by TaPaSCo and the use of AXI4 burst
transfers, the approach was able to achieve very high
throughput for the processing of batches of input queries.
Despite the much lower operating frequency, the accelerator
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was able to significantly outperform modern CPUs and
GPUs, proving that TaPaSCo is very well suited for such
high-performance usage scenarios. In later extensions of
this work in [66, 70], the evaluation showed that the
overhead for data-transfers between host CPU and FPGA
memory had been improved in more recent versions of
TaPaSCo, leading to even higher speedups.

The same accelerator was also used to demonstrate
TaPaSCo’s portability: As domain experts from the machine
learning community usually do not run and maintain FPGA
boards in on-premise setups, the accelerator architecture
was ported [51] to the reconfigurable cloud, namely the
F1 instances found in Amazon’s AWS EC2 cloud. As the
TaPaSCo architecture is completely platform-independent
and TaPaSCo provides suitable platform integration for the
F1 instances, the accelerator could be ported without any
changes to the core itself. TaPaSCo’s automated design-
space exploration was then used to determine the best
composition (number of cores and frequencies) in the cloud
setup, eventually yielding throughput figures outperforming
12-core Xeon CPUs and Nvidia’s V100 GPU.

The automated design-space exploration was also heavily
used for the computer vision accelerator in [28, 29]. The
accelerator implements the Semi-Global Matching (SGM)
algorithm used to determine the distance of objects through
comparison of images from two different cameras. In
contrast to prior work, the developed accelerator did not
only allow to process multiple rows of the input images
in parallel, but also introduced a more fine-grained level
of parallelism by evaluating multiple disparity values, i.e.,
candidates for the distance of the same pixel in the two
images, in parallel. With both, the number of rows and
disparity values to process in parallel being configurable,
TaPaSCo’s automated DSE identified non-obvious tradeoff
points yielding frame rates superior to CPU- and GPU-
based (up to 35x higher frame-rate) approaches at much
lower energy consumption. The approach also demonstrated
the portability of TaPaSCo by reusing the same accelerator
architecture across a number of very different platforms,
ranging from embedded SoCs (ZedBoard) to PCle-based
FPGA extension cards (VC709).

Applications have also always been a major driver to
include new functionality into TaPaSCo, such as the net-
work interface support developed for the in-network co-
processor for analytical SQL workloads presented in [30].
Modern FPGAs often provide high-speed network inter-
faces and are very well suited for the implementation of
accelerators for in-network and network-attached process-
ing. An example of such a platform is the NetFPGA SUME
board supported by TaPaSCo, which comes with four 10
Gbit/s SFP+ network connections. Using this board as a
reconfigurable switch, it was possible to move computations
from workers in a distributed data-processing system into
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to the network. Based on the extended version of TaPaSCo,
three-stage query processing pipelines that used network-
and memory-infrastructure of the FPGA board were devel-
oped. By moving hash-table computation and probing from
the workers to the reconfigurable switch and thereby reduc-
ing the number of expensive shuffle operations, a speedup
of up to 7x for left-deep SQL join plans could be achieved.

4.3 Softcores

A special case of custom IP cores are softcores, i.e., CPU
cores provided as HDL for the inclusion in a larger system.
Especially with the rising popularity of the open RISC-
V ISA, the integration of such softcores has become an
important task for TaPaSCo. TaPaSCo provides a number
of features that facilitate this task, e.g., the support for local
memories directly attached to the processing elements that
can be used for instruction and low-latency data memory
for RISC-V softcores. In [27], a catalog of open-source
RISC-V cores was integrated with TaPaSCo and evaluated
with regard to suitability for FPGAs and benchmark
performance. More details on how these softcores were
integrated with TaPaSCo can be found in the next section.

5 Case Study: RISC-V-based Many-Core
Architecture

While the previous section gave an overview of some of
the different use-cases of TaPaSCo and its versatility, this
section describes the typical design process of a FPGA-
based SoC using TaPaSCo in more detail. Even more
detailed usage instructions for TaPaSCo can be found in
the documentation located in the Github repository [68]. To
illustrate the user-friendly nature of TaPaSCo’s workflow,
we use a case study scenario, in this case the inclusion of
RISC-V softcores into the system.

TaPaSCo automates and speeds up the development
process of FPGA designs, but still requires full hardware
synthesis to build a bitstream. As a result, development
cycles are longer than in traditional” software engineering.
To combine both worlds and enable fast prototyping
with shorter iterations, RISC-V softcore processors are
introduced to TaPaSCo [27]. With this setup, the synthesis
run is required only once. In subsequent iterations, only
the firmware for the softcore has to be compiled again.
In later performance optimization steps, the functionally
verified firmware can incrementally be converted into
dedicated accelerators through HLS or by creating a
custom HDL core. The following text discusses the
design of a RISC-V processing element, and illustrates
its integration into TaPaSCo to accelerate the entire
design and implementation process, showing the actual
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commands required to assemble the SoC. The use-case also
employs some of the more advanced memory capabilities
of TaPaSCo to describe and manage more complex memory
systems (e.g., distinguishing between PE-global and PE-
local memories).

5.1 RISC-V Processing Elements

To allow TaPaSCo to automatically construct the SoC
design, the first step is to design a TaPaSCo-compatible
PE. One way to do this is shown in [27], which describes
the process to wrap seven different open-source RISC-V
cores for compatibility with TaPaSCo. To this end, the
design is wrapped into the T-shape, previously discussed in
Section 3.1, as follows:

For the data channel, existing AXI4 memory interfaces
of the RISC-V core can be used for memory accesses.
However, the signaling and control interfaces require
additional modules. The control interface is implemented
as an AXI4Lite register file module written in Bluespec,
called RVController. This module uses the direct wire
interface of the RISC-V processor to hold the processor
in reset until the start register is written. The processor
will then start to execute its program, can read execution
parameters from the RVController, and, at the end, the
processor signals the completion writing into a register. The
RVController then puts the processor back into reset.
Finally, it raises the interrupt on the external line to signal
completion to the host and allows it collect the results.

Attached to the RISC-V processor is a local BRAM,
which is used to store the firmware. Through an AXI4
controller, the host is connected to the second port of the
local BRAM. This is used to load a binary firmware image
into the BRAM. Accordingly, the host can directly transfer
the RISC-V firmware using the standard mechanisms of
TaPaSCo (see Section 5.2). The diagram in Fig. 6 shows the
final PE design for the prototype.

To provide a convenient way of generating the IP-XACT
[33] packaged T-shape that TaPaSCo requires, the wrapper
and connection logic generation is scripted. It is available as
open-source at [69].

For instance, these scripts can generate a TaPaSCo-
ready Piccolo RISC-V processor PE which can be directly
imported with the command:

tapasco import piccolo32. pe.zip as 1337

The import command performs two actions: (1) It
makes the PE contained in piccolo32_pe. zip available
to TaPaSCo using the PE rype ID 1337. This PE type ID will
later be used in the runtime to identify the kind of PE a job
requires. The ID identifies the functionality of a PE, e.g., the
abstract algorithm. Different implementations or algorithms
performing the same computation will usually share the

RISC-V Processing Element for TaPaSCo
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Figure 6 RISC-V processing element: RvController provides an
AXI4Lite slave interface for TaPaSCo; BRAM is accessible via an
AXI4 controller from the RISC-V, as well as from the host (adapted
from [27]).

same type ID. (2) The import command performs OOC
synthesis and place-and-route for all targeted platforms,
unless called with the --skipEvaluation command
argument. The OOC results can be used by later DSE
tasks and give estimates for the area utilization A and the
maximal operating frequency Fj,,x of a single instance of
the imported PE. A restriction to a single platform, e.g.,
the ZedBoard, can be achieved by adding the argument -p
zedboard.

5.2 PE Local Memory

Running a program on the softcore requires a binary
firmware image and a location to store it. To offer quickly
accessible storage close to a given PE, TaPaSCo uses
the concept of PE-local memory. The local memory is
accessible by the softcore and also by the host. The firmware
image itself is simply another parameter to the TaPaSCo
job and is automatically copied to the local memory before
execution. The hardware realization uses dual-port BRAMs,
separated into instruction and data memory if necessary,
where one port of each BRAM is connected to the softcore,
while the second port is accessible by the host.

All memory transfers to local memory are integrated into
the TaPaSCo software API. As part of a job execution,
TaPaSCo automatically handles the addressing and all data
transfers to the local memory.

In addition to the local memory, a PE has access to global
memory. Depending on the platform, in most cases this is
the larger on-board DDR memory attached to the FPGA, but
could also be different memory technologies such as High

@ Springer



558

J Sign Process Syst (2021) 93:545-563

Bandwidth Memory (HBM), which is supported for some
UltraScale+ FPGAs.

5.3 TaPaSCo FPGA Composition

The core goal of TaPaSCo is to free the engineer from
having to focus on anything not directly related to the
acceleration problem at hand. In this example this means
that TaPaSCo constructs the entire on-chip architecture,
leaving the developer free to concentrate on the RISC-
V PEs and the application code, instead of dealing with
e.g., memory interfaces or address maps. A fully working
bitstream with two RISC-V processors is generated with a
single command:
tapasco -v compose
50MHz -p zedboard

The compose command can be used to construct
a specific composition, without using any design space
exploration; in this case, the composition will include two
instances of our RISC-V PE running at 50 MHz and a
bitstream will be generated for the ZedBoard. The low
operating frequency was picked on purpose here. Together
with the small number of PEs it ensures that the synthesis
time will be reasonably short, which allows for frequent
iterations working in tandem with the software engineers
on the application side. For the final evaluation of the
prototype, TaPaSCo offers the design space exploration
feature to find a good trade-off between number of instances
(in this case the number of RISC-V softcores) and the
clock frequency. By default, TaPaSCo optimizes for job
throughput, which means, the number of computation jobs
per second. However, to estimate job throughput, a good
approximation of the average computation time required for
each job is required. Luckily, this is very simple: Once the
RISC-V program is assembled, the number of clock cycles
for any given input can be determined by offline simulation.
To include all memory effects, the delay introduced by
external memories has to be modeled for a more accurate
simulation. A number of ways can be used to provide this
data to TaPaSCo’s DSE, the simplest being re-importing the
PE giving the total estimated job execution time:
tapasco import piccolo32._pe.zip as 1337
--averageClockCycles 1250000

Running TaPaSCo’s automated design space exploration
is now as simple as:
tapasco explore [piccolo32.pe x 2] in
area, freq -p zedboard

The explore command takes an initial composition
and a list of design space dimensions; the initial composi-
tion determines the ratio of different PE kinds to each other.
For example, considering an initial composition [A x 1,
B x 2], the TaPaSCo DSE only uses compositions where

[piccolo32 pe x 2] @
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there are twice as many instances of B as of A when explor-
ing the area dimension. The design space dimensions area
and freq activate the exploration along the area utiliza-
tion and operating frequency axes, respectively. Finally, the
-p zedboard platform filter is set this time to restrict the
exploration to a single platform.

By default, explore will spawn one thread for each
active CPU core on the executing machine performing a
single composition run in parallel, taking the top elements
of the ordered design space (in this case ordered by
their estimated job throughput). The DSE will repeat this
process until it finds a design that achieves timing closure
automatically (see [28] for a more thorough discussion of
the DSE algorithm itself). Depending on the design and the
available resources, this process can take a varying amount
of time, but does not require any user interaction. After a few
hours, or days, depending on the complexity of the design,
TaPaSCo generates a working bitstream with close-to-ideal
operating frequency and number of PEs. However, note that
the result might not be optimal due to discretization errors
and sub optimal place-and-route quality which can lead to
local extrema that trap the optimization strategy.

5.4 Application Development with TaPaSCo

The last missing piece for this prototype is the application
software: To be precise, the two missing artifacts are the
RISC-V programs to execute on the PEs, and a host program
that offloads the computations to the FPGA. Discussing
the former is out-of-scope for this paper, but the latter
is examined briefly here to give an idea of software
development with TaPaSCo. Listing 1 contains excerpts
from the host program, focusing on the main offloading
loop.

The code assumes that the executable binary code of
the target RISC-V program has been inserted as the array
prog into the source code, and the actual input data has
already been split into a number of JobData segments
suitable for parallel processing, stored as data. The former
can be generated automatically by the provided scripts,
which basically take the compiled code and convert it to
a usable image format for transfer. The latter, depends on
the concrete use-case, but in many simple scenarios, such
as summing-up an array of numbers, an array_view data
structure can be used on a raw data block to perform a
useful split very easily and at practically no runtime cost.
A TaPaSCo job for each data element is then launched in
Line 17.

This line looks intentionally, but deceptively, simple. In
fact, there is an enormous amount of work being performed
under the hood, which can only be briefly described in
this context: In the launch call, the PE type ID 1337
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Listing 1 Excerpt of the main 1 #include
loop of the host program 2 #include
(C++17). 3 #include
4 using namespace tapasco;
6
7 Tapasco tapasco;
8 auto prog { };
9 auto progW = makeWrappedPointer(prog.data(), prog.size());
10 auto progWIn = makeInOnly(progW);
11 std::vector<JobData> data {
12 { }, { }, ...
13 };
14 std::vector<std::thread> threads;
15
16 for(auto jd : data)
17 threads.push_back(std: :thread(
18 tapasco.launch(1337, makeLocal(progWIn), jd);
19 ));
20
21 for(auto& t : threads)
22 if (t.joinable()) t.join();

is used to identify the target PE kind. The program
prog is wrapped in class constructors called makeLocal
and makeInOnly, which serve as a type annotation for
TaPaSCo to determine the requested memory location (here:
local) and movement (here: only copied fo the device).
Seeing a Local argument, TaPaSCo allocates PE-local
memory for the data block (as opposed to device-global
memory) at the PE where the execution will take place.
Furthermore, TaPaSCo copies the executable code prog
to the PE memory and passes the handle returned by
the allocation to the RISC-V controller. For jd, TaPaSCo
performs almost the same procedure, only that memory is
allocated on the device-global memory shared by all PEs.
launch then proceeds to perform the setup for the launch,
starts the PE, and returns a closure to the bottom half of the
launch to be executed asynchronously.

Waiting for a job completion is achieved in the bottom
half, which consists of 1. waiting for the corresponding
completion signal 2. copying back data from the device-
global memory for jd to the CPU’s memory location for
jd, 3. releasing of the device allocated memory for prog
and jd 4. releasing the PE. This approach hides the fact
that a PE for the operation type 1337 may not be available
when launch is called. In this case, the job will be
queued and executed as soon as a PE is available. Since
prog is marked InOnly, it will only be copied fo the
device, but not back after execution. On the other hand,
since jd is not marked InOnly, it will both be copied to
the device prior to the execution, as well as back to main
memory afterwards. There exists another type annotation
called OutOnly, which allows to specify the third case of
elements, which need to be allocated on the device, but not
copied to the device before execution, only from the device
afterwards. This can be used when data is generated on the
device.

5.5 Scaling to Larger Devices with TaPaSCo

Assuming the initial prototype on the ZedBoard is
satisfactory, it can now be scaled-up to boards with larger
reconfigurable devices using TaPaSCo: Targeting the much
larger ZCU102 board is simply a case of running DSE
again with -p zcul02, which generates a new bitstream,
likely with significantly more PEs than on the ZedBoard,
and likely even running at a higher clock frequency. Note
that the application code shown in Listing 1 does not need
to be changed at all to make use of the new PEs, only
a recompilation for the new host processor architecture is
required.

6 Future Work

A project such as TaPaSCo offers a plethora of opportunities
when it comes to further developments. The current status
of the majority these developments can be tracked at [18].

Advances range from software engineering efforts, such
as introducing a more user-friendly CLI parser, to support
for new infrastructure capabilities. For instance, partial
reconfiguration support, which allows changing selected
PEs on a running FPGA, is currently in a testing state.
Introducing new platforms is also a big topic, TaPaSCo
tries to support as many platforms as possible with a single
tooflow. Recent additions include Amazon AWS support
and HBM-based FPGAs.

On the hardware side of TaPaSCo, there are many more
open cases. Network-on-chip integration is a hot topic and
is currently being evaluated based on HopLite [37, 38].
Depending on the platform, a NoC can increase throughput
and improve routability of designs but may also be too
costly for smaller devices. The goal here is to provide a
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seamless integration without relying on user interaction.
The NoC integration is also a possible starting point for
allowing direct communication between PEs without shared
memory, such as direct inter-PE streams or synchronization.

Another development focus are improvements to PE
scheduling. Currently, TaPaSCo relies on the host PC to
distribute jobs across PEs. On-chip scheduling is being
investigated to reduce latency, especially on weaker host
machines or for network-attached FPGAs, which have
increased round-trip times to the host [26].

Support for heterogeneous memory is also considered.
Currently, platforms with additional memories rely on the
TaPaSCo plug-in system for integration. Proper integration
and a finer-grained selectability of connections to special-
ized memories for certain PEs could impre and simplify the
use of TaPaSCo on these devices.

Work is also being done to redevelop the current runtime
in Rust for better maintainability and extendability, while
still providing the ease of use of TaPaSCo.

The open source nature of TaPaSCo allows for easy
integration of custom requirements and issues posted on
GitHub are frequently addressed by the core developer
team. In addition, pull requests provide a convenient way
to join the community development effort and are very
welcome. Information about contributing to the project is
available at [17].

7 Conclusion

This work illustrates how TaPaSCo reduces the develop-
ment effort required to implement scalable, portable FPGA-
based computing architectures by providing both hardware
and software abstractions for embedding custom acceler-
ators in FPGA designs. In addition, Section 3.4 argues
that TaPaSCo’s design space exploration facilities remove
guesswork and manual design iterations, while improving
upon the final result [29].

TaPaSCo is extensively used in a wide number of
application domains. Classical areas, such as image
processing and machine learning, are prime examples of
TaPaSCo aiding designers by letting them focus on their
designs instead of infrastructure. But Section 4 also shows
that there are many applications that utilize TaPaSCo just as
a baseline, expanding it with their own plugins, for instance,
to support network processing.

Even complex IP blocks which were not originally
intended to be used as processing elements, such as RISC-
V softcores, can be integrated into TaPaSCo, thanks to its
flexible flow and high flexibility.

TaPaSCo is freely available as open-source software. It
provides a reproducible baseline and is easy to extend,
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simplifying benchmarking and performance evaluation for
the academic FPGA community. TaPaSCo is licensed under
the GNU LGPLv3 and available on GitHub [68].
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