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Abstract
We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The 
acceleration signals are captured by a smartphone firmly attached to the patient’s bed, using its integrated accelerometer. 
The audio signals are captured simultaneously by the same smartphone using an external microphone. We have compiled a 
manually-annotated dataset containing such simultaneously-captured acceleration and audio signals for approximately 6000 
cough and 68000 non-cough events from 14 adult male patients. Logistic regression (LR), support vector machine (SVM) 
and multilayer perceptron (MLP) classifiers provide a baseline and are compared with three deep architectures, convolutional 
neural network (CNN), long short-term memory (LSTM) network, and residual-based architecture (Resnet50) using a leave-
one-out cross-validation scheme. We find that it is possible to use either acceleration or audio signals to distinguish between 
coughing and other activities including sneezing, throat-clearing, and movement on the bed with high accuracy. However, 
in all cases, the deep neural networks outperform the shallow classifiers by a clear margin and the Resnet50 offers the best 
performance, achieving an area under the ROC curve (AUC) exceeding 0.98 and 0.99 for acceleration and audio signals 
respectively. While audio-based classification consistently offers better performance than acceleration-based classification, 
we observe that the difference is very small for the best systems. Since the acceleration signal requires less processing power, 
and since the need to record audio is sidestepped and thus privacy is inherently secured, and since the recording device is 
attached to the bed and not worn, an accelerometer-based highly accurate non-invasive cough detector may represent a more 
convenient and readily accepted method in long-term cough monitoring.
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1  Introduction

Coughing is a common symptom of respiratory disease and 
the forceful expulsion of air to clear up the airway [1]. It is 
distinctive in nature and is an important indicator used by 
physicians for clinical diagnosis and health monitoring in 
more than 100 respiratory diseases [2], including tubercu-
losis (TB) [3], asthma [4], pertussis [5] and COVID-19 [6]. 
Machine learning algorithms can be applied to the acous-
tic features extracted from the cough audio for automatic 
cough detection and classification [7–9]. However, using an 
audio-based monitoring system raises privacy issues [10], 
especially when the audio is captured by a smartphone [11, 
12] and complex filtering processes might be required to 
preserve the privacy for continuous monitoring [13].

Acceleration measurements can be an alternative to the 
audio. Due to accelerometer’s much lower sampling rates, 
less computing and processing power is required than the 
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audio [14]. Automatic cough detection based on acceler-
ometer measurements is also possible when the device is 
placed on the patient’s body and the acceleration signals are 
used for feature extraction [15]. Since an accelerometer is 
insensitive to environmental and background noise, it can 
be used in conjunction with other sensors such as micro-
phones, ECG and thermistors [16]. Body-attached acceler-
ometers have for example proved to be useful in detecting 
coughs when placed in contact with a patient’s throat [17, 
18] or at the laryngeal prominence (Adam’s apple) [15]. A 
cough monitoring system using a contact microphone and 
an accelerometer attached to the participant’s suprasternal 
(jugular) notch was developed in  [19]. The participants 
moved around their homes while the cough audio and vibra-
tion was recorded. A similar ambulatory cough monitoring 
system, using an accelerometer attached to the skin of the 
participant’s suprasternal notch using a bioclusive transpar-
ent dressing, was developed in [20]. Here, the recorded sig-
nal is transmitted to a receiver carried in a pocket or attached 
to a belt. Two accelerometers, one placed on the abdomen 
and the second on a belt wrapped at dorsal region, have 
been used to measure cough rate after cross-correlation of 
the two sensor signals [21]. Regression analysis, carried out 
on both audio and accelerometer signals gathered from 50 
children, was able to achieve 97.8% specificity and 98.8% 
sensitivity when the accelerometer was placed in the centre 
of the abdomen between the navel and sternal notch [22]. 
Finally, multiple sensors, including ECG, thermistor, chest 
belt, accelerometer and audio microphones were used for 
cough detection in [23].

However, attaching an accelerometer to the patient’s body 
is inconvenient and intrusive. We propose the monitoring 
of coughing based on the signals captured by the on-board 
accelerometer of an inexpensive consumer smartphone firmly 
attached to the patient’s bed, as shown in Fig. 1. This elimi-
nates the need to wear a measuring equipment and the system 
uses machine learning classifiers as promising results were 
reported in the studies mentioned previously, making it an 
automatic and also non-invasive cough detection system. 
The work presented here extends our previous study [24] by 
using three additional shallow classifiers along with the deep 
architectures in the cough detection process and by comparing 
the performance between the proposed accelerometer-based 
classifiers and the baseline systems that classify audio signals 
of the same cough events. Such audio-based cough detection 
systems have been reported to discriminate between coughing 
and other sounds with areas under the ROC curve (AUCs) 
as high as 0.96 [7] and specificities as high as 99% [25]. 
Although we have found that the audio-based cough detec-
tion still outperforms the accelerometer-based detection, we 
demonstrate that the difference in the performance is narrow, 
as our best 50-layer residual architecture (Resnet50) based 

cough detector achieves an AUC of 0.996 for audio-based and 
0.989 for accelerometer-based detection respectively. Thus 
we are able to demonstrate that an automatic non-invasive 
accelerometer-based cough detection system is a viable option 
for long-term monitoring of patient’s recovery.

The structure of the reminder of this paper is as follows. 
Section 2 describes data collection while Sect. 3 details the 
features we extract from this data. The classifiers we use for 
experimentation are introduced in Sect. 4 and the classifica-
tion process itself is elaborated in Sect. 5. The results are 
presented in Sect. 6 and discussed in Sect. 7. Finally, Sect. 8 
concludes the paper.

2 � Dataset Preparation

2.1 � Data Collection

Data has been collected at a small 24h TB clinic near Cape 
Town, South Africa, which can accommodate approximately 
10 staff and 30 patients. The clinic contains 8 wards and 
each ward has four beds, thus four patients at one time can 
be monitored inside a ward. The overall motivation of this 

Figure  1   Recording Equipment: A plastic enclosure housing an 
inexpensive smartphone (Samsung Galaxy J4) running data gathering 
software is attached behind the headboard of each bed. The accelera-
tion signal from the on-board accelerometer as well as the audio sig-
nal from the external microphone (BOYA BY-MM1), connected via a 
3.5 mm audio jack, are monitored. Recording is triggered if activity is 
detected in either of these two signals.
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study was to develop a practical method of automatic cough 
monitoring for the patients in this clinic, so that the recovery 
progress can be monitored.

Figure 1 shows the recording setup, where an enclosure 
housing an inexpensive consumer smartphone is firmly 
attached to the back of the headboard of each bed in a ward. 
An Android application, developed specifically for this 
study, monitors the accelerometer and the audio signals. 
The on-board smartphone accelerometer has a sampling 
frequency of 100Hz. Although this sensor provides tri-
axial measurements, we record only the vector magnitude. 
A BOYA BY-MM1 external microphone was used to capture 
audio signals (visible in Fig. 1) at a sampling rate of 22.05 
kHz. Using a simple energy detector, activity on either the 
acceleration or the audio channels triggers the simultaneous 
recording of both. This results in a dataset consisting of a 
sequence of non-overlapping time intervals during which 
both acceleration and audio have been recorded.

2.2 � Data Annotation

A large volume of both the audio and accelerometer data 
has been captured by using this energy-threshold-based 
detection for both audio and acceleration signals. Ceiling-
mounted cameras simultaneously recorded continuous video 
to assist with the data annotation process. The audio signals 
and the video recordings allowed the presence or absence of 
a cough in an event to be unambiguously confirmed during 
manual annotation. In the remainder of this paper, we will 
define an ‘event’ to be any interval of activity in either the 
accelerometer or the audio signals.

The non-cough events are generated mostly due to the 
patients getting in and out of the bed, moving while on the bed, 
sneezing or throat-clearing. Examples of the accelerometer 

magnitude signals for a cough event and a non-cough event 
(in this case due to the patient moving while on the bed) are 
shown in Fig. 2. The spectrogram representations of these two 
signals are shown in Fig. 3. Manual annotation was performed 
using the ELAN multimedia software tool, which allowed easy 
consolidation of the accelerometer, audio and video signals for 
accurate manual labelling [26].

2.3 � Final Dataset

The final dataset, summarised in Table 1, contains approxi-
mately 6000 cough and 68000 non-cough events from 14 
adult male patients. Cough events are on average 1.90 sec 
long, with a standard deviation of 0.26 sec. Non-cough events 
are on average 1.70 sec long, with a standard deviation of 
0.24 sec. The total lengths of all cough and non-cough events 
are 11397.60 sec (3.16 hours) and 115928.12 sec (32.20 
hours) respectively. No other information regarding patients 
is recorded due to the ethical constraints of the study. This 
dataset was used to train and evaluate six classifiers, intro-
duced in Sect. 4 within a leave-one-out cross-validation 
framework, described in Sect. 5.

2.4 � Dataset Balancing

According to Table 1, cough events are outnumbered by 
non-cough events in our dataset. This imbalance can affect 
the machine learning classifiers detrimentally [27, 28]. We 
have applied the synthetic minority oversampling technique 
(SMOTE) to create additional synthetic samples of the 
minor class instead of for example oversampling randomly 
while training the classifiers [29, 30]. This addresses the 
class imbalance for both the accelerometer and audio events. 

Figure 2   The accelerometer 
magnitudes for a cough event 
(red) and a non-cough event 
(blue). In this case, the non-
cough event was the patient 
moving while on the bed.
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SMOTE has previously been successfully applied to cough 
detection and classification based on audio recordings [9, 
24, 31].

3 � Feature Extraction

The feature extraction process is illustrated for both acceler-
ometer and audio signal in Fig. 4.

3.1 � Accelerometer Features

Power spectrum, root mean square (RMS) value, kurtosis, 
moving averages and crest factor are extracted from the 
accelerometer magnitude samples. No de-noising has been 
applied prior to the feature extraction process. Power spec-
tra [32] has been used to represent sensor data for input 
to classifiers, including neural networks, in several studies 
[33–36]. RMS [37] values from the sensor data have also 
been found to be useful features [38, 39]. The kurtosis has 

also been useful for machine learning applications as it indi-
cates the prevalence of higher amplitudes [40]. Moving aver-
ages indicate the smoothed evolution of a signal over a time 
period and have been found to be useful features for sensor 
analysis [41]. Finally, the crest factor measures the ratio of 
the peak and the RMS signal amplitudes and have also been 
found to help machine learning prediction [42] including 
deep learning [43].

3.2 � Audio Features

Features such as mel-frequency cepstral coefficients (MFCCs), 
zero crossing rate (ZCR) and kurtosis are extracted from the 
audio signal. MFCCs are successfully used as features in 
audio analysis and especially in automatic speech recognition 
[44, 45]. They have been successfully used to differentiate 
dry coughs from wet coughs [46] and also to identify coughs 
associated with tuberculosis [47] and COVID-19 [9, 48]. We 
have used the traditional MFCC extraction method considering 
higher resolution MFCCs along with the velocity (first-order 

Figure 3   Spectrogram representation of the cough and non-cough 
events shown in Fig. 2: The cough event is shown in (a) and (c) and 
the non-cough event (patient moving on the bed) in (b) and (d). The 
accelerometer and audio signals are shown in (a) & (b) and (c) & (d) 

respectively. The audio signal has a higher sampling rate and thus 
contains more frequency and time-domain information than acceler-
ometer measurements.
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difference, Δ ) and acceleration (second-order difference, ΔΔ ) 
as adding these has shown classifier improvement in the past 
[49]. The ZCR [50] is the number of times a signal changes 

its sign within a frame, and indicates the variability present in 
the signal. Finally, the kurtosis [51] indicates the prevalence 
of higher amplitudes in the samples of an audio signal. These 
features have been extracted by using the hyperparameters 
described in Table 2 for all cough and non-cough audio events.

3.3 � Extraction Process

The features are extracted in a way that preserves the informa-
tion regarding the beginning and the end of an event to allow 
time-domain patterns in the recordings to be discovered while 
maintaining the fixed input dimensionality, which is expected 
by the deep neural architectures such as a convolutional neural 
network (CNN).

For accelerometer signal, the frame length ( Ψ ) and number of 
segments (C) have been used as the feature extraction hyperpa-
rameters, shown in Table 2. Power spectra have the dimension of 
(C, Ψ

2
+ 1) and each of RMS, kurtosis, moving averages and crest 

factor has the dimension of (C, 1). Thus, the input feature matrix 
for the accelerometer signal, fed to the classifiers mentioned in 
Sect. 4, has the dimension of (C, Ψ

2
+ 5 ), as illustrated in Fig. 4.

For audio signal, frame length ( F  ) and number of segments 
( S ) have been used as the feature extraction hyperparameters, 
shown in Table 2. Each of MFCCs, MFCC velocity ( Δ ), MFCC 
acceleration ( ΔΔ ) has the dimension of ( S,M ), where M is the 
number of MFCCs. Each of ZCR and kurtosis has the dimen-
sion of ( S, 1 ). Thus, the input feature matrix for audio signals, 

Table 1   Ground Truth Dataset: ‘PATIENTS’: list of the patients; 
‘COUGHS’: number of confirmed cough events; ‘NON COUGHS’: 
number of confirmed events that are not coughs; ‘COUGH TIME’: 
total amount of time (in sec) for cough events; ‘NON-COUGH 
TIME’: total amount of time (in sec) for non-cough events.

PATIENTS COUGHS NON COUGH NON-
COUGHS TIME COUGH TIME

Patient 1 88 973 169.16 1660.67
Patient 2 63 1111 117.67 1891.92
Patient 3 469 11025 893.91 18797.32
Patient 4 109 9151 204.06 15596.71
Patient 5 97 7826 188.26 13344.98
Patient 6 192 12437 360.72 21197.35
Patient 7 436 14053 825.23 23953.15
Patient 8 368 2977 702.05 5077.89
Patient 9 2816 3856 5345.27 6569.32
Patient 10 649 2579 1236.84 4400.42
Patient 11 205 527 391.42 901.38
Patient 12 213 323 402.61 547.62
Patient 13 213 712 401.61 1211.75
Patient 14 82 455 158.77 777.64
TOTAL 6000 68005 11397.6 115928.12

OVERLAPPING FRAMES, WITH FRAME-SKIP LENGTH OF δ

MFCCs

MFCCs ∆
MFCCs ∆∆

ZCR

KURTOSIS

NUMBER OF 
SEGMENTS

POWER SPECTRA

RMS
KURTOSIS

MOVING AVERAGE

CREST FACTOR

NUMBER OF 
SEGMENTS

Figure 4   Feature extraction for both the accelerometer (top) and 
the audio (bottom) signals: Both acceleration and audio signals 
of the events, shown in Figs.  2 and 3, are split into a fixed number 
of overlapping frames. The length and number of these frames are 
Ψ and C for accelerometer signal & F  and S for audio signal. For 
accelerometer measurements, the power spectrum, RMS, kurtosis, 

moving average and crest factor of each frame are extracted. For 
audio signals, the MFCCs, MFCC velocity ( Δ ), MFCC accelera-
tion ( ΔΔ ), ZCR and kurtosis are extracted. For the acceleration sig-
nal, this results in a feature matrix with dimensions (C, Ψ

2
+ 5 ) while 

for the audio signal it generates a feature matrix with dimensions 
( S, 3M + 2 ) where M is the number of extracted MFCCs.
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fed to the classifiers mentioned in Sect. 4, has the dimension of 
( S, 3M + 2 ), as illustrated in Fig. 4.

From every event, we extract a fixed number of features (C 
and S ) by distributing the fixed-length analysis frames ( Ψ and 
F  ) uniformly over the time-interval of the cough and by vary-
ing the length of frame skips, noted as � in Fig. 4. To calculate 
frame skips, we divide the number of samples in an event by 
the number of segments and take the next positive integer. For 
a 1.2 sec long audio event, the length of frame skip in samples 
is 
⌈

1.2×22050

100

⌉

=

⌈

26460

100

⌉

= 265 samples, as the audio sampling 
rate is 22.05 kHz.

The frame length ( Ψ ) used to extract features from accelera-
tion signal is shorter than the frame length ( F  ) used to extract 
features from audio in this study (Table 2) and also traditionally 
[52]. This is because, as already noted in Fig. 1, the acceler-
ometer in the smartphone has a lower sampling rate of 100 
Hz than the microphone 22.05 kHz and longer frames lead to 
deteriorated performance as the signal properties can no longer 
be assumed to be stationary [53]. The lower sampling rates also 
reduce the amount of computation needed to extract features.

In contrast with the more conventionally applied fixed, 
non-overlapping frame rates, this way of extracting features 
ensures that the entire event is captured within a fixed num-
ber of frames, allowing especially the CNN to discover more 
useful temporal patterns and provide better classification 
performance. This particular method of feature extraction 
has also shown promising result in classifying COVID-19 
coughs, breath and speech [9, 48].

4 � Classifier Training

We have trained and evaluated six machine learning classi-
fiers on both audio and accelerometer signals. Table 3 lists 
the classifier hyperparameters that were optimised during 
leave-one-out cross-validation.

First, we establish the baseline results by training and 
evaluating three shallow classifiers: logistic regression (LR), 
support vector machine (SVM) and multilayer perceptron 
(MLP). Then, we improve the cough detection performance 

Table 2   Feature extraction hyperparameters for both accelerom-
eter and audio signals. For accelerometer, 16, 32, 64 samples i.e. 
160, 320 and 640 msec long frames overlap in such a way that the 
number of these frames i.e. segments (5 and 10) are the same for all 
events in our dataset. Similarly for audio signals, MFCCs are varied 

between 13 and 65 & frames are varied between 256 samples (11.61 
msec) and 4096 samples (185.76 msec) in such a way that the number 
of these extracted frames are varied between 50 to 150, fixed for all 
events in out dataset.

FEATURE EXTRACTION HYPERPARAMETERS

Accelerometer Hyperparameters Values
Frame ( Ψ) Frame-length in samples, used to extract features 2k where k = 4, 5, 6

Segments (C) Number of frames extracted from the event 5, 10
Audio Hyperparameters Values
MFCC ( M) Number of lower-order MFCCs to keep 13 × k , where k = 1,⋯ , 5

Frame ( F ) Frame-length in samples, used to extract features 2k where k = 8,⋯ , 12

Segments ( S) Number of frames extracted from the event 10 × k , where k = 5, 7, 10, 12, 15

Table 3   Classifier 
hyperparameters, optimised 
using the leave-one-patient-out 
cross-validation.

Hyperparameters Classifier Range

Regularisation strength ( �1) LR, SVM 10i where, i = −7,−6,… , 6, 7

l1 penalty ( �2) LR 0 to 1 in steps of 0.05
l2 penalty ( �3) LR, MLP 0 to 1 in steps of 0.05
Kernel coefficient ( �4) SVM 10i where, i = −7,−6,… , 6, 7

No. of neurons ( �5) MLP 10 to 100 in steps of 10
Batch size ( �1) CNN & LSTM 2k where k = 6, 7, 8

No. of epochs ( �2) CNN & LSTM 10 to 250 in steps of 20
No. of convolutional filters ( �1) CNN 3 × 2k where k = 3, 4, 5

kernel size ( �2) CNN 2 and 3
Dropout rate ( �3) CNN & LSTM 0.1 to 0.5 in steps of 0.2
Units in the dense layer ( �4) CNN & LSTM 2k where k = 4, 5

LSTM units ( �1) LSTM 2k where k = 6, 7, 8

Learning rate ( �2) LSTM 10k where k = −2,−3,−4
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by implementing three deep neural network (DNN) classi-
fiers: CNN, long short-term memory (LSTM) and Resnet50.

LR models have outperformed other more complex clas-
sifiers such as classification trees, random forests, SVM in 
several other clinical prediction tasks [3, 54, 55]. The gradi-
ent descent weight regularisation as well as lasso (l1 penalty) 
and ridge (l2 penalty) estimators [56, 57] were the hyperpa-
rameters, listed in Table 3, optimised inside the nested cross-
validation during training. SVM classifiers have also per-
formed well in both detecting [58, 59] and classifying [60] 
cough events in the past. The independent term in kernel 
functions is the hyperparameter optimised for the SVM clas-
sifier. An MLP, consisting multiple layers of neurons [61], is 
capable of learning non-linear relationships. It has produced 
promising results in discriminating influenza coughs from 
other coughs [62] in the past. MLP has also been applied 
to classify TB coughs [47, 59] and detect coughs in gen-
eral [25, 63]. The penalty ratios, along with the number of 
neurons are used as the hyperparameters, optimised during 
leave-one-out cross-validation (Fig. 7 and Sect. 5).

A CNN is a popular deep neural network architecture, 
primarily used in image classification [65], such as face 
recognition [66]. It has also performed well in classifying 
COVID-19 coughs, breath and speech [9, 48]. The CNN 
architecture [67, 68], shown in Fig. 5, contains �1 2D con-
volutional layers with kernel size �2 and rectified linear units 
as activation functions. A dropout rate �3 has been applied 

along with max-pooling, followed by two dense (flatten) lay-
ers containing �4 and 8 units (dimensionality of the output 
space) respectively with rectified linear units as activation 
functions. An LSTM model is a type of recurrent neural net-
work which remembers previously-seen inputs when making 
its classification decision [69]. It has been successfully used 
in automatic cough detection [7, 24], and also in other types 
of acoustic event detection [70, 71] including COVID-19 
coughs etc. [9, 48]. The hyperparameters optimised for the 
LSTM classifier [72] are mentioned in Table 3 and visually 
explained in Fig. 6. The LSTM classifier, shown in Fig. 6, 
contains �1 LSTM units i.e. the dimensionality of the output 
space is �1 with rectified linear units as activation functions 
and a dropout rate �3 . Then two dense (flatten) layers con-
taining �4 and 8 units (dimensionality of the output space) 
respectively have been applied with rectified linear units as 
activation functions. For both CNN and LSTM classifiers, 
a final softmax function produces one output for a cough 
event (i.e. 1) and the other for a non-cough event (i.e. 0), 
shown in Figs. 5 and 6. Features are fed into these two clas-
sifiers using a batch size of �1 for �2 number of epochs. The 
50-layer residual network (Resnet50) architecture (Table 1 
of [73]) we trained and evaluated has a very deep archi-
tecture that contains skip layers and has performed even 
better than existing deep architectures such as VGGNet on 
image classification tasks on the dataset such as ILSVRC, 
the CIFAR10 dataset and the COCO object detection dataset 

Figure 5   CNN Classifier, 
trained and evaluated using 
leave-one-out cross-validation 
[64] on 14 patients. The results 
are shown in Tables 4, 5 and 6 
for feature extraction hyperpa-
rameters mentioned in Table 2.
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Figure 6   LSTM classifier, 
trained and evaluated using 
leave-one-out cross-validation 
[64] on 14 patients. The results 
are shown in Tables 4, 5 and 6 
for feature extraction hyperpa-
rameters mentioned in Table 2. 8α4β1
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[74]. This architecture has also performed the best in detect-
ing COVID-19 signatures in coughs, breaths and speech [9, 
48]. Due to extreme computation load, we have used the 
default Resnet50 structure mentioned in Table 1 of [73].

5 � Classification Process

5.1 � Hyperparameter Optimisation

Hyperparameters for both the classifiers and feature extrac-
tion are optimised inside the leave-one-out cross-validation 
process and are listed in Tables 2 and 3. Different phases 
of an event might carry important information and our way 
of feature extraction preserves the time-domain informa-
tion. By varying the frame lengths and number of frames 
to extract, this information was varied. The spectral resolu-
tion was also varied by varying the number of lower-order 
MFCCs to keep from the audio signal.

5.2 � Cross‑Validation

All six classifiers have been trained and evaluated by using 
a leave-one-patient-out cross-validation scheme [64], as 

explained in Fig. 7. Our dataset contains only 14 patients and 
by using this cross-validation scheme we make the best use 
of our dataset, as a patient’s weight, coughing intensity and 
distance from the microphone can affect the accelerometer 
and audio signals and we were not allowed to collect that 
vital information due to the ethical constraints.

The Fig. 7 shows that one patient is left out from 14 
patients to be used for later independent testing. Then 
another patient is removed from the remaining 13 patients to 
be used as the development set where the hyperparameters, 
listed in Table 3, are to be optimised. AUC has always been 
the optimisation criterion in this cross-validation. This entire 
procedure is repeated until all patients are used as an inde-
pendent test set in the outer loop. The final performance is 
evaluated by calculating and averaging AUC over these outer 
loops. The hyperparameters producing the highest AUC over 
these outer test sets are noted as the ‘best hyperparameters’ 
in Tables 4, 5 and 6. Performances produced by each clas-
sifier for each set of hyperparameters are noted by ‘ID’ in 
these tables.

6 � Results

6.1 � Accelerometer‑Based Cough Detection

Table 4 lists the performance achieved by the shallow clas-
sifiers in systems C1 to C18 and Table 5 lists the perfor-
mance achieved by the deep architectures in systems C19 to 
C36. These results are the averages over the 14 leave-one-
patient-out testing partitions in the outer loop of the nested 
cross-validation.

The shallow classifiers have provided the baseline clas-
sification performance. Table 4 shows that an LR classifier 
has achieved the best performance of an AUC of 0.8135 
along with �

AUC
 of 0.003, specificity of 81.42%, sensitiv-

ity of 81.28% and an accuracy of 81.35% (system C4). The 
SVM has produced an AUC of 0.8252 with �

AUC
 of 0.003 

and 80.91% specificity, 84.11% sensitivity and 82.51% accu-
racy while using ten 32 samples long frames (system C10) as 
its best performance. However, the AUC of 0.8587, accuracy 
of 85.67%, specificity of 84.47% and sensitivity of 86.89% 
have been achieved from the MLP classifier with 40 neurons 
and l2 penalty ratio of 0.7 using five 64 sample long frames 
(system C17) and this is the highest AUC achieved by a 
shallow classifier.

For the DNN classifiers, the lowest AUC of 0.9243 has 
been achieved from a CNN classifier in system C19 in 
Table 5. Table 5 also shows that the best-performing CNN 
uses ten 64 samples (640 msec) long frames to achieve an 
AUC of 0.9499, accuracy of 85.82%, specificity of 80.91% 
and sensitivity of 90.73% (system C24). The optimal LSTM 
classifier achieves the slightly higher AUC of 0.9572 when 

N – 2 PATIENTS1 PATIENTS

N - 1 PATIENTS

NEXT TEST SET

1 PATIENT (classifier performance)
OUTER LOOP

NEXT DEV SET

(hyperparameters)
INNER LOOP

FULL DATASET OF N PATIENTS

DEVTEST TRAIN

EVALUATE

CHOOSE OPTIMUM 
HYPERPARAMETERS

EVALUATE

Figure  7   Leave-one-out cross-validation used to train and evalu-
ate all six classifiers. Here, N = 14 (Table  1). The development set 
(DEV) consisting 1 patient has been used to optimise the hyperpa-
rameters while training on the TRAIN set, consisted of 12 patients. 
The final evaluation of the classifiers in terms of the AUC occurs on 
the TEST set, consisting 1 patient.
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features were extracted using ten 32 samples (320 msec) 
long frames (system C28). However, the best performance 

is achieved by the Resnet50 architecture, with an AUC of 
0.9888 after 50 epochs from ten 32 samples (320 msec) long 

Table 4   Accelerometer-based cough detection results for the shallow classifiers. The values are averaged over 14 cross-validation folds. The 
highest AUC of 0.8587 has been achieved from an MLP classifier.

Classifier ID Best Feature Best Classifier Hyperparameters Performance

Hyperparameters (Optimised inside nested cross-validation) Spec Sens Acc AUC​ �
AUC

LR C1 Ψ = 16 , C = 5 �1 = 10−4 , �2 = 0.35, �3 = 0.65 80.41% 80.28% 80.35% 0.8055 0.003
C2 Ψ = 16 , C = 10 �1 = 10−2 , �2 = 0.55, �3 = 0.45 80.25% 80.08% 80.16% 0.8058 0.003
C3 Ψ = 32 , C = 5 �1 = 102 , �2 = 0.2, �3 = 0.8 80.39% 80.55% 80.47% 0.8072 0.003
C4 Ψ = 32 , C = 10 �1 = 10−3 , �2 = 0.4, �3 = 0.6 81.42% 81.28% 81.35% 0.8135 0.003
C5 Ψ = 64 , C = 5 �1 = 10−1 , �2 = 0.25, �3 = 0.75 80.22% 80.41% 80.31% 0.8119 0.003
C6 Ψ = 64 , C = 10 �1 = 10−2 , �2 = 0.75, �3 = 0.25 80.16% 80.32% 80.24% 0.8124 0.003

SVM C7 Ψ = 16 , C = 5 �1 = 103 , �4 = 10−3 80.71% 82.91% 81.81% 0.8202 0.003
C8 Ψ = 16 , C = 10 �1 = 10−2 , �4 = 102 80.22% 82.94% 81.58% 0.8248 0.003
C9 Ψ = 32 , C = 5 �1 = 103 , �4 = 10−2 80.41% 82.97% 81.69% 0.8212 0.003
C10 Ψ = 32 , C = 10 �1 = 10−1 , �4 = 10−1 80.91% 84.11% 82.51% 0.8252 0.003
C11 Ψ = 64 , C = 5 �1 = 10−4 , �4 = 10−3 80.28% 84.35% 82.31% 0.8245 0.003
C12 Ψ = 64 , C = 10 �1 = 102 , �4 = 10−4 80.55% 82.78% 81.68% 0.8251 0.003

MLP C13 Ψ = 16 , C = 5 �3 = 0.55 , �5 = 30 82.37% 86.95% 84.68% 0.8507 0.003
C14 Ψ = 16 , C = 10 �3 = 0.45 , �5 = 50 83.24% 87.08% 85.16% 0.8558 0.003
C15 Ψ = 32 , C = 5 �3 = 0.35 , �5 = 70 83.55% 87.41% 85.47% 0.8552 0.003
C16 Ψ = 32 , C = 10 �3 = 0.4 , �5 = 20 82.18% 86.05% 84.12% 0.8424 0.003
C17 Ψ = 64 , C = 5 �3 = 0.7 , �5 = 40 84.47% 86.89% 85.67% 0.8587 0.003
C18 Ψ = 64 , C = 10 �3 = 0.35 , �5 = 30 83.45% 86.84% 84.64% 0.8499 0.003

Table 5   Accelerometer-based cough detection results for the 
DNN classifiers. The values are averaged over 14 cross-validation 
folds. DNN classifiers have outperformed the shallow classifiers by a 

wide margin and a Resnet50 produces the highest AUC of 0.9888 in 
detecting cough events.

Classifier ID Best Feature Best Classifier Hyperparameters Performance

Hyperparameters (Optimised inside nested cross-validation) Spec Sens Acc AUC​ �
AUC

CNN C19 Ψ = 16 , C = 5 �1=48, �2=2, �3=0.1, �4=32, �1=128, �2=210 83.47% 85.62% 84.55% 0.9243 0.002
C20 Ψ = 16 , C = 10 �1=24, �2=2, �3=0.3, �4=32, �1=256, �2=110 83.76% 87.56% 85.66% 0.9358 0.002
C21 Ψ = 32 , C = 5 �1=96, �2=2, �3=0.3, �4=32, �1=128, �2=150 76.98% 91.96% 84.47% 0.9272 0.002
C22 Ψ = 32 , C = 10 �1=48, �2=2, �3=0.3, �4=16, �1=256, �2=110 84.09% 86.41% 85.25% 0.9324 0.002
C23 Ψ = 64 , C = 5 �1=48, �2=2, �3=0.5, �4=32, �1=256, �2=230 85.47% 87.15% 86.31% 0.9339 0.002
C24 Ψ = 64 , C = 10 �1=96, �2=2, �3=0.3, �4=32, �1=128, �2=170 80.91% 90.73% 85.82% 0.9499 0.002

LSTM C25 Ψ = 16 , C = 5 �1 = 128, �2 = 0.0001, �3 = 0.3, �4 = 32, �1 = 256, �2 = 210 84.34% 90.82% 87.58% 0.9444 0.002
C26 Ψ = 16 , C = 10 �1 = 128, �2 = 0.01, �3 = 0.1, �4 = 32, �1 = 128, �2 = 110 85.37% 91.27% 88.32% 0.9504 0.002
C27 Ψ = 32 , C = 5 �1 = 256, �2 = 0.001, �3 = 0.3, �4 = 16, �1 = 128, �2 = 130 79.92% 94.31% 87.11% 0.9457 0.002
C28 Ψ = 32 , C = 10 �1 = 128, �2 = 0.001, �3 = 0.1, �4 = 32, �1 = 256, �2 = 150 86.41% 92.05% 89.21% 0.9572 0.002
C29 Ψ = 64 , C = 5 �1 = 256, �2 = 0.001, �3 = 0.3, �4 = 16, �1 = 128, �2 = 190 84.57% 92.79% 88.68% 0.954 0.002
C30 Ψ = 64 , C = 10 �1 = 128, �2 = 0.01, �3 = 0.5, �4 = 32, �1 = 256, �2 = 230 86.21% 89.13% 87.66% 0.9489 0.002

Resnet50 C31 Ψ = 16 , C = 5 Default Resnet50 (Table 1 in [73]) 93.81% 97.09% 95.43% 0.9802 0.002
C32 Ψ = 16 , C = 10 ” 94.12% 98.58% 96.35% 0.9812 0.002
C33 Ψ = 32 , C = 5 ” 94.29% 98.79% 96.54% 0.9810 0.002
C34 Ψ = 32 , C = 10 ” 94.09% 99.33% 96.71% 0.9888 0.002
C35 Ψ = 64 , C = 5 ” 94.71% 98.23% 96.35% 0.9854 0.002
C36 Ψ = 64 , C = 10 ” 95.07% 97.89% 96.46% 0.9884 0.002
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frames along with 96.71% accuracy, 94.09% specificity and 
99.33% sensitivity (system C34).

Deep architectures have produced a higher AUCs and 
lower �

AUC
 than the shallow classifiers on accelerometer-

based classification task. Figure 8 shows the mean ROC 
curves for the optimal LR, SVM, MLP, CNN, LSTM and 
Resnet50, whose configurations are shown in Table 3 and 
the mean AUCs were calculated over the 14 cross-validation 
folds. The Resnet50 classifier is superior to all other classi-
fiers over a wide range of operating points (Fig. 8).

6.2 � Audio‑Based Cough Detection

To place the performance of the accelerometer-based cough 
detection presented in the previous section into perspective, 
we have performed a matching set of experiments, this time 
using the audio signals to perform audio-based cough detec-
tion. These experiments are based on precisely the same 
events as the acceleration experiments, since our corpus 
contains both audio and acceleration signals for each.

Table 6 shows the best-three configurations for each of 
the six classifier architectures in systems D1 to D18. Again, 

the results indicate that shallow classifiers (LR, SVM and 
MLP) achieve good classification scores.

LR achieved the highest AUC of 0.9129 with �
AUC

 of 
0.003 when using 26 MFCCs, 512 sample long frames and 
extracting 100 frames (system D1). The system has also gen-
erated the specificity of 87.52%, sensitivity of 87.71% and an 
accuracy of 87.61%. The SVM achieved an AUC of 0.9066 
with �

AUC
 of 0.003 for 26 MFCCs, 1024 sample long frames 

and extracting 120 frames (system D4). The system has also 
generated the specificity of 86.75%, sensitivity of 86.91% 
and an accuracy of 86.83%. An MLP has produced the high-
est AUC of 0.9254 with �

AUC
 of 0.002 for 39 MFCCs, 2048 

sample long frames and extracting 120 frames (system D7). 
The system has also generated the specificity of 89.47%, 
sensitivity of 90.10% and an accuracy of 89.78%. This is the 
best performance achieved by the shallow classifiers.

Again, the DNN classifiers have outperformed the shallow 
classifiers by a large margin. The best LSTM classifier has 
produced the highest AUC of 0.9932 with �

AUC
 of 0.002 for 

26 MFCCs, 1024 sample long frames and extracting 70 frames 
(system D10). The system has also generated the specificity 
of 94.57%, sensitivity of 96.59% and an accuracy of 95.58%. 
The best CNN classifier has produced the highest AUC of 

Table 6   Audio-based cough detection results. The values are aver-
aged over 14 cross-validation folds and the best-three performances 
of each classifier are shown. All classifiers have performed well in 

detecting coughs but DNN classifiers have performed particularly 
well and their performances are very close to each other.

Classifier ID Best Feature Best Classifier Hyperparameters Performance

Hyperparameters (Optimised inside nested cross-validation) Spec Sens Acc AUC​ �
AUC

LR D1 M = 26 , F = 512 , S = 100 �1 = 10−3 , �2 = 0.25, �3 = 0.75 87.52% 87.71% 87.61% 0.9129 0.003
D2 M = 39 , F = 1024 , S = 70 �1 = 102 , �2 = 0.4, �3 = 0.6 87.31% 87.41% 87.36% 0.9358 0.003
D3 M = 26 , F = 1024 , S = 100 �1 = 10−4 , �2 = 0.55, �3 = 0.45 87.14% 87.28% 87.21% 0.9272 0.003

SVM D4 M = 26 , F = 1024 , S = 120 �1 = 10−2 , �4 = 103 86.75% 86.91% 86.83% 0.9066 0.003
D5 M = 26 , F = 512 , S = 100 �1 = 102 , �4 = 10−3 86.61% 86.68% 86.64% 0.9058 0.003
D6 M = 39 , F = 1024 , S = 100 �1 = 103 , �4 = 10−3 86.40% 86.54% 86.47% 0.9017 0.003

MLP D7 M = 39 , F = 2048 , S = 120 �3 = 0.35 , �5 = 30 89.47% 90.10% 89.78% 0.9254 0.002
D8 M = 26 , F = 1024 , S = 70 �3 = 0.4 , �5 = 50 89.55% 89.76% 89.66% 0.9214 0.003
D9 M = 39 , F = 1024 , S = 100 �3 = 0.6 , �5 = 40 88.78% 89.04% 88.91% 0.9205 0.003

LSTM D10 M = 26 , F = 1024 , S = 70 �1 = 128, �2 = 0.001, �3 = 0.3, �4 = 32, �1 = 256, 
�2 = 210

94.57% 96.59% 95.58% 0.9932 0.002

D11 M = 39 , F = 1024 , S = 100 �1 = 128, �2 = 0.001, �3 = 0.3, �4 = 16, �1 = 256, 
�2 = 130

94.21% 94.21% 96.43% 0.9904 0.002

D12 M = 26 , F = 2048 , S = 120 �1 = 128, �2 = 0.01, �3 = 0.3, �4 = 32, �1 = 128, �2 
= 170

93.95% 96.25% 95.10% 0.9857 0.002

CNN D13 M = 26 , F = 1024 , S = 100 �1 = 48, �2 = 2, �3 = 0.3, �4 = 32, �1 = 256, �2 = 90 93.24% 97.88% 95.56% 0.9944 0.002
D14 M = 13 , F = 512 , S = 70 �1 = 24, �2 = 2, �3 = 0.3, �4 = 16, �1 = 256, �2 = 

170
92.18% 98.74% 95.46% 0.9891 0.002

D15 M = 39 , F = 2048 , S = 120 �1 = 48, �2 = 2, �3 = 0.1, �4 = 32, �1 = 256, �2 = 
130

92.78% 97.56% 95.17% 0.9872 0.002

Resnet50 D16 M = 26 , F = 1024 , S = 100 Default Resnet50 (Table 1 in [73]) 96.74% 99.50% 98.13% 0.9957 0.001
D17 M = 39 , F = 1024 , S = 70 ” 96.55% 96.95% 96.75% 0.9912 0.001
D18 M = 39 , F = 512 , S = 100 ” 94.70% 96.46% 95.58% 0.9891 0.002
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Figure 8   Mean ROC curves for accelerometer-based cough detec-
tion, for the best performing classifiers whose hyperparameters are 
mentioned in Table  3. A Resnet50 has performed the best outper-

forming all the other classifiers over a wide range of operating points 
by achieving the AUC of 0.9888 and the accuracy of 96.71%.

Figure  9   Mean ROC curves for audio-based cough detection, 
for the best performing classifiers whose hyperparameters are men-
tioned in Table  3. The best performance has been achieved from a 

Resnet50 and similar performances have been achieved from a CNN 
and LSTM. The best Resnet50 produces the AUC of 0.9957 and the 
accuracy of 98.13%.
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0.9944 with �
AUC

 of 0.002 while features were extracted for 26 
MFCCs, 1024 sample long frames and extracting 100 frames 
(system D13). The system has also generated the specificity 
of 93.24%, sensitivity of 97.88% and an accuracy of 95.56%. 
However, the highest AUC of 0.9957 has been achieved again 
from a Resnet50 classifier with a �

AUC
 of 0.001 for 26 MFCCs, 

1024 sample (i.e. 46.44 msec) long frames and extracting 100 
frames from the entire event (system D16). This system has 
also achieved a specificity of 96.74% and a sensitivity of 99.5% 
along with the accuracy of 98.13%.

Again, deep architectures have produced higher AUCs and 
lower �

AUC
 than the shallow classifiers on audio-based classifi-

cation task. These best results for audio-based classification are 
shown in Fig. 9. Table 6 also indicate that the number of MFCCs 
has been varied between 13 and 65, although the best perfor-
mance was achieved by using 26 and 39 MFCCs. Using the 
frame length of 1024 and extracting 100 frames from the events 
has provided the best performance for most of the classifiers.

7 � Discussion

The results shown in Tables 4, 5 and 6 indicate that audio-
based cough detection is consistently more accurate than 
accelerometer-based classification. However, it is interest-
ing to note that the performances offered by the two alter-
natives are fairly close. In fact, the deep architectures like 
Resnet50 offer almost equal performance for audio-based 
and accelerometer-based cough detection. It also seems that 
the CNN and LSTM find it easier to classify cough events 
based on audio rather than accelerometer signal. We pos-
tulate that this is due to the limited range of time and fre-
quency information contained in accelerometer data, which 
is in turn due to the lower accelerometer sampling rate.

For acceleration signals, the extraction of 10 frames each 
with a length of 640 ms produced the best result. For the audio, 
the extraction of 100 frames each with a length of 46.44 ms 
provided the optimal performance. These audio frame lengths 
are close to those traditionally used for feature extraction in 
automatic speech recognition. We also note that the perfor-
mances of the deep classifiers are consistently better than those 
offered by the baseline shallow classifiers for both types of 
signals. Although the datasets differ, our system also appears 
to improve on recent work using the accelerometer integrated 
into a smartwatch [75] and distinguishing cough from other 
audio events such as sneeze, speech and noise [7].

8 � Conclusion and Future Work

We have demonstrated that an automatic non-invasive machine 
learning based cough detector is able to accurately discriminate 
between the accelerometer and audio signals due to coughing 

and due to other movements as captured by a consumer smart-
phone attached to a patient’s bed.

We have trained and evaluated six classifiers including 
three shallow classifiers: logistic regression (LR), support 
vector machine (SVM) and multilayer perceptron (MLP) and 
three deep neural network (DNN) classifiers: convolutional 
neural networks (CNN), long-short-term-memory (LSTM) 
networks, and a 50-layer residual-based neural network 
architecture (Resnet50). A specially-compiled corpus of 
manually-annotated acceleration and audio events, including 
approximately 6000 cough and 68000 non-cough events such 
as sneezing, throat-clearing and getting in and out of the bed, 
gathered from 14 adult male patients in a small TB clinic was 
used to train and evaluate these classifiers by using a leave-
one-out cross-validation scheme. For accelerometer-based 
classification, the best system uses a Resnet50 architecture 
and produces an AUC of 0.9888 as well as a 96.71% accu-
racy, 94.09% specificity and 99.33% sensitivity while features 
were extracted from ten 32 sample (320 msec) long frames. 
This demonstrates that it is possible to discriminate between 
cough events and other non-cough events by using very deep 
architectures such as a Resnet50; based on signals gathered 
from an accelerometer that is not attached to the patient’s 
body, but rather to the headboard of the patient’s bed.

We have also compared this accelerometer-based cough 
detection with audio-based cough detection for the same cough 
and non-cough events. For audio-based classification, the best 
result has also been achieved from a Resnet50 with the high-
est AUC of 0.9957. This shows that the accelerometer-based 
cough detection is almost equally accurate as audio-based 
classification while using very deep architectures such as a 
Resnet50. Shallow classifiers and DNN such as CNN and 
LSTM however perform better in classifying cough events on 
audio signals rather than accelerometer signals, as audio signal 
carries more dynamic and diverse frequency content.

Accelerometer-based detection of cough events has suc-
cessfully been considered before due to its lower sampling 
rates and lesser demand of high processing power, however 
only by using sensors worn by the subjects, which is intru-
sive and can be inconvenient in some respects. This study 
shows that excellent discrimination is also possible when 
the sensor is attached to the patient’s bed, thus providing a 
less intrusive and more convenient solution. Furthermore, 
since the use of acceleration signal avoids the need to gather 
audio, privacy is inherently protected. Therefore, the use 
of a bed-mounted accelerometer inside an inexpensive con-
sumer smartphone may represent a more convenient, cost-
effective and readily accepted method of long-term patient 
cough monitoring.

In the future, we will be attempting to optimise some of 
the Resnet50 metaparameters and fuse both audio and accel-
erometer signal to achieve higher specificity and accuracy 
in cough detection. We are also in the process of applying 
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the proposed system in an automatic non-invasive cough 
monitoring system. We also note, the manually annotated 
cough events sometimes contains multiple bursts of cough 
onsets and we are currently investigating automatic methods 
that allow such bursts within a cough event to be identified.
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