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Abstract In this paper we deal with classification of

anomalous data detected by the data reduction sys-

tem of the Gaia space mission, in operation since 2013.

Given the size and complexity of intermediate data

and plots for diagnostics, beyond practical possibility

of full human evaluation, the need for automated signal

processing tools is becoming more and more relevant.

Our classification task consists in discriminating among

“normal” data and data affected by anomalies, which at

present are grouped into four different classes. We inves-

tigate the use of some clever pre-processing approaches

that allow the application of a tailored technique based

on the Hough transform, and of some machine learning

tools, evidencing that the task can be exactly solved

in the former case. In the latter case, random forests

and support vector machine provide less than satisfac-
tory performance, while convolutional neural networks

achieve very good classification accuracy, up to 91.22%.

Statistics show satisfactory results also in terms of pre-

cision and recall of each class.
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1 Introduction

In this paper we investigate the use of automatic diag-

nostic techniques in the framework of the Gaia mission

[43] of the European Space Agency (ESA), which will

provide an all-sky catalogue of position, proper motion

and parallax of about 1.7 billion objects among Milky

Way stars and bright galaxies.

Gaia, described in Sec. 2, is providing a much clearer

view of the dynamics of our Galaxy, and therefore set-

ting a robust foundation to a number of astrophysical

issues. It is now at an advanced stage of its observa-

tions, and the intermediate products of the data reduc-

tion correspond to an overall dataset in the petabyte

range.

The current study explores the huge set of yet un-

exploited Gaia plots by means of different image pro-

cessing and machine learning tools, in order to assess

automatic diagnostic capabilities even in presence of

extreme natural phenomena. We focus on the identifi-

cation of transients and peculiar operating conditions

i.e. i) identification of runaway conditions on the Gaia

plots (with parameters drifting beyond appropriate lim-

iting values), ii) identification of one or more missing

data in the plots, and iii) states of excess noise, leading

to error bar increase beyond given thresholds.

Our work deepens and expands what done in [12],

where a preliminary study on a simple synthetic dataset

is presented. The positive outcomes led us to a wider

analysis, which now includes the use of real data and

more advanced classification schemes, and the compari-

son between two different approaches, respectively based

on the Hough Transform and on different machine learn-

ing techniques. The former is tailored to the shape of

the data used for the current exploration, whereas the

latter, also very well performing on the problem at
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hand, may provide the flexibility, robustness, and toler-

ance required for forthcoming, more complex diagnostic

tasks.

The Hough transform [13,23] is a feature extrac-

tion technique used for straight line and circular shape

identification in image analysis, image processing, and

digital image processing. Because of these properties it

also allows to find, by a voting procedure, imperfect

instances of objects within a certain class of shapes.

For example, it can be used to identify straight lines

or more complex ones with the application of specific

filters, such as bee trajectories [52], or in its circular

formulation to identify round shapes, such as eye iris

[32].

Among machine learning techniques, we adopt Con-

volutional Neural Networks (CNNs), whose popularity

in recent years increased dramatically thanks to their

ability to exploit large datasets [22] and to show at the

same time outstanding performance; Random Forests

(RFs) and Support Vector Machines (SVMs) are also

explored in order to provide a wider range of perspec-

tives.

CNNs were firstly introduced in 1989 to recognize

handwritten ZIP codes [33] but only the advent of mod-

ern, much larger datasets makes their training effective:

the breakthrough came in 2012, when Krizhevsky et al.

[30] achieved the highest classification accuracy in the

ILSVRC 2012 competition, using a CNN trained on the

images of ImageNet dataset.

Since this revival, CNNs have been successfully ap-

plied in a broad range of tasks, ranging from diagnosis

and classification ( [37,10,14]), object and motion de-

tection, assistive technologies [40], just to name a few.

CNNs have also recently found increasing usage in

astrophysical applications, for better exploitation and

inter-calibration of the large datasets produced by mod-

ern sky surveys. Some relevant examples include the

development of CNNs for the derivation of fundamen-

tal stellar parameters (i.e. effective temperature, surface

gravity and metallicity) [29], the studies of galaxy mor-

phology [51], the high-resolution spectroscopic analysis

using APO Galactic Evolution Experiment data [35],

and the determination of positions and sizes of craters

from Lunar digital elevation maps [48].

Also, in [54] ExoGAN (Exoplanet Generative Ad-

versarial Network) is presented, a new deep-learning

algorithm able to recognize molecular features, atmo-

spheric trace-gas abundances, and planetary parame-

ters using unsupervised learning.

In section 2 we recall the main features of the Gaia

mission and of the data used in this work; section 3

discuss how our classification task benefits from Hough

transform, while section 4 presents the results obtained

in applying machine learning tools. Finally, in section

5 we draw our conclusions, also outlining options for

future work.

2 The astronomical problem

Gaia is the ESA space mission aimed at Global As-

trometry at few µas, producing an all-sky catalogue of

position, proper motion and parallax, complete to the

limiting magnitude V = 20 mag. The final full accuracy

catalogue is foreseen for 2024; at the time of writing, we

are getting close to the early third Gaia catalogue re-

lease, planned on the fourth quarter of 2020. The Gaia

Data Release 2 [18] is publicly available, and it has been

used for a number of astrophysical applications[17,20].

Gaia operates in scanning mode through two tele-

scopes separated by a base angle of 106.5◦, feeding a

common focal plane (FP) of one hundred CCDs, with

continuous full-sky observation. The FP is divided in

three regions: the Sky Mapper-Astrometric Field (SM-

AF), the Blue and Red Photometers (BP, RP) and

the Radial Velocity Spectrometer (RVS), respectively

devoted to astrometric [36,19], photometric [15], and

spectroscopic measurements. The data used in this pa-

per concern the first region, with 7×9 CCDs. Actually,

one CCD in the array is devoted to service functions

(metrology), so that only 62 CCDs are considered in

our analysis.

The Gaia data processing is managed by the Data

Processing and Analysis Consortium (DPAC), in charge

of the scientific part of the Gaia ground segment. The

DPAC is organized in Coordination Units (CUs), each

in charge of specific parts of the whole reduction chain.

CU3, in particular, takes care of the so-called core pro-

cessing, i.e. it will take the observations of a suitable

subset of well-behaved stars (e.g. single stars, photo-

metrically and astrometrically stable, not too faint, etc.),

and it will reconstruct their five astrometric parameters

(parallax and two components of both angular position

and proper motion), in addition to instrumental param-

eters and the satellite attitude.

Several statistics and plots are generated to track

the Gaia instrument response: every day, about one

hundred thousand plots are produced, in order to sup-

port the investigation on a number of operational as-

pects by choice of the relevant ones. For our investi-

gation we used the output of the CU3 Astrometric In-

strument Model (AIM) pipeline, running at the Data

Processing Center in Turin (Italy).

Moderate variation of instrument parameters may

be taken into account by the data reduction system;

in case of larger variations, human intervention on the
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satellite may be required. This corresponds to insur-

gence of critical conditions of excessive payload varia-

tion (e.g. optical transmission degradation by contami-

nation), or external disturbances (e.g. solar flares). Gaia,

during most of its lifetime, fortunately operated quite

well, so that most of the plots were not studied in detail.

However, analysis of specific samples evidenced that a

number of minor identifiable events were ignored, that

surely deserve to be included in the data reduction to

improve on final mission precision. To ensure that an

alert is issued, triggering the adequate corrective action,

it is necessary to implement an automatic detection of

such condition, so far managed mostly by human super-

vision. The use of the toolsets described in this paper

will also provide the practical means of implementing a

fully detailed review of the whole mission observations,

which could not be done by direct human inspection.

2.1 Data description

In the Gaia data processing, several intermediate data

are stored only in the graphical form of plots, rather

than numerical values in a database; this eased the hu-

man evaluation of peculiar situations during commis-

sioning, because each plot evidences the overall trend

over a day for the selected parameter. The first tests

have been targeted on the family of plots showing the

daily statistics of matches between readout windows

and actual positions of each observed star. Such plots

are generated on every day of operation for each of the

7×9 CCDs, and for each telescope. In normal operating

conditions, the distribution is expected to be random,

with zero or fixed mean, and spread of order of half a

pixel. As the electro-optical instrument response is vari-

able over the field of view (FoV), such plots are similar,

but with different mean value.

A data segment corresponding to 30 min of observa-

tion provides an average value and an error bar, due not

only to photon statistics fluctuations, but also to “cos-

mic scatter”, i.e. different characteristics of the many

thousand detected celestial sources. Each daily plot in-

cludes therefore 48 points with errors.

A sample plot corresponding to the spread of es-

timated along scan star positions for the CCD corre-

sponding to Strip 1, Row 1, is shown in Fig. 1a. The

plots have format 1500× 927 pixels.

The abscissa is the mission running time, in satellite

revolutions; the vertical axis is in micro-meters (µm),

referred to the center of the readout window. One de-

tector pixel is 10µm; a slip by more than one pixel in

either direction of the average photo-center requires re-

adjustment of the on-board parameters used to com-

pute the read-out window placement. A plot instance

evidencing one runaway condition, with values located

below the lower threshold, is shown in Fig. 2a, where

a solar flare also causes larger error bars and increased

noise; in Fig. 3a we observe some missing data.

3 Image diagnostics and Hough transform

As stated earlier, we aim at detecting anomalies in a

set of daily plots, all having the same structure: they

are composed by 48 vertical segments, one for each 30

minutes time span in a day.

In order to exactly detect the plot segment param-

eters, i.e. line length, line position and line absence, we

decided to process each plot by means of the Hough

Transform [13,23]. This feature extraction technique is

widely used both in straight line and circular shape

identification (e.g. [38,44]).

The Hough Transform algorithm uses a two-dimen-

sional array, called an accumulator, to detect the exis-

tence of a line that will be described by r = x cos θ +

y sin θ. For each pixel at (x, y) and its neighborhood,

if there is enough evidence of a straight line, the algo-

rithm will calculate the parameters (r, θ). Subsequently,

it will increment the value of the accumulator bin where

the parameters fall into. The most likely lines can then

be extracted by finding the bins with the highest val-

ues: a threshold is typically applied to find the peaks

corresponding to such values.

The result of the Hough transform is a two-dimen-

sional array, similar to the accumulator: one dimension

represents the angle θ and the other dimension repre-

sents the distance r. Each element of the matrix, in-

dexed by (r, θ), has a value equal to the sum of the

points (i.e. pixels) that were successfully recognised on

the corresponding line.

A convenient strategy appears to be the separation

between actual reconstruction of the plot segments, and

anomaly diagnostics on the reconstructed data. Here-

after, we describe the two phases.

Hough Transform reconstruction is typically split

in two parts: line detection to find line positions in

the image and feature extraction to find exact match-

ing segments. The main steps and used parameters for

the application of the Hough Transform can be briefly

summarised as follows:

1. binarization of the original plot, with a luminance

threshold value of 0.6;

2. application of the Hough transform to the binarized

plot;

3. largest frequency peaks extraction from the trans-

formed plot to find the main lines of interest;
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4. line segments extraction from the transformed plot

and the peaks, with a minimum segment length of 70

(this is the feature extraction part of the analysis).

The fixed constant parameters of the previous pro-

cedure where determined by examining the plot images

which have a fixed structure, in particular in terms of

luminance and distance between vertical lines in the

plots. The luminance threshold value (0.6) can be de-

termined by observing the histograms of the images and

finding the (dark) grey levels assigned to the vertical

line segments and the (light) grey levels of the back-

ground. The extraction of the frequency peaks has the

purpose to find lines related to a meaningful number of

aligned points and which are not too close one to the

other. To avoid to consider too short segments their ex-

traction is parameterized with a minimum length (70)

as reported in the last step of the procedure. After test-

ing various combinations of such values, and also con-

sidering the structure of our images, we found the afore-

mentioned 0.6 for luminance and 70 for segment length,

that were the two that perform better.

3.1 Hough Transform for plot analysis

The code for the experiments we describe in this section

is implemented in Python 3.71, using the Computer Vi-

sion library OpenCV 3.4.2 [7].

In order to identify present or missing lines, we ex-

ploited the Hough Transform results: we implemented

a vertical scan (over the lines) with a 5 × 5 mask to

identify presence and exact coordinates of upper, mid

and lower points of each segment. They are shown in

Figure 1b, respectively extremes in blue and midpoints

in red. The dimension of the mask derives directly from

the structure of the analysed plot, since these points are

drawn as a group of pixels in the shape of a diamond

(5 pixels wide and 5 pixels tall).

In Figure 1a one example of normal plot is shown,

and in Figure 1b we see the result of the aforementioned

line recognition method. We remark that all points are

correctly identified, as demonstrated by the positioning

of blue and red dots over significant points.

The anomaly diagnostic phase analyses lines and

points found by Hough Transform.

In Figure 2 there is an example of a plot taken dur-

ing an episode of solar storm. In the rightmost part of

the source plot, Figure 2a, error bars are larger, show-

ing a huge variance, induced by the aforementioned so-

lar storm. Figure 2b evidences that all relevant points,

when present, are successfully recognized.

1 https://www.python.org/

mid-src.png

(a) Source

mid-rec.png

(b) Analysis

Fig. 1: Example of line coordinates recognition for a

normal plot.

A particular kind of anomaly is the total absence of

a line. In Figure 3 some kind of system failures gener-

ated a gap in the data. Again, in the plot in Figure 3a,

no shift is present nor huge variance, but a line is miss-

ing toward the left end. Figure 3b evidences that our

method successfully skips the missing line; we also re-

mark that even multiple missing lines (contiguous or

not) can be easily identified.

https://www.python.org/
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solar-src.png

(a) Source

solar-rec.png

(b) Analysis

Fig. 2: Correct line recognition in a plot showing data

obtained during a solar storm

Application of the Hough Transform (and of the

aforementioned vertical scan) thus leads to excellent

results, identifying every line attribute in all plots and

hence providing an exact approach to the anomaly de-

tection problem.

hole-src.png

(a) Source

hole-rec.png

(b) Analysis

Fig. 3: Line recognition over a plot with missing line.

3.2 Result presentation

Through the knowledge of the pixel coordinates of all

lines’ extremes and midpoints (where present) we can

successfully discriminate regular plots from those af-

fected by one or more known anomalies. The procedure

works as follows:
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– if the file corresponding to any CCD is missing or

does not contain any line, the entire plot is classified

as absent;

– if one of the 48 lines positions of the plot has neither

upper, mid nor lower point, then such line is missing

and the plot is classified as problematic;

– if the maximum line length of the plot exceeds the

maximum line length of the reference set, within

tolerances, it means that the variance is too large for

some lines and the plot is classified as problematic;

– if the average midpoint of the plot is displaced by

more than ±5 units (within tolerances) from that of

the reference plot, then a significant shift is present

and the plot is classified as problematic;

– otherwise (no anomaly detected!) the plot is classi-

fied as regular.

We implemented the following three different pos-

sible output formats from our analysis, which can be

further specialised depending on user convenience:

Layer 0 We recall that for each day we have data from

two FOVs and 62 CCDs: to have a quick glance of

the results, on the terminal is shown a line describ-

ing the situation of each FOV.

Layer 1 In a spreadsheet file the user can find two

tabs, one for each FOV, graphically representing the

status of each CCD. Green means no problems, yel-

low means that some problems are found in this

particular plot, and red means that the entire plot

is empty, or that the file containing the plot is miss-

ing.

Layer 2 Finally, in a text file there is the complete log
of all problems found for every CCD and every FOV,

with the complete report of all problems found.

In Figure 4 the Layer 0 of analysis is presented: from

the first progress bar, that represents the number of

plots read for the first FOV, we deduce that one of the

plots is missing (98% instead of 100%). We also see

that in both FOVs there are anomalous plots, so that

the suggestion is to open the two files containing further

analysis.

In Figure 5 the Layer 1 output format is shown: the

sheet related to FOV 0, clearly marked in red, evidences

that data from S1-R1 CCD are missing.

The most detailed (Layer 2) result analysis is stored

in a text file, an example of which is shown in Figure 6;

only the first lines are listed, for the sake of clarity. A

comment row is produced for every anomalous line de-

tected in the S(n)-R(m) CCD plot. The first row again

evidences that S1-R1 plot is missing.

layer0.png

Fig. 4: Layer 0 - quick report.

layer1.png

Fig. 5: Layer 1 - the spreadsheet file graphically showing

the status of each CCD.

4 Machine Learning approach

As discussed in section 3, the image processing ap-

proach leads to exact classification. However, the high

quality of this performance is obtained thanks to a tai-

lored technique, which exploits the knowledge of the

segment structure of the plots under analysis. In this

section we will apply some machine learning based meth-

ods, in order to explore also a data-driven approach, not

strictly related to a predefined plot structure. This at-
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layer2.png

Fig. 6: Layer 2 - text file with the complete analysis.

tempt is particularly interesting because it may provide

the flexibility required for forthcoming, more complex

diagnostic tasks.

In subsection 4.1, we describe our data pre-processing

procedure and justify the need for a data generator. The

subsequent subsections describe the models we used:

Principal Component analysis (subsection 4.2) jointly

exploited with Support Vector Machines (subsection

4.3) or Random Forests (subsection 4.4), and Convo-

lutional Neural Networks (subsection 4.5).

The code is implemented in Python 3.7 taking ad-

vantage of Matplotlib 3.1 [25], Scikit-learn 0.21 [41], Hy-

peropt [5] and Keras 2.2 [11] on Tensorflow 2.0 [1]. All

experiments are run on an Intel Core i9-9900KF CPU

and, when required, an NVIDIA Titan RTX GPU. All

the results described in the following are the outcome of

10 tests: means and standard deviations are presented.

4.1 Building Data

As described, individual plots are not informative per

se about the presence of anomalies, that can be instead

observed when cross-checking with a reference trend. A

reference plot is thus chosen as representative among

those not featuring anomalies; an example is shown in

Figure 1a.

In order to get more intelligible data and reduce the

input size, we create the so-called “difference plots” by

subtracting, pixel-by-pixel, the current image and its

reference one. This results in final monochromatic im-

ages whose pixels values are in {−1, 0, 1}, that are the

actual inputs for our models; some examples are shown

in Figure 7. We can identify (i) pixels that have the

same values in the original plot and in its reference (0,

in gray), (ii) pixels filled in black in the original plot,

but not in the reference plot (-1, in black), and (iii) pix-

els filled in black in the reference plot, but not in the

original plot (1, in white). This procedure clearly puts

in evidence discrepancies between current and reference

images, so easing the classification task.

Our data are organized in a pair (X,y), where X

is the set of monochromatic input images xi ∈ Rn and

y is the set of corresponding output classes yi ∈ R.

The dataset consists of 1241 labeled plots, barring

the 124 reference ones. Such cardinality is not enough

for a training set when using modern machine learn-

ing techniques such as deep CNNs. We therefore pre-

serve these real plots, considering them as our test set

(Xtest,ytest), and opt for the development of a gener-

ator of synthetic difference plots, whose output is used

as training set (Xtrain,ytrain).

The pseudo-code of the generator script is reported

in Algorithm 1. In short, it (1) samples the reference

plot’s values, i.e. its abscissa values and the correspond-

ing average ordinate values and error bars’ lengths; (2) cre-

ates the current instance by perturbing such values ac-

cording to a sampled class; (3) generates the two cor-

responding plots; (4) generates the difference plot. The

perturbation is done by means of Algorithm 2, which

applies class-dependent and class-independent pertur-

bations to the reference plot’s values. All parameters

have been chosen in order to obtain a good quality when

comparing with the test difference plots. The generator

makes use of the perturbation procedure described in

Algorithm 2, which simply applies the proper modifica-

tion to the generated reference data, according to the

given class. In order to implement the anomalies al-

ready described in sections 2.1, our classes are specified

as follows:

1. ok means absence of anomalies;

2. shift means that the lines are significantly shifted

on the vertical axis;

3. error means that one or more error bars are at least

twice as long as normal;

4. hole means that one to three lines are missing;

5. big hole means that more than three lines are miss-

ing;

It is worth noting that the generated data has the

same distribution independently from the number of

instances, as the distribution D(π) is an explicit pa-

rameter: in this way, sets of different cardinality can be

generated in order to train the explored techniques. We

also underline that the generator is able to synthesize,

when required, unbalanced data or multi-labeled plots.
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diff-ok.jpg

diff-ko.jpg

Fig. 7: Top: a difference plot without anomalies. Bottom: some anomalies are present, i.e. three bars missing on

the left, and high error bars in the central part of the plot.
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Algorithm 1 The generator’s pseudo-code. U is the uniform distribution; N is the normal distribution.

Require: |X| > 0: size of the dataset that has to be generated
Require: D(π): classes probability distribution

for i = 1 to |X| do
// Sample the reference plot’s features
t0 ← 0.23 + sample[U{4000, 9000}] // The time of the first data segment
A ∼ N (0, 1.5) // The amplitude of the average values’ sinusoid trend
φ ∼ U(0, 12) // The sinusoid’s horizontal shift
T ∼ N (0, 3) // The sinusoid’s vertical shift
z ∼ N (0, 0.5) // Additive white Gaussian noise

// Create reference plot
times ← {t0 + t

12
| 0 ≤ t < 48} // Abscissa values

values ← {T +A · cos(φ+ π
6
· t) + z | 0 ≤ t < 48} // Ordinate values

errors ← {et ∼ N (4.5, 0.5) | 0 ≤ t < 48} // Error bars’ lengths
ref ← plot(times, values, errors) // Reference plot

// Create instance plot by “perturbating” the reference
yi ∼ D(π) // Class of the instance
times, values, errors ← perturbate(yi, times, values, errors) // Algorithm 2
img ← plot(times, values, errors) // Instance’s plot

// Create difference plot
diff ← normalize(img − ref )
Xi ← diff

end for
return X, y

4.2 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most

used and well-known dimensionality reduction meth-

ods; it relies on the creation of new features, called Prin-

cipal Components, each one corresponding to a linear

combination of the original ones. The data’s first prin-

cipal component is the maximum variance direction;

the second one is the direction of maximum variance

linearly independent from the first component, and so
on.

PCA is particularly helpful when Support Vector

Machines (SVM) and Random Forests (RF) are used,

as these methods are subject to the curse of dimension-

ality; this is an actual issue in our case because of the

dimension n of each input (1500×927 pixels). As we do

not know in advance how many principal components

are needed in either case, this value is an hyperparam-

eter to be optimized.

In contrast, CNNs do not need dimensionality re-

duction as they include, by design, a set of feature ex-

tractors.

4.3 Support Vector Machine

A Support Vector Machine [6] is a widely used [34,

50] linear classifier that “constructs the unique decision

boundary that maximises the distance to the nearest

training examples (the support vectors)” [16]. The de-

cision boundary is by definition

ŝ(x) = w · x− t, w ∈ Rn, (1)

where x is the independent variable and w and t are

the model’s learned parameters. The distance to the

nearest training examples is referred to as “margin”.

The training phase consists in solving the following

large optimisation problem (soft-margin formulation),

that has quadratic complexity:

w∗, t∗, ξ∗i = arg min
w,t,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(w · xi − t) ≥ 1− ξi,
ξi ≥ 0, 1 ≤ i ≤ n

(2)

in which every example xi is associated with one

slack variable ξi that allows it to be within the margin,

or even to be misclassified. The real-valued parameter C

weighs a regularization term, trading off slack variables

minimisation and margin maximisation [16].

In order to allow the SVM architecture to deal with

complex non linearly separable data, kernel methods [2,

6] are used. The kernel functions we experimented with

are the following:

kpolynomial(xi,xj) = (γ〈xi,xj〉+ r)d

kGaussian(xi,xj) = e−γ‖xi−xj‖2
(3)
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Algorithm 2 The plot perturbation pseudo-code. U is the uniform distribution; N is the normal distribution; T
is the triangular distribution.

Require: cls ∈ {ok, shift, error, hole, big hole}: the class the returned plot has to belong to
Require: times, values, errors ∈ R48: the abscissa and ordinate values and error sizes of the reference plot

// Time shift (class-independent)
∆t ∼ U{−1000, 1000} //
times ← {t+∆t | t ∈ times}

// Values shift (class-independent)
i ∼ U{0, 47}
for j = 0 to 47 do

valuesi ← {values(i+j) mod 48}
end for

// Class-dependent perturbations
if cls = shift then
T ← sample{+1,−1} · sample[N (4, 10)] // Shift’s direction and amplitude
values ← {v + T | v ∈ values}

else if cls = error then
istart ∼ U{0, 46} // First index of longer error bars
iend ∼ U{1 + istart , 47} // Last index of longer error bars
factor ∼ U(2, 3.5) // Amplitude of the bars’ stretch
for i = istart to iend do

errorsi ← factor · errorsi
end for

else if cls = hole then
istart ∼ U{1, 43} // First missing bar’s index
iend ← istart + sample[U{1, 3}] // Last missing bar’s index
delete indices i ∈ [istart , iend ] from times, values and errors

else if cls = big hole then
istart ∼ U{1, 39} // First missing bar’s index
iend ← istart + sample[U{4, 7}] // Last missing bar’s index
delete indices i ∈ [istart , iend ] from times, values and errors

end if

// Avoiding same noise between reference and instance (class-independent)
values ← {v + sample[N (0, 0.25)] | v ∈ values}
errors ← {e · sample[T (0.7, 1.5, 1)] | e ∈ errors}

return times, values, errors

The first column of table 1 shows the hyperparam-

eters to be optimized in order to obtain a SVM ar-

chitecture which solves at best the anomaly detection

problem.

As discussed in [4] random search performs better

than grid search, as it samples each hyperparameter

value from its given, independent distribution; we there-

fore performed 1000 random sampling from the distri-

butions shown in the aforementioned table, using 500

synthetic difference plot for training. The best hyper-

parameter’s values, shown in the third column, are pro-

vided by a 3-fold cross-validation procedure.

This approach provides a poor test classification ac-

curacy: the mean value over 10 different runs is 69.78%

(81.35% on the validation set); it is recorded in Table 3

for the sake of comparison. We believe that the absence

of variance of this model is due to its inherent design:

as a linear separator, it has very few parameters and,

consequently, low variance and high bias [16]. PCA and

the soft-margin formulation further sharpen this trait.

4.4 Random Forest

A Random Forest [8] is an ensemble estimator that

trains N decision trees on various sub-samples of the

original dataset. Every sub-sample has the same size

as Xtrain, but the sampling is done with replacement,

thus preserving about 63.21% of the data. The Ran-

dom Forest’s prediction is the average of every decision

tree’s one, which improves the output accuracy while

keeping over-fitting at bay.

The number of decision trees used, along with their

unpredictable branching likelihood, results to a poten-

tially very high memory usage: for this reason, we lim-

ited the training dataset to 200 synthetic difference

plots (≈ 40 plots per class).
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Table 1: Hyperparameters, optimizing sampling distribution and best values for SVM and RF architectures.

Model Hyperparameter Sampling distribution Best value

SVM

PCA’s retained variance (%) U(0.20, 0.75) 0.2487 (4 PCs)
Kernel type {polynomial, Gaussian} polynomial
γ logU(10−3, 10) 5.1711 · 10−2

r (for polynomial kernel) U(0, 2) 1.6530
d (for polynomial kernel) {2, 3} 2
C logU(10−2, 10+2) 7.5561

RF
PCA’s retained variance (%) U(0.25, 0.75) 0.4544 (14 PCs)
N U{20, 200} 171

Table 1 shows the hyperparameters to be optimized

in order to obtain the best possible Random Forest for

the classification task. Random search [4] is used, sam-

pling each hyperparameter value from the distributions

shown in the table, and as for SVMs, we performed 1000

random hyperparameters sampling. The third column

shows the best values for hyperparameters, according

to 3-fold cross-validation accuracy.

The obtained mean accuracy over 10 different runs

on the test set is 69.69 ± 0.12% (75.14 ± 0.46% on the

validation set). As for SVMs, this result clearly shows

that Random Forests is not a very successful approach,

considering also the high memory requirements of this

model.

4.5 Convolutional Neural Network

A Convolutional Neural Network (CNN) [33] is “a spe-

cialized kind of neural network for processing data that

has a known grid-like topology” [22]. Images are a typi-

cal case. In general, we can refer to CNNs as any “neu-
ral network that uses convolution in place of general

matrix multiplication in at least one of its layers” [22].

Architectural details. In order to deal with the

anomaly detection problem, we focus on a neural net-

work composed byNConv convolutional blocks, followed

by NFC fully connected blocks.

Every convolutional block consists of a convolution

followed by a max-pooling operation [53], a ReLU acti-

vation function [27,39,21] and a batch normalization [26]

layer. Convolutional blocks take as input three-dimensional

tensors: the first one directly deals with image tensors,

whose dimensions are image’s width and height and

number of color channels. Each input image is scaled

according to a factor, treated as a hyperparameter.

Every fully connected block is composed by a drop-

out layer [49], an affine transformation, and a ReLU

nonlinearity, except for the output neurons whose acti-

vation is, conforming to the task, a softmax function [9].

Fully connected blocks take vectors as input: the last

convolutional block’s output is therefore flattened so

CNNforGAIA.png

Fig. 8: A typical Convolutional Neural Network archi-

tecture

that its width, height and feature number are merged.

Similarly, the CNN’s output is a C-dimensional vector

whose values, each one representing the input’s proba-

bility of belonging to the corresponding class, sum to

1. The model is shown in Figure 8.

We addressed the risk of over-fitting, potentially

caused by the large number of parameters, in a three-

fold way: (1) from the data side, we used a large training

set, made by 20,000 samples (10% of which is kept as

the validation set); (2) from the architectural side, we

regularize the convolutional blocks via batch normaliza-

tion, and fully connected ones via dropout (see above).

Besides, convolution and pooling layers inherently pro-

mote generalization thanks to respectively parameter

sharing and dimensionality reduction; (3) from the opti-

mization side, we applied weight decay, the more widely

used form of L2 regularization [31,24].
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Because of the very high number of hyperparame-

ters to be optimized when using CNNs, a plain random

search is very likely to fail, as it only fits well on archi-

tectures having a low effective dimensionality [47].

We therefore used Bayesian optimization: such ap-

proach “uses a Bayesian regression model to estimate

both the expected value of the validation set error for

each hyperparameter and the uncertainty around this

expectation” [22]. In particular, we took advantage of

the Tree-structured Parzen Estimator (TPE) algorithm,

which is able to jointly optimize the network architec-

ture as well as the required hyperparameters [3]. The

input distributions and the corresponding outputs are

listed in Table 2.

Preliminary experiments suggested the use of the

Adam optimization algorithm [28] over Stochastic Gra-

dient Descent [45,46] with momentum [42], aiming at

minimizing the cross-entropy between the network’s out-

put and the target.

Result discussion. Table 3 shows the accuracies

obtained by the above discussed machine learning ap-

proaches; deep learning turns out to be the most suit-

able method for anomaly detection, reaching a mean

test accuracy over 10 different runs of 87.02 ± 3.64%

(94.09± 1.80% on validation set). This is a remarkable

performance since test set includes real data describ-

ing extreme and rare natural phenomena, such as solar

storms, the correct classification of which constitutes a

true challenge.

Figure 9 shows the test set confusion matrix detail-

ing classification results of our best performing model,

that reaches an accuracy of 91.22%. We can notice that

the main diagonal contains the majority of samples, as
usual when a task is correctly solved. The percentages

on light squares refer to the total number of instances

in the dataset.

Performance concerning the ok class is crucial, as

an important feature required by domain experts is the

ability to distinguish plots containing an anomaly what-

soever, which will be further analyzed by a human ex-

pert, from regular ones, which will be dropped. The

precision ( TP
TP+FP ) value of 91.51% on the ok class ob-

tained in this case is therefore highly significant, with

only a few anomalous plots (78) misclassified as OK.

Confusion between error and ok classes is due, in

our opinion, to the continuous variation range of the

actual size of the error bars, which makes the reference

hard threshold (a factor 2) set by human experts diffi-

cult to fit.

Besides, 48 plots with missing data are misclassified

as ok: this can be understood since the great majority

of hole-labeled plots in the test set only miss one point,

which might not be ”perceived” easily by the network.

Finally, we highlight that the shift class is always

successfully recognized.

4.5.1 Multi-label classification

Another approach to anomaly detection consists in the

multi-label classification of the difference plots. In this

case, the model can label every input either as ok or

with one or more anomalies. On the one hand, this

gives the possibility to correctly recognize plots with a

more complex structure, i.e. presenting more than one

anomaly. In this case the model is not constrained by

the assumption, potentially wrong, of mutual exclusiv-

ity of anomalies; thus it is more general by design. On

the other hand, the increased complexity of the task

may result into an accuracy loss, that has to be taken

into account for real-life applications.

We used Hyperopt [5] to solve the optimization prob-

lem that imposes the probability of every label πl to

appear in a fair number of instances:

π∗ = arg min
π

∑
l

(
|{Xi | l ∈ yi }|−|{Xi | l /∈ yi }|

)2 (4)

Of course, the label ok excludes all the other ones,

and labels hole and big hole are mutually exclusive:

these properties are easily learned by our neural model.

From the architectural point of view, the only dif-

ference consists in the activation of the output layer;

now the sigmoid function is used, in order to disentan-

gle every label’s output, so that more than one of them

can be close to 1 at the same time.

Preliminary experiments showed that weighting the

loss in order to give more importance to the ok class

leads to better performance.

As in the single-label case, the number of required

hyperparameters is high, so that we used Bayesian op-

timization to find a good architectural configuration. In

particular, we adopted the Tree-structured Parzen Es-

timator (TPE) algorithm [3], deriving the values shown

in Table 2.

In order to compare the multi-label model with the

single-label one, we introduce the “collective accuracy”

and the “individual accuracy” metrics. According to

the former, a given image is correctly classified if the

model assigns the correct values to all labels, while the

latter operates label-by-label. Therefore an image cor-

rectly classified on four labels out of five is still consid-

ered a failure in terms of collective accuracy, in spite of

achieving 80% individual accuracy.

Despite the harder task, the collective accuracy reached

by the model is 67.42± 6.50% on the test set (85.79±
0.93% on the validation set).
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Table 2: CNN hyperparameters, optimizing sampling distribution and best values. Indented hyperparameters are

lists of values, whose lengths depends on the outer ones (i.e. NConv or NFC).

Hyperparameter Sampling distribution
Best value

Single-label Multi-label

Scaling factor U(0.1, 1) 98.05% 93.50%
NConv {2, 3, 4} 4 4

Kernel sizes U{2, 5} 4,4,2,3 4,4,2,3
N. of filters logU{2, 32} 8,11,12,3 11,11,14,11
Max-pooling sizes U{2, 5} 3,4,4,4 4,4,3,4

NFC {1, 2, 3, 4} 2 1
N. of neurons logU{4, 1024} 263,197 161

Dropout rate U(0, 0.5) 31.97% 29.26%
Learning rate logU(5 · 10−4, 10−1) 5.12 · 10−3 6.68 · 10−4

L2 regularization coefficient logU(10−5, 10−1) 1.58 · 10−4 3.11 · 10−4

Batch size logU{1, 32} 22 2

Table 3: Test accuracy for machine learning methods

Model Test accuracy (%)

Support Vector Machine 69.78± 0.00
Random Forest 69.69± 0.12
CNN (single-label) 87.02± 3.64
CNN (multi-label) 67.42± 6.50

Our multi-label classifier exceeds 90% individual ac-

curacy in both test and validation, with values of 90.24±
1.92% and 96.55 ± 0.21% respectively; we remind that

this performance is not directly comparable with the

values reported in Table 3.

The excellent model behavior on individual label ac-

curacy opens up interesting application possibilities in

successfully detecting multiple simultaneous anomalies.

We also check specifically the individual label ac-

curacy achieved on the ok class in terms of precision
TP

TP+FP , which is one of the main goals. Our multi-label

model appears to be the most suitable one in this re-

spect, as its performance is 95.11 ± 0.47% on the test

set (95.06 ± 0.57% on the validation set). We remark

that the two values are very close, suggesting good gen-

eralization capabilities; besides, they significantly over-

perform those obtained with the single-label model, and

are more stable in terms of standard deviation.

5 Conclusions

We deal with the issue of detection and classification

of anomalous data on images from the intermediate

processing in the data reduction system of the Gaia

space mission. We investigate the application of both an

exact diagnosis technique and different machine learn-

ing tools, evidencing that the task can be successfully

solved.

The ad hoc usage of Hough transform allows to cor-

rectly detect all relevant points in the plots under study,

thus providing the most complete information required

to identify image anomalies.

Among the explored machine learning tools, random

forests and support vector machine do not achieve very

good results.

CNNs show the best performance, achieving the best

image accuracy of 91.22% (single-label case), while in

terms of precision for the ok class we reach over 95%

for the best model (multi-label case).

The results are promising with respect to possible

adoption in the Gaia data reduction system of the best

performing tools. We remark that multi-label CNNs

demonstrated the capability of filtering out 19 out of

20 normal plots, thus going a long way to alleviating

the efforts required from human experts.
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