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Abstract
The paper reports a combination of the deep learning technique and bayesian filtering to effectively predict the passenger 
traffic. The architecture of the model integrates the particle filter with the LSTM network. The time series sequential pre-
diction is best achieved using LSTM network while Markovian behaviour is well extracted using Bayesian (Particle Filter) 
filters. The temporal and spatial features of the traffic data are analyzed. Three relevant temporal variations viz., morning, 
noon and post noon patterns are identified after the histogram analysis. These patterns are statistically modelled and the 
integrated model is used to accurately predict the passenger flow for the next thirty days, facilitating, the bus scheduling for 
that period. The experimental results proved that the proposed integrated model with coefficient of determination ( R2 ) value 
of 0.88 is functional in predicting the passenger traffic even when the training data set size is small.
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1 Introduction

Public transportation is the mode of travel for masses. The 
enhancement in services, provided by transport systems, are 
beneficial to common man. Technologies are being developed 
to improve passenger comfort while enhancing the profit of 
service providers. Automation, based on artificial intelligence 
and deep learning, when employed in passenger data analysis 
will facilitate the scheduling of buses, based on passenger 
demand. The passenger data flow is complex and random 
in nature, influenced by many fixed and stochastic param-
eters. The passenger data prediction is a time series predic-
tion problem in which random dependencies are embedded, 
which is more complex than normal predictive modelling. The 
great demand for accurate passenger prediction motivated a 

large amount of research work in this field. non parametric 
machine learning models like Gaussian Process Regression 
[1] was used to predict the passenger data, modelling the pas-
senger arrival as a poisson process. Parametric ML models are 
further developed to obtain more prediction accuracy. Sev-
eral statistical and neural network models are being used, as 
detailed in the next section. The passenger traffic is a sequen-
tial time series data exhibiting nongaussian and nonlinear 
nature. The sequential data prediction is best achieved using 
an LSTM network. Three temporal patterns are extracted and 
seperate LSTM models are used for prediction. Thus the pas-
senger flow prediction is the need of the hour. This leads to 
automated crew scheduling, which in turn, leads to intelligent 
transport systems. Such systems are envisaged to improve the 
punctuality of services, comfort of the passengers and profit 
of public transport systems.

The passenger traffic and the scheduling process are sto-
chastic in nature. AI and Machine learning models work bet-
ter for modelling such stochastic dynamic systems. Future lies 
in intelligent transport systems that adapt to passenger needs 
and road conditions. Transport companies [2] are now using 
latest technologies for automating all systems to improve the 
passenger comfort as well as to improve the earnings per km. 
The machine learning models work better for large datasets. 
The dataset used here is a nine months data. Even for this 
data, LSTM network supported by particle filter is proposed 
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that overcomes the difficulty of limited dataset. The paper 
proposes a hybrid method to correct the LSTM output to 
obtain more accurate prediction results. The detailed analy-
sis of passenger traffic exhibits Markovian behaviour, which 
necessitated the use of a nonlinear filter that can extract and 
model Markov property exhibited by them . So to achieve 
better prediction results, LSTM coupled with particle filters 
[3] is used as a prediction model. This work is explained in 
detail in the following sections.

2  Literature Survey

The short term prediction of passenger traffic started in the 
late seventies with the work of [4], which states the applica-
tion of Autoregressive Integrated Moving Average(ARIMA) 
model. The studies by [5] reveals that the temporal accumu-
lation of data would alter the features and trends of the data. 
It is essential to accurately predict the distribution of pas-
senger flow to ensure efficient operation management. The 
neural network based integrated models always outperform 
simple statistical models, in modelling multidimensional 
stochastic data. Passenger travel flow during holidays show 
distinct characteristics different from normal days, such data 
is extracted and efficiently managed, and used a forecasting 
distribution theory based on Neural Network [5]. Ge et al. 
proposed trend moving average method as a rational and 
effective method in predicting the bus passenger traffic [6].

A stochastic process is a mathematical tool that describes 
a random phenomenon evolving in time. Markov chains are 
among the most important stochastic processes. They are 
stochastic processes for which the description of the present 
state fully captures all the information that could influence the 
future evolution of the process. Predicting traffic flows, simu-
lation of efficient road traffic model [7] communications net-
works, genetic issues, and queues are examples where Markov 
chains can be used to model performance [8]. The application 
of Markov chains to analyze the behaviour of complex sys-
tems is well known in several fields, like, subsurface charac-
terization [9], signal processing [10], finance [11], analysing 
the spatial distribution of heterogeneous vehicle headways in 
mixed traffic [12] etc. Recently hybrid technologies are used 
in many areas like communication [13], city pollution analysis 
[14] and distotion detection of Lidar signals [15]

The machine learning techniques like Random Forest and 
LSTM [16] are employed to predict the number of passengers 
entering each station or boarding at each stop. Neural Net-
work based systems [17] and fuzzy based systems [18] are 
used in almost all area to improve the system performance. 
A special kind of scheme in deep learning, namely LSTM 
network [19] is used to effectively overcome the issues in the 
time series data [20]. An improved STL-LSTM model [21] is 

used for bus passenger traffic during the covid-19 pandemic 
situation. Another multi step prediction, based on Kalman 
Filter [22] and support vector regression method, is used for 
bus passenger load prediction [23]. These studies proved that 
a two step or an integrated model is more effective in the traf-
fic prediction process. This paper proposes an augmentation 
to the LSTM network with a particle filter [24] to counteract 
the prediction errors due to small training dataset.

3  Theory

The time series sequential prediction of bus passenger traffic 
is best achieved using LSTM network. The passenger data is a 
Markovian process and Bayesian techniques are incorporated 
for their study. Thus the integrated model is based on model-
ling the passenger traffic as a discrete time Markov chain.

3.1  Markovian Model

A Markov chain is a stochastic process that satisfies the 
Markov property, which means that the future state depends 
only on the current state and, not on the previous events. This 
means that the current state of the process is only required to 
make the best possible prediction of its future. It often hap-
pens that the bus leaves a terminal with fully occupied pas-
sengers and reaches another terminal, with all the passengers 
alighting there, with the transition from one state to other 
depending only on the present sate and not on the previous 
history. This is the rationale for choosing a Markovian model. 
Considering the bus passenger traffic as a stochastic process

in a countable space S is a discrete time Markov chain if 
Xn ∈ S, ∀n ≥ 0 (where N represents the discrete time step).

For the Markovian traffic data, the transition probability 
is P{Xn = in|Xn−1 = in−1} such that

such that i
0
,⋯ in−1, ∀n ≥ 1 . The transition probability matrix 

represents the likelihood of occupancy of bus in each route. 
The prediction process using Bayesian technique assigns a  
prior distribution for the transition probability matrix � . The  
prior is assigned on each pij with the constraint that 

∑
pij = 1 . 

The prior chosen is the Dirichlet prior as it is the conjugate  
prior of many probability distributions. The Dirichlet distri-
bution is a multivariate distribution whose probability density  
function is given by

(1)X = {Xn, n ∈ N}

(2)
P{Xn = in|Xn−1 = in−1,⋯ ,X0 = i0} = P{Xn = in|Xn−1 = in−1}

(3)f (xx,… , xk;�1,⋯ , �k) =
1

B(�)

K∏
i=1

x
�i−1

i
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where B(�) =
∏k

i=1
Γ(�)

Γ(
∑k

i=1
�i)

 and � = (�
1
,⋯ , �k) are the parameters 

of this distribution. This distribution is used in the particle 
filtering for prediction as discussed in Sec. 5.4.1.

3.2  Long Short Term Memory (LSTM) Network

Neural Networks are prototypes of our biological neural sys-
tem, that learn and remember from the previous data, and pre-
dict values for new datasets. Recurrent Neural Network (RNN) 
is different from the normal network in a way that, it depends 
on the previous data to predict the upcoming data. This makes 
it unique to use them for sequential data problems [25]. RNNs 
have a unique state or feedback layer to store the output for a 
given data which is again used as input and hence the name 
recurrent. But the RNN networks face long term dependancy 
problem, that is efficiently corrected by LSTM networks.

LSTMs use a series of gates to control the flow of data.  
The typical structure of LSTM includes four gates, viz. Cell 
state gate, forget gate, input gate and output gate as shown in 
Fig. 1. Each gate has its own activation function and fully con-
nected layer. The cell state gate z remembers the information 
of the previous data over time, and the forget gate zf  chooses 
the necessary data bits from previous data. The input gate, zi 
is a sigmoid activated network which chooses the required 
content from the input data that output a vector of values in 
[0, 1] (due to the sigmoid activation). The output gate zo selects 
the required data to be used for computing the output. It can be  
seen from Fig. 1 that, there are three inputs to an LSTM block, 
viz cell state ct−1 , previous hidden state ht−1 , and the current 
input xt . The outputs of the LSTM block are cell state ct , hid-
den state ht , and current output yt . The mathematical model of 
the LSTM units is as follows:

(4a)Zf = � (Wf [xt, ht−1])

(4b)Zi = � (Wi[xt, ht−1])

(4c)Zo = � (Wo[xt, ht−1])

where W∗ indicates the weight matrix of the corresponding 
gates and ⊙ is the Hadamard product and � , the tan sigmoid 
activation function. The nonlinear activation functions are 
tanh and sigmoid, given by

The weight matrices determine the importance to accord to 
both the present input and the past hidden state. The weights 
are repetitively adjusted, using backpropagation algorithm, 
until the error becomes minimum.

3.3  Particle Filter

Particle filter is used for modelling nonlinear and nongaussian 
systems. The basic idea of particle filtering is the sequential 
Monte Carlo methodology that recursively computes the prob-
ability distributions using sequential importance sampling. 
The goal is to recursively estimate a state vector x, specifically, 
the hidden state sequence xk of a dynamical system, whose 
initial state is uk and k ∈ N is the discrete time step. The hidden 
state means that no direct state measurements are available. 
The estimation process employs two models, 

1. A process model that encodes prior knowledge on how 
the state xk is expected to evolve over time.

2. A measurement model that relates measurements to the 
state xk.

These two sources of information are modelled using nonlin-
ear mathematical equations. The process model reflects the 
state changes over time, given noise and optional inputs:

where fk is a function that uniquely associates the state at 
time step k − 1 with a state at time step k. The process model 
noise sequence vk−1 is independent and identically distributed 
that represents uncertainties related to the process model. 
The second source of information is the measurement model:

(4d)ct = Zf ⊙ ct−1 + Zi ⊙ tanh(W[xt, ht−1])

(4e)ht = Zo ⊙ tanh(ct)

(4f)yt = �(Wo × ht)

(5a)S(x) =
1

1 + e−x

(5b)tanh(x) =
ex − e−x

ex + e−x

(6)xk = fk(xk−1, uk, vk−1)

(7)zk = hk(xk, uk, nk)

Figure 1  Structure of LSTM block.
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where hk is a function that associates the state with an expected 
measurement. Here nk is an independent and identically dis-
tributed noise sequence representing the measurement noise.

Bayes theorem is used to refine the belief based on a 
prior estimate and newly received measurements. Accord-
ing to Bayesian perspective, the state estimate is repre-
sented by a posterior probability density function that 
quantifies both the estimated state and the uncertainty 
associated with the estimated value. The estimate of the 
state at time k given all measurements and inputs upto time 
k is denoted by the conditional pdf, P(xk|u1∶k, z1∶k) , where 
u
1∶k = ui;i = 1,… , k denotes the sequence of known con-

trol inputs and z
1∶k = zi;i = 1,… , k denotes the measure-

ment sequence. The posterior state is the state that is esti-
mated at each time step. The state sequence is modelled by 
a Markov chain, which implies that the past is adequately 
summarized by only the state at the previous time step. 
The particle filter is a Bayesian filter, in which estimation 
of a Markovian chain is performed using Bayesian theory. 
By Bayes theorem

The marginal likelihood is the normalization term and 
depends only on measurements. The posterior distribution 
at the previous time step, P(xk−1|z1∶k−1) , is combined with 
the process model to form the prior state (graphically rep-
resented in Fig. 2):

The prior represents the predicted state at time k given 
measurements up to time k − 1 . During the update step, the 
measurement zk at time k is used to compute the posterior 
using Bayes’ theorem:

(8)posterior =
prior × likelihood

marginal likelihood

(9)P(xk|z1∶k−1) =
∫

P(xk|xk−1)P(xk−1|z1∶k−1) dxk−1

(10)P(xk|z1∶k) =
P(zk|xk)P(xk|z1∶k−1)

P(zk|z1∶k−1)

The likelihood P(zk|xk) represents the conditional proba-
bility of a measurement given the predicted state, P(xk|z1∶k−1) 
is the prior computed using Eq. 9 and the normalizing con-
stant represents the probability of the measurement. It can 
be computed using:

The posterior density and normalizing constant, described 
by Eqs. 10 and 11, are implemented in particle filter by rep-
resenting them using discrete pdf. The optimal Bayesian 
solution is given by a sum of weighted samples:

Here {wi
k
, xi

0∶k
}
Ns

i=1
 is a set containing Ns samples and weights, 

in which each sample xi
0∶k

 represents realization of the state 
sequence. These samples are named as particles. The weight 
wi
k
 represents the relative importance of each of the Ns sam-

ples xi
0∶k

 and ∑Ns

i=1
wi
k
= 1 . Samples with high weights are 

closer to the true state sequence than samples associated with 
low weights. The Dirac delta function �(a) is zero everywhere 
except a, with its integral being unity. The advantages of rep-
resenting the posterior by a set of weighted particles such as 

1. the ability to represent arbitrarily shaped pdfs and
2. minimal restrictions on the process and measurement models.

are the main reasons for the popularity of particle filter.
The posterior pdf that must be estimated is unknown, mak-

ing sampling impossible. Samples must therefore be drawn 
from another distribution instead. This distribution is known 
as importance density, (sometimes called proposal density) 
denoted as � . The choice of weights compensates for the fact 
that samples are drawn from the importance density � rather 
than the posterior pdf. Any function that is positive where 
the posterior is positive can be used as importance density, 
making Dirichlet function as an ideal choice, whose imple-
mentation details are given in Sec. 5.4.1.

The objective of the work is to predict the passenger traffic 
in a set of Thiruvananthapuram city routes in Kerala, India 
using the integrated model. The methodology with which the 
above mathematical models are used for implementing the 
integrated model is explained below.

4  Methodology

The methodology of the work is shown in Fig. 3. The steps in 
implementing the model are

(11)P(zk|z1∶k−1) =
∫

P(zk|xk)P(xk|z1∶k−1) dxk

(12)P(x0∶k|z1∶k) ≈
Ns∑
i=1

wi
k
�(x0∶k − xi

0∶k
)

Figure 2  Bayesian filtering algorithm.
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– Data Collection
– Statistical Data Analysis
– Modelling the LSTM network
– Particle Filtering
– Performance Evaluation

4.1  Data Collection

The ticketing data for the selected city routes are taken into 
consideration. The ticket data from the ticketing machines are 
collected, preprocessed and modelled in a form suitable for 
giving as an input to the Neural network. The ticket data of 
various routes are used to find the bus stops in each route.

4.2  Statistical Data Analysis

The time-space analysis of the data is performed to extract 
the features and trends in passenger traffic. The passenger 
count alighting and boarding from different stages in a route 
depends on many factors. Such time series sequential data 
are best modelled by RNN networks like LSTM. Three time 
domains are chosen for properly choosing the LSTM network 
viz, morning, noon and post noon sessions. The passenger 
arrival follows a poisson response, while the passenger traf-
fic exhibits Markovian nature [1]. The Markovian nature is 
mathematically modelled using Bayesian Filters like Particle 
Filters which suits best for non gaussian nonlinear systems.

4.3  Modelling the LSTM Network and Particle 
Filtering

The LSTM network is the most popular and suitable RNN for 
performing time series data analysis problems [26]. It is chosen 
for predicting the passenger traffic due to following reasons

– The passenger data analysis and prediction is a sequential 
data analysis problem.

– The special feedback networks in the LSTM helps in pro-
cessing entire sequence data in a single stretch rather than 
considering each single data point separately. By doing so, 
the network retains useful information in the data sequence 
to predict further sequences.

– The LSTM avoids long term dependency in the Markovian 
passenger dataset.

Markov processes are the basis for general stochastic sim-
ulation methods known as Markov chain Monte Carlo, which 

are used for simulating sampling from complex probability 
distributions. These methods are the basis for particle filters. 
So particle filters are used at the output of LSTM model, 
thereby it can correct the errors at the output of LSTM model.

4.4  Performance Evaluation

The performance of the model is evaluated using different 
criteria. The metrics used in evaluating the model are 

1. Mean Absolute Error (MAE)
2. Symmetric Mean Absolute Percent Error (MAPE)
3. Coefficient of Determination,R2

4. Kullback-Leibler (KL) divergence
5. Jensen-Shannon (JS) divergence

The absolute error is the absolute value of the difference 
between the forecasted value and the actual value. Mean 
absolute error is the mean of absolute errors. The symmetric 
mean absolute percentage error (SMAPE) is an accuracy 
measure based on percentage errors. It is percentage based 
and scale independent, thus that it can be used to evaluate the 
forecast performances of time series datasets. The lower the 
SMAPE value of a forecast, the higher its accuracy.

The Kullback-Leibler divergence [27] DKL(p, q) , is the 
expected value of the log likelihood between p ad q. KL 
divergence is a measure of relative entropy between two 
probability distributions. It is neither a distance value nor 
is symmetric. Besides it does not satisfy the triangular 
inequality. The divergence value is calculated to prove that 
the statistics of the predicted value and the actual value are 
the same, thus validating the model.

The Jensen-Shannon divergence (JS divergence), is another 
method to quantify the similarity between two probability dis-
tributions. It uses KL divergence to compute a smoothed, nor-
malised and symmetrical distant metric with scores between 
0 (identical) and 1 (maximally different). The square root of 
the score gives the Jensen-Shannon distance.

5  Experiment

The Trivandrum city routes are selected for studying the 
passenger behaviour and prediction. The passenger traffic 
in any route is affected by many factors viz., stops included 
enroute, overlapping among the routes, trip timing etc. The 

Figure 3  Methodology of work.
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experimental procedure is implemented using Python 3.4 mod-
ules. The collected data was read using the pandas module, 
visualized to analyse the geographical extent of routes in the 
city. The graphical visualization is achieved using Basemap, 
geopandas, and matplotlib modules. From the ticketing data, 
stops of these routes were taken. The latitude and longitude 
values of these stops were collected from Google Map to plot 
them for interpreting the extent of routes. The data model-
ling is realized using scipy and seaborn modules. The LSTM 
network is modelled and trained using the keras, tensorflow, 
pandas, sklearn and matplotlib modules. The predicted output 
of LSTM is particle filtered using numpy, scipy and matplotlib 
modules. This setup along with the tools is shown in Fig. 4

The experimental steps in implementing the model are 
shown in Fig. 5

5.1  Data Modelling

The passenger data is collected from the ticketing machines. 
The ticket data for the period from October 2020 to August 
2021 excluding May and June (lockdown period due to covid 
pandemic) are opted for the analysis. There are many anoma-
lies in the ticket data like wrong entries in the trip numbering, 

depot numbers etc. All the files were cleaned and formatted 
using pandas and numpy modules. The spatial and temporal 
analysis are performed as shown in Fig. 6. The ticket data pro-
vides information regarding the number of stops in each route, 
the passengers boarding and alighting, ticket issue time and 
the amount collected from each passenger. The latitude and 
longitude data of different stops are collected for analysing the 
geospatial extent of routes. The timing of issuing the tickets for 
passengers is extracted from the ticketing data for observing 
the various trends and variations to perform temporal analy-
sis. A total of 36 routes in the Thiruvananthapuram city are 
selected for the study. All the routes were plotted (Fig. 7a) to 
analyse the geographic extent and connectivity of the routes 
to different regions. It is clear that routes spatially extend in all 
the regions and connect the major parts of the city.

The Markovian behaviour of the passenger data is revealed 
by considering the passenger statistics in a route that connects 
the major city traffic from Vizhinjam ( 8.3932◦N , 77.045◦E )  
to Ulloor(8.5295◦N , 76.9290◦E ). This route as shown in 
Fig. 7b is selected as it completely indicates the passenger 
travel behaviour in the city. The passenger data Xn depends 
only on Xn−1 and not on the set X

0
 , X

1
 , ⋯ , Xn−2 . Such Markov 

chains are described using the transition matrix. Here the state 
space is defined by the likelihood of occupancy of the bus. The 
state space is defined as

The different states indicates the total number of seats occu-
pied by the passengers in the bus. The state S1 indicates the 
occupancy of quarterly filled seats (0 − 25%) and S

2
 repre-

sents almost half filled travelling pattern (25 − 50%) . The  
state S

3
 , represents the three quarter occupancy of seats  

(50 − 75%) in the bus by the passengers. The state S
4
 is the 

most profitable state, that indicates almost completely filled 
(75 − 100%) travelling pattern. The transition matrix is cal-
culated by analysing the traffic at various time intervals over 
nine months period. The obtained transition matrix is

The state diagram corresponding to the state transition 
matrix is given by The passenger occupancy in the bus ini-
tially started in the S

3
 state, i.e., the route started with almost 

filled bus, proceeded with complete occupancy of seats. As 
the travel proceeds and approaches the destination, the num-
ber of passengers in the bus dropped, showing a transition to 
state S2 and finally S1 (see Fig. 8).

The passenger traffic of selected routes over nine months 
is averaged and plotted to study the traffic model. In Fig. 9, 
passenger traffic from 5 : 00 till 24 : 00 hours is plotted 

(13)S = {S1, S2, S3, S4}

(14)� =

⎡⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0.8 0.2

0 0.125 0 0.875

⎤⎥⎥⎥⎦

Figure 4  Python Modules used for experimentation.

Figure 5  Steps in implementing the model.
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that represents a complete single day passenger flow. It is 
clear from the graph that the passenger traffic shows a peak 
initially, then an exponential decay, again rising and then 
decaying gradually. Thus the data is clustered into different 
time based patterns. After proper analysis, three patterns 
are chosen, namely morning, noon and post noon session. 
The initial peak from 5 am to 10 am is taken as the morning 
session. The decaying region from 10 am till 1 pm is the noon 
session and from 1 pm till midnight is the post noon session. 
The histogram of these three sessions is shown in Fig. 10 
which gives a clear indication that the passenger statistics is 
different in these three durations.

5.2  Building LSTM architecture

A deep learning based LSTM architecture is designed to 
extract the features of bus passenger data. In this passen-
ger prediction approach, stacked LSTM models with three 
Bidirectional LSTMs (BiLSTM) and one Dense layer at the 
output are designed using the python deep learning library, 
keras. The first BiLSTM layer provides a 3D output as input 
to the subsequent BiLSTM layers. In time sequence predic-
tion problems, BiLSTMs outperform normal LSTM layers 
[28] as they train the input sequences in both forward and 
backward directions and thus extract more features. The 
output of the last BiLSTM layer is given to the dense layer 
which builds a one-to-one relation on input and output.

5.3  Training the LSTM Model

The modelling is performed such that the data is categorized 
into three, and LSTM models are trained separately for predict-
ing the passengers in these three sessions. The whole data set 
is divided into training, testing and validation sets. The training 
set is used for training the LSTM model with sigmoid activation 
function. The weights and learning rate of the stacked network is 
updated using mean square error and RMS prop function. The 
RMS prop is a gradient based optimization algorithm used in 
recurrent neural networks. It uses the moving average of squared 
gradients to normalize the gradient. The vanishing gradient 
problem in neural networks is avoided using this normalization 
technique. It balances the step size (momentum) in such a way 
that, it decreases the step for large gradients to avoid exploding, 
and increases the step for small gradients to avoid vanishing. The 
learning rate is adaptive, it changes over time. The equations are

where E[g(t)] is the moving average of squared gradients, 
�c

�w  
is gradient of the cost function with respect to the weight 
and � is the moving average parameter. The weight updation 
equation is given by

(15)E[g2(t)] = �E[g2(t − 1)] + (1 − �)(
�c

�w
)2

(22)
wij(t) = wij(t − 1) −

�√
E[g2(t)]

�c

�wij

Figure 6  Steps in analysing 
route data.

Figure 7  Geographic Extent of 
Routes.

(a) (b)
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Here � is the learning rate. The default value of � is 0.001. 
The mean square error is the average of the squared differ-
ences between the actual and predicted value.

5.4  Filter Design and Implementation

The predicted data from the LSTM architecture is given as 
input to the particle filter to correct the errors. The particle 
filtering algorithm is implemented using the flowchart in 
Fig. 11. Initially a set of particles are generated and their 
weights are computed. The weights are updated using the 
random discrete measure to estimate the unknowns. At next 
time instant, before generating new particles, the effective 
weights of the updated particles are measured. Those with 
negligible measures are replaced with the ones with weights 
greater than effective size, i.e., resampling is performed. A 

sequential procedure called sequential importance sampling 
(SIS), is used in particle filtering to obtain estimates of 
P(x

0∶k|z1∶k) se quentially exploiting the Markovian nature of 
the state equation. The algorithm to estimate the samples of 
the posterior distribution by particle filtering are as follows:

5.4.1  Particle Generation and Weight Updation

The algorithm starts with the generation of particles. The 
samples of the probability distribution function are approx-
imated by the combination of particles and the weights 
assigned to the particles. In this model, initially several thou-
sand particles are generated, each particle representing the 
passenger count. Initially this is generated based on the data 
obtained from the predicted output from the LSTM network. 
The particles are represented by

where x(m) are the particles, more specifically the passen-
ger count, w(m) , their weights and M is the number of par-
ticles. Here M is chosen as 2000. Each particle is assigned 
a weight, that represents the probability of particles. The 
combination of particles and weights form a probability dis-
tribution function. The weights are assigned as

(17)� = {x(m),w(m)}M
m=1

Figure 8  State transition diagram.

Figure 9  Single day passenger flow model.
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The importance function �(x) [29] can be an optimal impor-
tance function or a prior importance function, that have the 
same distribution as that of the probability distribution to 

(18)w∗(m) =
P(x)

�(x)

be approximated. Using these, the probability distribution 
is approximated as

(19)P(x) ≈

M∑
m=1

w(m)�(x − x(m))

Figure 10  Histogram analysis revealing passenger behaviour in three sessions.

Figure 11  Particle filtering 
algorithm.
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where �(.) is the Dirac delta function. The function of ran-
dom variable X, g(X) follows the probability density function 
P(x) and its expectation is given by

The weight updation using prior importance function is 
given by

The weight updation using optimal importance function is 
as follows

where yk and xk represents the predicted and observed pas-
senger data respectively at time step k. The prior is chosen 
over optimal importance function in the implementation 
of particle filters because the computation of p(yk|xk−1) 
involves following integration:

which may not be tractable and sampling from p(yk|xk−1) 
directly may not be feasible [30].

As discussed in Sec. 3.1, the Dirichlet distribution is cho-
sen as the prior distribution for the transition probability 
matrix of the passenger data that forms a Markovian chain. 
The Dirichlet distribution generates a random vector with 
length K and each element of this vector is non-negative 
and summation of elements is 1, meaning that it generates 
a random probability vector. Any function that is positive 
where the posterior is positive can be used as importance 
density, as discussed in Sec. 3.3. Thus the prior importance 
function is given by

The weights of the particles thus computed are normalized, 
so that they sum to one, for making it into a probability dis-
tribution. The particles that are closest to the actual passenger 
count have a higher weight than the ones that are very much 
different from actual count. On normalizing, it becomes

The above steps viz., particle generation, prediction and 
updation forms the steps of Sequential Importance Sampling 
(SIS) algorithm. The problem associated with SIS algo-
rithm is that it suffers from degeneracy problem. The algo-
rithm starts with uniformly distributed particles with equal 

(20)E[g(X)] ≈

M∑
m=1

w(m)g(x(m))

(21)w
(m)
t ∝ w

(m)

k−1
p(yk|x(m)k

)

(22)w
(m)

k
∝ w

(m)

k−1
p(yk|x(m)k−1

)

(23)p(yk|xk−1) =
∫

p(yk|xk)p(xk|xk−1) dxk

(24)�(x) ∼ Dirch(pi)

(25)w(m) =
w∗(m)

∑M

m=1
w∗(i)

weights. As the algorithm runs, any particle that does not 
match the actual measurements acquires an extremely low 
weight. Only the particles which are closer to the passenger 
data have an appreciable weight. The algorithm started with 
2000 particles with only few contributing meaningfully to 
the state estimate i.e., the filter has degenerated. This degen-
eracy, that deteriorates the performance of particle filters can 
be reduced by resampling.

5.4.2  Particle Resampling

The resampling algorithm operates in such a way that, it 
discards particles with very low probability and replaces 
them with new particles with higher probability. It does that 
by replicating particles with relatively high weights. These 
replicated ones are slightly dispersed by the noise added in 
the predict step, which results in a set of points in which a 
large majority of the particles accurately represent the prob-
ability distribution as shown in Fig. 12.

There are many resampling algorithms. Standard resam-
pling algorithms are simple random resampling, systematic 
resampling, residual resampling and branching corrections. 
Here simple random resampling, also called multinomial 
resampling is used. It samples from the current particle set 
N′ times, making a new set of particles from the sample. The 
probability of selecting any given particle is proportional 
to its weight. This is implemented using NumPy’s cumsum 
function. It computes the cumulative sum of an array.

The resampling is not done at every epoch. It is performed 
after calculating the effective M, which measures the number 
of particles that effectively contribute to the probability distri-
bution. The equation for this is

If Meff  falls below the threshold value, it is time to resample.

(26)Meff =
1∑M

m=1
(wm)2

Figure 12  Resampling algorithm.
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Thus the resampling procedure is summarized as follows

– Draw M particles x∗(m)
k

 from the discrete distribution p(x) 
and assign equal weights ( 1

M
) to the particles.

– The new weights are updated using importance sampling 
algorithm based on Eq. 21

– After weight updation, particles with negligible weights 
are replaced by replicas of particles with larger weights as 
shown in Fig. 12. In the figure, sizes of the particles reflect 
the weights assigned to them.

5.5  Performance Analysis

The result is analysed using the following performance metrics. 
The actual and predicted values are analysed using Eqs. 27a to 
27c. Here yk is the observed passenger flow and xk is the pre-
dicted flow during kth time interval. N is the total number of 
predicted passenger data. The statistics of the predicted values 
are analysed using Eqs. 27d and 27e. Here P and Q denotes the 
probability distribution of actual and predicted passenger count.

(27a)MAE =
1

N

N∑
k=1

|yk − xk|

(27b)SMAPE =
2

N

N∑
i=1

|yk − xk|
yk + xk

× 100%

(27c)Coefficient of Determination,R2 = 1 −

∑
(yk − xk)

2

∑
(yk − ȳ)2

(27d)DKL(P||Q) =
∑
x∈X

log

(
P(x)

Q(x)

)

where M =
1

2
(P + Q)

6  Results

The LSTM model is used initially to predict the passen-
ger data during morning,noon and post noon sessions. The 
dataset for the three sessions are used separately to train the 
LSTM model. The outputs are shown in Fig. 13

The training data used to train the LSTM model is very 
small, thus the result indicates great deviation from the actual 
values. The training and validation loss with respect to time is 
plotted (Fig. 14). In the morning session (Fig. 14a), the valida-
tion loss is much better than the training one, indicating that 
the validation data is scarce. In the noon session (Fig. 14b), 
training loss and validation loss are little bit high, showing 
poor model performance. In the post noon session (Fig. 14c), 
curve moves noisily, not showing a steady performance.

As the dataset is very small, the performance of the LSTM 
model is poor, which is visible in the output graphs. This is recti-
fied using an integrated model which combines an LSTM and a 
particle filter. The output of the LSTM network is filtered by the 
particle filter algorithm and the results are improved (Fig. 15). 
The output accuracy, indicated by the R2 value of the integrated 
model predicting the passengers travelling during the morning 
time (Fig. 15a) is 0.857, indicating a promising performance.

The accuracy for the predicting the passenger count dur-
ing noon session (Fig. 15b) is 0.784 and that during the post 
noon (Fig. 15c) is 0.876.

These results when compared with the output of LSTM 
alone (Fig. 13) shows remarkable difference in the output, 

(27e)JSD(P||Q) = 1

2
D(P||M) +

1

2
D(Q||M)

(a) (b) (c)

Figure 13  Passenger data prediction using LSTM alone.
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which is validated using different parameters and the 
results are presented in Table 1.

In Table 1, it is observed that the Mean Absolute error 
considerably reduced to 3.81%, 3.93% and 6.38% for the 
integrated model considering the temporal sessions sepa-
rately. Here the absolute error is considered as the size of 
the dataset is small, and the error can be indicated relative 
to the size of the passenger dataset. The SMAPE of the 
integrated model dropped to 9.4%, 7.8% and 4.6% for the 
three sessions indicating the effectiveness of the model. 
A good R2 value of 85%, 79% and 89%, is an indication 
that the chosen model correctly follows the trends in the 
passenger data and is predicting well.

The histogram of the actual and predicted values are 
initially plotted to model the probability mass function for 
calculating the divergence values. The histogram is then 
normalised to obtain the probability mass function (pmf) 
of both the predicted and the actual values. The pmf of the 
signals in the morning session is shown in Fig. 16.

These pmf values are used to compute the KL divergence 
values. The KL value for the morning session is obtained as 
1.70, indicating a better match between the predicted and 
actual distribution. While for the LSTM model alone, KL 
value obtained is 2.94 which is higher than that for the inte-
grated model. The pmf of the signals in the noon session is 
shown in Fig. 17.

(a) (b) (c)

Figure 14  Training and validation loss curve.

(a) (b) (c)

Figure 15  Predicted passenger count of the integrated model.
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Table 1  Evaluation of model 
performance.

a Particle Filter

Parameters Morning Noon Postnoon

LSTM LSTM +PFa LSTM LSTM +PF LSTM LSTM +PF

MAE 10.33% 3.81% 46.50% 3.93% 29.99% 6.38%
SMAPE 17.90% 9.40% 18.90% 7.80% 16.60% 4.60%

R
2 0.04 0.85 0.05 0.79 0.04 0.87

KL Divergence 2.94 1.70 2.61 1.78 2.94 1.57
JS Divergence 0.31 0.19 0.22 0.18 0.29 0.17

(a) (b)

Figure 16  Probability mass function during morning session.

(a) (b)

Figure 17  Probability mass function during noon session.
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The KL value computed using these pmfs is 1.78, thus the 
predicted distribution almost follows actual distribution. For 
the LSTM model, value is 2.61, proves that the integrated 
model is better. The pmf of the signals in the post noon 
session is shown in Fig. 18 with KL value of 1.57, which is 
almost half of that obtained for LSTM model alone.

The Jenson-Shannon Divergence is an extension of KL 
divergence, which is a symmetrical score and distance meas-
ure of one pmf over the other. It is the normalized score of 
KL divergence, becomes symmetrical. The square root of the 
JS Divergence gives Jenson-Shannon distance, or JS distance. 
The JS distance obtained for three sessions are 0.43, 0.42 and 

0.41 respectively indicating the prediction accuracy of the 
integrated model. To validate the model performance, the 
temporal clustering of the passenger data is remodelled and 
five sessions were chosen. The passengers travelling from 
morning 4 am to 8 am is chosen as C1, those from 8 am to 
12 noon is C2, those travelling in the afternoon session from 
12 noon to 4 pm is C3, those who are plying the buses in the 
evening time from 4 pm to 8 pm are C4 and C5 are the one 
who chose to travel at night from 8 pm to 12 midnight. The 
KL and JS divergence values for the predicted and actual pas-
senger probability density functions have been computed and 
plotted as shown in Fig. 19. The linearity in the divergence 

(a) (b)

Figure 18  Probability mass function during post noon session.

Figure 19  Divergence values.
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values at different time intervals, is an indication that the 
model is performing well in predicting the passenger count.

The performance of the proposed LSTM-PF model is evalu-
ated with the existing prediction models like Gaussian Process 
Regression (GPR) model, Student-t regression model and Kernel 
Ridge Regression (KRR) model based on the root mean square 
error (RMSE) value of the predicted values. From Fig. 20, it is 
clear that the proposed hybrid model is highly effective in pre-
dicting the passenger traffic compared to other models.

7  Conclusion and Future Scope

This paper proposes an integrated model using LSTM and 
particle filter for predicting the bus passenger traffic. The 
passenger data flow is complex and random in nature, 
influenced by many fixed and stochastic parameters. The 
passenger traffic exhibits Markovian behaviour, as visible 
in the experimental results. The state transition diagrams 
obtained from the Markovian analysis reveals the required 
states to be maintained while running a route for a better 
epk (earning per kilometer). These results necessitate the 
implementation of circular routes within the city so that 
the bus is almost completely occupied during the whole 
travel time. The models based on three temporal patterns 
resulted in better prediction with LSTM coupled with parti-
cle filters. This work is a step towards facilitating automatic 
bus scheduling, based on passenger demand, that will ulti-
mately lead to an Intelligent Transport Systems.
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