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Abstract Recent progress in audio source separation led by deep learning
has enabled many neural network models to provide robust solutions to this
fundamental estimation problem. In this study, we provide a family of effi-
cient neural network architectures for general purpose audio source separation
while focusing on multiple computational aspects that hinder the application
of neural networks in real-world scenarios. The backbone structure of this
convolutional network is the SUccessive DOwnsampling and Resampling of
Multi-Resolution Features (SuDoRM-RF) as well as their aggregation which
is performed through simple one-dimensional convolutions. This mechanism
enables our models to obtain high fidelity signal separation in a wide variety of
settings where a variable number of sources are present and with limited com-
putational resources (e.g. floating point operations, memory footprint, number
of parameters and latency). Our experiments show that SuDoRM-RF models
perform comparably and even surpass several state-of-the-art benchmarks with
significantly higher computational resource requirements. The causal variation
of SuDoRM-RF is able to obtain competitive performance in real-time speech
separation of around 10dB scale-invariant signal-to-distortion ratio improve-
ment (SI-SDRi) while remaining up to 20 times faster than real-time on a
laptop device.
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1 Introduction

The advent of the deep learning era has enabled the effective usage of neural
networks towards single-channel source separation with mask-based architec-
tures [12]. Recently, end-to-end source separation in time-domain has shown
state-of-the-art results in a variety of separation tasks such as speech separa-
tion [241[22], universal sound separation [I5[37] and music source separation
[5]. The separation module of ConvTasNet [24] and its variants [I5,37] con-
sist of multiple stacked layers of depth-wise separable convolutions [33] which
can aptly incorporate long-term temporal relationships. Building upon the ef-
fectiveness of a large temporal receptive field, a dual-path recurrent neural
network (DPRNN) [22] has shown remarkable performance on speech sepa-
ration. Demucs [5] has a refined U-Net structure [3I] and has shown strong
performance improvement on music source separation. Specifically, it consists
of several convolutional layers in each a downsampling operation is performed
in order to extract high dimensional features. A two-step approach has been
introduced in [36] and showed that universal sound separation models could
be further improved when working directly on the latent space and learning
the ideal masks on a separate step.

Despite the dramatic advances in source separation performance, the com-
putational complexity of the aforementioned methods might hinder their ex-
tensive usage across multiple devices. Specifically, many of these algorithms are
not amenable to, e.g., embedded systems deployment, or other environments
where computational resources are constrained. Additionally, training such
systems is also an expensive computational undertaking which can amount to
significant costs.

Several studies, mainly in the image domain, have introduced more efficient
architectures in order to overcome the growing concern of large models with
high computational requirements. Models with depth-wise separable convolu-
tions [33] have shown strong potential for several image-domain tasks [4] while
significantly reducing the computational requirements. Thus, several variants
such as MobileNets [11] have been proposed for deep learning on edge devices.
However, convolutions with a large dilation factor might inject several arti-
facts and thus, lightweight architectures that combine several dilation factors
in each block have been proposed for image tasks [26]. More recent studies
propose meta-learning algorithms for optimizing architecture configurations
given specific computational resource and accuracy requirements [421[3].

Despite the recent success of low-resource architectures in the image do-
main, little progress has been made towards proposing efficient architectures
for audio tasks and especially source separation. In [I3] a WaveRNN is used
for efficient audio synthesis in terms of floating point operations (FLOPs) and
latency. Other studies have introduced audio source separation models with
reduced number of trainable parameters [22[25l23] and binarized models [16].
Modern approaches, mainly in speech enhancement and music source separa-
tion, have been focusing on developing models which are capable of real-time
inference. Specifically, a temporal convolutional network for real time speech
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enhancement has been proposed in [27] while the latest state-of-the-art perfor-
mance has been obtained by a real-time variation of Demucs for online speech
denoising [6]. In a similar sense real-time music source separation models have
been proposed in [9] and a system capable of real-time speech separation from
background music has been implemented in [T4].

In this study, we propose a novel efficient neural network architecture for
audio source separation while following a more holistic approach in terms of
computational resources that we take into consideration (FLOPs, latency and
total memory requirements). Our proposed model performs SUccessive DOwn-
sampling and Resampling of Multi-Resolution Features (SuDoRM-RF) using
depth-wise convolutions. By doing so, SuDoRM-RF exploits the effectiveness
of iterative temporal resampling strategies [7] and avoids the need for multiple
stacked dilated convolutional layers [24]. We also propose improved versions of
the aforementioned architecture with significant benefits in terms of computa-
tional resource requirements as well as causal variations where online inference
is available. We report a separation performance comparable to or even bet-
ter than several recent state-of-the-art models on speech, environmental and
universal sound separation tasks with significantly lower computational re-
quirements. Our experiments suggest that SuDoRM-RF models a) could be
deployed on devices with limited resources, b) be trained significantly faster
and achieve good separation performance and c) scale well when increasing
the number of parameters. Our code is available online E

2 Sudo rm -rf network architecture

On par with many state-of-the-art approaches in the literature [241[36.22/[5],
SuDoRM-RF performs end-to-end audio source separation using a mask-based
architecture with adaptive encoder and decoder basis. We have extended our
basic model in order to also remove the mask estimation process by introduc-
ing SuDoRM-RF++ that directly estimates the latent representations of the
sources in the adaptive front-end domain. First, we describe all the modules
which are needed for both architectures and describe extensively the infer-
ence path for our basic SuDoRM-RF architecture. In Figure[I} both architec-
tures are shown. Consequently we also present the extensions of our original
SuDoRM-RF model including: its improved version SuDoRM-RF++ (Section
2.4), a variant of SuDoRM-RF++ including group communication [23] (Sec-
tion as well as its causal variation C-SuDoRM-RF++ (Section [2.6).

The input is the raw signal from a mixture x € R”T with T" samples in
the time-domain. First, we feed the input mixture x to an encoder £ in or-
der to obtain a latent representation for the mixture v, = & (x) € RE*E,
Consequently the latent mixture representation is fed through a separation
module S which estimates the corresponding masks m; € R9*% for each one
of the N sources sq,--- ,sy € RT which constitute in the mixture. The esti-
mated latent representation for each source in the latent space v; is retrieved

1 Code: https://github.com/etzinis/sudo_rm_rf
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(b) SuDoRM-RF++ architecture.

Fig. 1: SuDoRM-RF and SuDoRM-RF++ architectures for separating two
sources.

by multiplying element-wise an estimated mask m; with the encoded mixture
representation vy. Finally, the reconstruction for each source s; is obtained by
using a decoder D to transform the latent-space V; source estimates back into
the time-domain §; = D (¥;). An overview of the SuDoRM-RF architecture is
displayed in Figure The encoder, separator and decoder modules are de-
scribed in Sections and respectively. For simplicity of our notation
we will describe the whole architecture assuming that the processed batch size
is one. Moreover, we are going to define some useful operators of the various
convolutions which are used in SuDoRM-RF.

Definition 1 ConvlD¢ g g : RCn*Lin — REXE defines a kernel W € RECXCin XK
and a bias vector b € R®. When applied on a given input x € Rn*Lin it
performs a one-dimensional convolution operation with stride equal to S as
shown next:

Cin K
COHVIDC K,S ( Z Z i,5,k " X5,S-1—k; (1)
j=1k=1
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where the indices i, j, k, [ denotes the output channel, the input channel, the
kernel sample and, the temporal index, respectively. Note that without loss
of generality and performing appropriate padding, the last dimension of the
output representation would be L = |Lin/s].

Definition 2 ConvIrlD¢ ks : RCnxLin 5 REXL defines a one-dimensional
transpose convolution. Since any convolution operation could be expressed as
a matrix multiplication, transposed convolution can be directly understood as
the gradient calculation for a regular convolution w.r.t. its input [34].

Definition 3 DWConvlDc¢ kg : REin>*Ein — REXL defines a one-dimensional
depth-wise convolution operation [33]. In essence, this operator defines G =
Cin separate one-dimensional convolutions F; = [ConvlDcy,, K,S]i with i €
{1,---,G} where Cg = |C/c|. Given an input x € R%»*Lin the jth one-
dimensional convolution contributes to C¢ = |€/G]| output channels by con-
sidering as input only the ith row of the input as described below:

DWConvlD¢ g,s (x) = Concat ({F; (x;), Vi}), (2)

where Concat(-) performs the concatenation of all individual one-dimensional
convolution outputs across the channel dimension.

2.1 Encoder

The encoder £ architecture consists of a one-dimensional convolution with ker-
nel size K¢ and stride equal to Ke/2 similar to [24]. Each convolved input audio
segment of K¢ samples is transformed to a Cg-dimensional vector represen-
tation where C¢ is the number of output channels of the 1D-convolution. We
force the output of the encoder to be strictly non-negative by applying a recti-
fied linear unit (ReLU) activation on top of the output of the 1D-convolution.
Thus, the encoded input mixture representation could be expressed as:

Vx = € (x) = ReLU (ConvlDe¢, f, xe/s (x)) € REEXE, (3)

where the activation ReLU () is applied element-wise.

2.2 Separator

In essence, the separator S module performs the following transformations to
the encoded mixture representation v, € REe*L:

1. Projects the encoded mixture representation vy € R€€*L to a new chan-
nel space through a layer-normalization (LN) [I] followed by a point-wise
convolution as shown next:

yo = ConvlD¢ 11 (LN (vy)) € REXE, (4)

where LN (vx) denotes a layer-normalization layer in which the moments
used are extracted across the temporal dimension for each channel sepa-
rately.
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2. Performs repetitive non-linear transformations provided by B U-convolutional
blocks (U-ConvBlocks) on the intermediate representation yg. In other
words, the output of the ith U-ConvBlock would be denoted as y; € RE*L
and would be used as input for the (i + 1)th block. Each U-ConvBlock
extracts and aggregates information from multiple resolutions which is ex-
tensively described in Section [2.2.1

3. Aggregates the information over multiple channels by applying a regu-
lar one-dimensional convolution for each source on the transposed feature
representation y5 € REXC. Effectively, for the ith source we obtain an
intermediate latent representation as shown next:

z; = ConvlDe¢ o, 1 (yg)T e RO (5)

This step has been introduced in [36] and empirically shown to make the
training process more stable rather than using the activations from the
final block yp to estimate the masks.

4. Combines the aforementioned latent codes for all sources z; Vi € {1,--- ,N}
by performing a softmax operation in order to get mask estimates m; €
[0, 1]% L which add up to one across the dimension of the sources. Namely,
the corresponding mask estimate for the ith source would be:

ﬁli _ vecfl ( exp (Vec (Zi)) ) c chxL (6)
2 ) ’

N
" exp (vee (2,

where vec () : REXN — RE-N and vec™! (-) : REN — REXN denotes the
vectorization of an input tensor and the inverse operation, respectively.

5. Estimates a latent representation v; € R >~ for each source by multi-
plying element-wise the encoded mixture representation v, with the cor-
responding mask m;:

Vi:VXQI/fIiGRCEXL, (7)

where a ® b is the element-wise multiplication of the two tensors a and b
assuming that they have the same shape.

2.2.1 U-convolutional block (U-ConvBlock)

U-ConvBlock uses a block structure which resembles a depth-wise separable
convolution [33] with a skip connection as in ConvTasNet [24]. However, in-
stead of performing a regular depth-wise convolution as shown in [4] or a di-
lated depth-wise which has been successfully utilized for source separation [24]
37.36] our proposed U-ConvBlock extracts information from multiple resolu-
tions using @ successive temporal downsampling and ) upsampling operations
similar to a U-Net architecture [31]. More importantly, the output of each block
leaves the temporal resolution intact while increasing the effective receptive
field of the network multiplicatively with each temporal sub-sampling oper-
ation [2I]. We postulate that this whole resampling procedure of extracting
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Fig. 2: U-ConvBlock architecture.

Algorithm 1: U-ConvBlock forward pass

Input: y(9 ¢ RC*L

Output: y(it1) ¢ RExL

// Expand channel dimensions

q + PReLU¢,, (LN (ConlecUJ’l (y(i))));

d©® «+ PReLUc¢,, (LN (DWConv1Dc¢y, kpy .1 (9)));

for : = 1; i++; while i <= Q do
// Successive depth-wise downsampling
d® « LN (DWConv1Dc¢,, ks, (d0~1));
d® « PReLUg,, (d®);

end

ul@ + 4@,

for i =Q —1; i——; while i >=0 do
// Upsampling and adding multi-resolution features
u® «— g +Zsy, (u(i+1));

end

0 + LN (ConvlDc¢ 1,1 (PReLUc (LN (u(®))));

return PReLUgo (y(i) + o);

features at multiple scales combined with the efficient increase of the effective
receptive field enables SuDoRM-RF models to outperform several convolu-
tional architectures and perform in par with much more expensive recurrent
and self-attention architectures [35]. An abstract view of the ith U-ConvBlock
is displayed in Figure [2| while a detailed description of the operations is pre-
sented in Algorithm

Definition 4 PReLUg : RE*E — RE*L defines a parametric rectified linear
unit (PReLU) [8] with C learnable parameters a € R®. When applied to
an input matrix y € R¢*% the non-linear transformation could be defined
element-wise as:

PReLUc (y); ; = max (0,y;,;) + & - min (0, y; ;) (8)

Definition 5 T); : RE*L — RE*M-L (defines a nearest neighbor tempo-
ral interpolation by a factor of M. When applied on an input matrix y €
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RE*L this upsampling procedure could be formally expressed element-wise
as: IM (u)i’j = Ui)Lj/]W"

Definition 6 LN : RE*L — RE*L defines a parametric normalization layer
[T] with learnable parameters v € R¢ and 3 € RY. When applied to an input
matrix y € RE*% the normalization could be defined element-wise as:

Yij — Hi 2
LN (Y)i,j = %%‘ + Bi, wi = ZYi,ja 0 = Z (Yij — i) (9)
3 . .

J J
Definition 7 GLN : RE*L — REXL defines a parametric normalization layer
with learnable parameters v € R® and 8 € R®. When applied to an input
matrix y € RE*F the normalization could be defined element-wise as:

Yij — H 2
GLN(y), , = JT% B = Vig, o= [> (yij— (10)
4,J

2}

2.3 Decoder

Our decoder module D is the final step in order to transform the latent
space representation v; for each source back to the time domain. In our pro-
posed model we follow a similar approach as in [36] where each latent source
representation v; is fed through a different transposed convolution decoder
ConvTrlDe, k., xes.- The efficacy of dealing with different types of sources
using multiple decoders has also been studied in [2]. Ignoring the permutation
problem, for the ith source we have the following reconstruction in time:

/S\i = Dz (91) = COHVTI‘lDCS’K&Ks/Q (01) (11)

2.4 Improved version with no mask estimation SuDoRM-RF+-+

In the improved version of the proposed architecture, namely, SuDoRM-RF++
, the model estimates directly the latent representation for each target signal
v; € R%*L and uses only one decoder module. Our intuition lies in the as-
pect that a highly parameterized neural network could potentially estimate
those targets without the need of the hard-regularized element-wise multi-
plication process of the masks on top of the mixture encoded representation
vy € RCXL Essentially, SuDoRM-RF++, which is presented in Figure
can be derived from our initial SuDoRM-RFmodel by applying the following
alternations to the architecture:

— We replace the mask estimation and element-wise multiplication process
with a direct estimation of the latent target signals v; after the final output
of the model y®). We have validated experimentally that by removing the
mask estimation layer leads to similar or slightly improved results.
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— We use only one trainable decoder in order to transform the latent repre-
sentation back to the time domain instead of two separate ones, namely,
/S\l' =D (Gl) = COHVTI‘IDCS,K&KS/Q (Gl)

— We replace the layer normalization layers (Equation [9) with global layer
normalization (GLN) layers as defined in (Equation . This change sig-
nificantly improves the convergence of our models probably because of the
interdependence of the gradient statistics between the channels.

— For each intermediate representation with C' channels, we simplify the ac-
tivation layers and we use PReLU activation layers with only one learnable
parameter instead of C' as it was initially defined in Equation [§8| In this
way, we are able to achieve similar results as before with less parameters.

We would like to underline that the structure of the initial SuDoRM-RF models
could potentially outperform the improved SuDoRM-RF++ variation in cases
where the direct estimation of the latent targets would be more difficult than
estimating the masks (e.g. unconstrained optimization in those latent spaces
might be worse than estimating a bounded mask with values in the [0, 1]
region). Moreover, the alternation of containing two decoders proposed in the
initial version might be more useful in cases where one wants to solve an audio
source separation problem containing two distinct classes of sounds (e.g. speech
enhancement) where each decoder could be fine-tuned towards decoding the
class-specific characteristics of each estimated latent representation.

2.5 Group communication variation

We also propose a new variation of our model, namely, SuDoRM-RF++ GC,
where we combine group communication (GC) with our improved version of
our model SuDoRM-RF++. GC is a novel way to significantly reduce the pa-
rameters of an audio processing network which has been recently proposed in
[23]. In the proposed architecture, the intermediate representations are being
processed in groups of sub-bands of channels. We divide the channels of each
1 x 1 convolutional block into 16 groups and we process them first indepen-
dently by sharing the parameters across all groups of sub-bands. At a second
step, we apply a self-attention module [32] to combine them. The resulting
architecture leads to a significant improvement in the number of trainable
parameters which is mainly dominated by the bottleneck dense layers.

2.6 Causal version C-SuDoRM-RF++

Our latest extension of the proposed model is to be able to run online and en-
able streamable extensions for real-time applications. To this end, we propose
C-SuDoRM-RF++ which is a more shallow and efficient model which has the
following differences against the improved model SuDoRM-RF++ .

— We replace all non-causal convolutions with causal counterparts. Now the
architecture does not depend on future samples in order to produce the
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estimated signal up to the current time-frame. A depiction of those two
convolutional modules is presented in Figures [3a] and [3b] for the non-causal
and the causal convolutional layers, respectively.

— In order to simplify the implementation and make those models more effi-
cient in terms of memory footprint and execution time, we also remove all
the normalization layers.

yin—=1 | yfnl | yln+1] sin—1| vl | g+ O_utput
signal
/+\ /®
mol | el -1 AN PS4 | k-1 wo |k 1wk Kernel
el (5] | a1 | el | ekt | el X)) bl (50 | eln-1 | sl Input
2 2 2 signal
(a) Non-causal convolution. (b) Causal convolution.

3 Experimental Setup
3.1 Audio source separation tasks

Speech separation (2 active speakers): We perform speech separation ex-
periments using the publicly available WSJ0-2mix dataset [10] by following a
similar setup with other studies [221[43][20]. Speaker mixtures are generated by
randomly mixing speech utterances with two active speakers at random sig-
nal to noise ratios (SNR)s between —5 and 5dB from the Wall Street Journal
(WSJ0) corpus [29].

Non-speech sound separation (2 active sources): For our non-speech
sound separation experiments we follow the exact same setup as in [36] and
utilize audio clips from the environmental sound classification (ESC50) data
collection [30] which consists of a wide variety of sounds (non-speech hu-
man sounds, animal sounds, natural soundscapes, interior sounds and. urban
noises). For each data sample, two audio sources are mixed with a random
SNR between —2.5 and 2.5dB where each source belongs to a distinct sound
category from a total of 50.
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Universal sound separation (variable number of sources 1-4): We also
evaluate our models under a purely universal sound separation setup where
multiple sound classes might be present and also we do not know how many
sources are active in each input mixture. To that end, we use the FUSS bench-
mark dataset presented in [39]. FUSS contains sound clips that might contain
at least one and up to four active sources per input mixture. Moreover, the
sound clips represent a wide variety of real-world sounds including (speech,
engine sounds, music, wind, rain, and many others). Also, the SNR distribu-
tion of the input sound mixtures is more realistic by capturing a wide range
approximately from —40dB to 40dB.

3.2 Data pre-processing and generation

We follow the same data augmentation process which was firstly introduced
in [36] and it has been shown beneficial in other recent studies [43]. We also
normalize all processed audio clips by subtracting their mean and divide with
their standard deviation.

3.2.1 Fixzed number of sources

The process for generating a training mixture is the following: A) random
choosing two sound classes (for non-speech sound separation) or speakers (for
speech separation) B) random cropping of 4sec segments from two sources
audio files C) mixing the source segments with a random SNR (as specified
in Section . For each epoch, 20,000 new training mixtures are generated.
Validation and test sets are generated once with each one containing 3,000
mixtures. We also downsample each audio clip to 8kHz.

3.2.2 Variable number of sources

In order to be consistent with the state-of-the-art results on FUSS, we use the
same dataset splits as the ones provided in [39]. The augmentation pipeline
for each training mixture includes mixing sources from different training sam-
ples by sampling them uniformly over the batch. For each epoch, 20,000 new
training mixtures are generated. Validation and test sets contain 5,000 and
3,000 mixtures, respectively. Moreover, we also train and test keeping the same
length of 10secs at all clips as well as their sampling frequency which is 16kHz.

3.3 Training details

3.8.1 Fized number of sources

All models are trained for 120 epochs using a batch size equal to 4. As a loss
function we use the negative permutation-invariant [41] scale-invariant signal
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to distortion ratio (SI-SDR) [19]. The total loss for N sources is computed as
the average loss across each source as follows: For the ith source we define the
loss between the clean signal s and the estimates s as:

N
1 N Hozls 12
L= N ;:1 SI-SDR(s],s; E 10log;q ( e (12)

where s* denotes the permutation of the sources that maximizes SI-SDR, and
a; =8, st/||si||? is a scalar used for making the loss invariant to the scale
of the ith estimated source §;. During training, we use the Adam optimizer
[I7] with an initial learning rate set to 0.001 and we decrease it by a factor
of 5 every 50 epochs. By training the model for more epochs, using the same
learning rate scheduler, does not yield any significant gains on the validation
set.

3.4 Variable number of sources

All models are trained for 40 epochs using a batch size equal to 4. In this
case we assume that we know the maximum number of sources in each input
mixture x, e.g. N, but in reality the mixture might be comprised of only
N’ < N active sources and N — N’ inactive sources. We follow a similar
training procedure with the one presented in [39] and we force the network to
produce zero outputs for the inactive slots after inferring the permutation that
maximizes the total SNR. The loss for the active sources and inactive sources
is defined in a permutation invariant sense as follows:

N/
[ 1 Isi ]2 +
L = min ——g 10log —_— | +
ﬂenl N = 1°<||si—§§”>2+e

S (13
NN Z 101og; (”gfﬂ)”Q +7lx|% + 5)
i=N'+1

where IT is the set of all possible permutations of the estimated sources s and
we assume that the first N’ target signals represent the active sources. The
first part of the loss function forces the model to maximize the reconstruction
fidelity of the N’ active sources while the second part forces it to produce
close to zero energy estimates for the last N — N’, assuming that the best
permutation is already in place. The constants ¢ = 107 and 7 = 1072 solve
numerical stability issues created by zero target signals s. During training,
we use the Adam optimizer [I7] with an initial learning rate set to 0.001 and
we decrease it by a factor of 2 every 10 epochs. Using the aforementioned
scheduler we are able to obtain good performance with only 40 epochs.
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3.5 Evaluation details

In order to evaluate the performance of our models we use a stable version
of the permutation invariant SI-SDR improvement (SI-SDRi) as proposed in
[39]. The SI-SDRi metric has also been chosen in several studies in the source
separation literature [37,[3622/43]20,[39]. There are several other SNR-based
metrics which also reflect the fidelity of the reconstructed sources such as
signal to distortion ratio (SDR), signal to interference ratio (SIR) and signal
to artifacts ratio (SAR) [38]. SDR incorporates the errors from both artifacts
and interference but is an overly optimistic performance measure compared
to SI-SDR [19]. The improvement is defined as the gain that we get on the
SI-SDR measure using the estimated signal instead of the mixture signal x, as
shown next:

SI-SDRi (§ s) =max i Iz\ﬂ: 101log ||0liS¢||2 +€
) mell | N’ p 10 s _gz(_n)”2 Le
(14)
NI
1 ||aiSiH2 +e€
- — 101 ),
N/; o810 (Haisi—x2+6

where o = 878" /[|s:]|2, € = 10~ and 7x is the permutation that maximizes
the average SI-SDRi over the active sources. For the case where non-active
sources exist, thus, N < N, we omit to compute the aforementioned metric
as it provides infinity values. However, we follow a stricter evaluation metric
than the one proposed in [39] in the sense that we do not exclude pairs of
estimates-targets with low energy estimated sources, as we believe that the
evaluation metric should also reflect a penalty for the cases where the model
under-separates the input mixture, leading to M < N’ non-zero estimated
sources. For the variable number of sources case and specifically for the single-
source mixtures we simply report the maximum absolute SI-SDR. obtained by
each one of the estimated sources.

3.6 SuDoRM-RF configurations

We describe the default values for all proposed architectures SuDoRM-RF,
SuDoRM-RF++and, C-SuDoRM-RF++. In the following experimental sec-
tions, all those values are going to be described as such, unless otherwise spec-
ified. For the encoder £ and decoder modules D we use a kernel size K¢ = 21
for input mixtures sampled at 8kHz and K¢ = 41 for 16kHz. Also, the number
of basis is equal to Cg = 512. For the configuration of each U-ConvBlock we
set the input number of channels equal to C' = 128, the number of successive
resampling operations equal to Q = 4 and, the expanded number of channels
equal to Cy = 512. In each subsampling operation we reduce the temporal
dimension by a factor of 2 and all depth-wise separable convolutions have a
kernel length of Ky = 5 and a stride of Sy = 2. Only for the causal variation
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C-SuDoRM-RF++, we increase the number of input channels to C' = 256 and
the default kernel length to Ky = 11 in order to increase the receptive field
in shallower and more efficient architectures needed for real-time applications.
For simplicity we use the following naming convention based on the number B
of U-ConvBlocks inside the separator module S. Namely, SuDoRM-RF 2.0x
, SuDoRM-RF 1.0x , SuDoRM-RF 0.5x , SuDoRM-RF 0.25x consist of 32,
16, 8 and 4 blocks, respectively. The same applies to the improved version
SuDoRM-RF++ and its causal variation C-SuDoRM-RF++.

3.7 Literature models configurations

We compare against the best configurations of some of the latest state-of-the-
art approaches for speech [241[22], universal [36] and music [5] source separa-
tion. For a fair comparison with the aforementioned models we use the authors’
original code, the best performing configurations for the proposed models as
well as the suggested training process. For Demucs [5], 80 channels are used
instead of 100 in order to be able to train it on a single graphical processing
unit (GPU). For the universal sound separation experiments with a variable
number of sources, we compare against the reported numbers in [39], where
an enhanced variation of the ConvTasNet is used, namely, TDCN++.

3.8 Measuring computational resources

One of the main goals of this study is to propose models for audio source
separation which could be trained using limited computational resources and
deployed easily on a mobile or edge-computing device [I§]. Specifically, we
consider the following aspects which might cause a computational bottleneck
during inference or training:

1. Number of executed floating point operations (FLOPs).

2. Number of trainable parameters.

3. Memory allocation required on the device for a single pass.
4. Time for completing each process.

We are using various sampling profilers in Python using Pytorch [28] (version
1.7.1.) for tracing all the requirements of the non-causal models on a server
with an Intel(R) Core(TM) i7-3820 @ 3.60GHz CPU and a GeForce GTX
TITAN X GPU. For the causal models, we focus on the computational re-
quirements on a much more resource-constrained hardware in order to show
the applicability of our models for real-time source separation on devices used
by typical users. Thus, we evaluate our causal models on a laptop with an In-
tel(R) Core(TM) i7-8750H @ 2.20GHz CPU. We measure the inference pass as
a simple forward pass always on CPU while we consider that a backward pass
is comprised of a forward pass in order to compute the estimated signals and
the full back-propagation of the gradient and we measure its computational
requirements on GPU.
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SI-SDRi (dB Mem. | Time
Model Speech N051-sp)eech GFLOPs (GB) | (sec)
ConvTasNet [24] 15.3% 7.7 5.16 0.61 0.15
Demucs [5] 12.1 7.2 3.42 1.95 0.58
DPRNN [22] 18.8* 7.2 48.81 2.27 2.18
Two-Step TDCN [36] 16.1* 8.2 7.11 1.03 0.24
SuDoRM-RF 1.0x 17.0 8.4 2.45 0.79 0.17
SuDoRM-RF 0.5x 15.4 8.1 1.51 0.49 0.13
SuDoRM-RF 0.25x 13.4 7.9 1.04 0.30 0.09
SuDoRM-RF++ 1.0x 17.0 8.6 2.11 0.79 0.17
SuDoRM-RF++ 1.0x GC 12.5 8.5 0.69 0.87 0.20
C-SuDoRM-RF++ 0.5x 10.6 4.6 2.14 0.39 0.08
C-SuDoRM-RF++ 0.25x 9.6 4.5 1.25 0.30 0.05

Table 1: SI-SDRi separation performance for the proposed models and mod-
els in the literature on both separation tasks (speech and non-speech) along-
side their computational requirements for performing inference on an Intel(R)
Core(TM) i7-3820 @ 3.60GHz CPU for one second of input audio or equiva-
lently 8000 samples. * We assign the maximum SI-SDRi performance obtained
by our runs and the reported number on the corresponding paper.

4 Results & Discussion

In Tables[I} and [2] we show the separation performance under the speech and
non-speech separation tasks for some of the most recent state-of-the-art mod-
els in the literature and the proposed SuDoRM-RF configurations alongside
computational requirements. Specifically, in Table [I| we focus on the compu-
tational aspects required during a forwards pass of those models on a CPU
while in Table 2] the same computational resource requirements are shown for
a backward pass on GPU as well as the number of trainable parameters. It
is easy to see that the proposed models can match and even outperform the
separation performance of other several state-of-the-art models using orders
of magnitude less computational requirements across the board.

In Sections [£.1} [:13] [4-3] we focus on specific computational aspects for
all the models presented in this study. Moreover, a better visualization for
understanding the Pareto efficiency of the proposed architectures is displayed
in Figure[d] Specifically, we show for each model, its performance on non-speech
sound separation vs a specific computational requirement. In Section [£:4] we
conduct a small ablation study to shed light on the most important aspects
of the proposed SuDoRM-RF models and how the performance is affected
by changing the corresponding hyperparameters. Experiments for universal
sound separation with a variable number of sources are presented in Section
Finally, we present the causal setup of our model and evaluate it for
different configurations under a two-speaker separation task in [£.6]
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SI-SDRi (dB) Params Mem. | Time
Model Speech | Non-sp. (1e6) GFLOPs (GB) | (sec)
ConvTasNet [24] 15.3* 7.7 5.05 21.7 0.68 0.14
Demucs [5] 12.1 7.2 415.09 17.65 8.77 0.24
DPRNN [22] 18.8* 7.2 2.63 135.88 3.28 0.32
Two-Step TDCN [36] 16.1* 8.2 8.63 28.36 1.17 0.22
SuDoRM-RF 1.0x 17.0 8.4 2.72 17.19 0.99 0.27
SuDoRM-RF 0.5x 15.4 8.1 1.42 9.47 0.33 0.11
SuDoRM-RF 0.25x 13.4 7.9 0.79 5.62 0.28 0.08
SuDoRM-RF++ 1.0x 17.0 8.6 2.72 16.23 0.99 0.27
SuDoRM-RF++ 1.0x GC 12.5 8.5 0.30 2.72 1.21 0.35
C-SuDoRM-RF++ 0.5x 10.6 4.6 2.81 11.43 0.29 0.09
C-SuDoRM-RF++ 0.25x 9.6 4.5 1.63 6.27 0.17 0.05

Table 2: SI-SDRIi separation performance for the proposed models and models
in the literature on both separation tasks (speech and non-speech) alongside
their computational requirements for performing a backward pass on a GeForce
GTX TITAN X GPU for one second of input audio or equivalently 8000 sam-
ples. * We assign the maximum SI-SDRi performance obtained by our runs
and the reported number on the corresponding paper.

Forward pass on CPU

m 85

2 ** *)( f’*

z20 m * m n

Q75

2, ¢ * H o N

n 70 10! 100 10101 100

. Backward pass on GPU

S 2 * x’* x*

g-X} * ¥ ¥

= ] ] ]

Q75

® ® o Py ® o o

070 10t 10° 10107! 10°
GFLOPs Memory (GB) Time (secs)

—— ConvTasNet —#— DPRNN —@— Demucs Two-Step TDCN == SuDoRM-RF

Fig. 4: SI-SDRi non-speech sound separation performance on ESC50 vs com-
putational resources with an input audio recording of 8000 samples for all
models. (Top row) computational requirements for a single forward pass on
CPU (Bottom) for a backward pass on GPU. All x-axis are shown in log-
scale while the 3 connected blue stars correspond to the three SuDoRM-RF
configurations from Section

4.1 Floating point operations (FLOPs)

Different devices (CPU, GPU, mobiles, etc.) have certain limitations on their
FLOPs throughput capacity. In the case of an edge device, the computational
resource one might be interested in is the number of FLOPs required during
inference. On the other hand, training on cloud machines might be costly if a
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huge number of FLOPs is needed in order to achieve high separation perfor-
mance. As a result, it is extremely important to be able to train and deploy
models which require a low number of computations [I1]. We see from the
first column of Figure (4] that SuDoRM-RF models scale well as we increase
the number of U-ConvBlocks B from 4 — 8 — 16. Furthermore, we see from
Tables [1] and [2] that for both forward and backward passes, correspondingly,
the family of the proposed SuDoRM-RF models appear more Pareto efficient in
terms of SI-SDRi performance vs Giga-FLOPs (GFLOPs) and time required
compared to the other state-of-the-art models which we take into account.
Specifically, the DPRNN model [22] which performs sequential matrix multi-
plications (even with a low number of parameters) requires at least 45 times
more FLOPs for a single pass compared to SuDoRM-RF 0.25x while perform-
ing worse when trained for the same number of epochs under the non-speech
separation task.

Moreover, we see from both Tables [I] and [2] that the improved version
SuDoRM-RF++ achieves similar or even better results than the original ver-
sion of the proposed model SuDoRM-RF with a lower number of FLOPs both
in forward and backward for a similar number of parameters and execution
time. A significant drop in the absolute number of FLOPs is also obtained
by combining the group communication mechanism proposed in [23] with
SuDoRM-RF++ . However, that does not automatically entail a lower ex-
ecution time. The causal variations C-SuDoRM-RF-++ perform competitively
with the same number of FLOPs but they are still performing much worse
than all the other non-causal models showing that there is much room for
improvement.

4.1.1 Cost-efficient training

Usually one of the most detrimental factors for training deep learning mod-
els is the requirement of allocating multiple GPU devices for several days or
weeks until an adequate performance is obtained on the validation set. This
huge power consumption could lead to huge cloud services rental costs and
carbon dioxide emissions [3]. In Figure [5| we show the validation SI-SDRi
performance for the speech separation task which is obtained by each model
versus the total amount of FLOPs performed. For each training epoch, all
models perform updates while iterating over 20,000 audio mixtures. Notably,
even the original SuDoRM-RF models outperform all other models in terms
of cost-efficient training as they obtain better separation performance while
requiring significantly fewer training FLOPs. For instance, SuDoRM-RF 1.0x
obtains ~ 16dB in terms of SI-SDRi compared to ~ 10dB of DPRNN [22]
which manages to complete only 3 epochs given the same number of training
FLOPs.
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Validation SI-SDRi vs Training Computation

16 SuDoRM-RF 0.25x
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Fig. 5: Validation SI-SDRi separation performance for speech-separation vs
the number of FLOPs executed during training. All models are trained using
batches of 4 mixtures with 32,000 time-samples each. Each point corresponds
to a completed training epoch.

4.2 Trainable parameters

From Table 2] it is easy to see that SuDoRM-RF architectures are using or-
ders of magnitude fewer parameters compared to the U-net architectures like
Demucs [5] where each temporal downsampling is followed by a proportional
increase to the number of channels. Moreover, the upsampling procedure inside
each U-ConvBlock does not require any additional parameters. The SuDoRM-
RF models seem to increase their effective receptive field with significantly
fewer parameters compared to dilated convolutional architectures [24136]. No-
tably, our largest model SuDoRM-RF 1.0x matches the relatively low number
of parameters of the DPRNN [22] model which is based on stacked RNN lay-
ers. Group communication combined with SuDoRM-RF++ is one of the most
effective ways to reduce the number of trainable parameters caused by the
bottleneck dense layers between the U-ConvBlocks. Essentially, the SuDoRM-
RF++ 1.0x GC model with B = 16 number of U-ConvBlocks has less than
half of the parameters of a shallow original SuDoRM-RF 0.25x model with
only B = 4 U-ConvBlocks.

4.3 Memory requirements

In most of the studies where efficient architectures are introduced [11141261[42]
authors are mainly concerned with the total number of trainable parameters of
the network. The same applies to efficient architectures for source separation
[2422125]. However, the trainable parameters comprise only a small portion
of the total amount of memory required for a single forward or backward pass.
The space complexity could easily be dominated by the storage of intermediate
representations and not the actual memory footprint of the model itself. The
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latter could become even worse when multiple skip connections are present,
gradients from multiple layers have to be stored or implementations require
augmented matrices (dilated, transposed convolutions, etc.).

From Tables[Tand 2] we see that SuDoRM-RF++ and the initial SuDoRM-
RF models have almost the same memory footprint. However, when combining
the SuDoRM-RF++ with the group communication (GC) mechanism we see
that even if the number of trainable parameters is significantly reduced then
still the actual memory requirement increases which positively validates our
hypothesis that the actual memory requirement in GBs is a very important
metric to show when proposing new efficient models. The causal variation of
our models C-SuDoRM-RF++ is the more light-weight model that we propose
which also secures a very competitive inference time.

In Figure 4] we see that even the original SuDoRM-RF models are more
Pareto efficient in terms of the memory required compared to the dilated con-
volutional architectures of ConvTasNet [24] and Two-Step TDCN [36] where
they require an increased network depth in order to increase their receptive
field. Although SuDoRM-RF models do not perform downsampling in every
feature extraction step as Demucs [5] does, we see that the proposed models
require orders of magnitude less memory especially during a backward update
step as the number of parameters in Demucs is significantly higher. Finally,
SuDoRM-RF models have a smaller memory footprint because the encoder £
performs temporal downsampling by a factor of div (Kg,2) = 10 compared to
DPRNN [22] which does not reduce the temporal resolution at all.

4.4 Ablation study on WSJ0-2mix

We perform an ablation study in order to show how different parameter choices
in SuDoRM-RF++ models affect the separation performance. In order to be
directly comparable with the numbers reported by several other studies [24]
221[43]20], we train our models for 200 epochs and test them using the given
data splits from WSJ0-2mix dataset [10]. The results are shown in Table
We see that a significant aspect is the stride of the encoder and decoder
which is always defined as Kg¢//2. By decreasing the size of the stride we
force the model to perform more computations and also estimate the signal
in a more fine-grained scale closer to the time-domain resolution leading to
better results which is also consistent with other studies [15]. Moreover, we
see that the GLN significantly helps our model to reach a better solution
compared to the simple layer norm, presumably acting as a better regularizer
in between the intermediate activations. Furthermore, when keeping all the
other parameters the same except for the number of U-ConvBlocks B and the
number of resampling procedures Q we see one of the most important aspects
of the SuDoRM-RF++ model which is the benefit in the receptive field that
we are getting by analyzing the signal at multiple scales. Specifically, we see
that a model with B = 18 and ) = 7 outperforms a deeper model in terms
of U-ConvBlocks B = 20 which only processes the signal at ¢ = 2 more
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Kg C B | Q | Normalization | SI-SDRi
17 | 128 | 16 | 4 LN 15.9
17 | 128 | 16 | 4 GLN 16.8
21 256 | 20 | 4 GLN 17.7
41 256 | 32 | 4 GLN 17.1
41 256 | 20 | 4 GLN 16.8
21 512 | 18 | 7 GLN 18.0
21 512 | 20 | 2 GLN 17.4
21 512 | 34 | 4 GLN 18.9

Table 3: SI-SDRi separation performance on WSJ0-2mix for various parame-
ter configurations of SuDoRM-RF++ models. GLN corresponds to the global
layer normalization as described in Equation and LN corresponds to the
classic layer normalization layer proposed in [I] and explained in Equation @
All the other parameters have the same values as described in Section

scales. We need to underline that increasing the parameter @ does not lead to
significant computational requirements mainly because of the downsampling
operation which is relatively a cheap way to increase the receptive field of the
model without carrying its whole information end-to-end.

4.5 Variable number of sources

In Table ] we report the performance of the proposed SuDoRM-RF models un-
der a universal sound separation task with a varying number of sources in each
mixture. We always assume that the maximum number of active sources in
each mixture is N = 4 and we measure the performance on the same dataset
splits where mixtures with N’ € {1,2,3,4} active sources. We see that by
increasing our SuDoRM-RF and SuDoRM-RF++ model sizes to match the
size of TDCNN++ [39], we can match its performance which is also the cur-
rent state-of-the-art performance in universal sound separation with a variable
number of sources. For the single source mixtures we see that our models per-
form worse than the TDCNN++, however, above 25dB it is really difficult
even for a human being to understand the nuance artifacts which are barely
audible. Our SuDoRM-RF++ 2.0x outperforms the state-of-the-art for the
most difficult case where N’ = 4 sources are active. Moreover, by using the
SuDoRM-RF++ 1.0x GC, we match the performance obtained by the state-
of-the-art with a significantly fewer parameters. We also mention that our
models perform worse than the state-of-the-art for the cases where N/ = 2
and N’ = 3 because we also penalize the performance of our models in the
cases of under-separation which has been reported as 25% in [39]. Namely, for
the pairs of corresponding estimates-targets with low-energy estimates, the
state-of-the-art numbers only consider the pairs with estimated sources which
have power higher than 20 dB above the power of the quietest non-zero ref-
erence source. However, we always include all pairs of estimates-targets if a
target source is non-zero as we believe that this is a more appropriate metric
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SI-SDR (dB) SI-SDRi (dB)
Model N' =1 N =2 N =3 N’(: 4 | Avg. (2-4)
TDCN++ [39] 35.5 11.2*  11.6 74 10.1
SuDORM-RF 2.0x 22.2 9.9 9.6 7.0 88
SuDoRM-RF++ 2.0x 25.9 10.9 10.6 7.8 9.8
SuDoRM-RF++ 1.0x GC 22.9 9.9 9.9 7.3 9.0
SuDoRM-RF++ 0.5x 20.0 8.4 8.3 6.0 7.6

Table 4: SI-SDR and SI-SDRi separation performance on the FUSS dataset
for a variable number of sources. Specifically, we report the absolute SI-SDR
(N’ = 1) for the reconstruction of single-source mixtures. For mixtures with
multiple active sources N’ > 1 we measure the SI-SDRi performance of the
reconstructed sources wrt the input mixture. *Metrics do not consider pairs
of corresponding estimates-target sources with low energy estimates, where a
25% of under-separation is reported in the cases of N’ € {2,3,4}.

B | Ky | SI-SDRi | Time (ms)
3 8.4 50.8
4 5 9.1 50.4
11 9.5 88.7
3 9.6 90.6
8 5 10.1 88.2
11 10.3 165.9

Table 5: SI-SDRi separation performance on WSJ0-2mix for various parameter
configurations of causal C-SuDoRM-RF++ models alongside their inference
time for 8000 input samples on a laptop with an Intel(R) Core(TM) i7-8750H
@ 2.20GHz CPU. For reference, one of the most current state-of-the-art speech
denoisers, namely, real-time Demucs [6] runs on the same setup at 92.3ms.

to use. We also like to note that we did not notice any significant performance
improvement when we use mixture consistency [40] at the output estimates
of our models where the separated sources are forced to sum up to the input
mixture using a projection layer.

4.6 Causal setup

In Table[5| we report the performance of the proposed causal version of SuDoRM-
RF models under a separation setup where two speakers are active using the
WSJ0-2mix dataset [I0] alongside the inference time on a laptop for 1 second
of input audio sampled at 8kHz. We see that we are able to obtain competitive
separation performance for all configurations while remaining ~ 10 to 20 times
faster than real time.
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5 Conclusions

In this study, we have introduced the SuDoRM-RF network, a novel architec-
ture for efficient universal sound source separation. Moreover, we have pre-
sented several improvements on the original model including SuDoRM-RF++
which directly estimates the of the latent representations of the models, a
variation which shares parameters across sub-bands as well as C-SuDoRM-
RF++ which is causal and enables real-time inference. The proposed model
is based on the U-ConvBlock which is capable of extracting multi-resolution
temporal features through successive depth-wise convolutional downsampling
of intermediate representations and aggregates them using a non-parametric
interpolation scheme. In this way, SuDoRM-RF models are able to significantly
reduce the required number of layers in order to effectively capture long-term
temporal dependencies. We show that these models can perform similarly or
even better than recent state-of-the-art models while requiring significantly
less computational resources in FLOPs, memory and, time for experiments
with a fixed and a variable number of sources.
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