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Abstract

Embedding Convolutional Neural Network (CNN) into
edge devices for inference is a very challenging task be-
cause such lightweight hardware is not born to handle
this heavyweight software, which is the common overhead
from the modern state-of-the-art CNN models. In this pa-
per, targeting at reducing the overhead with trading the
accuracy as less as possible, we propose a novel of Net-
work Candidate Search (NCS), an alternative way to study
the trade-off between the resource usage and the perfor-
mance through grouping concepts and elimination tourna-
ment. Besides, NCS can also be generalized across any neu-
ral network. In our experiment, we collect candidate CNN
models from EfficientNet-B0 to be scaled down in varied
way through width, depth, input resolution and compound
scaling down, applying NCS to research the scaling-down
trade-off. Meanwhile, a family of extremely lightweight Ef-
ficientNet is obtained, called EfficientNet-eLite.

For further embracing the CNN edge application with
Application-Specific Integrated Circuit (ASIC), we adjust
the architectures of EfficientNet-eLite to build the more
hardware-friendly version, EfficientNet-HF. Evaluation on
ImageNet dataset, both proposed EfficientNet-eLite and
EfficientNet-HF present better parameter usage and ac-
curacy than the previous start-of-the-art CNNs. Partic-
ularly, the smallest member of EfficientNet-eLite is more
lightweight than the best and smallest existing Mnas-
Net with 1.46x less parameters and 0.56% higher accu-
racy. Code is available at https://github.com/
Ching-Chen-Wang/EfficientNet-eLite

1. Introduction

In recent decade, Convolutional Neural Network (CNN)
presents the remarkable achievement on vision task such as
action recognition [26], object detection [37][8], image seg-
mentation [5] and so on [35][7][17]. However, the CNN-
based application is still uncommon nowadays, which we

Figure 1. The performance of model size and Top-1 accuracy on
ImageNet [6]. The proposed CNN family, EfficientNet-eLite, is
more lightweight than the other state-of-the-art models with higher
accuracy on ImageNet dataset. Particularly, the smallest member
of EfficientNet-eLite is more lightweight than the best and small-
est existing MnasNet with 1.46x less parameters and 0.56% higher
accuracy. As for the two versions of hardware-friendly models,
r128 and r256 denote the input resolution 128x128 and 256x256
respectively. More details about performance are provided in Ta-
ble 5.

attribute the reasons to the hardware limitation and the soft-
ware complexity. The former one is that the application is
strictly limited by the hardware condition. Enough RAM
to save the heavy parameters and powerful computational
ability to perform tons of operations are both necessary re-
quirement of the CNN-based application. Besides, porta-
bility and some physical limitations are also preventing its
development. On the other hand, the modern outperformed
CNN models are always featured with the intensive com-
putation and parameters. Although the mobile-size CNN
models are proposed recently [12] [25] [11], the CNN mod-
els are not lightweight enough for some edge devices such
as low-power IoT (Internet of things) devices or wearable
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Figure 2. We make EfficientNet more lightweight by scaling down
EfficientNet-B0 (a) through Resolution (b), Width (c), Depth (d)
and Compound (e).

device such as smart glasses, watches and so on.
The CNN accelerators appear to bridge the gap between

the CNN applications and the edge devices [13] [32]. Nev-
ertheless, apart form designing CNN on general-purpose
hardware, the design space of CNN models on accelerator is
scarified by some degrees of freedom and strictly restricted
by the hardware specification. To be more specific, all types
of operation in CNN should be fully compatible according
to the instruction set architecture (ISA). In addition to the
compatibility, the performance of ASIC is another impor-
tant design principle such as chip area, energy efficiency,
utilization and so on. In [13], the state-of-the-art meth-
ods are highlight for the the codesign concepts of the soft-
ware and the hardware, to build not only accurate but also
hardware-friendly CNN structure.

In this study, the modern outperformed CNN models, Ef-
ficientNets [31], are selected as our backbone structure. We
target at building more lightweight version and adjusting
toward a more hardware-friendly structure. First of all, we
apply EfficientNet-B0 (Baseline model) to be scaled down
among channels, depths, input resolution as a technique
of model compression, along with the compound scaling
method and the constant ratio proposed by [31], shown in
the Figure 2. The thinner EfficientNets are collected into
candidate pool and used for studying the trade-off by pro-
posed Network Candidate Search (NCS). Although com-
pound scaling up with fixed scaling coefficients is system-
atically analyzed in [31], the scaling down principle is not

Figure 3. The overview of proposed Network Candidate Search.

well understand. We believe that those three dimensions
may possibly not keep the scaling relationship of constant
ratio. Our study indicates that input information plays more
significant role than channels and depths when a model is
scaled down.

The Figure 3 provides the overview of NCS, which is
composed of two major concepts, grouping and elimination
tournament respectively. The former is trying to investigate
the question : what is the CNN’s shape (i.e. the ratio or
relationship of width, depth and input resolution) that can
achieve better accuracy. The basic idea is that candidates
(CNN models) with similar parameter usage and Flops are
fairly divided into group for comparing. By doing so, the
outperformed models inside the group have the relatively
better shape and the worthy scaling-down trade-off. The let-
ter is to mitigate the training cost under an affordable GPU
hours. Only the potential models in each group survive and
the others gradually eliminate as a method to stop the train-
ing for releasing the burden of GPU. As for determining the
potential models, we adopt using average accuracy as crite-
ria, coming form observing the relationship between learn-
ing performance and final accuracy. Finally the champion
of the elimination tournament in each group is obtained,
called EfficientNet-eLite (Extremely lightweight Efficient-
Net), which presents better parameter usage and accuracy
than the previous start-of-the-art CNNs. Particularly, our
EfficientNet-eLite 9 outperforms MnasNet with 1.46x less
parameters and 0.56% higher accuracy on ImageNet.

Secondly, to go further alleviating the difficulty of the
CNN inference on the edge, we provide the hardware-
friendly CNN models as candidates for NCS by consider-
ing design concepts of Application-Specific Integrated Cir-
cuit (ASIC). Finally, we obtain a family of relatively outper-
formed models, called EfficientNet-HF (Hardware-friendly
EfficientNet), realizing CNN models could be not only ac-
curate but also hardware-friendly for ASIC.

The rest of this paper is organized as follow. Section 2
presents the related works, including scaling methods that
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we apply for model compression and our baseline model
EfficientNet [31] as well as some hardware-friendly designs
for CNN. Section 3 discusses the proposed Network Candi-
date Search in detail. Proposed family of Hardware-friendly
EfficientNet is introduced in Section 4. Experimental re-
sults and conclusion are depicted in Section 5 and Section 6
respectively.

2. Related Work

2.1. Model scaling

Model scaling has been a very popular method for expand-
ing the scale of CNN models to pursue the better accuracy.
The early CNN, LeNet-5 for recognizing handwriting dig-
its, has only 7 layers and thousands of trainable parameters.
With the progress of the Graphics Processing Unit (GPU),
CNN has evolved to solve the more complicated problems
by going bigger and bigger. AlexNet [18], the deeper net-
work with 8 layers, is the widely known breakthrough in
2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) competition with about sixty millions parame-
ters. VGG16 [27], 16 layers and regular architecture, pro-
pose a consecutive stack of two 3x3 convolution layers to
replace a single 5x5 convolution layer, which makes its
structure more deeper. ResNet [10] family wins the 2015
ImageNet challenge. The vanishing gradient problem has
been dealt with by ResNet to achieve 152 layers architec-
ture.

We categorize the common ways to adjust the model size
into 4 segments, which are introduced respectively as fol-
lowing.
Depth scaling : It is widely believed that deeper network
should achieve better performance [10] [15] [28] [29].
Once the vanishing gradient problem is dealt the network
depth can be deeper and gain the accuracy by tuning the
repeat time of the basic building blocks. For example, by
modifying the repetition of residual blocks, ResNet can be
scaled up to 152 layers or scaled down to only 18 layers.
Width scaling : Several state of the arts commonly apply
width scaling [12] [25]. The intuition is that wider network
has more filters to memorize the input patterns. Besides,
wider network has the tendency of making the training eas-
ier [39].
Resolution scaling : Higher resolution can provide more
detail information for CNN models to tell apart from the
difference between the very similar input. Therefore, the
accuracy can be improved. Beginning from input size 224 x
224, Inception-V4 applies 299 x 299 as input size. A larger
input size, 480 x 480, is used in [16].
Compound scaling : With the CNN scaled up to reach
the hardware limit, researchers are devoting to finding the
more efficient way of scaling. To be more specific, how the
additional hardware resource should be effectively assigned

Table 1. Family of EfficientNet by scaling up.
EfficientNet B0 B1 B2 B3 B4 ...

φ(Available resource) 0 - 1 2 3 ...
Depth D 1.1 ·D 1.2 ·D 1.22 ·D 1.23 ·D d ·D
Width W W 1.1 ·W 1.12 ·W 1.13 ·W w ·W

Resolution R 1.07 ·R 1.15 ·R 1.152 ·R 1.153 ·R r ·R
Parameters 5.3M 7.8M 9.2M 12M 19M ...

Flops 0.39B 0.70B 1.0B 1.8B 4.2B ...

Figure 4. The overview of EfficientNet.

into the scaling dimension becomes an important question.
That is to say, the scaling trade-off becomes an active re-
search targeting how to gain accuracy with less resource
cost. EfficientNet[31] authors conduct series of experiment
to find out the observation that scaling through single di-
mension will quick saturate the accuracy gain and that com-
pound scaling through three dimensions of depth, width and
input resolution will achieve better performance.

2.2. EfficientNet

The Figure 4 illustrates the overview of building up fam-
ily of EfficientNet and we divide the state-of-the-art Effi-
cientNet into two parts to discuss.
Neural Architecture Search : Neural Architecture Search
(NAS) is a technique based on reinforcement learning to au-
tomatically build up CNN models. The conventional CNN
structure is made in hand-crafted manner, which has lots
of architectural possibilities and significantly relies on hu-
man’s expertise. NAS mitigates the efforts of trial and error
on constructing CNN networks and modern CNN models
designed by automated approaches tends to outperform the
manually designed one [30].
Grid Search : The goal of grid search is to find out a
strategy to effectively assign available hardware resources
into depth d, width w and input resolution r for expanding
CNN models. In this case, the authors assume twice more
resources available, denoting φ = 1. Candidate scaling co-
efficients of depth α, width β, and resolution γ to determine
how to allocate those resources. There are lots of combina-
tions of α, β and γ. After the grid search, the authors find
the best value for EfficientNet-B0 are α = 1.2, β = 1.1
and γ = 1.15. The EfficientNet family, shown in Table 1,
can be obtained by d, w and r according to the amount of
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Table 2. The structure of the original and the scaled-down EfficientNet.
Stage Operator Resolution Resolution Channels Channels Repeat Repeat Scaled down results of repeat time of operator

(Baseline) (Scaled down) (Baseline) (Scaled down) (Baseline) (Scaled down)
s Hs ×Ws Hsrk ×Wsrk Cs Cs × wi Rs Rs × dj d1 = 1.0 dx = 0.9 or 0.8 d2 = 0.7 d3 = 0.6 d4 = 0.5
1 Conv3x3 224× 224 224rk × 224rk 32 32× wi 1 1× dj 1 1 1 1 1
2 MBC1, 3x3 112× 112 112rk × 112rk 16 16× wi 1 1× dj 1 1 1 1 1
3 MBC6, 3x3 112× 112 112rk × 112rk 24 24× wi 2 2× dj 2 2 2 2 1
4 MBC6, 5x5 56× 56 56rk × 56rk 40 40× wi 2 2× dj 2 2 2 2 1
5 MBC6, 3x3 28× 28 28rk × 28rk 80 80× wi 3 3× dj 3 3 3 2 2
6 MBC6, 5x5 14× 14 14rk × 14rk 112 112× wi 3 3× dj 3 3 3 2 2
7 MBC6, 5x5 14× 14 14rk × 14rk 192 192× wi 4 4× dj 4 4 3 2 2
8 MBC6, 3x3 7× 7 7rk × 7rk 320 320× wi 1 1× dj 1 1 1 1 1
9 AVG, FC 7× 7 7rk × 7rk 1280 1280× wi 1 1× dj 1 1 1 1 1

available resources φ.

2.3. Hardware-friendly designs for CNN models

There are several hardware-friendly designs for CNN
models. For compressing toward small size of model
by using low precision data format, quantization and
dynamic fixed-point representation are manipulated in
[13] [22] [23]. Even binary precision is adopted in [1]. As
for abolishing the redundant parameter, pruning and value
decomposition are commonly used methodology. On the
other hand, reducing the computational overhead is another
type of hardware friendly principle. Depth-wise separable
convolution is introduced in MobileNet [12], known as im-
pressively decrease of operation. Hardware friendly activa-
tion functions [2][4] alleviate the challenge of fixed point
arithmetic.
Hardware-friendly CNN structure : Under general pur-
pose hardware, the modern CNNs are optimized for param-
eter usage and Flops. As for the dedicated CNN accelera-
tor, a regular and modularized architecture is considered as
hardware-friendly design. Taking the state-of-the-art em-
bedded CNN in [32] as example, we realize that the struc-
ture is hardware-friendly for ASIC design regarded from
channels and size of feature map in each layer. From the
perspective of channels, the whole CNN is built upon based
on 3x3 convolution with 32 channels input to 32 channels
output. Therefore, the accelerator can have high utiliza-
tion performance when process element (PE) is designed
for performing the parallel 32 channels operations. For size
of feature map to be power of two, the tiling technique and
data partitioning are more easily to apply when the SRAM
is not enough, thus to access the DRAM. Besides, the oper-
ation of division (average pooling) can be done by shifting
rather than the hardware division unit.

3. Network Candidate Search

The core concept of NCS is searching for outperformed
models over the candidate models which consume the sim-
ilar hardware cost. In this section, we start from defining
candidates with EfficientNet-B0 [31] to be scaled down in
varied way. Secondly, the similar candidates are grouped to-
gether for comparing. Thirdly, we introduce the criteria for

elimination. Lastly, the algorithm of NCS is summarized.

3.1. Candidate of CNN models

The baseline CNN model is broken down into nine stages
with relative operators [30], listed in the Table 2. Channels
Cs, Resolution Hs × Ws and Depth (sum of Repeat Rs)
are denoted as the baseline specification with relative stage
s. We preserve all types of operation inside the Operator,
focusing on scaling down channels wi, depth dj and input
resolution rk such that 0 < wi, dj , rk ≤ 1, making the
scaled down model more lightweight with Channels Cs ×
wi, Resolution Hsrk ×Wsrk and Repeat Rs × dj .

We define a candidate pool CP as a set, and each ele-
ment in the pool symbolizes a CNN model, which is de-
termined by various combination of scaling coefficients
wi, dj , rk. Values i, j, k denote as index representing the
magnitude of scaling.

CP : {Model(wi, dj , rk)|∀i, j, k ∈ N and 0 < wi, dj , rk ≤ 1}
(1)

Define Scaling coefficient from depth : We find that depth
coefficient is easier to determine than width and input res-
olution because repeat time has fewer possibilities. For ex-
ample, original input resolution is 224×224. The resolution
to be scaled down could be 223× 223, 222× 222 ... and so
on. Channel coefficients have lots of choices for the same
reason. However, depth coefficients have just few cases,
which we can start defining from. The right side of Table 2
illustrates the scaled down results of depth. In Table 2, dx
means the ”don’t care”. Because after the ceiling function
of repeat time, applying the coefficients 0.9 and 0.8 will re-
sult the same depth as d1 = 1.0. Thus, we define d2 = 0.7
and d3, d4, ..., dj according to Equation 2.

d1 =1.0 ifj = 1,

dj =dj−1 − 0.1x, ∃x ∈ N,

s.t.

9∑
s=1

ceiling(Rs · dj−1) >

9∑
s=1

ceiling(Rs · dj) ifj > 1

(2)
Define width and resolution coefficients : EfficientNet
[31] scales up model from B0 to B7 by a set of constant
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Table 3. Coefficients for scaling down EfficientNet.
dj d1 d2 d3 d4 dj

Coefficient 1.0 0.7 0.6 0.5 ...
Total operators t1 t2 t3 t4 tu

18 17 15 12 ...
wi w1 w2 w3 w4 wi

Coefficient 1.0 0.8666 0.701 0.514 ...
rk r1 r2 r3 r4 rk

Coefficient 1.0 0.905 0.766 0.587 ...
Input resolution 224 203 172 132 ...

ratio (w = 1.1, d = 1.2j , r = 1.15), which is obtained by
the grid search under the predefined resource budget. We
already have the depth coefficients dj . The idea is that we
can use this set of constant ratio to scale down, calculating
corresponding wi, rk with the depth coefficients with Equa-
tion 3. Note that we use total amount of operators tu instead
of dj because tu is more representative for the depth coef-
ficient in EfficientNet [31] and that we only consider i, u, k
less or equal than 4 due to the GPU resource limitation.

Instead of directly using the compound scaling co-
efficients (i.e. Model(w2, d2, r2), Model(w3, d3, r3) or
Model(w4, d4, r4)), the flexibility is considered by collect-
ing all the combination ofwi, dj , rk into candidate pool. By
this way, we can investigate the shape of CNN (i.e. the ratio
or relationship of width, depth and input resolution) through
the different scaled-down strategies, studying the scaled-
down trade-off along with the proposed grouping method,
introduced in the following section.

4w =
wi+1

wi
, 4d =

tu+1

tu
, 4r =

rk+1

rk
4 w : 4d : 4r = 1.1 : 1.2 : 1.15

(3)

3.2. Grouping method

The core idea of grouping method is to research the dif-
ferent shapes of CNN under the similar kinds of resource
consumption, which specifies as parameter usage and Flops
of a CNN model. Namely, CNN models with similar pa-
rameter usage and Flops are gathered in the same group so
that the outperformed one in the group can be considered
as the relatively good shape of the CNN. Besides, the com-
bination of scaling coefficients from width, depth and input
resolution are the comparatively better strategy for scaling
down.

For fairly comparing the different shapes of CNN in can-
didate pool, we keep the factors, which may affect the per-
formance of CNN, the same as much as possible, includ-
ing the training environment such as batch size, learning
rate, data augmentation policy, optimization algorithm and
so on. As for hardware resource usage, it is difficult to
have candidates with the exactly same parameter usage and
Flops. Additionally, those two measurements are not in
the same scope, making it more challenge to fairly group
the candidates. The statistic values are provided as follow.

For each model in candidate pool, the mean of parame-
ter usage is X̄Para = 3.1 million but the mean of Flops
is X̄Flops = 153.4 million. As for the dispersion of the
candidate pool, standard deviation of parameter usage is
σPara = 1.2 million and the flops is σPara = 90.8 million.

As a result, we propose a grouping method based on
statistic distribution of both parameter usage and Flops. The
benefit is that the statistic distribution is not affected by the
scale. The Z-score value is calculated from each model
in candidate pool. The Z-score is the offset of how many
standard deviations from the mean the data is, denoting in
Equation 4. Hence, with this offset, the larger Z-score value
represents the relatively heavy resource cost and vice versa.
The parameter usage and Flops are standardized to the same
scale so that we can adopt Zsum as standard to classify the
candidate models into groups.

ZPara =
XPara − X̄Para

σPara
,

ZFlops =
XFlops − X̄Flops

σFlops
,

Zsum = ZPara + ZFlops

(4)

3.3. Criteria for elimination

Expensive searching cost is a common issue of the
searching-based approaches. It is impractical to finish the
training process of all candidate models. Therefore, several
searching-based state-of-the-art methods apply the elimina-
tion strategy to alleviate the searching cost. The state-of-
the-art MnasNet[30] adopts the accuracy of fifth epoch to
eliminate candidates during searching over 8,000 models.
Other state-of-the-art methods, PNAS[20] applies the accu-
racy of 20th epoch and AmoebaNet[24] uses the accuracy
of 25th epoch to speculate whether the candidate is the out-
performed CNN model.

In this section, our goal is to find out the criteria to seek
up potential models with the acceptable searching cost. In-
stinctively, the outperformed model should show its talent
during the early training phase. Therefore, with few epochs
of training, the outperformed model can be distinguished
with higher accuracy in the early training phase. How-
ever, in our study, we realize that the candidates in each
group have the closing accuracy during the early training
phase, which may lead to mistakenly eliminate the promis-
ing model due to the unexpected result of specific epoch.
As a result, we propose using averaging accuracy, which is
counted the accuracy from the start to the current epoch, as
criteria for elimination.

The thought is coming from the observation of the learn-
ing performance. First of all, we begin with k models,
which have similar hardware resource usage. Due to GPU
limitation, we set k=4 and the parameter usage and Flops
are listed in the table 4. We are targeting at finding the clues
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Figure 5. Steps to make up the hypothesis.

Table 4. Candidate models for observation.

Candidate
Parameter
usage(M) Flops(M)

Top-1 Accuracy on
ImageNet (350th epoch) Ranking

C1 3.7 296 75.65 4
C2 3.8 384 76.45 2
C3 4.4 314 76.14 3
C4 4.7 362 76.62 1

Figure 6. Accuracy curves for observation.

to know the ranking early (i.e. few training cost) rather than
waiting until the final epoch. For example, in the table 4, we
hope to stop training C1 and C3 as early as we can, because
C2 and C4 are the relatively outperformed models inside
this group.
Observation : The accuracy curves are crossing. (Before
50th epoch, C2 and C3 have closing accuracy. C2 and C4
have crossing accuracy curve.)
Hypothesis : Average accuracy is more representable for
the final performance

By the observation, we find that performance of the spe-
cific epoch is sometimes not representable of the final per-
formance. As a result, we suggest that average accuracy
is a better criteria for predicting outperformed model than
using accuracy of specific epoch. There are two kinds of
phenomenon of the accuracy curve. The first one is that the
accuracy curve from a candidate is always higher than the

other candidate’s accuracy curve. Both methods of average
and specific work perfectively to predict the outperformed
CNN model. The other case is that the accuracy curve is
crossing. The average method is possibly more accurate
than the specific approach. Besides, the benefits of average
performance is that the criteria is not arbitrary to the accu-
racy of specific epoch.

We evaluate the intuition by applying the criteria into
the training results among the candidates. We divide 350
epochs as 35 rounds and 10 epochs per round as unit for
observation. For each round, we observe the relative per-
formance of candidate models, measuring how the extend
of the criteria matches the finial performance. That is to
say, whether the average accuracy or the specific accuracy
can better reflect the final ranking. In equation 5, AccCm

spe (i)

stands for specific accuracy of ith epoch on candidate Cm.
Rankspe(r) = denotes an ascending order sequence sorted
by the accuracy of specific epoch (Round r) of candidate
model. Matspe is for measuring how matching the criteria
is for predicting the final ranking.

Rankspe(r) = (C1, C2, C3, C4) if AccC1
spe(10r) > ... > AccC4

spe(10r)

Rankspe(35) = (C1, C3, C2, C4)

Pspe =

35∑
r=1

Rankspe(r) == Rankspe(35)

35

Pspe =
22

35
≈ 63 %

(5)
In equation 6, Rankavg(r) denotes an ascending or-

der sequence but sorted by the average accuracy from first
epoch to the current epoch 10r. Using average accuracy is
94% matching the result.

AccCm
avg(1, k) =

k∑
i=1

AccCm
spe (i)

k
Rankavg(r) = (C1, C2, C3, C4),

if AccC1
avg(1, 10r) > ... > AccC4

avg(1, 10r)

Pavg =

35∑
r=1

Rankavg(r) == Rankspe(35)

35

Pavg =
33

35
≈ 94 %

(6)
By the observation, the elimination criteria is based on

sorted average accuracy, which is calculated form the first
epoch to the current epoch. Comparing to the method from
specific accuracy, searching cost remains the same except
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for the average operation and maintaining the history of the
accuracy. Therefore, we adopt the average accuracy as elim-
ination criteria.

3.4. Steps of algorithm of Network Candidate
Search

• STEP 1: Candidate initialization

STEP 1.1: Defining candidate models

STEP 1.2: Sorting candidates by resource usage

STEP 1.3 : Dividing candidate into groups

• STEP 2: Training a round r of all survived candidates
(We use e=10 epochs as a round)

• STEP 3: Eliminating models

STEP 3.1: Calculating the average accuracy

STEP 3.2: Sorting average accuracy as ascending
order

STEP 3.3 : Eliminating half of the candidates
with the sorted average accuracy per group

• STEP 4: Repeat 2 and 3 until finish the training and
one candidate remains in the group respectively

4. Hardware friendly EfficientNet
In this section, applying the same scaling coefficients

in Table 3, we consider hardware friendly designs into the
scaled-down models. Meanwhile, the hardware-friendly
candidate pool can be determined, using NCS, which fea-
tures for generalizing for any kind or any type of neural
network, to select the outperformed models. The hardware-
friendly designs can be categorized by channels and input
resolution.

4.1. Adjustment for input resolution

Two kinds of input resolution are provided, 256 × 256
and 128 × 128. The size of feature map for each operator
becomes the power of two number, which is benefits for the
data partitioning problem. Besides, the operation of divi-
sion (average pooling) can be done by shifting rather than
the hardware division unit.

4.2. Compound channels rounding

The basic idea is to make each channels to be power
of two as well as to avoid distorting the model structure
as much as possible. Denote the original channels Cs on
the stage s. Channel by rounding up CRU

s is defined as
2ceiling(log2Cs). Channel by rounding down CRD

s is de-
fined as 2floor(log2Cs). Compound rounding CCR

s , defined
in Equation 7, is combined rounding up and down for less
adjustment of channels because we want to keep the origi-
nal shape of EfficientNet [31].

Figure 7. The performance of Flops and Top-1 accuracy on Ima-
geNet.

CCR
s =

{
CRU

s , if CRU
s − Cs < Cs − CRD

s

CRD
s , else (7)

5. Experimental Results
5.1. Implementation environment

Our experiment is conducted using NVIDIA 2080Ti and
i7-9700K CPU with Pytorch implementation. The train-
ing parameter settings are as follow, which is fundamentally
following EfficientNet[31] except for some GPU equipment
limitation. We adopt the batch size to be 100 and the train-
ing epoch to be 350. The Optimization is based on RM-
SProp. The Data augmentation policy is adopted from [19].

5.2. Results from each group

The champion model of each group is represented as a
member of EfficientNet-eLite and EfficientNet-HF and we
give the lager id for the more lightweight member. We
find that the winner of each group has the resolution co-
efficient either r1 or r2. Because we group CNN models by
similar parameter usage and Flops, we realize that models
with higher input information tend to outperform others un-
der the similar resource usage condition when models are
scaled down.

5.3. State-of-the-art models on ImageNet

Figure 1 shows the model size with the ImageNet Top-1
accuracy. Under the same accuracy, our proposed models
are smaller than the other state of the arts. From the vertical
perspective for same parameter usage, our proposed mod-
els have higher Top-1 accuracy on ImageNet than the other
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Table 5. Comparison between state-of-the-art models and EfficientNet-eLite and EfficientNet-HF performance on ImageNet. The models
with closing Top-1 accuracy on ImageNet are blocked together and organized as ascending order. Note that we define searching cost on
ImageNet dataset counting from the start to eliminate until only one candidate survives per group.

State-of-the-art models Publication Parameters(M) Flops(M) Top1 ACC.(%) Searching cost (GPU hours)
Mnas-small [30] CVPR 2019 1.9 65.1 64.9 40,000

MobileNet V3 small 0.75[11] ICCV2019 2 44 65.4 Manual
Model(w4, d4, r1)(eLite9) - 1.34 74.56 65.46 80

GhostNet 0.5× [9] CVPR2020 2.6 42 66.2 Manual
EfficientNet-HF5 - 2.77 62.66 66.76 70

MobileNet V3 small 1.0[11] ICCV2019 2.5 56 67.4 Manual
EfficientNet-HF4 - 2.98 65.55 67.95 40

Model(w4, d2, r1)(eLite8) - 1.6 114.52 68.8 100
Model(w3, d4, r2)(eLite7) - 2.18 127.99 70.18 90

EfficientNet-HF3 - 3.44 92.29 70.32 40
MobileNet[12] CVPR2017 4.24 569 70.6 Manual

CondenseNet (G=C=8)[14] CVPR2018 2.9 274 71 Manual
MobileNet V2[25] CVPR2018 3.4 300 72 Manual

Model(w3, d3, r1)(eLite6) - 2.52 181.32 72.23 100
ECA-Net[33] CVPR2020 3.4 319 72.56 Manual
PeleeNet[34] NeurIPS2018 2.8 508 72.6 Manual
DARTS[21] ICLR2019 4.9 595 73.1 288

MobileNet V3 Large 0.75[11] ICCV2019 4 155 73.3 Manual
Model(w3, d2, r1)(eLite5) - 2.68 206.72 73.33 110

EfficientNet-HF2 - 2.77 246.86 73.51 100
ShuffleNet 2× (g=3) [40] CVPR2017 5.2 524 73.7 Manual

GhostNet 1.0× [9] CVPR2020 5.2 141 73.9 Manual
NASNet-A[41] CVPR2018 5.3 508 74 48,000

AmoebaNet-B (N = 3, F = 62) [24] AAAI2019 5.3 555 74 75,600
PNASNet[20] ECCV2018 5.1 588 74.2 3,600

GreedyNAS (latency≤ 80ms) [38] CVPR2020 4.1 324 74.39 -
Model(w2, d3, r2)(eLite4) - 3.17 231.88 74.41 110

AmoebaNet-A (N = 4, F = 50) [24] AAAI2019 5.1 555 74.5 75,600
Proxyless [3] ICLR2019 4 320 74.6 200

GreedyNAS (FLOPs≤ 322M) [38] CVPR2020 3.8 320 74.85 -
FBNet-C [36] CVPR2019 5.5 375 74.9 216

EfficientNet-HF1 - 3.17 296.37 75.08 100
MnasNet-A1[30] CVPR2019 3.9 315 75.2 40,000

MobileNet V3 Large 1.0[11] ICCV2019 5.4 219 74.9 Manual
Model(w2, d2, r1)(eLite3) - 3.78 296.88 75.65 130

AmoebaNet-C (N = 4, F = 50) [24] AAAI2019 6.4 570 75.7 75,600
GhostNet 1.3× [9] CVPR2020 7.3 226 75.7 Manual

Model(w1, d3, r1)(eLite2) - 4.42 313.86 76.14 150
EfficientNet-HF0 - 3.81 383.49 76.46 100

Model(w1, d2, r1)(eLite1) - 4.74 362.62 76.62 -
Model(w1, d1, r1)(eLite0) - 5.33 385.81 76.89 -

EfficientNet-B0 [31] ICML2019 5.3 390 77.3 -

state of the arts. Figure 7 shows the Flops with the Ima-
geNet Top-1 accuracy. Our proposed models outperform
the most of the state of the arts with fewer floating point
operation and higher accuracy.

6. Conclusion
A family of extremely lightweight CNN models for edge

devices is proposed. Particularly, EfficientNet-eLite 9 is
more lightweight than the best and smallest existing model
Mnas-small[30]. We study the trade-off between hardware
resource and accuracy by a novel of Network Candidate
Search, which candidates are determined by scaling down

EfficientNet. We find that scaling down width and depth
tends to have less accuracy drop than reducing the input in-
formation. Besides, grouping and elimination concept are
introduced for effectively selecting the potential structure
and reducing searching cost at the same time. We pro-
pose using average accuracy to speculate the potential CNN
models. To push the state-of-the-art CNN embedded for
edge application, we also propose hardware-friendly CNN
models by using the same methodology of NCS along with
hardware-friendly adjustments. Finally, both of the families
of models outperform the state-of-the-art CNN models with
less parameter usage and higher accuracy on ImageNet.
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