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Abstract In this paper, we introduce the challenges,

intrinsic and extrinsic, of color and depth sensors in-

tegration in the same matrix for a monolithic RBG-Z

CMOS imager system. Due to the fact that the technol-

ogy to conceive this type of circuit is still under devel-

opment, the challenge that we address is the extrinsic

one. It is a consequence of the heterogeneity of the ma-

trix, where information is missing compared to what

can be provided by separate RGB and Z systems. For

that a first evaluation is done taking into account how

the RGB-Z patterns could impact the demosaicing step.

The evaluated pattern are in function of the different

sizes between color and depth pixels. For the missing

color reconstruction we have evaluated the state of the

art algorithms, adapted to the missing information, and

we propose an original adaptive algorithm using a new
operator called semi-gradient (SG).

To fill the lack of a mature technology for which real

images are missing for this type of CMOS imager, a test

environment was created and then used with three dif-

ferent databases, Kodak, McMaster, HDR+burst. The

results show improvements on edges, corners, and nar-

row lines reconstruction, and a reduction of color and

structural artefacts compared to the state-of-the-art re-

construction algorithms.
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1 Introduction

The Vision Systems on Chip (VSoC) are becoming more

and more complex, in terms of spatial and frequency

resolution, frame rates already reached 1000 frames per

second [10], but also in terms of quality [8] and integra-

tion of new functionalities [5]. A VSoC is based on the

close cohabitation between signal acquisition and pro-

cessing on the same chip. Among the VSoC, the RGB-Z

imagers are systems able to capture a flat color image

(RGB), and its depth (Z). The RGB-Z imager could be

realized as a heterogeneous system based on two dif-

ferent sensors integrated separately. The first one is a

classical color image sensor while the second one ac-

quires the depth of the observed scene using different

techniques, like as : active stereo-vision, passive stereo-

vision and Time of Flight (ToF).

Since the development of the Microsoft Kinect[19],

many applications using both color and depth infor-

mation, like as gesture recognition, virtual reality, 3D

mapping and modeling applications[14], have been pro-

posed. Lately, the face recognition and identification

function of the iPhoneX [16], has highlighted the need

of integrating a RGB-Z system in mobile phones. The

smartphone manufacturers [9] are torn between the need

to add more and more sensors and cameras for more

functionalities on the one hand, and the will to limit

the number of slots (as many holes in the shell) for

design reasons. The example of the smartphone can be

extended to other areas such as autonomous navigation
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(drones, robots) and IoT1, virtual or augmented reality

headsets, or even the automobile and medical devices.

Heterogeneous RGB-Z imager needs a calibration

step in order to align the data (RGB on one side and

Z on the other). This in turn entails the possibility of

errors in data acquisition and a greater consumption of

energy and resources, thus putting at risk applications

where precision and energy autonomy are necessary.

In order to overcome the limitations in terms of size

and need for calibration of heterogenous RGB-Z im-

ager, an RGB-Z monolithic integration has begun to be

studied [12]. Thanks to advances in semiconductor tech-

nology such an imager combines both color and depth-

sensing at the pixel level and in the same matrix.

In a monolithic image sensor, one of the problems is

to reconstruct the missing information to obtain a full

resolution sensor. As in an RGB image sensor where

full-color pixels are computed using neighborhood pix-

els, in an RGB-Z system it is necessary to extrapolate

the missing information from the neighborhood.

In this article, we introduce an original method to

reconstruct the missing color information in a mono-

lithic RGB-Z imager where RGB and Z pixels are in

the same matrix, and we evaluate it in terms of image

quality reconstruction. We consider a monolithic RGB-

Z sensor composed of color pixels (R, G and B) and

pinned photodiodes [24] used to acquire depth informa-

tion using an indirect time-of-flight (i-ToF) technology.

The rest of this paper is organized as follows : sec-

tion 2 some mixed matrix and more specifically the

monolithic RGB-Z architectures and their limits. Sec-

tion 3 analyzes the impact of the RGB-Z pattern on the

overall architecture. Section 4 describes the algorithm

for the color information reconstruction, needed before

the demosaicing step. Section 5 shows the tool chain

and the simulation results on the RGB-Z pattern study

and on the pixel color reconstruction. A brief discus-

sion on the results can be found in section 6. At last,

the conclusion is presented in section 7.

2 Mixed Matrix Imagers

A mixed matrix is composed of color pixels (visible

wavelength) on the one hand, and other pixels (non-

visible wavelength) on the other hand. Those pixels

could be range pixels as in a RGB-Z sensor or IR pixels

as in a RGB-IR sensor.

1 Internet of Things

2.1 Monolithic RGB-IR Imager

RGB-IR sensors acquire both RGB and Near Infra-Red

(NIR) images. They are composed of a mosaic of RGB

and IR pixels. The information acquired by the IR pix-

els is similar to the information acquired by the color

pixels. The difference is that the photons acquired by

IR pixels belong to the spectrum of infrared (more than

800 nm). Several RGB-IR filter arrays exist [20]. The

density and position of IR pixels vary from one archi-

tecture to another. Depending on the available color

and NIR information, the reconstruction methods could

vary [28]. There are also machine learning based recon-

struction methods [21] that seem to show better results

than gradient based demosaicing methods. However,

these methods are, at this time, costly to implement

on embedded devices.

Moreover, most of RGB-IR sensors have no dedi-

cated IR filter for the color pixels. IR light is not blocked

and is collected in addition to the visible light: color pix-

els are then polluted. However, the IR pixels provide a

good measure of the IR signal and this is subtracted

from the color pixels [13].

2.2 Monolithic RGB-Z Imager

In the case of RGB-Z sensors, Shi et al. [27] propose a

missing pixel reconstruction method followed by a de-

mosaicing to reconstruct a full color image from a RGB-

Z imager. The two steps are performed consecutively

and the missing pixel reconstruction step is adapted to

the RGB-Z matrix.

(a)
(b)

Fig. 1: Representation of (a) the theoretical RGB-Z ma-

trix introduced in [12] and (b) the RGB-Z matrix in-

troduced in [27].

The pixel matrix is similar to the one proposed in

[12] (see Fig 1.b) but in this case, there is an alter-

nation of four rows of RGB pixels and two rows of Z

pixels (see Fig 1.b). The reconstruction method of the

missing information has been patented [26]. The recon-

struction process is a two-step algorithm. The first step
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consists of reconstructing the missing color information

corresponding to the Z-pixel. Which color will be re-

constructed depends on which type of filter has been

chosen. This kind of filter, named Color Filter Array

(CFA), defines the mosaic of the color filters placed

over the sensor. The most used CFA is the Bayer filter

composed of alternating lines of Green-Red and Blue-

Green pixels (like the two first lines in Figure1). For

a monolithic RGB-Z imager, the CFA must integrate

a new filter for the Z pixel. In this case to define the

filter array we use the CDFA2 acronym, where D is

for Depth. During the second step, a demosaicing al-

gorithm is applied in order to reconstruct the complete

color image. For a Bayer filter, three color images will

be reconstructed, one Red, one Green and one Blue.

Fig. 2: Example of a directional interpolation of a miss-

ing blue pixel based on a 9x6 pixels kernel [27].

In [27], the missing pixel interpolation method is an

EDI3 algorithm based on the directional correlation be-

tween the pixels in the adjacent original scanned lines.

For a given missing color pixel, five edge directions are

evaluated. An example is presented on the Figure 2. It

is a blue pixel reconstruction where the five edge direc-

tions (a, b, c, d and e) are computed as follow:

a = |I(y − 2, x− 4)− I(y + 2, x+ 4)| (1a)

b = |I(y − 2, x− 2)− I(y + 2, x+ 2)| (1b)

c = |I(y − 2, x)− I(y + 2, x)| (1c)

d = |I(y − 2, x+ 2)− I(y + 2, x− 2)| (1d)

e = |I(y − 2, x+ 4)− I(y + 2, x− 4)| (1e)

Where I(y, x) represents the pixel value at the lo-

cation (y, x). The five differences are then evaluated.

If the region contain a dominant edge, a median filter

is performed in the direction of the highest correlation.

2 Color Depth Filter Array
3 Edge Directed Interpolation

Otherwise, for a relatively homogeneous area, a bilinear

interpolation along vertical region is performed. Once

the Bayer image is fully reconstructed, the demosaicing

step can be applied. This is an adaptive interpolation

solution mainly inspired from [22]. The weights used

in the interpolation are computed following the local

pixel similarities and their position in the kernel. Com-

pared to the solution proposed by R. Ramanath al. [22]

add a color-selective kernel that specifies neighboring

pixels according to the reconstructed pixel. This allows

to only use known pixels during the demosaicing step,

rather than the newly reconstructed pixels in step one.

Reconstruction results are shown in the Figure 3. They

show the interest of a dedicated algorithm to interpolate

the missing color pixels. There are noticeable structural

and color artifacts present in the image reconstructed

using a bilinear interpolation (Figure 3.d) compared to

the image reconstructed using the proposed EDI algo-

rithm (Figure 3.e).

The implementation of a monolithic RGB-Z imager

presents new constraints at different levels [12]. We can

summarize them in order to highlight the paper’s con-

tributions. The constraints could be splitted into two

categories:

– Intrinsic issues at the sensor level. As it is a hetero-

geneous system, where two different types of sensor

share the same pixels matrix, the color filtering sys-

tem must be adapted. Most of the depth acquisition

systems operate with an IR illumination. The color

pixels should not be exposed to NIR4 light and the

depth pixels should not be exposed to visible light.

In this context, a new filtering system must be de-

signed to apply a local NIR filtering on color pixels

and a local filtering of the visible light on depth pix-

els. The layout and the readout circuit should also

be adapted. The overall architecture of the matrix

depends on the pixel distribution and the difference

between the color and depth pixel pitch sizes.

– Extrinsic issues at the image processing level. New

types of defects are induced by the technological

limits of the sensor. Due to the matrix of mixed

pixels, color information is missing at the Z-pixel lo-

cation and vice versa. This leads to resolution prob-

lems and incomplete information. In addition, the

acquisition modes (integration time, frame rate) may

differ between the two pixel technologies and there-

fore the data format and output stream may be dif-

ferent.

The contributions of this paper are mainly focused

on the extrinsic issues. It is the extended and the de-

tailed version of our previous paper [23]. The novel

4 Near InfraRed
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Fig. 3: Results of the reconstruction method applied to a simulated RGBZ image proposed in [27]. (a) Normal Bayer

image. (b) Reference RGB image corresponding to (a), demosaiced by Malv ar et al. [18]. (c) Simulated RGBZ

image by blacking out rows in (a). (d) Reconstructed image by filling the missing rows with bilinear interpolation

(demosaiced by Malvar et al. [18]). (e) Reconstructed image using EDI method [27] (demosaiced by Malvar et al.

[18]). (f) reconstructed image using EDI method [27] and color adaptive demosaicing [27].

parts of this paper are as follows: (i) we propose a new

RGB-Z matrix using a 1-by-1 Z-pixel, (ii) we adapt the

semi-gradient method to the new RGB-Z matrix after

the study of its artifacts, (iii) we introduce the simula-

tion chain used to implement and evaluate the different

algorithms, and (iv) we report additional results using

various high-resolution color images from the HDR+

burst dataset and we compare the two RGB-Z studied

matrix.

3 RGB-Z CDFA evaluation

In the context of RGB-Z imager, the objective is to

have as few color artifacts as possible while having a

sufficient depth map resolution. Shi et al.[27] proposed

a reconstruction solution dedicated to a RGB-Z matrix

[12] where entire lines of color pixels are missing. A nar-

row horizontal edge perfectly aligned with these missing

pixels lines would be difficult to detect and thus to re-

construct. This shows the importance of the choice of

the RGB-Z pattern in order to reconstruct the colors as

well as possible beyond the presence of the depth pixel.

In the context where the quality of the color image

is one of the first performance criteria of a RGB-Z im-

ager, the main constraint concerns the missing color re-

construction at the Z-pixels location. The implemented

solutions to reconstruct the missing color information

depend on which CFA pattern is based the CDFA ma-

trix. In this paper we have worked with the Bayer pat-

tern as a starting point for the CFA, on which groups of

pixels are replaced by Z pixel(s) to produce the CDFA.

From this structure, the impact of the Z-pixel position

and dimension on the demosaicing step is explored be-

fore to evaluate the best algorithm for the missing color

pixel reconstruction.

3.1 Z pixel dimension and sampling

A first constrain is the pixels dimensions. The larger

a Z-pixel is compared to a color pixel, the more color

information is missing at the Z-pixel location. From the

technology point of view the challenge is to shrink as

possible the Z pixels dimension. Z pixels cannot be as

small as the smallest possible color pixel. This is a key

point in order to facilitate the reconstruction of missing

color pixels.

Two different Z-pixel dimension have been evalu-

ated:

– The first one correspond to the Z-pixel solution where

it has the same dimension of color pixels, we define

this pixel as the 1x1-Z-pixel (Figure 4.a).

– The second one, the Z-pixel has double dimension as

the previous one, in this case color pixels are quarter

the size of the Z-pixels. We define this second pixel

as the 2x2-Z-pixel (Figure 4.b).

A second constraining aspect is the sampling of the

Z-pixel across the matrix. Indeed, the more Z-pixels

there are, the less color information is available. How-

ever, it is necessary to ensure that the Z resolution is

sufficient. To answer this question without real data, we

made an assumption based on the recognized iPhone X

TrueDepth system [6]. It is a well known face recog-

nition system based on a Structured Light technology

where 30,000 dots are projected on the target. This im-

plies that a maximum of 30,000 points are recorded
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(a) (b)

Fig. 4: Proposed Z-pixels. (a) 1x1-Z-pixel: its dimension

is the same as color pixel dimension. (b) 2x2-Z-pixel: its

dimension is twice the size than color pixel dimension.

to compute the depth map. Our assumption is that a

minimum of 30,000 pixels is needed to have a suitable

resolution for the Z-pixel distribution. Considering a 8

Megapixel sensor with a ratio of 1/36 Z-pixels, we have

more than 200, 000 depth measurement points, which is

much higher than the hypothesis made. However, it can

be risky to have a too sparse distribution of the Z pix-

els on the matrix. Especially concerning the quality of

the depth measurement. Denoising methods use kernels

of few pixels. If the Z-pixels are too spread out in the

matrix , there is not enough information for a given ker-

nel to process denoising properly. The impact of noise

on the depth measurement may be too significant. In

addition, the Z-pixel’s undersampling can induce alias-

ing effects. This is why we consider a dense distribution

RGB-Z matrix. The total area of the Z-pixels represents

1/4 of the total area of the pixel matrix. Below the 1x1-

Z-pixel and the 2x2-Z-pixel will be named Mask1 and

Mask2 respectively.

3.2 CFDA Mask1 and Mask2 impact on Bayer CFA

The demosaicing step reconstructs 2/3 of the total in-

formation of a color image. During this step two color

values are reconstructed for each pixel. For example,

for a known red pixel, the blue and green values are

reconstructed during demosaicing. Whereas the recon-

struction of the missing color information due to the

Z-pixel represents, in the cases presented above, one

quarter of the information of the CFA image. This rep-

resents 1/12 of the total information of the color image.

The demosaicing step should not be neglected in favor

of the step of missing color information reconstruction

due to the Z-pixel. This is why we have chosen to fo-

cus on the study of RGB-Z architectures based on the

Bayer pattern. The demosaicing algorithm [3] used in

this work is then dedicated to the Bayer pattern. The

CFA images (without any Z pixel) reconstructed with

this demosaicing algorithm [3] are now considered as

reference images in order to evaluate the missing color

information algorithms. We now consider these images

as a point of comparison and as a quality target to

reach. A representation of the unitary elements of the

two RGB-Z architectures studied in this work are shown

in Figure 4.

For the Mask1, one quarter of the color information is

missing in the CDFA image. It is important to note the

absence of green pixels on the rows and columns with

Z-pixels, it is relevant as the green pixels represent the

most important information (luminance).

For the Mask2, four color pixels are missing at a Z-pixel

location, one quarter of the color information is missing

in the CDFA image. The difference with the Mask1 is

the missing color distribution. In this case one blue, one

red and two green pixels are missing. However, there is

in this case, no absence of complete color information

on rows and columns.

In the context of a RGB-Z imager, the choice of

one CDFA rather than another (choice between the two

masks) may imply to modify the reconstruction solution

and thus the quality of this reconstruction. In the same

way, the choice of one CFA rather than another impacts

the demosaicing step. It is therefore important to study

the quality of the reconstructed image at the output of

the demosaicing step regarding the CFA.

In the next section, we will present the algorithms

study for a Bayer CFA reconstruction from RGB-Z CDFA.

4 CFA reconstruction algorithms evaluation

In the same way as Shi [27], we first explored classical

reconstruction methods that we adapted to our RGB-

Z matrices presented in the section 3. This exploration
highlights the limitations of these methods. A new op-

erator called semi-gradient is then proposed to correct

the artifacts and thus improve the image quality. Clas-

sical methods such as bilateral interpolation and edge-

directed interpolation based on gradient computation

are first presented. Then, we will present our proposed

method using semi-gradients to correct the highlighted

limitations. All algorithms are implemented using the

Python 2.7 environment and some parts of the algo-

rithms, which need to be accelerated, are implemented

in C.

4.1 Bilateral based algorithm

We have implemented an algorithm inspired from the

bilateral interpolation (BI) [29]. Due to the absence of

color information at the location of the interpolated

pixel, the intensity parameter of a given weight is cal-

culated by evaluating its intensity regarding the pixels



6 Valentin Rebiere et al.

from the same color channel in the considered neigh-

borhood. The computational kernel used corresponds

to a 5x5 window ξ centered on the missing pixel. The

weights are computed using 2. For each weight, the

intensity parameter β, is computed using 4, and the

distance parameter α is computed with a 2-dimension

Gaussian filter 3.

ω(i, j) = α(i, j)× β(i, j) (2)

α(i, j) = exp

(
− i

2 + j2

2σ2

)
, (3)

β(i, j) =
1

1 +
∑

(g,h)∈ξG
|I(i, j)G − I(g, h)G|

(4)

The red (respectively blue) pixel interpolation is

computed as follow :

I(p, q)R = I(p, q)G+∑
(i,j)∈ξR

ω′(i, j)× (I(i, j)R − I(i, j)G) (5)

σ was empirically determined according to the kernel

size and is equal to 1. The choice of a Gaussian filter

allows a faster decrease of the weight according to the

distance. Thus, it values the pixels close to the missing

pixel. On the Figure 5 are represented two simulated

RGB-Z images (Mask1 and Mask2) reconstructed using

the bilateral algorithm and demosaiced using [3] com-

pared to the reference Bayer image demosaiced with [3].

On the Mask1, we can see a blurring effect along the

edges of the fence. On the Mask2, the RGB-Z pattern
is clearly visible. This is similar to a Zipper effect of

two pixels wide, which corresponds to the width of a

Z-pixel. We see that this filter is not able to prevent

interpolation across edges.

4.2 Edge directed algorithm

An edge-directed interpolation (EDI) solution has been

implemented to overcome the structural artifacts that

are mainly located around the edges. This method uses

gradients calculation to determine the direction of the

edges. Two methods for calculating the gradients are

explored. The first solution is directly inspired from

the first step of the algorithm describes in [11]. The

gradients are calculated by central symmetry around

the missing pixel (EDICentral). For the second one, the

gradients are now calculated with respect to the axes

of symmetry of the kernel (EDILine). A representation

of these axes of symmetry is given in the Figure 6.

Fig. 5: Color images reconstructed from simulated

RGB-Z data using the bilateral solution compared to

the reference image. RGB-Z data are simulated using

both Mask1 (4a) and Mask2 (4b). The demosaicing al-

gorithm used for the three reconstructed images is [3].

(a) Reference cropped image. (b) simulated RGB-Z im-

age reconstructed based on the Mask1. (c) simulated

RGB-Z image reconstructed based on the Mask2.

Fig. 6: Representation of a computational kernel of the

Mask2. The four axes of symmetry are illustrated by

the black lines.

4.2.1 Gradients computed around the missing pixel

To compute the weights used for the interpolation of a

missing color pixel, equation 2 need to take into account

also the edge parameter γ.

ω(i, j) = α(i, j)× β(i, j)× γ(ori) (6)

Equations 3 and 4 are still valid. The calculation of

the edge parameter is different. The areas are no longer

overlapped to compute it. Indeed, the majority of ar-

tifacts in the reconstructed RGB-Z images are located

along the edges. Overlapping areas when calculating the

edge parameters does not result in sharp edges after in-

terpolation. The overlapping may value the weights of

some pixels that are located between two areas that do

not necessarily correspond to the main direction deter-

mined for the interpolation. The edge parameter is now

computed using the four areas illustrated on the Figure

7.
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Fig. 7: Representation of the four non-overlapped areas

corresponding to the orientations ori to compute the

four gradients. The blue areas correspond to the verti-

cal gradient, the red areas correspond to the horizontal

gradient. The yellow and green areas correspond to the

two diagonal gradients.

A Gaussian discrimination function is used for the

missing color pixel interpolation because it has a faster

slope’s decrease of the function. This allows a stronger

discrimination of the gradients.

γ(ori) = exp

(
−Gradaveraged(ori)

2

2σ2

)
(7)

In this case, σ corresponds to the minimum gradient be-

tween the four averaged gradients. On the Figure 8 are

represented two simulated RGB-Z images (Mask1 and

Mask2) reconstructed using the presented edge-directed

algorithm. There is a significant reduction of structural

artifacts for the Mask2. However, there are still many

remaining.

Fig. 8: Color images reconstructed from simulated

RGB-Z data using the edge directed solution using cen-

tral symmetry compared to the reference image. RGB-

Z data are simulated using both Mask1 (section 4a)

and Mask2 (section 4b). (a) Reference cropped image.

(b) Simulated RGB-Z image reconstructed based on

the Mask1. (c) Simulated RGB-Z image reconstructed

based on the Mask2.

4.2.2 Gradients computed along the kernel axes

A second edge-directed algorithm solution has been im-

plemented. It is a weighted-sum based interpolation us-

ing the same three factors (distance factor (3), intensity

factor (4) and edge-directed factor (7)). The main dif-

ference concerns the edge-directed factor computation.

In the previous algorithm, the gradients are computed

using a central symmetry with the missing pixel, while

in this algorithm the gradients are computed using the

axes of symmetry of the kernel.

The method is inspired from the Prewitt edge-detection

operator [2]. The Prewitt operator is only sensitive to

the vertical and horizontal orientations. It is not sensi-

tive to the diagonal orientations. To address this issue,

we propose a gradient computation along the diagonal

orientations based on the diagonal axes. The gradients

are then computed by the sum of pairwise differences

between known color pixels. The color pixels used for

each difference are located on either side of a given axis

of symmetry of the kernel. The Figure 9 represents the

four masks used to compute the gradients. The relation-

ships between the three channels based on the constant

color difference assumption are used to compute inter-

channel differences. The computation of the four gradi-

ents is detailed in the equations 8 to 11. Pixel indices

refer to the Figure 6.

Gradvertical =
∑

m∈[−2;2]

[|Iη 6=3(−2,m)− Iη 6=3(+2,m)|

+|Iη 6=3(−1,m)− Iη 6=3(+1,m)|] (8)

Gradhorizontal =
∑

m∈[−2;2]

[|Iη 6=3(m,−2)− Iη 6=3(m,+2)|

+|Iη 6=3(m− 1)− Iη 6=3(m,+1)|] (9)

Graddiagonal1 =
∑

m∈[−2;1]

∑
k∈[0;1]

[|Iη 6=3(m + 1 + k,m− 1− k)− Iη 6=3(m− 1− k,m + 1 + k)|
+|Iη 6=3(m + 1 + k,m− k)− Iη 6=3(m− k,m + 1 + k)|]

(10)

Graddiagonal2 =
∑

m∈[−2;1]

∑
k∈[0;1]

[|Iη 6=3(m + 1 + k, 1 + k −m)− Iη 6=3(m− 1− k,−m− 1− k)|
+|Iη 6=3(m + 1 + k, k −m)− Iη 6=3(m− k,−m− 1− k)|]

(11)

Where, I(i, j) represents the intensity value of a pixel

(i, j) and η corresponds to the color channel of a given

pixel. Namely, η = 0 corresponds to red (R) channel,
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(a) (b) (c) (d)

Fig. 9: General computation masks of the centered on the missing pixel, for the four orientations of the gradient.

(a) Vertical gradient. (b) Horizontal gradient. (c) and (d) two diagonal gradients.

η = 1 corresponds to the green (G) channel, η = 2 cor-

responds to the blue (B) channel, and η = 3 correspond

to the Z channel. According to the Z-pixel distribution

across the kernel, the mask used to compute a gradi-

ent can vary. It depends on the kernel configuration:

only the color pixels are used to calculate the gradient.

The masks can be adjusted according to the current

RGB-Z architecture. The Z-pixel values are not taken

into account, so the differences including a Z-pixel are

not calculated. The number of differences calculated for

each orientation can be different. The four gradients

are scaled following their number of differences used to

compute them. The steps to achieve the interpolation

are similar the previous sections: the weights are com-

puted using equation 6, they are normalized with equa-

tion 12 and finally the missing color pixel Iη 6=3(p, q) is

interpolated using a weighted averaged summation of

the same color channel pixels. For example to inter-

polate a missing red pixel (respectively η is adapted

following the color channel reconstructed), we use the

equation 13.

ω′(i, j) = ω(i, j)/
∑

(g,h)∈ξ

ω(g, h) (12)

Iη=0(p, q) =
∑

(g,h)∈ξ

ω′(g, h)Iη=0(g, h) (13)

On the Figure 10 are represented two simulated

RGB-Z images (Mask1 and Mask2) reconstructed with

the presented edge-directed algorithm. They are also

compared to the images reconstructed with the bilat-

eral and EDI methods presented above. A reduction

of structural artifacts is again observed on the Mask2.

The pattern of the RGB-Z architecture remains how-

ever clearly visible. About the Mask1, there is no notice-

able improvement between the different solutions pro-

posed. Aliasing and false color artifacts are still present.

Fig. 10: Color images reconstructed from simulated

RGB-Z data using the edge directed solution using ker-

nel axes presented compared to the reference image.

RGB-Z data are simulated using both Mask1 (section

4a) and Mask2 (section 4b). (a) Reference cropped im-

age. (b) Simulated RGB-Z image reconstructed based

on the Mask1. (c) Simulated RGB-Z image recon-

structed based on the Mask2.

4.3 CFA reconstruction by a semi-gradient approach

The reconstruction methods using EDI presented in the

previous sections still have some remaining artifacts.

These artifacts are mainly present along the thin edges.

A study is first performed for the Mask1 in order to un-

derstand the cause of these artifacts and thus to propose

a solution that corrects them.

4.3.1 Artifacts study for the Mask1

In order to better understand the artifacts present in an

image simulated with the Mask1, it is necessary to look

back at the RGB-Z matrix and more precisely at the

computational kernel level. On the Figure 11, we can

see that the amount of green information available to

reconstruct the missing pixel is limited. Indeed, there

are only four green pixels in the considered neighbor-

hood. Moreover, the distribution of these pixels does

not allow a purely horizontal or purely vertical interpo-

lation. This effect is even more visible when the recon-

structed pixel is located along a narrow edge. A visual



Color pixel reconstruction for a monolithic RGB-Z CMOS Imager 9

Fig. 11: The 5x5 computational kernel for the Mask1

centered on the missing pixel (pixel number 12). Black

circle show the four green pixels used to interpolate the

central missing pixel.

example is given on the Figure 12. On this example

we can see some false colors artifacts along the vertical

edges of the fork. There is a reconstruction error de-

spite the fact that the gradients correctly identify the

vertical edge. This error is due to the bad distribution

of green pixels in the neighborhood of the missing pixel.

In this case, the four green pixels belong to two dif-

ferent textures of the image. The two left pixels belong

to the white fork area and the two right pixels belong

to the background area. Moreover, they are not on the

vertical axis of the kernel which corresponds, in this

case, to the priority axis of interpolation. This is why,

during the interpolation the weight distribution is ho-

mogeneous between the four pixels (they all are equal

to 1/4). In order to solve this issue, we propose to es-

timate the belonging of the missing pixel between the

different textures of the image.

4.3.2 Proposed solution for the Mask1

In order to estimate on which texture the missing pixel

belongs among the different potential areas present in a

given kernel, we propose to implement a new operator

that we call semi-gradient. As we do not have color in-

formation directly available at the location of the miss-

ing pixel, we study its closest neighbors. The objective

is to study the local variations of the texture inside

the computational kernel. The developed operator cor-

responds to the calculation of a local gradient in the

kernel, while the gradient studies the texture variations

through the kernel.

The SG operator is specifically designed to work on

a Bayer based architecture. In the same vein as the cal-

culation of the gradient presented in section 4.2.2, the

SG is calculated by considering horizontal and vertical

symmetry axes of the kernel. The idea is to compare the

(a) (b)

(c) (d)

Fig. 12: Example of reconstructed Bayer images from

the Mask1 and their corresponding demosaiced images.

(a) Reference color image. (b) Reconstructed color im-

age using EDI section 4.2.2. (c) Reference CFA that

corresponds to the reference color image. (d) Recon-

structed CFA using algorithm presented in section

4.2.2. The orange circles show the pixel reconstruction

errors.

differences between the pixels close to the missing pixel

and pixels at the kernel borders. If the tested pixels are

close, in terms of pixel intensity, to a specific area of

the kernel, then the weights of the pixels in this area

are valued. Two arrays of eight values are computed

corresponding to eight vertical and eight horizontal dif-

ferences (equations 14, 15, 16, 17). They are computed

using masks shown in Figure 13.

diffvert[2j] = |Iη1(0, j − 2)− Iη2(−2, j − 2)|,
with η1 = η2 6= η3 (14)

diffvert[2j + 1] = |Iη1(0, j − 2)− Iη2(2, j − 2)|,
with η1 = η2 6= η3 (15)

diffhori[2j] = |Iη1(j − 2, 0)− Iη2(j − 2,−2)|,
with η1 = η2 6= η3 (16)
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(a) (b) (c) (d)

Fig. 13: Differences computation masks used to compute SGs. Close pixels are marked in Grey. The missing color

pixel is the darkest. (a) Comparison between close pixels and the top of the kernel. (b) Comparison between close

pixels and the bottom of the kernel. (c) Comparison between close pixels and the left part of the kernel. (d)

Comparison between close pixel and the right part of the kernel. (a) and (b) correspond to the vertical differences.

(c) and (d) correspond to the horizontal differences

diffhori[2j + 1] = |Iη1(j − 2, 0)− Iη2(j − 2, 2)|,
with η1 = η2 6= η3 (17)

The index j ∈ [0, 4] is the index of both arrays. Hor-

izontal and vertical differences are associated to form

the SGs. A total of eight SGs SG are computed (equa-

tions 18), two for each orientation. To facilitate the use

of SGs, we attribute cardinal points to them: North,

South, East, West.

SGN =
∑

j∈[0;2;6;8]

diffvert[j] (18a)

SGS =
∑

j∈[1;3;7;9]

diffvert[j] (18b)

SGW =
∑

j∈[0;2;6;8]

diffhori[j] (18c)

SGE =
∑

j∈[1;3;7;9]

diffhori[j] (18d)

SGNW =
∑
j∈[0;2]

diffvert[j] + diffhori[j] (18e)

SGSE =
∑
j∈[7;9]

diffvert[j] + diffhori[j] (18f)

SGNE =
∑
j∈[6;8]

diffvert[j] +
∑
j∈[1;3]

diffhori[j] (18g)

SGSW =
∑
j∈[1;3]

diffvert[j] +
∑
j∈[4;6]

diffhori[j] (18h)

They are then discriminated using equation 7.

Finally the weights are computed using only the SGs.

There are only four weighted pixels used for the interpo-

lation, while there are eight SGs. Each weight is there-

fore the linear combination of three SGs. For example,

the weight of the pixel number 6, that is located to the

top right area of the kernel (Figure 11), is computed by

the linear combination of SGN , SGW and SGNW . The

four weights are computed with equations 19.

ω6 = SGN + SGW + SGNW (19a)

ω8 = SGN + SGE + SGNE (19b)

ω16 = SGS + SGW + SGSW (19c)

ω18 = SGS + SGE + SGSE (19d)

It is interesting to note that in the case of Mask1,

gradients are no longer used to calculate weights. Only

SGs are considered. The particular distribution of green

pixels useful for interpolation does not allow direct in-

terpolation along a direction. However, the SGs study

the belonging of the central pixel and its neighborhood

compared to the rest of the kernel. They thus allow

to promote some areas in the kernel. An example of

an image reconstructed using the SG method is given

in Figure 14.c and its corresponding CFA Figure 14.f.

The edges of the fork are sharper and there is also a

reduction of false color artifacts along the edges. The

flowchart of the algorithm presented in this section is

described in Figure 15.

The numbers of operations required to reconstruct a

missing pixel with the presented methods and for both

masks are given in the Table 1.

5 Simulation chain

The evaluation of the algorithms was done in simulation

because real data acquired with a RGB-Z test chip are

not yet available. The test environment, below named

simulation chain, used to evaluate the different algo-

rithms is composed of several elements.
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(a) (b) (c)

(d) (e) (f)

Fig. 14: Example of reconstructed Bayer images from the Mask1 and their corresponding demosaiced image. (a)

Reference color image. (b) Reconstructed color image using EDI section 4.2.2. (c) Reconstructed color image using

SGs. (d) Reference CFA that corresponds to the reference color image. (e) Reconstructed CFA using algorithm

presented in section 4.2.2. (f) Reconstructed CFA using SGs. The orange circles show the improvement of the pixel

reconstruction between the two solutions.

Type of BI BI EDICentral EDICentral EDILine EDILine SG SG
operations Mask1 Mask2 Mask1 Mask2 Mask1 Mask2 Mask1 Mask2

Adds and subbs 32 128/242 26 42/51 68 88/97 72 133/142
Multiplications 12 32/44 16 20/23 16 20/23 28 55/61

Divisions 4 8/11 16 24/30 16 24/30 28 36/39
Exponentials 0 0/0 4 4/4 4 4/4 8 12/12

Table 1: Number of operations to reconstruct one missing pixel for each method and both masks. They are two

different cases for the Mask2: green pixel reconstruction and red/blue pixel reconstruction. For the first case 11

pixels are used to calculate the weighted sum while for red/blue pixel reconstruction, only 8 pixels are used to

calculate the weighted sum. This is why the number of operations varies.

5.1 Simulation Chain description

The RGB-Z sensor model used to simulate the images

that would have resulted from a real RGB-Z sensor is

based on two sensor models. The first one, called color

sensor model, simulates color pixels, while the second

one, called i-ToF sensor model, simulates both depth

pixels and the IR active illumination source. A RGB-Z

ISP model is then used to reconstruct the color image

from the CDFA raw image. The color sensor model and

the i-ToF sensor model are firstly presented to intro-

duce the RGB-Z sensor model. Then, the RGB-Z ISP

model based on two ISP models is presented. In the

same way as the RGB-Z sensor model, the first ISP

model is used to reconstructed the depth map and the

second one is used to reconstruct the full color image.

The whole RGB-Z simulation chain is detailed in the

Figure 16.

A reference image is also generated with the model.

This corresponds to the green path in the Figure 16.

The reference image is used to evaluate the reconstructed

images. The color pixels located at the Z-pixels location

in the reference image represent to the ground truth of

the pixels to reconstruct.

5.1.1 Color Sensor Model

The color sensor model is used to simulate the acquisi-

tion of a CFA image. It is inspired from [4]. It takes as

input a RGB image or a multispectral image set coded

on 8 or 16 bits per channel. The output is a raw, noisy

image patterned with the selected CFA coded on 11

bits. A noise model [4] is applied to simulate the photon-

shot noise and the fix pattern noise. Different charac-

teristics of the pixel and the pixel matrix are taken into
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Fig. 15: Flowchart of a pixel reconstruction with the

solution using the SG for the Mask1.

account in the model.

5.1.2 i-ToF Sensor Model

The sensor model that is used to simulate the acquisi-

tion of an i-ToF sensor takes as input a disparity map

and the maximum theoretical distance corresponding to

this map. The simulate Z-pixel is composed of 4 shut-

ters (taps) that allow the acquisition of photons out

of phase with a phase delay of 90 degrees from each

other. The i-ToF Sensor Model takes into account in-

ternal and external parameters to compute a multidi-

mensional array that represents the probability distri-

bution of generated electrons for each shutter. Informa-

tion about the active laser source, such as wavelength,

modulation frequency and power are external param-

eters of this model. It is also necessary to have infor-

mation about the IR reflectance of the objects in the

scene. The electrons maps of the four shutters are then

augmented by the application of different noise sources

such as photon shot noise, dark current, or fixed pat-

tern noise. Finally they are converted into an output

array coded on 11 bits.

5.1.3 RGB-Z matrix build function

A RGB-Z sensor model that combines the two previ-

ous sensor models is used to generate the raw RGB-

Z data. Both color and i-ToF sensor models are used

in parallel to simulate a raw RGB-Z image. However

it is necessary to make several acquisitions for the i-

ToF sensor model in order to generate a depth map.

Indeed, a set of three frequencies is used in order to

avoid phase wrapping phenomena and to improve the

maximum measurement distance. Once the CFA image

and the shutter array of electrons are generated, they

are mixed together to form a multidimensional RGB-Z

matrix. The color information at the Z-pixel location is

therefore removed and vice versa. It is called the RGB-

Z matrix build function. That is during this step that

the RGB-Z patterns studied are implemented.

5.1.4 RGB-Z ISP model

Once the RGB-Z data are simulated, the ISP models

reconstruct depth and amplitude information from the

Z-pixels and the full color image from color pixels. Con-

cerning the ISP i-ToF, the filter kernel used for the de-

noising step is adapted to the RGB-Z matrix. The orig-

inal filter was a 3x3 average filter. It is replaced by an

average filter that takes into account the architecture of

the matrix. It is now computed with a 5x5 kernel with

the distribution represented in Figure 17.

The other functions of the ISP are not modified: the

depth calculation is done only on the depth pixels. The

missing depth information at the color pixels location

is not reconstructed.

The color ISP is also modified in order to reconstruct

missing color information. The algorithms presented

in the previous chapter are included in the processing

chain. However, this reconstruction step should not be

placed anywhere in the chain. Indeed, it is imperative

to reconstruct the missing information before the demo-

saicing step. In the same way, as we use an automatic

white balance, it is preferable to have a complete color

pixel matrix available for this algorithm. On the other

hand, in order to avoid using defect pixels for the color

pixel reconstruction, we apply the defect correction al-

gorithms before the reconstruction of the missing color

pixels. The modified ISP chain is shown in Figure 18.
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Fig. 16: Complete RGB-Z simulation chain. The RGB-Z Sensor Model generates the pixel arrays; the RGB-Z

ISP reconstructs the color image and depth information. The blue path represents RGB-Z data. The green path

represents the reference data.

(a) (b)

Fig. 17: Filter kernel used for noise reduction during

ISP i-ToF step. (a) Original kernel. (b) Kernel used for

the RGB-Z matrix.

5.2 Databases

Several databases with different features are used to

evaluate the quality of the reconstructed images. It is

important to evaluate the algorithms on several images.

It allows to reduce the effect that a particular image

could have. To this intent, we use databases with vary-

ing characteristics. For example, different resolutions

are studied, different frequency contents.

Kodak [1], McMaster [33] and HDR+ [25] burst are

used to study color reconstruction without the use of

depth pixel information. These three databases have

different frequency content and resolutions.

5.2.1 Kodak and McMaster datasets

The Kodak database [1] is wildly used in demosaicing

papers. It contains twenty-four color images, of spatial

size 768 × 512, which have been digitized by scanner

after being captured on film. This dataset was criti-

cized for having statistics very different from the ones

of natural images [33]. This led to the creation of the

McMaster dataset, which contains eighteen 500 × 500

crops of 2310× 1814 images. The high resolution of the

original McMaster images is an advantage of McMas-

ter over Kodak, as the sensor images have a high res-

olution too. In comparison, they have more saturated

colors than Kodak and contain many sharp structures

with abrupt color transitions.

5.2.2 HDR+ burst dataset

In addition to the McMaster and Kodak databases, the

HDR+ burst dataset [25] constituted of real images

acquired by CFA sensors is used. It consists of 3640

images acquired with different CMOS imaging sensors

from Android mobile phones. This database is built to

study HDR reconstruction techniques. The images are

generally 12-13 Mpixels, depending on the type of cam-

era used for capture. Not all the images in the database

are used in this work. An arbitrarily selection of twelve

images is made. In addition, the selected images are

downsampled in order to improve the computational

time. Furthermore, by down sampling the images, we

also reduce the distance between structures, thus, we

increase the frequency content in the image. Since the

most complex structures to reconstruct are located in

high frequencies areas, it is also interesting for the as-

sessment of the reconstruction algorithms. The images

from the HDR+ burst are down sampled by a factor 2

horizontally and vertically.

5.3 Results

In this section, we present the results obtained with

the algorithms presented in 4. Reconstructed images

are compared to their corresponding reference image at

two different levels of the processing chain presented

in Figure 18. Both reference and reconstructed images
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Fig. 18: Typical ISP processing chain adapted to a RGB-Z sensor.

Total Number Image Multi- Depth
Database Year Images of images resolution spectral map

used (used) acquisition
Kodak [1] 1991 24 24 768× 512 No No

McMaster [33] 2011 18 18 500× 500 No No
HDR+ burst [25] 2016 3640 12 4000× 3000 No No

(2000× 1500)

Table 2: Overview of databases used in this work.

Fig. 19: Diagram of two simplified ISPs, one for the reconstruction of the RGB-Z image (top) and the other for the

reconstruction of the color image (bottom). Both pink boxes indicate the two steps of image quality assessment

(IQA). The simulated input images are 11-bit per value images acquired with one exposure.

are generated using the same processing chain. In this

way, only the reconstruction step of the missing infor-

mation is evaluated. The parameters of the simulation

of the raw RGB-Z and raw RGB images are identical,

only the generation of the RGB-Z pattern differs. In

the same way for the reconstruction of the two color

images, only the reconstruction step of the missing in-

formation is added compared to the reference image.

Characteristics such as noise level, integration time, il-

luminant, pixels quantum efficiency, color and IR filters

characteristics are common to both images. Only the

RGB-Z matrix construction function and the missing

information reconstruction algorithm are bypassed for

the reference image. Figure 19 illustrates the two ISP

chains executed on the reference image and the recon-

structed RGB-Z image.

The first level of assessment is applied on the recon-

structed CFA images. The PSNR5 is computed on the

reconstructed color pixels only. The PSNR is one of the

most commonly used objective image quality metrics.

5 Peak signal-to-noise-ratio
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It is based on the pixel difference between two images:

the reconstructed image is compared to the reference

one. The computation is based on the Mean Squared

Error (MSE) :

MSE =
1

NM

M−1∑
m=0

N−1∑
n=0

(Id(m,n)− Ir(m,n))2 (20)

where, Id and Ir represent respectively the pixel inten-

sity of the reconstructed image and the reference image.

M and N are the dimension of the given image. The

PSNR is then computed by

PSNR = 10log10
s2

MSE
(21)

where, s represents the maximum range of the image,

it is defined by s = 2b − 1, where b is the bit depth of

the image. For a 8-bit image, s = 255.

The second level of assessment is then applied at the

end of the ISP chain, on the reconstructed full color im-

age. The C-PSNR6, the SSIM7 and M-SSIM8, and the

Zipper metric are used to quantify the reconstruction

performance. The C-PSNR is used on the color images.

It is computed using Color Mean Squared Error,MSEC
22 and 23, with k that corresponds to the 3 color chan-

nels :

MSEC =
1

3NM

3∑
k=1

M−1∑
m=0

N−1∑
n=0

(Id(m,n, k)−Ir(m,n, k))2

(22)

C − PSNR = 10log10
s2

MSEC
(23)

The PSNR and C-PSNR are not the most efficient

method to discriminate structural deformations and it

does not correlate well with the measure of perceived

quality. Its major advantage is the simplicity of calcu-

lation.

The SSIM [30] is considered to be correlated with

the quality perception of the Human Visual System

(HVS). The idea is to measure the similarity of struc-

ture between two images, rather than a pixel-to-pixel

difference as the PSNR does.

SSIM(d, r) =
[
l(d, r)α × c(d, r)β × s(d, r)γ

]
(24)

6 Color Peak signal-to-noise-ratio
7 Structural Similarity index
8 Multi scale Structural Similarity index

With,

l(d, r) =
2µdµr + c1
µ2
d + µ2

r + c1
(25)

c(d, r) =
2σdσr + c2
σ2
d + σ2

r + c2
(26)

s(d, r) =
σdr + c3

σd + σr + c3
(27)

where, µd and µr are respectively the average of d and

r, σd and σr are respectively the variance of d and r,

σdr is the co-variance of d and r. The three variables c1,

c2 and c3 are used to stabilize the division with weak

denominator. They are defined by c1 = (0.01 × L)2,

c2 = (0.03 × L)2 and c3 = c2/2, with L represents the

maximum range of the image, it is defined by L = 2b−1,

where b is the bit depth of the image. Conventionally,

to simplify the expression, we set α = β = γ = 1.

To evaluate the overall image quality, we compute the

mean of each local window SSIM index.

The M-SSIM[31] is an improvement of the SSIM. It

allows to have a different resolution evaluation of the

image details. The system iteratively applies a low-pass

filter and downsamples the filtered image by a factor of

2. The M-SSIM is computed using 28.

M − SSIM(d, r) = [lM (d, r)]
αM ×

M∏
j=1

[cj(d, r)]
βj

× [sj(d, r)
γj ] (28)

the number of iterations is fixed to 5 and the parame-

ters are determined to be equal to β1 = γ1 = 0.0448,

β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363,

and α5 = β5 = γ5 = 0.1333.

Both SSIM and M-SSIM metrics are decimal value be-

tween 0 and 1. An value equal to 1 means that the

both image are identical and therefore indicates perfect

structural similarity.

The zipper-metric[15] aims to detect zipper effects

in a reconstructed image compared to the reference. For

this purpose, the intensity differences between a pixel

and its eight neighbors are studied in the reference im-

age. For each pixel, we identify the neighbor with the

smallest difference. We then compute the difference be-

tween the two same pixels in the reconstructed image

corresponding to the smallest difference in the reference

image. We finally study the variation between these two

differences, in order to determine if there is a noticeable

change between them. If it is confirmed, the pixel is con-

sidered to have a zipper effect.
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To compute this metric, we use the CIELAB color space

[7], a color space that is closer to human perception of

color differences. It is specified by the CIE9. It is in-

tended as a perceptually uniform space, where a given

numerical change corresponds to similar perceived change

in color. It is therefore necessary to convert the sRGB

images into the CIELAB color space. Once the images

are converted into the CIELAB color space, the zipper

metric is computed. The difference between two pixels

in the CIELAB color space is defined as the Euclidean

distance between color values of the pixels, noted ∆E∗ab
29.

∆E∗ab =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2 (29)

where, (L∗1, a
∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2) are the CIELAB color

values of the two pixels. The pixel I corresponding to

the smallest difference between the eight neighbors of a

given pixel is given by 30.

I = argmini∈ε∆E
∗
ab(P, i) (30)

the variation between the two differences computed with

the same two pixels in the reference image, and the re-

constructed image is given by 31.

ψ = ∆Ẽ∗ab(P, I)−∆E∗ab(P, I) (31)

∆Ẽ∗ab(P, I) corresponds to ∆E∗ab between the two con-

sidered pixels in the reconstructed image.

A pixel is considered to have a noticeable change in

color difference when | ψ |> δ. The threshold δ is set

to 2.3 according to [17]. The final score of the zipper

metric corresponds to the percentage of pixels in the

reconstructed image for which a noticeable change is

noticed compared to the reference one. This is why the

higher the score, the lower the quality of the recon-

structed image.

The experimental results are presented according to

the RGB-Z pattern considered. The results of the recon-

struction methods applied to the Mask1 are first pre-

sented, then the results of the images reconstruction of

the Mask2 are analyzed. Full description of the recon-

struction method applied to the Mask2 can be found in

[23].

In the following sections, the color pixel reconstruction

algorithms are abbreviated. The bilateral based algo-

rithm (Section 4.1) is indicated as BI. The edge directed

algorithm calculating the gradients by a central symme-

try around the missing pixel (Section 4.2.1) is indicated

9 stands for International Commission on Illumination. It is
the international authority on light, illumination, color, and
color spaces

as EDICentral. The edge directed algorithm calculating

the gradients along the kernel axes s (Section 4.2.2) is

indicated as EDILine. Finally, the solution using the

Semi-gradients (Section 4.3) is indicated as SG.

5.3.1 Quality assessment of the Mask1

The methodology presented in the previous sections is

applied to evaluate the reconstruction quality for the

Mask1 (Figure 4a). The results for the Kodak, McMas-

ter and HDR+ burst databases are presented in the

Figure 20. We notice that the standard deviation for a

given method is relatively high compared to the differ-

ences between the four methods. This is mainly due to

the variations of the content between the images in the

same database. However, it is interesting to note a gen-

eral trend: the solution using the semi-gradients SG has

better performances than the EDILine, which has bet-

ter performances than the EDICentral. We can also no-

tice that BI and EDICentral solutions have very similar

results. This is mainly due to the fact that the distri-

bution of green pixels useful for interpolation does not

allow direct interpolation in all directions. Therefore,

despite the use of edge directed methods, it is common

that the weights distribution is homogeneous between

the four pixels. In this case, the EDI interpolation is

similar to the BI interpolation. The semi-gradients are

designed to compensate this limitation, to improve the

weights computation and consequently, the reconstruc-

tion of the missing pixel. On average, the semi-gradient

SG method improves the PSNR of the reconstructed

pixels in the CFA image by 1 dB compared to EDI-

Line. Similarly, the overall C-PSNR on the color image

is improved when the reconstruction of the missing pix-

els is performed by the semi-gradient method.

5.3.2 Quality assessment of the Mask2

The same evaluation as in the previous section is per-

formed for the Mask2 (Figure 4b). The results are sum-

marized in the Figure 20 for the Kodak, McMaster and

HDR+ burst databases. In the same way as the 1x1

Z-Pixel mask, the general trend is similar: the semi-

gradient based method shows the better performances.

However, we can note that the metrics scores applied

on the color images obtained for Mask2 are in average

lower than the scores obtained for Mask1, while the

PSNR computed on the reconstructed pixels using the

CFA images are closer. This suggests that is inherently

more difficult to fully reconstruct a color image from a

RGB-Z CDFA image based on the Mask2 compared to

the Mask1. The semi-gradient based algorithm obtains,

on average, a score of 30.60 dB when used to reconstruct
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(a) (b)

(c) (d)

(e)

Fig. 20: Averaged performances of reconstruction methods in terms of (a) PSNR applied on the CFA image and

(b) C-PSNR, (c) SSIM, (d) M-SSIM, and (e) Zipper Metric applied on the color image. Results are computed on

the Kodak database [1], the McMaster database [33] and the HDR+ burst [25] for the Mask1 and the Mask2. For

each mask, the best solution is highlighted in dark.

a RGB-Z architecture based on the Mask1, while it ob-

tains a score of 30.20 for the 2x2 Z-Pixel mask. Those

results are relatively close compared to the difference in

term of C-PSNR between the two Masks. On average
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Reference image Mask1 + BI Mask1 + EDI central Mask1 + EDI line Mask1 + SG

Reference image Mask2 + BI Mask2 + EDI central Mask2 + EDI line Mask2 + SG

Fig. 21: Crop of reconstructed KodaK9 images from the Mask1 and Mask2 using the four reconstruction methods.

Mask1 BI EDICentral EDILine SG
PSNR 24.55 24.46 24.97 26.9

C-PSNR 30.64 30.81 31.02 32.99
SSIM 0.9595 0.9607 0.9636 0.9751

M-SSIM 0.9861 0.9861 0.9872 0.9918
Zipper metric 12.493 12.087 11.504 8.591

Mask2 BI EDICentral EDILine SG
PSNR 22.93 24.83 25.13 26.13

C-PSNR 26.70 29.12 29.13 30.31
SSIM 0.9163 0.9565 0.9600 0.9652

M-SSIM 0.9676 0.9832 0.9835 0.9868
Zipper metric 9.810 5.420 5.434 5.041

Table 3: Results of the metrics for the kodak9 image using the four reconstruction algorithms applied on the Mask1
and the Mask2. The corresponding images are shown in figure 21. We can note that the zipper metric score is

inversely proportional to the quality of the reconstructed image: the higher the score, the lower the quality of the

reconstructed image. For each metric and for both masks, the SG method shows the best results.

the C-PSNR score of the semi-gradient based algorithm

for the Mask1 is 36.61 dB whereas it is 33.95 dB for the

2x2 Z-Pixel mask.

One possible explanation concerns the demosaicing step.

In the case of 2x2 Z-Pixel mask, the missing informa-

tion represents a cluster of 2x2 color pixels at the Z-

pixel location. An incorrect reconstruction of the four

color pixels corresponding to a Z-pixel in the 2x2 Z-

Pixel mask introduces an error that could strongly im-

pact the demosaicing step. The Z-pixel pattern becomes

visible. This effect is particularly visible on the images

reconstructed with the BI algorithm.

An example is given in the Figure 21. The correspond-

ing metrics results processed are given in the Table 3.

The Z-pixel pattern is apparent when we compare the

two reconstructed images using the Bilateral interpo-

lation (Figure 21.b and Figure 21.f). Indeed, the arti-

facts corresponding to the missing information at the

Z-pixels location are directly identifiable on the edges

of the image in the case of Mask2. They remain visible

with the EDICentral, EDIline and the SG solutions,

but they are significantly reduced. The objective eval-

uation of the different methods has the same trend as

the subjective analysis of the reconstructed images. In

both cases, it is reported that the solution using semi-

gradients reduces the artifacts in the final reconstructed

image and improves the image quality.
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(a) (b) (c)

(d) (e) (f)

Fig. 22: Example of a narrow edge reconstruction error for Mask1 using the semi-gradient method. a) CFA reference

and its corresponding values (d). (b) CDFA and its corresponding values (e). (c) CDFA after the interpolation of

the missing pixel and its corresponding values (f). The real value of the missing pixel is 136 while the four green

pixels in the neighborhood are all greater than 500. It is impossible to correctly interpolate the missing pixel value

using a weighted sum of the four neighboring green pixels. The result of the interpolation is 716. The pixel values

are coded on 11 bits. The yellow squares indicate the Z-pixels.

(a) (b)

Fig. 23: Example of reconstruction errors along very

thin edges. (a) Reference image. (b) Reconstructed im-

age of the Mask1 using semi-gradient method. The red

and green vertical stripes along the window are charac-

teristic of too thin edges. The image is a crop from the

HDR+ burst database [25].

6 Discussion

We have seen in the previous sections that the use of

semi-gradients allows improving the quality of recon-

structed images in the case of the studied RGB-Z archi-

tectures. However, even with the semi-gradients, some

structures are not correctly reconstructed.

6.0.1 Mask1

Regarding the Mask1, for the same reasons explained

in the section 4.3.1, it is difficult to reconstruct verti-

cal and horizontal edges due to the absence of green

pixel along these axes. Semi-gradients allow to over-

come these limitations for some cases by studying the
close neighborhood of the missing pixel in order to de-

termine to which texture it belongs. This method works

as long as the missing pixel is close to a neighboring tex-

ture. However, there are situations with sharp narrow

edges with a one pixel width. In these situations, it may

happen that the green pixels available for interpolating

the missing pixel do not match the value of the miss-

ing pixel. A weighted sum of these pixels cannot then

correctly reconstruct the missing pixel. The Figure 22

shows an example of a narrow edge that can not be

properly reconstructed using semi-gradients.

In this example, we can notice that the semi-gradient

based interpolation promotes the use of the green pixels

located on the left side of the kernel. Indeed, the red

pixels values neighboring the missing pixel are closer

to the red pixels values located on the left side of the

kernel. An example of erroneous reconstruction along

very thin edges is given in Figure 23.
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6.0.2 Mask2

Corners are structures that are difficult to reconstruct

in the Mask2 architecture. In particular, there are re-

construction errors when a Z-pixel is precisely located

on the corner. In a such case, there are often only two

textures present in the 5x5 computation kernel: a first

one that corresponds to the corner and the second one

that corresponds to the background. An example is

given on the Figure 24. The color pixels present on the

bottom left edges of the calculation kernel belong to

the background texture, and the missing color pixels

belong to the corner texture that is located in the top

right area. Background pixels are shaded on the figure.

The two red pixels located on the northwest/southeast

diagonal belong to the background texture. The gra-

dient and semi-gradients along this axis are small and

imply an interpolation along this one, while the inter-

polation should be along the southwest/northeast axis

with a privileged interpolation along the north east cor-

ner of the kernel thanks to the semi-gradient. A known

information at the missing pixel location could help to

detect the corner properly and thus improve its recon-

struction. This suggests that joint reconstruction could

be relevant to improve corner reconstruction. Studied

on real data, or with a relevant database, joint recon-

struction may be an opportunity of improvement in the

case of reconstruction based on the Mask2. An exam-

ple of a reconstruction error of a corner is given in the

Figure 25.

7 Conclusion

In this paper, two monolithic RGB-Z sensor architec-

tures have been introduced. They are based on the

Bayer pattern. A method of reconstruction of the miss-

ing color information has been proposed for these ar-

rays. This method uses a new operator called semi-

gradient. Due to the lack of a mature technology, a sim-

ulation chain to generate RGB-Z raw data has been in-

troduced as well as a processing chain to reconstruct the

full color images. The experimental results have shown

that our algorithm gives better images in terms of visual

quality and objective quality measures, compared to the

adapted methods from the state of the art. However,

even with the semi-gradient method, some structures

are not correctly reconstructed. An interesting way of

improvement would be to explore solutions using the

information acquired by the Z-pixels to reconstruct the

missing color information. An other interesting future

work would be to study the feasibility of a hardware

implementation of our proposed solution in order to in-

tegrate it in an ISP chain.

(a) (b)

(c)
(d)

(e) (f)

Fig. 24: Example corner reconstruction error for Mask2

using the semi-gradient method. The yellow squares in-

dicate the Z-pixels, the white squares indicate the lo-

cation of the four reconstructed color pixels, and the

red square indicates the computational kernel to recon-

struct the missing red pixel shown as example.(a) CFA

reference and its corresponding values (d). (b) CDFA

and its corresponding values (e). (c) CDFA after the

interpolation of the missing pixel and its correspond-

ing values (f). The shaded area represents the texture

corresponding to the background. The pixel values are

coded on 11 bits. The interpolation is made using the

semi-gradients method.

(a) (b)

Fig. 25: Example of reconstruction errors of a corner

for Mask2 architecture. (a) Reference image. (b) Recon-

structed image using semi-gradient method. The image

is a crop from the CAVE database [32].
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