
Springer Nature 2021 LATEX template

A Fractional Sample Rate Converter With
Parallelized Multiphase Output: Algorithm

and FPGA Implementation

Shahriar Shahabuddin1,3*, Petri Manninen2 and Markku Juntti3

1*Mobile Networks, Nokia, Kaapelitie 4, Oulu, 90620, Finland.
2Digital Enhancement Suomi Oy, Kiviharjunlenkki 1 B, Oulu, 90220,

Finland.
3Centre for Wireless Communications, University of Oulu, Erkki

Koiso-Kanttilan katu 3, Oulu, 90570, Finland.

*Corresponding author(s). E-mail(s): shahriar.shahabuddin@nokia.com;
Contributing authors: petri.m.manninen@gmail.com;

markku.juntti@oulu.fi;

Abstract
Sample rate conversion is an essential scheme used in almost every radio design.
Supporting sampling rates higher than the clock rates require parallel process-
ing. In this paper, we propose an algorithm for a sample rate converter (SRC)
with multiple parallel output phases so that the conversion ratio can be a fixed
rational number. Due to the structure of the proposed algorithm, it is suitable for
embedded platforms which are restricted by their clock frequency but require
very high sample rates. A dual phase output variant of the proposed algorithm
is simulated with a 400 MHz input signal to perform a 15/8 conversion. The
test and verification of the SRC algorithm is presented with the aid of a design
example. A VLSI architecture of the dual phase output SRC is implemented
on a Virtex-7 field-programmable gate array (FPGA) and results are presented.

Keywords: SRC, polyphase, filter, parallel, multiphase

1



Springer Nature 2021 LATEX template

2 Multiphase Output SRC

1 Introduction
Sample rate conversion is a process to change the effective sample rate of a discrete-
time signal [1]. A sample rate converter (SRC) is essential in real-time processing
when two hardware units operating at different sample rates exchange digital data.
The application of SRC can be found nearly in every digital radio now-a-days. SRC
can be used to decrease or increase the sample rates. The operations are known as
decimation or interpolation, respectively. If a conversion with a fraction M/D of
a rational number is required, interpolation by an integer factor M followed by a
decimation by an integer factor of D is usually performed. This process is illustrated
in Fig. 1. A combination of up-sampling and down-sampling operations, denoted by
↑M and ↓D respectively, is used to change the sampling rate of a discrete sequence
x(k) to a new set of discrete sequence y(k).

The drawback of down-sampling is the aliasing effect and an anti-aliasing filter,
denoted by LPFD in Fig. 1(a), is typically applied before the down-sampler. The up-
sampling operation produces unwanted spectra and an anti-imaging filter, denoted
by LPFM in Fig. 1(a), is typically used after the up-sampler. A single low-pass filter,
LPFMD can be used to combine the anti-aliasing filter and anti-imaging filters [2].
Any tool to design a low-pass filter can be applied to this task [1]. A straightforward
implementation of the fractional SRC is not efficient. Firstly, the sampling rate is
increased by M by inserting M − 1 zeroes between every input sample. The filter has
to calculate outputs at a high sampling rate, computing all zero inputs in vain, and for
every output sample, D − 1 samples are discarded. To overcome these inefficiencies,
a polyphase structure is typically used for fractional SRCs [3–6]. The polyphase SRC
can be implemented in a straightforward manner as long as the hardware does not
cause restrictions for the structure.

M LPFM LPFD D

Interpolation Decimation

x(k) y(k)

(a)

M LPFMD D
y(k)x(k)

(b)

Fig. 1: Block diagram of a fractional sample rate converter. (a) The cascade of a
traditional interpolator and decimator. (b) A single filter replacing the anti-imaging
and anti-aliasing filters.

A major restriction comes from the maximum operating clock frequency of a
hardware platform. For example, a clock in a field-programmable gate array (FPGA)



Springer Nature 2021 LATEX template

Multiphase Output SRC 3

system is responsible for driving the FPGA design and determines how fast the flip-
flops toggle. A faster operating clock translates into faster data processing in any
FPGA system [7]. Typically, a large digital design with high resource consumption
can achieve roughly 500 to 600 MHz maximum operating clock frequency in modern
FPGAs. In the context of SRC, this means an SRC interpolator can provide 500 to 600
Msps at the output for such a design. However, due to demand for ever-increasing data
rates and signal bandwidths of next-generation wireless systems, the output sample
rate required at the output of an SRC filter might be significantly higher than the
clock rate. For example, millimeter wave communication utilizes very high carrier
bandwidth which requires very high sample rate processing [8]. This type of filters,
where sample frequency is higher than the clock frequency, is known as super sample
rate filters [9].

One way to circumvent this limitation is parallelizing the input data samples and
apply conventional SRC in each parallel path [10, 11]. We take a different approach
and design an SRC which receives a serial input stream and provide an output sample
rate higher than the clock rate. If the SRC output sample rate is an integer multiple M
of the input sample rate, then samples can be easily interpolated and divided into M
parallel paths. The M paths would represent the M phases of the original signal. We
invite interested readers to go through [12] to read more about parallel structures of
polyphase filters. However, for a non-integer sample rate conversion ratio a fractional
SRC is needed, and for parallel outputs, a novel algorithm and realization is required.
Note that, most state-of-the-art fractional SRC architectures do not support super
sample rate [13–17]. As an application-specific integrated circuit (ASIC) can achieve
significantly higher operating clock frequency than an FPGA design, SRC ASICs are
out of the scope of this work.

In this paper, we propose a fractional SRC algorithm that works for a fixed set of
sampling frequencies and can provide parallelized multiphase outputs. The output of
the conventional SRC is divided into N phases and the resulting implementation is
based on N parallel polyphase structures with N times shorter subfilters. Thus, the
overall complexity is the same as the original filter, but with an increased number
of parallel processing branches. A fixed point simulation of the SRC algorithm is
presented for a 400 MHz passband signal to fulfill −60 dB stopband and 0.1 dB ripple.
Finally, the algorithm is implemented in a Xilinx Virtex-7 FPGA platform to estimate
resource utilization.

The paper is organized as follows: A generic mathematical model for SRC algo-
rithm based on polyphase structure is presented in Section 2. From single phase output
SRC, the mathematical model for multiphase output is derived and an algorithm suit-
able for dual phase output is presented in Section 3. The multiphase SRC is presented
in algorithm format in Section 4. The detail of the fixed-point simulation and FPGA
implementation are presented in Sections 5 and 6 respectively. The conclusions are
drawn in Section 7.



Springer Nature 2021 LATEX template

4 Multiphase Output SRC

2 SRC based on Polyphase FIR Filters
In order to describe parallelized SRC algorithm, we need to first go through mathe-
matical basics of a normal polyphase SRC. Let us assume that we have to obtain an
output sample rate of fos from an input sampling rate of fis such that

fos = (M/D)fis, (1)

where M and D are positive, relatively prime integers. We also assume a straightfor-
ward finite impulse response (FIR) filter optimized for this sample rate conversion
requires R taps hM (n), n ∈ {0, 1, . . . , R − 1}. After up-sampling by M and filtering,
and before down-sampling, the intermediate signal yM is

yM (k) =
R−1∑
i=0

xM (k − i)h(i), (2)

where xM is the up-sampled input signal defined as

xM (kM + j) =
{

x(k), j = 0
0, j ∈ {1, 2, . . . , M − 1}.

(3)

The filtering process in (2) calculates the full convolution between the up-sampled
signal and filter taps. However, since the up-sampled signal includes zeros, the convo-
lution can be shortened to include only the non-zero samples, which are the same as
the original input samples x(n). The length L of the needed convolution is

L = ⌈ R

M
⌉. (4)

Thereby, the filtering process can be reformulated as

yM (kM + j) =
L−1∑
i=0

x(k − i)h(iM + j). (5)

In the down-sampling process, only every Dth intermediate sample is taken as an
output: y(k) = yM (kD). Therefore, only every Dth intermediate sample needs to be
calculated. For this, new indices j′ and k′ can be defined as a function of k so that
k′(k)M + j′(k) = kD, i.e., yM (k′(k)M + j′(k)) = yM (kD). Since j′ is modular
with modulus M , the solution comes from the Euclidian division, where j′ is the
remainder and k′ the quotient of kD divided by M as

j′(k) = kD mod M ; (6)

k′(k) = ⌊kD

M
⌋. (7)



Springer Nature 2021 LATEX template

Multiphase Output SRC 5

Z -1

hM(0,0)

Σ

M

U

X

FIFO
x

M

U

X

Z -1

M

U

X

y

hM(0,1)

hM(0,M-1)

hM(1,0)

hM(1,1)

hM(1,M-1)

hM(L,0)

hM(L,0)

hM(L-1,M-1)

Fig. 2: Commutator model of SRC.

The output y of the entire SRC becomes

y(k) =
L−1∑
i=0

x
(
k′(k) − i

)
h

(
iM + j′(k)

)
=

L−1∑
i=0

x
(
⌊ kD

M ⌋ − i
)
h

(
iM + (kD mod M)

)
.

(8)

To further clarify the design, we present an SRC structure based on the commutator
model in Fig. 2, where the co-efficient sets are stored and selected by a multiplexer to
efficiently reuse the multipliers. The multiplexers are denoted by MUX, the multipliers
are denoted by a cross in a circle, and a rectangle with a summation sign denotes the
addition operations performed on the output of the multipliers in Fig. 2.

In a practical implementation, there can be a counter j′ that is incremented by D
for every output sample, and it wraps around with modulus M . For every wrap-around,
delay line of x values is shifted by one; that is equivalent to k′ being incremented
by one. It should be noticed that in case D > M there can be more than one ”wrap-
around” in one step. So, actually when the counter j′ is incremented, the quotient of
(j′ + D)/M defines the number of delay line shifts, and only after that the remainder
is set as new counter value. In this sense, wrap-around is somewhat inadequate term
and must be used with caution.

Addressing one large memory unit containing all filter taps h(n) is not practical
and usually not even feasible. It is better to divide the filter into M phases; the length
of each phase specific filter is L, and the phase is selected by j′. The taps to the phase
specific filter sets hM are selected from h as

hM (i, j′) = h(iM + j′), (9)

where i runs from 0 to L − 1 for each j′ ∈ {0, 1, . . . , M − 1}. Filter h(n) should be
designed so that the length R is an integer multiple of M . Thereby all the filter sets
hM are fully utilized. Otherwise, (LM − R) zeros need to be appended to h(n).



Springer Nature 2021 LATEX template

6 Multiphase Output SRC

3 Multiphase Output SRC based on Polyphase FIR
Following the derivations in Section 2, we formulate the algorithm for multiphase
output in this section. Continuing from (6) - (8), we divide the output samples y(n)
into several output phases yp(n)

yp(k) = y(kN + p), (10)

where N is the number of output phases, p ∈ {0, 1, . . . , N − 1}. Let DN = ND
denote overall decimation factor. Before combining (8) with (10), let us define a new
decimation factor DN such that

DN = ND (11)

Using (8) in (10), the output yp(k) becomes

yp(k) =
L−1∑
i=0

x
(

⌊ (kDN +pD
M ⌋ − i

)
h

(
iM +

(
(kDN + pD) mod M

))
. (12)

Using similar notation as that in (8), (12) can be written as

yp(k) =
L−1∑
i=0

x
(
kp(k) − i

)
h

(
iM + jp(k)

)
, (13)

where jp and kp are

jp(k) = (kDN + pD) mod M ; (14)

kp(k) = ⌊kDN + pD

M
⌋. (15)

Similar to the conventional polyphase SRC, in an implementation there can be a
counter jp that is incremented by DN for every output sample so that it wraps around
with modulus M . However, there must be a separate counter for each output phase p,
and the counters start with an offset depending on the phase: the offset is pD. Also
the delay lines of x(n) values should be separate for each phase and shifted according
to the wrap-around(s) by their own counter. To further clarify the design, the block
diagram of a SRC structure with two parallel outputs is presented in Fig. 3. Two
polyphase filters working in parallel on the same data stream is producing two sets of
outputs in Fig. 3.

Similar to single data rate SRC, the filter taps can be divided into sets hM . In
general, there is no difference in defining the sets compared to the earlier method. Set
hM can be defined as in (9), i.e., the contents are the same and in the same order. The
filter phases are just being addressed by jp instead of j′ separately for each output
phase, as hM (i, jp).



Springer Nature 2021 LATEX template

Multiphase Output SRC 7

Z -1

hM(0,0)

Σ

M

U

X

FIFO
x

M

U

X

Z -1

M

U

X

y0

hM(0,1)

hM(0,M-1)

hM(1,0)

hM(1,1)

hM(1,M-1)

hM(L,0)

hM(L,0)

hM(L-1,M-1)

Z -1

hM(0,0)

Σ

M

U

X

FIFO

M

U

X

Z -1

M

U

X

y1

hM(0,1)

hM(0,M-1)

hM(1,0)

hM(1,1)

hM(1,M-1)

hM(L,0)

hM(L,0)

hM(L-1,M-1)

Fig. 3: Realization of a SRC with two output phases. Generic approach is assumed for
the filter sets.

However, if M is an integer multiple of the number of output phases N , each
phase will use only part of the filter sets; namely, each phase uses M/N sets. The
selection of sets for each phase can be done calculating all values for jp(k) in (14)
using k ∈ {0, 1, . . . , M/N − 1}.

Hence, in general case the memory for filter sets need to be replicated for each
phase. Only if M happens to be an integer multiple of N it is possible to reduce
memory usage. Unfortunately, HW designer typically cannot select M value since
it depends on the whole system. Therefore, for generic approach we must assume
the memory size cannot be optimized. Hence, in every sense the multiphase output
requires truly parallel SRC structures for each phase and there is not much that can be
done to avoid it. For further reference, we rewrite (13) using the filter sets hM as

yp(k) =
L−1∑
i=0

x
(
kp(k) − i

)
hM

(
i, jp(k)

)
. (16)

4 Multiphase Output SRC Algorithm for Implementation
A simplified algorithm for fractional SRC with two parallel outputs is presented in
Algorithm 1. We refer this use case double data rate (DDR) SRC throughout the paper,
meaning SRC generates two output phases. We create two identical M × L polyphase
tap matrices Ha and Hb from the input FIR filter taps, h. The same S1 × 1 input
sample vector x is fed to both paths of DDR SRC to generate two separate S2 × 1



Springer Nature 2021 LATEX template

8 Multiphase Output SRC

output sample vectors y1 and y2, where the value of S2 can be determined as

S2 = ⌈(S1 + L − 1) M

2D
⌉ (17)

Contrary to single data rate SRC, we need to select two different rows of Ha and Hb

respectively at the same time and select the appropriate input data stream for each
path. For example, if we select the first row of Ha, we need to select the second row
of Hb. Therefore, we need to initialize the index for phases with p1 = 1 and p2 = 2
respectively and increment them by a value of 2. If M is an odd number, we need to
store all the taps for both paths. For example, if there are 5 rows, the first, third and
fifth row will be selected by p1 and the second and forth row will be selected by p2.
However, in the next round, p2 will select the odd rows and p1 will select the even rows.
Thus, both path will require all the taps. If M is an even number, then we can divide
the taps in odd rows and even rows between two paths and save half of the memory.

The next step is to select an appropriate M consecutive inputs samples from x.
A modulo counter with size of M , which is incremented by D, is used to select the
starting position in each cycle. After each in increment we check how many times the
counter wraps around and this is the amount of delay line shifts. The residual is kept
for the next round. Two accumulators A1 and A2 are used for two paths which are
initialized as A1 = 0 and A2 = D respectively.

Algorithm 1 Proposed DDR SRC Algorithm

Input: x ∈ RS1×1, Ha, Hb ∈ RM×L, M, D ∈ Z
Output: y1 ∈ RS2×1, y2 ∈ RS2×1

Initialize phase and accumulators:
1: p1 = 1, p2 = 2
2: kp1 = 0, kp2 = D
Index of the first input samples in FIR:
3: i1 = 1, i2 = 1
Main Loop:
4: for k = 1 : S2
5: y1(k) = Ha(p1, :) ∗ x(i1 : i1 + L − 1)
6: y2(k) = Hb(p2, :) ∗ x(i2 : i2 + L − 1)
7: p1 = ((p1 + 1) mod M) + 1
8: p2 = ((p2 + 1) mod M) + 1
9: jp1 = ⌊(kp1 + 2D)/M⌋
10: jp2 = ⌊(kp2 + 2D)/M⌋
11: kp1 = kp1 + 2D − Mjp1
12: kp2 = kp2 + 2D − Mjp2
13: i1 = i1 + jp1
14: i2 = i2 + jp2
15: end



Springer Nature 2021 LATEX template

Multiphase Output SRC 9

We present the complete DDR SRC algorithm in 1 which can be used for imple-
mentation. The algorithm takes x ∈ RL×1, h ∈ RR×1, M ∈ Z and D ∈ Z as inputs.
The algorithm provides y1 ∈ RS×1 and y2 ∈ RS×1 as outputs. The polyphase filter
tap matrix is formed by line 1 - 9 in the algorithm. The size of the output vectors are
determined in line 10. The DDR structure is presented from line 11 - 25.

The phase, accumulators and index of the first input samples are initialized in line
1 - 3. In the main loop, line 5 and 6 are doing the calculations for multiplying filter
tap matrix and the discrete input stream and the indexing is derived in the subsequent
lines. Line 7 and 8 are used to update the phase indexes used to select appropriate
rows of filter tap matrix. Line 9 and 10 calculates the shift of the delay line which can
also be calculated as jp1 = (kp1 + 2D) mod M and jp2 = (kp2 + 2D) mod M . The
calculation required to update the accumulator is provided in line 11 and 12. Line 13
and 14 is used for updating the indexing here while in real implementation this would
be a shift of delay line. We would like to note that it is possible to support more output
phases. However, it will increase complexity significantly.

5 Performance of Multiphase Output SRC
The optimal design of a filter depends on the required bandwidth and alias attenuation.
Initially, we calculate the taps for a straightforward FIR implementation. The virtual
sample rate for the polyphase filter is Mfis according to the definition in (1). If the
bandwidth of the signal is W , then the one-sided passband edge is at W/2 and the
stopband starts at fis − W/2 or fos − W/2, whichever is lower. In practice, it might
be needed to include a small margin to the passband and/or stopband edges. These
values can then be used to compute the filter taps h, for example by least-squares
solution [18] or by equal ripple Parks-McClellan optimization [19, 20].

We assume a signal bandwidth of W = 400 MHz and a sample rate of fis =
491.52 Msps that needs to be converted to fos = 921.6 Msps. Using parallelized DDR
SRC shown earlier the output is divided to two phases, each having sampling rate of
460.8 Msps. So, no clock above 491.52 MHz is needed in the system. The conversion
ratio of 921.6/491.52 can be expressed with relatively prime integers as 15/8, i.e.
the interpolation factor M = 15 and the decimation factor D = 8. We also assume
constraints of minimum 60 dB stopband attenuation and passband ripple of highest
±0.1 dB. The least-squares FIR filter designer in Matlab [21, 22] generates a total
of 269 taps for h(n) that satisfies the attenuation and ripple constraints. The number
269 is the nearest odd number to 270 that is an integer multiple of 15. A performance
comparison of the FIR with different number of taps is presented in Table 1.

Table 1: Performance comparison of the FIR
taps stopband

attenuation
transition
width

passband ripple

269 -62.28 dB 44.4 MHz 0.06663 dB
224 -56.3 dB 45.3 MHz 0.18383 dB
149 -44.95 dB 49.8 MHz 0.72876 dB
90 -36.8 dB 59.7 MHz 1.622 dB



Springer Nature 2021 LATEX template

10 Multiphase Output SRC

0 20 40 60 80 100 120 140 160 180 200

frequency [MHz]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

ga
in

 [d
B

]

Ripple in passband

260 280 300 320 340 360 380 400 420

frequency [MHz]

-80

-60

-40

-20

0

ga
in

 [d
B

]

Transition and stop band

Fig. 4: Passband ripple, transition and stopband of the optimized filter h.

The passband ripple, transition band and the stopband are shown in Fig. 4. It is
evident that the least-squares optimized filter is able to contain the passband ripple
within ±0.1 dB. The stopband starts well before the vertical red line that marks the
required stopband edge, and the minimum attenuation is slightly over 60 dB. The
figures are obtained by applying a fast Fourier transform on h extended with zeros to
improve the spectral accuracy.

The output spectrum of the SRC is shown in Fig. 5. The input signal has rectangular
shaped 400 MHz bandwidth and 491.52 Msps sampling rate. The output signal has
the same shape and bandwidth with 921.6 Msps sampling rate. The maximum power
spectral density (PSD) of noise is 60 dB below the PSD of the signal, that is consistent
with the stopband attenuation. Note that, the complex input samples are quantized
to a total of 32-bits, where the real and imaginary parts are 16-bits each. The filter
co-efficients are quantized to 14-bits. We notice that there is no significant degradation
in the output spectrum of the SRC due to the quantization.

It should be noted that the samples of two output paths are combined into one
signal to generate the total spectrum. In the implementation, every second output
sample belongs to another path. In Fig. 6, the input and (combined) output samples
are shown together with ideally1 interpolated input signal (dashed line). The output

1Ideal interpolation can be done by FFT for a cyclic signal.



Springer Nature 2021 LATEX template

Multiphase Output SRC 11

-500 -400 -300 -200 -100 0 100 200 300 400 500

frequency [MHz]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

am
pl

itu
de

 [d
B

]

Fig. 5: DDR SRC output with 400 MHz input signal.

1000 1002 1004 1006 1008 1010 1012 1014 1016 1018 1020

sample

1

2

3

4

5

6

7

8

9

am
pl

itu
de

10-3

Ideal
Input
Output

Fig. 6: SRC input and output samples compared with the ideally interpolated input.

samples follow the ideally interpolated signal, and every 15th output sample matches
every 8th input sample that demonstrates the conversion ratio of 15/8.



Springer Nature 2021 LATEX template

12 Multiphase Output SRC

Table 2: Component-wise breakdown in Virtex-7
Components Without BRAM With BRAM
LUT Slices 2185 577
FF 756 756
DSP units 104 104
BRAM 0 4
I/O 60 60

Table 3: Comparison of Resource Consumption of different SRC implementations on
FPGA

year and ref-
erence

algorithm device LUT
Slices

FF DSP power
(W)

2014 [10] parallel FIR Xilinx Virtex-7 25826 44547 660 7.44
2014 [13] CIC and Far-

row
Xilinx Virtex-6 50646 28234 - -

2015 [11] parallel
polyphase

Xilinx Virtex-7 9792 12240 1872 -

2017 [14] CIC and
polyphase

Xilinx Kintex-7 7269 13552 83 1.446

2019 [15] CIC and FIR Xilinx Kintex-7 - 1882 - 1.022
2020 [16] CIC and FIR Xilinx Kintex-7 1828 2253 148 0.325
2021 [17] CIC and

polyphase
Xilinx Kintex-7 1268 1850 40 0.270

Proposed Polyphase FIR Xilinx Virtex-7 2185 756 104 0.510

6 FPGA Implementation
In this section, we present the VLSI architecture and the FPGA implementation results
of DDR SRC for the use case of Section 5. An intuitive block diagram of the DDR
SRC VLSI architecture can be found in Fig. 7. Based on the simulation results in
the preceding section, the inputs of the architecture are 14-bit coefficients, h and
32-bit samples, x. Due to the polyphase structure of our filter, we would need to
access only L = 18 coefficients at a time instant. The same coefficients are stored
in two separate random access memories (RAM) in such a way that one read access
makes L = 18 coefficients corresponding to a phase available to the multiplier array.
Therefore, the width of a word for a RAM is 14 × L. As the size of the word is quite
large, an intermediate register bank is used to receive the L coefficients sequentially
and concatenate them to store as a word in a RAM.

On the other hand, the complex input samples x are sequentially stored in a shift
register based first-in first-out (FIFO) memory. The length of the FIFO buffer is taken
sufficiently large so that the memory does not overflow. To our advantage, we need
to read consecutive values from the shift-register based FIFO arrays. Two sets of
consecutive L samples are required to be read from the FIFO to feed as an input of
the multiplier array. However, the starting point of these consecutive sets depends on
lines 9 and 10 of Algorithm 1. This corresponds to the shift in the delay line which
happens at lines 13 and 14. The calculations for jp values require division according



Springer Nature 2021 LATEX template

Multiphase Output SRC 13

Table 4: Comparison of different SRC implementations on FPGA
year and
reference

algorithm advantage disadvantage

2014 [10] parallel FIR supports Gigabit data rates and
fractional SRC

parallel input streams required,
very high resource usage

2014 [13] CIC and
Farrow

supports fractional SRC and
arbitrary conversion ratio

very high resource usage, only
supports 3G, no super sample
ratea support

2015 [11] parallel
polyphase

applied for high speed optical
communication, supports frac-
tional SRC

parallel input streams required

2017 [14] CIC and
polyphase

highly configurable design,
supports fractional SRC and
arbitrary conversion ratio

high power consumption, no
support for super sample ratesa

2019 [15] CIC and
FIR

number of slice registers less
than [14] for same decimation
factor

Impact on number of LUTs
and DSPs are unclear, no super
sample ratea support

2020 [16] CIC and
FIR

rapid design presented with the
aid of high level synthesis

no support for super sample
ratesa and arbitrary conversion
ratio

2021 [17] CIC and
polyphase

Reduce resource and power
consumption

no support for super sample
ratesa and arbitrary conversion
ratio

Proposed Polyphase
FIR

Works with serial input
streams, supports super sample
ratesa and 5G

no support for arbitrary conver-
sion ratio

aSuper sample rate filters support sample frequency greater than clock frequency [9]

to Algorithm 1. The complex division operation can be avoided by simplifying the jp

calculations of lines 9 and 10 for our particular use case as

jp1 =


2, when kp1 ≥ 2M

1, when 2M > kp1 ≥ M

0 otherwise

We can compute jp2 in a similar fashion with the aid of kp2. Therefore, instead of
using the modulo operations of line 9 and 10, we design the jp1 and jp2 with simple
multiplexing logic. The calculation of jp1 and jp2 are shown as read pointer blocks in
Fig. 7.

For reading the coefficients from the RAM, we have to use lines 7 and 8 of
Algorithm 1. We use two counters for p1 and p2 which wraps around at M to select
the addresses from the RAM. These counters are expressed as address selection logic
in Fig. 7. The counters are initialized with different values as shown in line 1 of
Algorithm 1. Hence, we need to have separate counters and separate single-port RAMs
in the design. Note that, it is also possible to use only one dual-port RAM instead
of separate RAMs with the same content. Two arrays of multipliers are used for the
design where each array contains a total of L real-complex multipliers. A summation
is required in a filtering operation and therefore, the output of the L multipliers are



Springer Nature 2021 LATEX template

14 Multiphase Output SRC

RAM1

Adder Tree

FIFO

Multiplier Array

Address 
Selection Logic

Read 
Pointer1

Adder Tree

Multiplier Array

RAM2

Read 
Pointer2

h

x

h

y1 y2

Address 
Selection Logic

Fig. 7: Top level VLSI architecture for DDR SRC.

summed with a complex adder tree. The multiplier array and adder tree are registered
at each level to aid the timing closure.

The VLSI architecture for the DDR SRC is written with VHSIC hardware descrip-
tion language (VHDL). As we do not use any technology-specific Xilinx primitives,
the code is highly portable to FPGA platforms. The VHDL code is synthesized and
implemented on a Xilinx Virtex-7 XC7VX690T FPGA. We apply Vivado default set-
tings as the synthesis and implementation strategy. The default mode is selected for the
-flatten hierarchy option in the Vivado design tool to keep the same top-level
hierarchy after synthesis. We synthesize the DDR SRC with a target clock frequency
of 495 MHz. The component wise breakdown of the DDR SRC implementation is
presented in Table 2. The table shows the number of look-up tables (LUT), flip-flops
(FF), DSP slices and I/O pin used for DDR SRC with BRAMs and without BRAMs.
Due to the synthesis settings, the Vivado tool uses the LUT slices for memory in the
left column of Table 2. The DSP slices represent the real-complex multipliers and
the complex adder tree logic. The right column presents the result when the BRAM
tiles of the FPGA fabric are utilized. Depending on the availability of LUT slices and
BRAMs, one of the implementation choices can be selected. For example, if an FPGA
implementation of the baseband transceiver has already utilized most of the LUTs, the
DDR SRC of column two can be selected. Our work can be further extended to quad
data rate (QDR) SRC with four parallel outputs to provide 1966.08 Msps.

In Table 3, we present hardware costs of state-of-the-art SRC FPGA implementa-
tions and compare with our implementation. We also compare their pros and cons in



Springer Nature 2021 LATEX template

Multiphase Output SRC 15

Table 4. In [10], the authors presented a parallel sample rate for the high speed back-
haul networks. The authors verified their design with an incoming parallel stream of
1.7 Giga-samples-per-second (Gsps) which provided an interpolated signal at 2.8 Gsps.
However, the authors assumed that the incoming stream of 1.7 Gsps is already paral-
lelized into several low rate data streams which might not be always available to the
designers. The authors applied conventional SRC on each of the parallel streams. On
the contrary, our proposed algorithm and design work on serial inputs and provide
parallel output to achieve a super sample rate. The implementation in [10] utilizes
about 10× higher number of LUTs and 60× higher number of FFs than our design.
In [13], the authors presented an SRC filter for software radio receiver. As the target
of the design was a flexible digital front-end in the intermediate frequency (IF) stage
of a software defined radio, the authors designed a multiplexed Cascaded Integrator
Comb (CIC) decimation filter. The authors also applied a reconfigurable Farrow filter
for droop compensation. Due to the application of Farrow structure, the design can
support arbitrary sample rate conversion. However, it comes with a price of very high
resource usage due to the complexity of the Farrow filter. The design also does not
support super sample rate like our proposed solution. In [11], the authors presented a
parallel fractional SRC for high speed optical communications. The authors applied a
conventional polyphase FIR filter for the SRC operation. However, the design also
assumed parallel input streams similar to [10] and applied conventional SRCs in par-
allel. The implementation of [11] requires about 16× higher number of FFs and 6×
higher numbers of DSPs than our design.

A digital down converter (DDC) is proposed in [14] which uses a combination
of half-band filter, CIC filter, polyphase filter, and a Farrow-based variable fractional
delay (VFD) filter to downconvert the input signal in stages. Due to the application of a
Farrow filter, the design can support an arbitrary sample rate. However, due to several
complex filters is used in the design, the design requires a higher number of resources
and consumes 3× more power than our design. In [15], the authors proposed another
DDC based on a combination of COordinate Rotation Digital Computer (CORDIC)
processor, CIC, and FIR filter. Due to the use of a CORDIC processor, the resource
consumption is significantly less than [14] for similar functionalities. A couple of
other recent DDC implementations can be found in [16] and [17], which are also
comparable to our design in terms of resource consumption. However, none of [15–17]
supports super sample rates, i.e. clock rate lower than sample rates, like our design.

Contrary to the existing implementations, we consider a realistic use case for
fifth generation (5G) millimeter-wave systems with a high bandwidth carrier of 400
MHz. For example, the parallel SRC of [13] was presented for third generation (3G)
technologies such as WiMAX and GSM900 standards. As the 5G advanced and sixth
generation (6G) systems are moving towards higher frequencies and bandwidth, we
believe our work will be very useful for the communication engineers and circuit
designers working in this domain. SRC are typically used in the front-end of a base
station (BS). However, the front-end of a BS typically also includes digital pre-
distortion, crest factor reduction, and other important blocks. Therefore, it might be
challenging to accommodate an SRC with many parallel paths in a BS front-end
FPGA.



Springer Nature 2021 LATEX template

16 Multiphase Output SRC

7 Conclusions
In this paper, we presented a generic approach for a fractional SRC with multiphase
output. This solves the conversion problem when the sampling rate needs to be higher
than the clock rate, and the conversion rate is not an integer number. Clock rate
limitation is especially significant in FPGA design; therefore, an efficient realization
from an FPGA point of view was considered. The performance of the DDR SRC
was presented with the aid of a design example. Finally, a VLSI architecture and
corresponding FPGA implementation were presented for DDR SRC.

References
[1] Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall, Englewood

Cliffs, NJ, USA (2004)

[2] Milic, L.: Multirate Filtering for Digital Signal Processing: MATLAB Applica-
tions. IGI Global, Hershey, PA, USA (2009)

[3] Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Engle-
wood Cliffs, NJ, USA (1993)

[4] Zeineddine, A., Nafkha, A., Paquelet, S., Moy, C., Jezequel, P.Y.: Comprehen-
sive survey of FIR-based sample rate conversion. Journal of Signal Processing
Systems 93(1), 113–125 (2021)

[5] Evangelista, G.: Design of digital systems for arbitrary sampling rate conversion.
Signal processing 83(2), 377–387 (2003)

[6] Göckler, H.G., Evangelista, G., Groth, A.: Minimal block processing approach
to fractional sample rate conversion. Signal processing 81(4), 673–691 (2001)

[7] Gandhare, S., Karthikeyan, B.: Survey on FPGA architecture and recent applica-
tions. In: 2019 International Conference on Vision Towards Emerging Trends in
Communication and Networking (ViTECoN), pp. 1–4 (2019). IEEE

[8] Heath, R.W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An
overview of signal processing techniques for millimeter wave MIMO systems.
IEEE journal of selected topics in signal processing 10(3), 436–453 (2016)

[9] Xilinx: FIR Compiler v7.2 LogiCORE IP Product Guide. Vivado Design Suit
PG149 (2021)

[10] Alonso, A., Sevillano, J.F., Vélez, I.: Parallel implementation of a sample rate
conversion and pulse-shaping filter for high speed backhauling networks. In:
IEEE Design of Circuits and Integrated Systems, pp. 1–6 (2014)

[11] Sousa, I., Boas, B.V., Freire, I., Klautau, A., Reis, J.D.: Parallel polyphase



Springer Nature 2021 LATEX template

Multiphase Output SRC 17

filtering for pulse shaping on high-speed optical communication systems. In:
IEEE International Microwave and Optoelectronics Conference, pp. 1–5 (2015)

[12] Parhi, K.K.: VLSI Digital Signal Processing Systems: Design and Implementa-
tion. John Wiley & Sons, Hoboken, NJ, USA (2007)

[13] Agarwal, A., Boppana, L., Kodali, R.K.: A fractional sample rate conversion
filter for a software radio receiver on FPGA. In: IEEE Region 10 Conference
(TENCON), pp. 1–6 (2014)

[14] Liu, X., Yan, X.-X., Wang, Z.-K., Deng, Q.-X.: Design and FPGA implemen-
tation of a reconfigurable digital down converter for wideband applications.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25(12),
3548–3552 (2017)

[15] Datta, D., Mitra, P., Dutta, H.S.: FPGA implementation of high performance
digital down converter for software defined radio. Microsystem Technologies,
1–10 (2019)

[16] Sikka, P., Asati, A.R., Shekhar, C.: Power-and area-optimized high-level syn-
thesis implementation of a digital down converter for software-defined radio
applications. Circuits, Systems, and Signal Processing, 1–12 (2020)

[17] Datta, D., Dutta, H.S.: High efficient polyphase digital down converter on FPGA.
Circuits, Systems, and Signal Processing, 1–12 (2021)

[18] Adams, J.W.: FIR digital filters with least-squares stopbands subject to peak-gain
constraints. IEEE Transactions on circuits and systems 38(4), 376–388 (1991)

[19] Parks, T., McClellan, J.: Chebyshev approximation for nonrecursive digital filters
with linear phase. IEEE Transactions on Circuit Theory 19(2), 189–194 (1972)

[20] McClellan, J.H., Parks, T.W.: A personal history of the Parks-McClellan
algorithm. IEEE signal processing magazine 22(2), 82–86 (2005)

[21] Losada, R.A.: Practical FIR filter design in MATLAB. The Math Works inc.
Revision 1, 5–26 (2004)

[22] Stearns, S.D., Hush, D.R.: Digital Signal Processing with Examples in MAT-
LAB®. CRC Press, Boca Raton, FL, USA (2016)


	Introduction
	SRC based on Polyphase FIR Filters
	Multiphase Output SRC based on Polyphase FIR
	Multiphase Output SRC Algorithm for Implementation
	Performance of Multiphase Output SRC
	FPGA Implementation
	Conclusions

