
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1245–1263
https://doi.org/10.1007/s11265-023-01883-7

FPGA Design of Transposed Convolutions for Deep Learning Using
High‑Level Synthesis

Cristian Sestito1,2  · Stefania Perri3  · Robert Stewart4 

Received: 30 November 2022 / Revised: 28 April 2023 / Accepted: 13 July 2023 / Published online: 4 August 2023
© The Author(s) 2023

Abstract
Deep Learning (DL) is pervasive across a wide variety of domains. Convolutional Neural Networks (CNNs) are often used
for image processing DL applications. Modern CNN models are growing to meet the needs of more sophisticated tasks,
e.g. using Transposed Convolutions (TCONVs) for image decompression and image generation. Such state-of-the-art DL
models often target GPU-based high-performance architectures, due to the high computational and hardware resource
needs of TCONV layers. To avoid prohibitive GPU energy costs, CNNs are increasingly deployed to decentralized embed-
ded autonomous devices, such as Field Programmable Gate Arrays (FPGAs). However, this poses challenges for designing
efficient hardware implementations of TCONV layers. This paper presents a parameterized design and implementation
of a new TCONV module, which is synthesizable onto FPGAs. It is implemented using the High-Level Synthesis (HLS),
through a C++ template to parameterize its functional and non-functional properties. These parameters allow kernel sizes,
image sizes, quantization and parallelism to be varied by users. With a systematic exploration in this design space, we find
an optimal instance of this TCONV module that achieves 6.25 Giga Outputs per Second (Gout/s) using just 1.53 W of power.
We then use our TCONV layer in two neural networks for image decompression and image generation. Image decompression
achieves a speed throughput of more than 30K frames-per-second (fps) using only the 16% of resources on average, image
generation achieves an energy efficiency of 324 fps/W and outperforms comparable state-of-the-art models by at least 7.3×.

Keywords  Transposed Convolution · Deep Learning · FPGA · High-Level Synthesis · Quantization · Parallelism

1  Introduction

Convolutional Neural Networks (CNNs) have gained wide-
spread adoption in several applications, such as image pro-
cessing [1], speech recognition [2] and robotics [3].

Input data, in the form of multi-dimensional arrays, are
managed through a sequence of computing layers that modu-
late the space representation to handle the complexity of
information. While down-sampling layers progressively
compress data to extract relevant features, up-sampling
stages act in the opposite way, by predicting new informa-
tive content to be arranged within a wider space.

Among several up-sampling layers, Transposed
Convolutions (TCONVs) work well with image processing
tasks. Indeed, they exploit learnable filters to produce
high-resolution images starting from low-resolution
representations. They are used for image generation
through adversarial learning, where Generative Adversarial
Networks (GANs) [4] build new images similar to those
belonging to the training dataset. The detection of fake

 *	 Cristian Sestito
	 cristian.sestito@unical.it

 *	 Robert Stewart
	 R.Stewart@hw.ac.uk

	 Stefania Perri
	 stefania.perri@unical.it

1	 Department of Informatics, Modeling, Electronics
and System Engineering, University of Calabria,
87036 Rende, Italy

2	 Current Affiliation: Centre for Electronics Frontiers,
School of Engineering, The University of Edinburgh,
Edinburgh EH9 3BF, UK

3	 Department of Mechanical, Energy and Management
Engineering, University of Calabria, 87036 Rende, Italy

4	 Department of Computer Science, Heriot-Watt University,
Edinburgh EH14 4AS, UK

http://orcid.org/0000-0002-7731-0002
http://orcid.org/0000-0003-1363-9201
http://orcid.org/0000-0003-0365-693X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01883-7&domain=pdf

1246	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

images in social media is an application scenario [5].
TCONVs are also suitable to implement pixel-level
classification, or semantic segmentation, to highlight
different objects within an image [6]. For instance, medical
image segmentation makes use of TCONV-based decoders
to analyze optic discs, retinal vessels and lungs [7]. Super-
resolution imaging [8] is another scenario that benefits from
such up-sampling layers to deal with virtual and augmented
reality through smart head-mounted displays [9].

However, the performance of TCONVs are often
impacted by high computational complexity. Indeed, they
require input data pre-processing that results in more
computations compared with conventional Convolutions
(CONVs) [10]. Low-latency applications are extremely sus-
ceptible to this detrimental effect, thus demanding highly-
parallelizable devices. Mainstream Graphics Processing
Units (GPUs) effectively meet the parallelism constraint,
but at the cost of a higher power dissipation [11]. Field
Programmable Gate Arrays (FPGAs), other than offering a
reasonable trade-off in terms of speed and power, also pro-
vide a flexible substrate suitable to not only deploy parallel
CNNs, but to also infer either alternative algorithmic strat-
egies or compression techniques (e.g., data quantization)
to further improve the overall efficiency with respect to
GPUs. FPGA can address the complexity issue by skipping
redundant computations [12], or revisiting the conventional
data pre-processing [13, 14]. The FPGA implementation of
a 16-bit TCONV-based GANs [12], where redundant com-
putations are skipped, outperformed the energy-efficiency
on GPU by a ~ 3× factor. More aggressive quantization
may boost such improvement, as shown in image classifi-
cation CNNs implemented on FPGAs [15, 16]. However,
the impact of deep quantization over up-sampling models
using TCONVs is still under-explored.

Motivated by all these preliminary considerations, we
have recently investigated the joint impact of parallelism
and quantization over a simple Transposed Convolutional
Neural Network (TCNN), implemented on FPGA [17], that
deals with image decompression. The High-Level Syn-
thesis (HLS) paradigm has been adopted, since the latter
allows (1) the architecture to be platform-independent, and
(2) parametric C++ templates to be used to investigate
different configurations with minimal top-level modifi-
cations. We have performed an extensive design-space
exploration, by either varying the input and output paral-
lelism (i.e., the number of input images and output images
processed in parallel) or the data bit-width, to determine
the optimum configuration, by using the commercial
XC7Z020 FPGA. We have observed that the architecture is
able to decompress MNIST [18] and Fashion-MNIST [19]
with only the ~ 2.5% accuracy loss when moving from 8 to
4 bits. Parallelism provides a 3.5× speed-up, whilst only
requiring less than the 10% of Look-Up Tables (LUTs).

This work extends the previous investigations and pro-
vides further lines of research. Specifically, the new contri-
butions can be summarized as follows:

•	 An extended review about state-of-the-art TCNNs
deployed on FPGAs (Section 2).

•	 A detailed presentation of the C++ TCONV layer
template, suitable to be implemented within dataflow
TCNNs. The impact of the specific TCONV parameters
over the resources utilization and the speed throughput
are presented, as well as comparisons with some state-
of-the-art competitors (Section 3). When implemented
within the XC7Z100 FPGA device, the architecture pro-
vides 6.25 Giga Outputs per Second (Gout/s), whilst dis-
sipating only 1.53 W, using ~ 11.7k LUTs and 4.52 Mb of
on-chip memory.

•	 A high-level design space exploration of the TCONV
decoder from [17], using C++ #pragmas to control
dataflow and data parallelism, memory resources,
pipelining and loop unrolling. In particular, the trade-off
between resources utilization and throughput is discussed
(Section 4). The analysis, carried out in the range 8–4
bits, shows an improvement of 3 orders of magnitude
in the number of frames-per-second (fps), with a 16%
average resources utilization at most.

•	 The characterization of a more complex TCNN, dealing
with image generation through the Deep Convolutional
Generative Adversarial Network (DCGAN) paradigm
[20]. The impact of parallelism over the resources utiliza-
tion and throughput is presented, as well as comparisons
with state-of-the-art DCGAN accelerators (Section 5).
The characterization at 5-bits highlighted an energy effi-
ciency of 324.32 fps/W, which outperforms the art by at
least ~ 7.3×.

Finally, conclusions are drawn in Section 6.

2 � Background and Related Works

Several CNNs take advantage of TCONV layers, including
architectures tailored for image generation and models con-
ceived to either decompress data or provide super-resolution
images. The former includes the well-known DCGAN [20]
and consists of two networks, namely the discriminator and
the generator. Training aims at strengthening the generator
to build realistic images similar to the actual dataset under
examination. While the discriminator consists of consecu-
tive Convolution (CONV) layers that progressively down-
sample the informative content for binary classification, the
generator stacks multiple TCONV layers to build an image
starting from a latent vector. Conversely, models for image
decompression and super-resolution usually rely on an

1247Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

encoder-decoder architecture. For instance, the Fast Super-
Resolution CNN (FSRCNN) [8] uses an encoder, made of
seven CONVs layers, to extract meaningful features from
inputs. The decoder adopts just a single TCONV layer to
provide the final high-resolution image.

The generic TCONV layer receives a set of IC input fea-
ture maps (ifmaps), each consisting of HI × WI activations,
and a set of OC 3-D filters, each consisting of IC kernels of
K × K weights. As a result, the layer provides a set of high-
resolution OC output feature maps (ofmaps), each HO × WO-
sized. The ofmaps sizes are proportional to those related to
the ifmaps by a factor S, known as stride or up-sampling
factor. Each 3-D filter performs a 3-D TCONV processing
the IC ifmaps, thus generating one of the OC ofmaps. Option-
ally, OC biases can be finally summed up to the ofmaps
activations. By a top-level viewpoint, with no reference to
the specific algorithm adopted, as depicted in Fig. 1, the
generic TCONV layer practically matches the exoskeleton
of conventional CONV layers. However, in order to meet the
up-sampling behavior, the needed computations may signifi-
cantly exceed those required by CONV layers. Indeed, the
last TCONV layer of the FSRCNN may require up to ~ 6.75
more Multiply-Accumulations (MACs) with respect to the
CONV layers [10]. This is due to the fact that, convention-
ally, TCONVs can be treated as direct CONVs over a dilated
representation of the generic ifmap. To better understand
this point, let us consider a 4 × 4 ifmap that is subjected to a
filter having just one 2 × 2 kernel (Fig. 2); we also suppose
S = 2. Firstly, the ifmap is up-sampled, by interleaving S–1
zeros between adjacent activations. Then, a direct CONV is
performed between the dilated ifmap and the 2 × 2 kernel.
As a result, each output activation is given by 2 × 2 MACs.
In total, considering that 64 activations are generated, this
TCONV costs 256 MACs. In the case of a conventional
CONV, the overall cost would have been ~ 86% lower.

High computational complexity makes it difficult to
achieve low latency performance, typically required by real-
time systems. As a result, efforts to accelerate TCNNs on
dedicated hardware, such as FPGAs, have been undertaken

in recent years [10, 12–14, 21–25, 27, 28, 30]. Different
hardware-oriented algorithmic strategies have been inves-
tigated, with the aim to trade-off the resources utilization,
the throughput and the power dissipation. The dilation of
ifmaps, through zeros insertion, is the primitive way to infer
the up-sampling capability to conventional CONV engines.
This strategy was effectively managed in [12] through the
FlexiGAN framework, which skips the redundant computa-
tions exhibited by the zeros insertion. This is accomplished
by adding extra control logic to coach the computing core
about the actual patterns to be managed (i.e., the patterns
of non-zero values). As an alternative approach, the multi-
channel-multi-kernel parallel algorithm was presented in
[21], which rearranges K × K TCONVs into K2 separate 1 × 1
CONVs to avoid patterns with zeros.

With the aim of transforming TCONVs into CONVs,
the algorithm proposed in [10] decomposes wide filters
in multiple sub-filters, to be then processed by as many
CONV engines. Starting from the observation that specific
TCONVs with zeros insertion exhibit S × S regular patterns
of actual computations, the generic filter can be split into
S × S smaller filters, each consisting of a different number of
weights, before being supplied to the CONV engine. How-
ever, the different number of weights of each pattern results

Figure 1   Example of TCONV
layer with IC = 3 and OC = 3.

IC
WI

HI

IC
K

K

OC

WO

HO

OC

Transposed
Convolution Layer

0 1 2 3 4 5 6 7 8 i\j
0

1

2

3

4

5

6

7

8

m\n 0 1

0

1

kernel

dilated ifmap

Figure 2   Example of a TCONV between a 4 × 4 ifmap and a 2 × 2
kernel. The yellow cells within the dilated ifmap represent the actual
input activations.

1248	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

in computational imbalance. The latter was addressed by
the iterative filters sub-splitting proposed in [22], where the
achieved efficacy was evaluated over both the FSRCNN [8]
and the DCGAN [20] models. Both the above approaches
[10, 22] need to pre-process filters off-chip, by making
challenging the run-time adaptability to different configu-
rations. In order to avoid preliminary transformations, as
demonstrated in [13], ifmaps’ activations can be properly
re-arranged at run-time. The equivalent reconfigurable cir-
cuit was made capable to support different filter sizes and
benchmarked using the FSRCNN [8]. Finally, filters man-
agement was also taken into account in Uni-OPU [23] to
both addresses zero-insertion in TCONV and offer adapt-
ability to the nearest-neighboring up-sampling method that,
in turn, dilates the ifmaps by replicating pixels instead of
inserting zeros.

Alternative strategies strove to either leverage the Wino-
grad transformation [29] or to adopt hybrid computations
to alleviate the high computational complexity. The former
strategy was examined in [24], where element-wise multi-
plication manipulation was used to model multiplications
as simpler additions and shift operations. Conversely, the
architecture in [25] adopted a mixed approach in which
part of TCONVs are replaced by average computations to
minimize the overall MACs. The key benefit of such an
approach is to improve the throughput noticeably, at the
cost of lower accuracy.

The Input-Oriented Mapping (IOM) strategy [26] uses
a completely different algorithm that produces the same
outputs of the previous approaches, but avoids both zeros
insertion and sub-filters management. The HI × WI acti-
vations of the generic ifmap are multiplied by the K × K
kernel weights, thus providing HI × WI provisional out-
put windows. When K > S, adjacent windows overlap, by
sharing K–S columns and rows. The overlapping areas are
summed up to provide the actual results. The architecture
presented in [14] firstly adopted the IOM on FPGAs, with
reverse looping to avoid accumulations for overlaps, by
taking into account the input coordinates for each itera-
tion. Conversely, the reconfigurable engine proposed in
[27] dealt with overlaps by carefully using the on-chip
Digital Signal Processing (DSP) slices to boost the speed
performance at limited power dissipation. Results reported
in [28] demonstrated the suitability of both the IOM and
neural network compression to manage 2-D and 3-D GANs
on FPGAs. They also shown that filters pruning allows
low-weights connections to be removed and, accordingly,
the computational efficiency to be improved. Authors
in [30] dealt with semantic segmentation by proposing
a parameterizable architecture to comply with different

neural networks. They also compared the FPGA results
with the equivalent software on GPU. While the latter dis-
sipates at least 147 W on the NVIDIA Titan X (Pascal)
GPU, the FPGA accelerator used only 9.6 W.

In this work, we further extend the investigations about
the FPGA implementation of IOM-based TCONV layers,
by proposing a platform-independent HLS template, able to
be adapted either to very low bit-width or to high parallel-
ism, in accordance with the constraint of the specific deep
learning task to be performed. The synthesis tool is sup-
plied by HLS #pragmas to balance the trade-off between
resources utilization, speed throughput and power dissipa-
tion, in order to achieve the highest energy efficiency.

3 � Design and Characterization of the HLS‑Based
Transposed Convolution Layer

The generic TCONV layer, used within the TCNNs dis-
cussed in this work, is described at the C++ abstraction.
The template is made parameterizable in terms of (a) the
bit-width N, (b) the TCONV parameters (i.e., the kernel size
K, the stride S, the ifmaps sizes HI, WI), and (c) the input and
output parallelism factors (i.e., TIC and TOC). These parame-
ters allow either characterizing different configurations onto
the same device or implementing a specific architecture on
different devices.

3.1 � The Proposed Design

The algorithm for the proposed TCONV layer is reported
in Listing 1. The equivalent architecture is made able to
process TIC ifmaps in parallel, using TOC × TIC filters and
TOC biases at the same time. While the activations are the
actual inputs, all the weights and biases are preliminarily
stored on-chip. At the completion of the computations,
the circuit provides TOC ofmaps in parallel. Figure 3
illustrates an example of top-level block diagram when
TIC = 2 and TOC = 2. Considering the output parallelism
factor, line 1 highlights that OC/TOC steps are required
to generate all the ofmaps. Referring to Listing 1, for
each iteration of the loop in line 1, the circuit takes IC/
TIC + 1 steps (line 2). The first IC/TIC steps are needed to
compute the 3-D TCONVs between the TIC ifmaps and
the TOC × TIC filters, to provide a group of TOC ofmaps.
The extra step is used to (a) add the TOC biases, and
(b) move the actual outputs out, after being temporarily
stored within on-chip memories.

1249Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

Listing 1  The pseudocode of the Transposed Convolution Layer

Inputs: Stream of TIC ifmaps,

OC×IC×K×K weights,

OC biases

Output: Stream of TOC ofmaps
1: for oc=0 to OC/TOC –1 do
2: for ic=0 to IC/TIC do
3: if ic < IC/TIC then
4: Load weights and biases;

5: for hi=0 to HI–1 do
6: for wi=0 to WI–1 do
7: #pragma HLS PIPELINE II=1

8: Perform 3-D TCONVs using the IOM method

9: end for
10: end for
11: else
12: for iter=0 to HO*WO–1 do
13: #pragma HLS PIPELINE II=1

14: Biases accumulations and outputs movement

15: end for
16: end if
17: end for
18: end for

Listing 2 details the 3-D TCONV that makes use of the
IOM strategy carried out on line 8 in Listing 1. In what fol-
lows, the reported lines refer to Listing 2, unless otherwise
stated. The #pragma HLS PIPELINE (line 3) ensures that the
underlining loops are parallel performed in a pipeline fash-
ion. For each clock cycle, as stated by the Initiation Interval

(II = 1), a stream of TIC activations is read and saved in the
array inAct (line 4). The TIC activations are multiplied by
the respective TOC × TIC × K × K weights of the array filt, and
subjected to columns overlap. We refer to weights to indicate
the trained parameters of the generic neural network.

TCONV Layer
Architecture

TIC

TOCifmaps

Filter weights

ofmaps

TOC

Figure 3   Parallel inputs and outputs of the TCONV Layer when TIC = 2 and TOC = 2.

1250	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

Listing 2  Detail of the Input-Oriented Mapping 3-D TCONVs

As a result, TOC × TIC windows of K × K provisional
results are generated each cycle. Within each window, the
locations having row index kr < S and column index kc < S
are final, while the remaining cells must be overlapped
to those belonging to subsequent windows, either in col-
umn- or row-sense. Firstly, column overlaps are managed

1: for hi=0 to HI–1 do
2: for wi=0 to WI–1 do
3: #pragma HLS PIPELINE II=1

4: inAct = inStream.read();

5: for toc=0 to TOC –1 do
6: for tic=0 to TIC–1 do
7: for kr=0 to K–1 do
8: for kc=0 to K–1 do
9: if kc < K–S then
10: if wi=0 then
11: outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*filt(toc,tic,kr,kc);

12: else
13: outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*filt(toc,tic,kr,kc)+ColBuff(toc,tic,kr,kc);

14: end if
15: else
16: outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*filt(toc,tic,kr,kc);

17: end if
18: if kc ≥ S then
19: ColBuff(toc,tic,kr,kc–S) = outCol(toc,tic,kr,kc);

20: end if
21: if kr < K–S then
22: if kc < S then
23: if hi=0 then
24: outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc);

25: else
26: outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc)+RowBuff(toc,tic,wi,kr,kc);

27: end if
28: end if
29: else
30: outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc);

31: end if
32: if kr ≥ S then
33: if kc < S then
34: RowBuff(toc,tic,wi,kr–S,kc) = outRow(toc,tic,kr,kc);

35: end if
36: end if
37: if tic=0 then
38: outAcc(toc,kr,kc) = outRow(toc,tic,kr,kc);

39: else
40: outAcc(toc,kr,kc) += outRow(toc,tic,kr,kc);

41: end if

in lines 9–20. There, while the outCol array collects the
provisional results, the ColBuff array is responsible to tem-
porarily store the products to be overlapped. The column
overlap takes place by accumulating the products belong-
ing to the first K–S columns of the current windows with
those belonging to the last K–S columns of the windows

1251Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

computed in the previous clock cycle (line 13). Accord-
ingly, ColBuff saves the current products having column
index kc ≥ S (lines 18–20). The processing of the very first
TIC activations does not entail accumulations, as stated by
the body of lines 10–11.

Lines 21–36 report the more complex management of
row overlaps. In this case, while the outRow array stores the
new computations, the buffer RowBuff stores the provisional
results to be overlapped. Specifically, the first K–S rows of
the current windows are accumulated to the last K–S rows of
the windows previously computed, and which share the same
column indices. The latter were computed WI clock cycles
before according to the raster-order alignment. In addition,
considering that the column overlap implies that only the
first S outputs of each row are valid for each clock cycle,
row overlap also takes care of the latter consideration (lines
21–22). Accordingly, RowBuff saves the current outputs hav-
ing row index kr ≥ S and column index kc < S (lines 32–36).
The processing of the TIC activations belonging to the first
row of the generic ifmap does not entail accumulations, as
stated by the body of lines 23–24.

To better explain the behavior of the IOM strategy, Fig. 4
illustrates the example in which an ifmap having HI = WI = 2
is processed by a filter with K = 3 and the stride S = 2. The
input activation I00 is multiplied by the weights Wij, with
i = 0, …, 2 and j = 0, …, 2. As a result, the provisional output

window, associated to the array outCol, and having acti-
vations Rmn, with m = 0, …, 2 and n = 0, …, 2, is placed
within the output space. While the activations having m = 0,
1 and n = 0, 1 are final, the remaining activations must be
accumulated either along the columns or along the rows
with the results provided by the subsequent products. All
these activations are followed by an asterisk, which means
that they concur to compose the final results to be placed in
the generic (m.n) position. Specifically, the activations with
n = 2 are stored within the ColBuff array for column overlap
during the next cycle. Conversely, activations with m = 2 and
n = 0, 1 are temporarily stored within the RowBuff array for
subsequent row overlap. The activation R22 will be accepted
by RowBuff during the next clock cycle, in that it must be
preliminary subjected to column overlap.

This process is repeated for the input activation I01, which
either fully generates or contributes to the output activations
Rmn, with m = 2, …, 4 and n = 0, …, 2. In this step, column
overlap definitely provides the final activations R02 and R12.
Conversely, R22 is stored within the RowBuff array for row
overlap purposes.

The input activation I10 belongs to the second row of the
ifmap. Starting from this point, row overlaps will be also
executed. After having generated the activations Rmn, with
m = 0, …, 2 and n = 2, …, 4, those having m = 2 are accu-
mulated to the temporary results provided two cycles before,
which share the same row index and have n = 0, 1. The pro-
visional result R22 is stored within ColBuff to be subjected
to its final column overlap during the next cycle. Finally,
the input activation I11 generates the final results Rmn, with
m = 2, …, 4 and n = 2, …, 4.

In order to comply with 3-D TCONV, the TOC × TIC win-
dows are summed up in a pixel-wise manner (lines 37–41)
to generate the provisional TOC ofmaps. Obviously, if no par-
allelism is exploited, no further computations are required
(lines 37–38). The process is equally repeated when the
subsequent group of TIC ifmaps is processed, thus generat-
ing a new group of provisional TOC ofmaps, which must be
accumulated to that generated during the previous cycle. To
manage this, an on-chip buffer, namely outBuff, is exploited.
By a circuital point of view, the latter can be thought as TOC
banks of S simple dual-port memories, each being HI × WI
wide. During the writing phase, outBuff receives TOC × S × S
activations per cycle, while during the read phase it provides
the data as a stream of TOC activations per cycle, in order to
well comply with the raster-order policy of either a subse-
quent TCONV layer or an external memory support.

The writing phase works as follows: according to the IOM
strategy, the TIC ifmaps are able to generate TOC ofmaps with
S × S valid activations per clock cycle. The generic memory bank
stores the S × S results, into the S memories. Taking into account
that the latter consists of S rows of S adjacent activations, the S
memories of the bank store S activations in each cell.

m\n 0 1 2 3 4
0 R00 R01 R02

* R02
* R03 R04

1 R10 R11 R12
* R12

* R13 R14

2 R20
* R21

* R22
* R22

* R23
* R24

*

R20
* R21

* R22
* R22

* R23
* R24

*

3 R30 R31 R32
* R32

* R33 R34

4 R40 R41 R42
* R42

* R43 R44

I00 I01
I10 I11

W00 W01 W02

W10 W11 W12

W20 W21 W22
ifmap

weights

TCONV
Input-Oriented

Mapping

ofmap

Figure 4   Example of IOM-based TCONV between a 2 × 2 ifmap and
a 3 × 3 weights kernel.

1252	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

To properly access each memory cell, the read phase
makes use of a control logic that manages two pointers,
namely buff_idx and cell_idx that indicates, respectively,
which memory of the bank and which specific cell are under
analysis. Without loss of generality, the example reported
in Fig. 5 shows the behavior of outBuff during the read-
ing phase. There, TOC = 1, S = 2 and HI = WI = 2. In other
words, the outBuff consists of TOC = 1 memory bank of
S = 2 memories (i.e., Memory#0 and Memory#1). Each
memory has HI × WI = 4 cells, each able to accommodate
S = 2 activations. The numbers indicated in each cell refer
to the spatial position of the activations within the ofmap
space. The control logic follows that numbering strategy to
furnish TOC = 1 activations per clock cycle. During the first
cycle, buff_idx = 0 and cell_idx = 0. This state is preserved
for two cycles, in order to get the first two activations stored
within the Memory#0. During the third and fourth cycles,
cell_idx = 1 and the activations R02, R03 are read. Afterwards,
cell_idx is set again to 0, while buff_idx = 1. Accordingly, the
activations R10 and R11 are read. Thus, cell_idx = 1 to read
the activations R12 and R13. At this point, in order to read the
activations R20 and R21, buff_idx = 0 and cell_idx = 2. And so
on for the remaining activations, following a ping-pong way.

3.2 � Parametric Analysis

In order to be compliant with real FPGA-based accelera-
tion architectures, the proposed TCONV layer is equipped
with the streaming interface of the fourth generation
Advanced eXtensible Interface (AXI4-Stream) [31]. To
this aim, the #pragma HLS INTERFACE axis is used.

As a first set of experiments, the proposed template
implements several circuit configurations, in order to
examine the trend of both resources utilization and speed
throughput when the specific TCONV parameters are var-
ied (i.e., the kernel size K, the stride S and the ifmaps
sizes HI, WI). The characterization is carried out using

the Xilinx Vivado Design Suite (v2019.2) and referring
to the XC7Z020 device at the 100 MHz clock frequency.
The resources utilization is evaluated in terms of Look-Up
Tables (LUTs), Flip-Flops (FFs), on-chip Block Random
Access Memories (BRAMs) and Digital Signal Process-
ing slices (DSPs). The frames-per-second (fps) metric is
considered for the evaluation of the speed throughput.
Figure 6a-c illustrate the obtained trends. For each plot,
the horizontal axis refers to the specific parameter under
evaluation, while the vertical axis reports the resources
utilization as well as the achieved throughput.

The impact of the stride S is reported in Fig. 6a. The
variation of S is typically adopted in super-resolution imag-
ing, which relies on wide filters to process the ifmaps [8].
Accordingly, K is set to 9 and left fixed for all the configura-
tions. The other parameters are fixed to N = 8, HI = WI = 32,
TIC = 2, TOC = 2. While LUTs, FFs, and DSPs are practically
unaffected by S, the quantity of BRAMs grows with the lat-
ter. This is justified by the fact that the sizes of the gener-
ated ofmaps are proportional to S and, in turn, they are tem-
porarily buffered in on-chip memories to comply with 3-D
TCONV accumulations. For example, varying S from 2 to 4
leads to a 3.6 × increase of memory. As stated in Section 3.1,
the on-chip buffers are made able to write data as a stream of
TOC × S × S activations per cycle. However, in order to satisfy
the raster-order policy of contiguous TCONV layers, the
stored activations have to be moved out as a stream of TOC
values per cycle. The latter directly impacts on the latency
that becomes proportional to S. As a result, the higher S, the
higher the latency and the lower the frame rate.

The impact of the kernel size K is reported in Fig. 6b.
There, while K is varied between 3 and 9, the other parameters
are fixed to N = 8, HI = WI = 32, S = 2, TIC = 2, TOC = 2. The
computing resources (i.e., LUTs and DSPs) are strongly influ-
enced by K. This is due to the use of #pragma HLS PIPELINE
that completely unrolls the computational loops of the IOM to
meet the II = 1 constraint. The higher the filter size, the higher
the number of parallel hardware replicas. Conversely, the fps
is practically independent of K. Indeed, the negligible ~ 5.1%
loss noted when K is moved from 3 to 9 is due to the low
amount of extra cycles to load wider 9 × 9 kernels.

Finally, the impact of the input fmap sizes HI, WI is
reported in Fig. 6c, where HI = WI by supposing square
fmaps, as usually happens in CNNs. The sizes range from 8
to 128, which is usual in image generation. The other param-
eters are fixed to N = 8, K = 4, S = 2, TIC = 2, TOC = 2. As
expected, the throughput is strongly influenced by HI and
WI. Indeed, wider ifmaps require more clock cycles to be
processed by the TCONV layer. On-chip BRAMs are also
influenced by the referred sizes, especially when HI, WI ≥ 32.
Indeed, at the parity of S, the wider the ifmaps, the wider the
ofmaps to be temporarily stored on-chip.

R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

0 R01 R00

1 R03 R02

2 R21 R20

3 R23 R22

Memory#0

0 R11 R10

1 R13 R12

2 R31 R30

3 R33 R32

Memory#1

buff_idx

cell_idx

fmap to be stored

Figure 5   Example of outBuff management when HI = WI = 2 and
S = 2.

1253Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

Figure 6   Parametric analysis of
the TCONV layer (a) varying
S, (b) varying K, (c) varying
HI (WI). 

1254	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

Table 1 summarizes all the performed experiments,
by reporting (a) the parameters of each configuration, (b)
the resources utilization (i.e., LUTs, FFs, 18 Kb BRAMs,
DSPs), and (c) the throughput in terms of fps.

3.3 � Comparison with State‑of‑the‑Art Competitors

In this Section, the proposed TCONV layer is compared to
several state-of-the-art FPGA-based architectures [23, 25,
27] at a parity of bit-width N, kernel size K and stride S, as
well as the used device. Table 2, other than reporting the
referred parameters, provides information about (a) the out-
put image sizes (HO × WO); (b) the output parallelism, given
by the number of images generated in parallel (TOC); (c) the
resources utilization (i.e., LUTs, FFs, BRAMs, DSPs used);

(d) the clock frequency; (e) the throughput in terms of Giga
Outputs per Second (Gout/s); (f) the power consumption and
the energy efficiency (i.e., the ratio between the throughput
and the power). Power consumption was estimated by ana-
lyzing the post-implementation results through the power
analysis tool available within Vivado.

The circuit having K = 3 is implemented within the
XC7Z020 FPGA device to be compared with the direct
competitor [25]. It can be seen that, due to the higher par-
allelism, the proposed solution exhibits twice the through-
put but at the expense of a ~ 36% lower energy efficiency.
Indeed, the hybrid computational approach adopted in [25]
to replace many TCONVs with simpler averages leads to a
power dissipation of only ~ 9 mW and to a DSP slices utiliza-
tion ~ 5× lower than the proposed architecture.

Table 1   Summary of the
TCONV layer parametric
analysis.

Fixed Parameters Variable Parameter Resources Throughput [fps]

LUTs FFs BRAMs
(18 Kb)

DSPs

N = 8, HI = WI = 32,
K = 9,TIC = 2,TOC = 2

S = 2 13091 7163 9 220 18348
S = 3 13234 7124 19 220 9433
S = 4 13106 6929 33 220 5649

N = 8, HI = WI = 32,
S = 2,TIC = 2,TOC = 2

K = 3 598 408 8 36 19342
K = 4 912 649 8 64 19267
K = 5 1245 836 8 100 19120
K = 7 1821 1111 9 196 18761
K = 9 13091 7163 9 220 18348

N = 8,K = 4,S = 2,
TIC = 2,TOC = 2

HI = WI = 8 940 617 4 64 255102
HI = WI = 16 899 633 4 64 74074
HI = WI = 32 912 649 8 64 19267
HI = WI = 64 756 395 48 64 4854
HI = WI = 128 922 421 128 64 1219

Table 2   Characterization of the
HLS TCONV Layer and state-
of-the-art comparisonsa.

a Best performance in bold at the parity of device and K, S
b NA Not Available

New New New [25] [27] [27] [23]

Device XC7Z020 XC7Z020 XC7Z100 XC7Z020 XC7Z020 XC7Z100 XC7Z100
Bit-width 16 16 16 16 16 16 16
K, S 3, 2 5, 2 5, 2 3, 2 5, 2 5, 2 3, 2
HO × WO 64 × 64 64 × 64 64 × 64 NAb 64 × 64 64 × 64 NA
TOC 8 4 8 NA 2 2 64
LUTs 2.52k 2.99k 11.71k 3.82k 2.90k 15.50k 115.2k
FFs 0.82k 1.41k 10.04k 5.09k 4.30k 22.90k 241.4k
BRAMs [Mb] 1.69 1.40 4.52 0.45 0.84 0.84 17.38
DSPs 144 200 800 29 210 1120 1987
Freq. [MHz] 125 125 200 125 200 300 200
Gout/s 3.90 1.95 6.25 1.95 1.56 9.37 12.5
Power [W] 0.29 0.36 1.53 0.09 0.42 2.62 2.89
Gout/s/W 13.45 5.42 4.08 20.97 3.71 3.58 4.33

1255Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

The circuit having K = 5 is implemented within both the
XC7Z020 and the XC7Z100 FPGA devices and directly
compared to the reconfigurable architectures proposed
in [27]. Both the accelerators adopt the IOM strategy for
TCONV computations. However, in [27] VHDL tem-
plates are used to improve speed performances. When the
XC7Z020 device is referred to, the novel architecture exhib-
its a ~ 25% higher throughput, due to the doubled parallel-
ism, even running at a ~ 37.5% lower frequency. Results
obtained for the XC7Z100 part show that the proposed
design is ~ 1.14× more energy-efficient than [27], while run-
ning ~ 1.5× slower. Finally, when compared to the accelera-
tor Uni-OPU [23], the proposed solution is only ~ 5.8% less
energy-efficient, but it uses ~ 89.8%, ~ 95.8%, ~ 59.7%, ~ 74%
less LUTs, FFs, DSPs and BRAMs, respectively.

Finally, in order to get a more insightful understanding
about the impact of power over the time, we also retrieved
the energy values for all the implemented circuits. Consid-
ering that all of them take the same number of clock cycles
to complete the task, the reported energy depends on the
clock frequency and the power consumption. The XC7Z020
implementation with K = 3 dissipates ~ 19 μJ at 125 MHz. At
the same frequency, the K = 5 configuration shows a ~ 24.2%
increment due to the slightly higher power (because of the
higher usage of computing resources to manage wider fil-
ters). As expected, the high-end XC7Z100 implementation
led to the highest contribution of 62.8 μJ to meet the dou-
bled parallelism. When comparing the XC7Z020 and the
XC7Z100 implementations at K = 5, while the power dissi-
pation shows a 4.25× increase, the energy ratio is only 2.7×.
This because the XC7Z100 implementation benefits from a
50% higher clock frequency.

4 � Characterization of a Decoder Through
Design‑Space Exploration

This Section evaluates the suitability of the TCONV layer
model introduced in Section 3 to be accommodated within
dataflow architectures, consisting of stacked layers that
exchange informative content on-chip, by reducing the off-
chip memory accesses to send and retrieve the intermedi-
ate results. The evaluation has a twofold aim: (1) examine
the suitability of careful high-level synthesis, through the
effective use of #pragmas; (2) determine the impact of the
bit-width N, and parallelism configurations, over the imple-
mented architectures.

4.1 � The HLS Decoder Template

The top-level model of the TCNN for image decompression,
namely decoder, is reported in Listing 3. Two TCONV layers
compose the network, with the former also equipped with
the Rectified Linear Unit (ReLU) non-linearity [32]. The
first layer is supplied by four 8 × 8 ifmaps, and 16 filters
of 4 × 3 × 3 weights. The stride S = 2. Accordingly, sixteen
16 × 16 fmaps are generated and provided to the second layer
that, in turn, uses 1 filter of 16 × 3 × 3 weights. Finally, a
32 × 32 ofmap is provided. The #pragma HLS DATAFLOW
is adopted to infer task-level parallelism, thus allowing the
overlap of the computations of both the layers.

Listing 3  The pseudocode of the TCNN for image
decompression

Input: inStream of TIC ifmaps
Output: outStream of TOC ofmaps
1: #pragma HLS INTERFACE axis port=inStream
2: #pragma HLS INTERFACE axis port=outStream
3: #pragma HLS DATAFLOW
4: TCONV Layer + ReLU;

5: TCONV Layer;

1256	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

4.2 � Evaluation of #pragmas, Bit‑Width
and Parallelism

To evaluate the effectiveness of #pragmas, as well as the influ-
ence of bit-width and parallelism, an extensive design-space
exploration is carried out, using the XC7Z020 FPGA device
at f = 100 MHz. Two types of HLS designs are considered:

•	 Baseline designs, containing the minimum number of
#pragmas to ensure the correct behavior of the synthe-
sized circuits.

•	 Optimized designs, containing additional #pragmas, to
allow the circuits to meet hardware-oriented features,
including pipelining and parallelism.

Table 3 summarizes the used #pragmas, by clarifying
their behavior in hardware, and taking into account both the
baseline designs and the optimized counterparts.

Results in terms of resources utilization are shown in
Fig. 7a−d. Each plot refers to a specific type of resource (i.e.,
LUTs, DSPs, FFs, BRAMs, respectively). The labels reported
in the Configurations axis must be interpreted as (type of
implementation-TIC,TOC), where type of implementation can
be ‘base’ for the baseline designs and ‘opt’ for the optimized
versions. Bars of different colors refer to different bit-widths.

LUTs in Fig. 7a are mainly exploited for computations
and control. To understand the impact of #pragmas, we

consider the configurations having (TIC,TOC) = (2,4) as an
example. The optimized versions use more resources. This is
justified by the use of #pragma HLS PIPELINE that inherits
the #pragma HLS UNROLL to allow loops bodies to perform
the computations in parallel. For instance, when N = 6, the
optimized version adopts ~ 2.5× more LUTs.

DSPs are used, in conjunction with LUTs, for computa-
tion purposes. Accordingly, the optimized versions, relying
in loop unrolling and pipelining, ask for more DSPs, as high-
lighted in Fig. 7b. For example, fixed N = 8, the configura-
tion (opt-2,2) requires 14.5× more DSPs than the configura-
tion (base-2,2). As a further consideration, it is worth noting
that N differently affects DSPs and LUTs utilization trends.
As an example, taking into account the optimized designs
only, while LUTs utilization progressively increases varying
N from 8 to 6, for DSPs a downward trend occurs. Indeed,
while the amount of occupied LUTs grow by a 2.1× factor,
the amount of utilized DSPs decrease up to 95%. Below 6
bits, the DSPs utilization is steady, while the LUTs utili-
zation progressively decreases. This means that, while the
synthesizer infers multiplications and additions using DSPs
predominantly in the range 8–6 bits, it relies on LUTs for
lower bit-widths.

Figure 7c shows that, given that FFs mainly equip with
pipelining the combinatorial paths, their utilization fol-
lows the LUTs trend. Conversely, BRAMs are exploited
to buffer weights on-chip and to temporary store ofmaps

Table 3   Detail of the used #pragmas for the TCONV-based decoder.

#pragma Baseline Optimized

HLS ARRAY_PARTITION
It partitions a multi-dimensional array into

multiple sub-arrays.

Used for the output buffer only, to allow the circuit to proper store the TOC × S × S pixels
provided each cycle.

Not Used Used for filters and biases to be accessed
simultaneously by as many computing elements.

Used for row overlap buffers according to the Input-
Oriented Mapping Algorithm.

HLS RESOURCE
It specifies the type of resource to be used to

implement a given variable.

Not Used Used to implement the output buffer as a simple dual-
port memory.

HLS PIPELINE
It provides pipelining capabilities to the referred

function or loop. Thus, new inputs can be
processed every II clock cycles, with II being
the initiation interval. It inherits the #pragma
HLS UNROLL (see below).

Not Used Used to read each new cycle (II = 1) the ifmaps’
activations.

Used to manage the timing of ofmaps’ activations to
be read from the output buffer.

HLS UNROLL
It transforms loops by creating several copies of

the body to infer parallelism.

Not Used Used to unroll loops for ifmaps acquisition, IOM
computations and buffering.

HLS INTERFACE
It specifies which interfaces must be used by I/O

ports.

Used to equip both input and output ports of the TCONV layer engine with the AXI4-
Stream Interface.

HLS DATAFLOW
It specifies the task-level parallelism to improve

the concurrency of C++ functions.

Used to manage the timing of data between the two layers of the decoder. It is needed
to ensure the correct functionality of data transfer using streams when functions are
cascaded, as reported in the HLS guide [33].

1257Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

before being delivered either to the subsequent TCONV
layer or as final outputs. While the optimized configura-
tions make use of proper #pragmas to instruct the synthe-
sizer to split and place memory arrays into on-chip RAMs
(i.e., #pragma HLS ARRAY_PARTITION and #pragma
HLS RESOURCE), the baseline designs completely lever-
age the synthesizer to arrange data storage. Let us compare
the configurations (base-1,1) and (opt-1,1) at various N.
As visible in Fig. 7d, at a fixed configuration in terms of
input and output parallelism, the baseline designs have an
irregular trend, whereas the optimized configurations have
a constant trend, meaning that they use the same number
of BRAMs for each bit-width. This is due to the above
mentioned #pragmas that instruct the synthesizer to leave
BRAMs implementation independent of the bit-width.

Finally, as expected, for both the baseline and the opti-
mized configurations, higher (TIC,TOC) pairs mean higher
memory requirements.

Figure 8 illustrates the frame rate variations versus N
by means of a heat map. The optimized designs improve
considerably the performance of the decoder, in a range
of 2 to 3 orders of magnitude. While a higher parallel-
ism obviously leads to a higher throughput, the latter is
independent of the bit-width. Indeed, the #pragma HLS
PIPELINE (thus, #pragma HLS UNROLL) makes the cir-
cuit able to perform parallel computations independently
of the data word-length.

Finally, in order to provide a trade-off picture of
the whole set of experiments, Fig. 9 plots the average
resources utilization versus the throughput. The average

Figure 7   Resources utilization
of different configuration of
the TCONV-based decoder:
a LUTs, b DSPs, c FFs,
d BRAMs.

1258	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

resources utilization is the average of the percentages of
each type of resource (i.e., LUTs utilization, FFs utiliza-
tion, BRAMs utilization, DSPs utilization). For the sake of
clear visualization, both the axes use the logarithmic scale.
Each point is labeled to represent a specific configuration:
indicating the design type (i.e., baseline as ‘b’, optimized
as ‘o’), the bit-width N and the TOC factor. For example,
o62 represents the optimized design with N = 6 and output
parallelism factor TOC = 2. The green points refer to the
configurations that satisfy the minimum accuracy thresh-
old for both MNIST and Fashion-MNIST datasets, while
red points fail in meeting these accuracy thresholds, based
on our previous study [17].

Two main regions can be identified within the plot of
Fig. 9: on the left, the baseline designs, whereas on the right
the optimized counterparts. For what concerning the fps, a
proper usage of #pragmas to infer parallelism leads to an
overall 3 orders of magnitude improvement. However, higher
throughput means higher resources requirements. Despite
this, even considering the worst-case configuration o84, the
average utilization is limited to 16%. Figure 10 magnifies the
baseline designs points. While the fps does not significantly
changes, a more noticeable variation occurs in terms of the
average percentage of resources utilization. As expected, the
higher the data bit-width N the higher the resources occupa-
tion. This because wider bit-widths reflect on wider com-
puting units (i.e., multipliers and adders), thus increasing
the quantity of LUTs and FFs. Furthermore, as expected,
higher TOC lead to higher resources occupation. Finally, the
configuration b41 requires the lowest amount of resources,
while the configurations b64, b54, b44 employ the lowest
amount of clock cycles to complete the computations.

5 � Characterization of the Generator
of the DCGAN Architecture

In order to further investigate the suitability of the pro-
posed TCONV layer for dataflow architectures, we con-
sider the DCGAN network. Specifically, considering the
quality results over the MNIST dataset [34], we propose
an FPGA accelerator dealing with 5-bit weights and acti-
vations. The chosen quantization ensures all the weights

Figure 8   Throughput trend of different configurations of the TCONV-
based decoder.

Figure 9   Trade-off analysis
of different configurations of
the TCONV-based decoder.
Each point represents a specific
configuration: the first letter
indicates the design type (i.e.,
baseline configuration as ‘b’,
optimized configuration as ‘o’);
the second value is the bit-width
N; the third value is the output
parallelism (i.e., the TOC factor).

1259Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

to be preliminary stored on-chip and the off-chip memory
accesses to retrieve data to be reduced.

5.1 � The HLS DCGAN Template

Listing 4 shows the top-level pseudocode of the
C++ model. The first Project and Reshape layer is sup-
plied by a 1 × 1 × 100 activations and 256 × 100 × 4 × 4
weights, and performs TCONVs having K = 4 and S = 1.

The resulting 256 4 × 4 fmaps are supplied to the second
layer, that executes TCONVs having K = 4 and S = 2. The
same for the third and the fourth layers, which progres-
sively up-sample fmaps from 8 × 8 to 32 × 32. The second
and the third layers are also equipped with ReLU non-
linearity [32].

Listing 4  The pseudocode of the generator of the DCGAN
model

Input: latent vector inStream
Output: generated image outStream
1: #pragma HLS INTERFACE axis port=inStream
2: #pragma HLS INTERFACE axis port=outStream
3: #pragma HLS DATAFLOW
4: Project and Reshape;

5: DataBuffer;

6: TCONV Layer + ReLU;

7: DataBuffer;

8: TCONV Layer + ReLU;

9: TCONV Layer;

Figure 10   Detail of trade-off
analysis of the baseline configu-
rations TCONV-based decoder.
Each point represents a specific
configuration: the first letter
indicates the design type (i.e.,
baseline configuration ‘b’); the
second value is the bit-width
N; the third value is the output
parallelism (i.e., the TOC factor).

1260	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

With respect to the decoder analyzed in Section 4, the
DCGAN requires reusing the fmaps to manage internal lay-
ers with more than one 3-D filter. Indeed, all the 3-D filters
need the same activations to generate as many ofmaps. How-
ever, due to the streaming behavior of the architecture, the
activations provided by the current layer are generated once
and consumed by the next layer as soon as possible. As a
consequence, a buffer at the interface is mandatory. This is
the meaning of the DataBuffer function reported in Listing
4 and placed between the Layers 1–2 (line 5) and 2–3 (line
7). No extra buffering is needed between the Layers 3 and
4, in that the latter uses just one 3-D filter to provide the
output image.

5.2 � Characterization and State‑of‑the‑Art
Comparisons

The architecture is implemented within the XC7Z045 FPGA
and characterized over different parallelism configurations.
Table 4 reports the resources utilization, the achieved clock
frequency, the throughput (fps), the power dissipation, the
energy dissipation, and the energy efficiency. Power was
estimated considering the post-implementation results and
using the power analysis tool. Energy was computed consid-
ering the power results and the latency to process one image
through the entire DCGAN architecture. The configurations
array refers to the parallelism factor TOC of each layer. For
example, the configuration (2,2,2,1) indicates that the first,
the second, and the third layers exhibit an output parallelism
TOC = 2, while the last layer has TOC = 1.

Obviously, the higher the overall parallelism, the better
the throughput. An improvement of ~ 4.6× is achieved with
the most parallelized configuration (2,4,2,1) compared with
the sequential (1,1,1,1) configuration, whilst power dissipa-
tion grows from 0.34W to 0.74W due to increased BRAM
use. In addition, N = 5 practically nullifies the use of DSPs

for computations, thus removing a not-negligible source of
power consumption.

Parallelism positively impacts the energy dissipation.
Indeed, a ~ 2.15× reduction is evident when moving from
the baseline (1,1,1,1) configuration to the most parallelized
counterpart (2,4,2,1). Considering the slight increase in
power, the referred result is mainly due to the higher speed
performance (i.e., the fps).

Finally, the configuration (2,4,2,1) is compared to some
state-of-the-art counterparts, as reported in Table 5. With
respect to the architecture presented in [21], the proposed
accelerator shows a 7.3× improvement in terms of energy
efficiency, even at 1.7× lower throughput. The power sav-
ing is motivated by the fact that the novel engine accom-
modates all the needed TCONV Layers on chip, as well
as the required filter weights, thus limiting the off-chip
memory accesses. In addition, the data treatment at 5-bit
shrinks the area occupation for computations significantly;
indeed, the 16-bit counterpart hugely adopts DSPs, while
the new design takes just 1 DSP. It is also worth underlin-
ing that the counterpart [21] takes advantage of the high-
performance Alveo U200 device: it achieves the 300 MHz
clock frequency, thus improving the fps.

In comparison with [24], at a parity of the FPGA device
used and of the clock frequency, the architecture presented
here is ~ 29.7% faster and exhibits an energy efficiency
more than 10× higher. This is the direct consequence of the
extra logic exploited in [24] to meet the transformations
steps of the Winograd-based TCONV algorithm, as well
as the high level of parallelism.

Finally, Table 5 shows that the 16-bit DCGAN accelera-
tor [28] accommodated within the high-end XC7VX690T
FPGA device reaches the best throughput but at
expense of a considerable amount of resources: it occu-
pies ~ 13.26×, ~ 23.47×, ~ 3.56× more LUTs, FFs, on-chip
BRAMs, respectively, than the new design.

Table 4   Characterization of the HLS DCGAN model.

TOC configuration (1,1,1,1) (2,2,2,1) (2,4,2,1)

Device XC7Z045 XC7Z045 XC7Z045
Bit-width 5 5 5
LUTs 8.62k 16.88k 22.40k
FFs 10.96k 21.77k 25.08k
BRAMs [Mb] 6.68 6.89 7.03
DSPs 0 1 1
Freq. [MHz] 167 167 167
fps 52 196 240
Power [W] 0.34 0.59 0.74
Energy [mJ] 6.46 3.01 3.03
Energy Efficiency [fps/W] 152.94 332.20 324.32

Table 5   State-of-the-art comparisons of FPGA-based DCGAN models.

a Retrieved from the GOPS reported in the paper

New [21] [24] [28]

Device XC7Z045 XCU200 XC7Z045 XC7VX690T
Bit-width 5 16 16 16
LUTs 22.40k 483k 196.7k 297.12k
FFs 25.08k 726k - 588.62k
BRAMs [Mb] 7.03 77 10.9 25.03
DSPs 1 2176 603 2304
Freq. [MHz] 167 300 167 200
fps 240 400 185a 826
Power [W] 0.74 9 5.8 -
Energy [mJ] 3.03 22.50 31.32 -
fps/W 324.32 44.44 31.89 -

1261Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

6 � Conclusions

This paper presented the design of an HLS-based TCONV
layer, based on the IOM strategy, and suitable for data-
flow-based neural network architectures. The latter consist
of stacked layers that exchange data internally, by reducing
the data movement from/to external memory resources.
The accelerator was conceived at the C++ abstraction,
using a parametric template to be adapted at different
configurations using proper bit-widths, kernel sizes,
strides, image sizes, parallelism factors. For purposes of
characterization, the proposed engine was preliminarily
examined as a standalone unit and then integrated into two
neural networks: a decoder for image decompression, and
the generator of the DCGAN network.

The standalone TCONV layer showed competitiveness
when compared the state-of-the-art, being able to provide
up to 6.25 Gout/s and dissipating only 1.53 W, using ~ 11.7k
LUTs resources and 4.52 Mb of on-chip memory.

When used within the decoder architecture, a systematic
design-space exploration was conducted to investigate the
positive influence of #pragmas to infer hardware optimiza-
tions, including pipelining and parallelism. The evaluation
ranges in the interval 8–4 bits and showed an improvement
of 3 orders of magnitude in fps throughput, with an average
resources utilization of at most 16%. Finally, the charac-
terization of the DCGAN at 5 bits highlighted a noticeable
throughput of 240 fps, with an energy efficiency of 324.32
fps/W, which outperforms the state-of-the-art counterparts
by a factor of at least ~ 7.3×.

Funding  Open access funding provided by Università della Calabria
within the CRUI-CARE Agreement. This work was supported by
POR Calabria FSE/FESR 2014-2020 – International Mobility of PhD
students and research grants/type A Researchers” – Actions 10.5.6
and 10.5.12 actuated by Regione Calabria, Italy, and by Ministero
dell'Università e della Ricerca under ICSC National Research Centre
for High Performance Computing, Big Data and Quantum Computing
within the Next Generation EU program.

Data Availability Statement  The dataset generated during the current
study is available from the authors on request.

Declarations 

Competing Interests  The authors declare no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis,
E. (2018). Deep Learning For Computer Vision: A Brief Review.
Computational Intelligence and Neuroscience, 2018, 1–13. https://​
doi.​org/​10.​1155/​2018/​70683​49

	 2.	 Nassif, A. B., Shahin, I., Attili, I., Azzeh, M., & Shaalan, K.
(2019). Speech recognition using deep neural networks: A sys-
tematic review. IEEE Access, 7, 19143–19165. https://​doi.​org/​10.​
1109/​ACCESS.​2019.​28968​80

	 3.	 Wang, Z., & Majewicz Fey, A. (2018). Deep learning with con-
volutional neural network for objective skill evaluation in robot-
assisted surgery. International Journal of Computer Assisted
Radiology and Surgery, 13(12), 1959–1970. https://​doi.​org/​10.​
1007/​s11548-​018-​1860-1

	 4.	 Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta,
B., & Bharath, A. A. (2018). Generative adversarial networks: An
overview. IEEE Signal Processing Magazine, 35(1), 53–65. https://​
doi.​org/​10.​1109/​MSP.​2017.​27652​02

	 5.	 Kumar, M., & Sharma, H. K. (2023). A GAN-Based Model of
Deepfake Detection in Social Media. Procedia Computer Science,
218, 2153–2162. https://​doi.​org/​10.​1016/j.​procs.​2023.​01.​191

	 6.	 Im, D., Han, D., Choi, S., Kang, S., & Yoo, H. J. (2020). DT-
CNN: An energy-efficient dilated and transposed convolutional
neural network processor for region of interest based image seg-
mentation. IEEE Transactions on Circuits and Systems I: Regular
Papers, 67(10), 3471–3483. https://​doi.​org/​10.​1109/​TCSI.​2020.​
29911​89

	 7.	 Gu, Z., Cheng, J., Fu, H., Zhou, K., Hao, H., Zhao, Y., Zhang, T.,
Gao, S., & Liu, J. (2019). Ce-net: Context encoder network for
2d medical image segmentation. IEEE Transactions on Medical
Imaging, 38(10), 2281–2292. https://​doi.​org/​10.​1109/​TMI.​2019.​
29035​62

	 8.	 Dong, C., Loy, C. C., & Tang, X. (2016). Accelerating the super-
resolution convolutional neural network. In European Conference
on Computer Vision (ECCV) (pp. 391–407). Springer, Cham.
https://​doi.​org/​10.​1007/​978-3-​319-​46475-6_​25

	 9.	 Spagnolo, F., Corsonello, P., Frustaci, F., & Perri, S. (2023).
Design of a Low-power Super-Resolution Architecture for Vir-
tual Reality Wearable Devices. IEEE Sensors Journal, 23(8),
9009–9016. https://​doi.​org/​10.​1109/​JSEN.​2023.​32565​24

	10.	 Chang, J. W., Kang, K. W., & Kang, S. J. (2020). An energy-
efficient FPGA-based deconvolutional neural networks accelerator
for single image super-resolution. IEEE Transactions on Circuits
and Systems for Video Technology, 30(1), 281–295. https://​doi.
​org/​10.​1109/​TCSVT.​2018.​28888​98

	11.	 Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R., Ong
Gee Hock, J., Liew, Y. T., Srivatsan, K., Moss, D., Subhaschandra,
S., & Boudoukh, G. (2017). Can FPGAs beat GPUs in accelerating
next-generation deep neural networks? In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA) (pp. 5–14). ACM. https://​doi.​org/​10.​1145/​
30200​78.​30217​40

	12.	 Yazdanbakhsh, A., Brzozowski, M., Khaleghi, B., Ghodrati, S.,
Samadi, K., Kim, N. S., & Esmaeilzadeh, H. (2018). FlexiGAN:
An end-to-end solution for FPGA acceleration of generative
adversarial networks. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM) (pp. 65–72). IEEE. https://​doi.​org/​10.​1109/​FCCM.​2018.​
00019

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1007/s11548-018-1860-1
https://doi.org/10.1007/s11548-018-1860-1
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1016/j.procs.2023.01.191
https://doi.org/10.1109/TCSI.2020.2991189
https://doi.org/10.1109/TCSI.2020.2991189
https://doi.org/10.1109/TMI.2019.2903562
https://doi.org/10.1109/TMI.2019.2903562
https://doi.org/10.1007/978-3-319-46475-6_25
https://doi.org/10.1109/JSEN.2023.3256524
https://doi.org/10.1109/TCSVT.2018.2888898
https://doi.org/10.1109/TCSVT.2018.2888898
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1109/FCCM.2018.00019
https://doi.org/10.1109/FCCM.2018.00019

1262	 Journal of Signal Processing Systems (2023) 95:1245–1263

1 3

	13.	 Sestito, C., Spagnolo, F., & Perri, S. (2021). Design of Flexible
Hardware Accelerators for Image Convolutions and Transposed
Convolutions. Journal of Imaging, 7(10):210, 1–16. https://​doi.​
org/​10.​3390/​jimag​ing71​00210

	14.	 Zhang, X., Das, S., Neopane, O., & Kreutz-Delgado, K. (2017).
A Design Methodology for Efficient Implementation of Decon-
volutional Neural Networks on an FPGA. arXiv preprint arXiv:​
1705.​02583.

	15.	 Blott, M., Preußer, T. B., Fraser, N. J., Gambardella, G., &
O’brien, K., Umuroglu, Y., Leeser, M., & Vissers, K. (2018).
FINN-R: An end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. ACM Transactions on Recon-
figurable Technology and Systems (TRETS), 11(3), 1–23. https://​
doi.​org/​10.​1145/​32428​97

	16.	 Stewart, R., Nowlan, A., Bacchus, P., Ducasse, Q., & Komendantskaya,
E. (2021). Optimising hardware accelerated neural networks
with quantisation and a knowledge distillation evolutionary algo-
rithm. Electronics, 10(4):396, 1–21. https://​doi.​org/​10.​3390/
​elect​ronic​s1004​0396

	17.	 Sestito, C., Perri, S., & Stewart, R. (2022). Design-Space Explo-
ration of Quantized Transposed Convolutional Neural Networks
for FPGA-based Systems-on-Chip. In 2022 IEEE Intl Conf on
Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technol-
ogy Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 1–6).
IEEE. https://​doi.​org/​10.​1109/​DASC/​PiCom/​CBDCom/​Cy552​31.​
2022.​99278​25

	18.	 LeCun, Y., Cortes, C., & Burges, C. J. (1998). The MNIST data-
base of handwritten digits. Retrieved from http://​yann.​lecun.​com/​
exdb/​mnist/

	19.	 Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv preprint arXiv:​1708.​07747. https://​doi.​org/​10.​48550/​arXiv.​
1708.​07747

	20.	 Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised repre-
sentation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:​1511.​06434. https://​doi.​org/​10.​
48550/​arXiv.​1511.​06434

	21.	 Meng, Y., Kuppannagari, S., Kannan, R., & Prasanna, V. (2021,
December). How to Avoid Zero-Spacing in Fractionally-Strided
Convolution? A Hardware-Algorithm Co-Design Methodology. In
2021 IEEE 28th International Conference on High Performance
Computing, Data, and Analytics (HiPC) (pp. 81–90). IEEE.
https://​doi.​org/​10.​1109/​HiPC5​3243.​2021.​00022

	22.	 Mao, W., Lin, J., & Wang, Z. (2020). F-DNA: Fast convolu-
tion architecture for deconvolutional network acceleration.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(8), 1867–1880. https://​doi.​org/​10.​1109/​TVLSI.​
2020.​30005​19

	23.	 Yu, Y., Zhao, T., Wang, M., Wang, K., & He, L. (2020). Uni-OPU:
An FPGA-based uniform accelerator for convolutional and trans-
posed convolutional networks. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 28(7), 1545–1556. https://​doi.​
org/​10.​1109/​TVLSI.​2020.​29957​41

	24.	 Di, X., Yang, H. G., Jia, Y., Huang, Z., & Mao, N. (2020). Exploring
efficient acceleration architecture for Winograd-transformed trans-
posed convolution of GANs on FPGAs. Electronics, 9(2):286,
1–21. https://​doi.​org/​10.​3390/​elect​ronic​s9020​286

	25.	 Marrazzo, E., Spagnolo, F., & Perri, S. (2022). Runtime Recon-
figurable Hardware Accelerator for Energy-Efficient Transposed
Convolutions. In 2022 17th Conference on Ph. D Research in
Microelectronics and Electronics (PRIME) (pp. 141–144). IEEE.
https://​doi.​org/​10.​1109/​PRIME​55000.​2022.​98168​00

	26.	 Yan, J., Yin, S., Tu, F., Liu, L., & Wei, S. (2018). GNA: Reconfig-
urable and efficient architecture for generative network accelera-
tion. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11), 2519–2529. https://​doi.​org/​10.​1109/​
TCAD.​2018.​28572​58

	27.	 Perri, S., Sestito, C., Spagnolo, F., & Corsonello, P. (2020). Effi-
cient deconvolution architecture for heterogeneous systems-on-
chip. Journal of Imaging, 6(9):85, 1–17. https://​doi.​org/​10.​3390/​
jimag​ing60​90085

	28.	 Wang, D., Shen, J., Wen, M., & Zhang, C. (2019). Efficient imple-
mentation of 2D and 3D sparse deconvolutional neural networks
with a uniform architecture on FPGAs. Electronics, 8(7):803,
1–13. https://​doi.​org/​10.​3390/​elect​ronic​s8070​803

	29.	 Lavin, A., & Gray, S. (2016). Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (pp. 4013–4021).
IEEE. https://​doi.​org/​10.​1109/​CVPR.​2016.​435

	30.	 Liu, S., Fan, H., Niu, X., Ng, H. C., Chu, Y., & Luk, W. (2018).
Optimizing CNN-based segmentation with deeply custom-
ized convolutional and deconvolutional architectures on FPGA.
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 11(3), 1–22. https://​doi.​org/​10.​1145/​32429​00

	31.	 ARM. (2012). AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Proto-
col Assertions User Guide. Retrieved from https://​devel​oper.​arm.​
com/​docum​entat​ion/​dui05​34/b/

	32.	 Hara, K., Saito, D., & Shouno, H. (2015). Analysis of function of
rectified linear unit used in deep learning. In 2015 International
Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.
https://​doi.​org/​10.​1109/​IJCNN.​2015.​72805​78

	33.	 AMD Xilinx. (2020). Vivado Design Suite User Guide: High-
Level Synthesis. UG902 (v2019.2). Retrieved from https://​www.​
xilinx.​com/​conte​nt/​dam/​xilinx/​suppo​rt/​docum​ents/​sw_​manua​ls/​
xilin​x2019_2/​ug902-​vivado-​high-​level-​synth​esis.​pdf

	34.	 Sestito, C., Perri, S., & Stewart, R. (2022). Accuracy Evaluation
of Transposed Convolution-Based Quantized Neural Networks.
In 2022 International Joint Conference on Neural Networks
(IJCNN) (pp. 1–8). IEEE. https://​doi.​org/​10.​1109/​IJCNN​55064.​
2022.​98926​71

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Cristian Sestito  was born in Chi-
aravalle Centrale, Italy, on Feb-
ruary 7, 1994. He received his
Master Degree in Electronic
Engineering and the Ph.D. degree
in Information and Communica-
tion Technologies from the Uni-
versity of Calabria, Italy, in 2019
and 2023, respectively. In 2021-
2022, he was also a Visiting
Scholar at Heriot-Watt University,
Edinburgh. Currently, he is a
Research Associate in Embedded
System Design at Centre for Elec-
tronics Frontiers, The University
of Edinburgh. His research inter-

ests include the design of efficient FPGA-based architectures for image
processing tasks, the hardware acceleration of Deep Learning applica-
tions and the investigation of compression techniques for Deep Learning,
such as data quantization.

https://doi.org/10.3390/jimaging7100210
https://doi.org/10.3390/jimaging7100210
http://arxiv.org/abs/1705.02583
http://arxiv.org/abs/1705.02583
https://doi.org/10.1145/3242897
https://doi.org/10.1145/3242897
https://doi.org/10.3390/electronics10040396
https://doi.org/10.3390/electronics10040396
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927825
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927825
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.48550/arXiv.1708.07747
http://arxiv.org/abs/1511.06434
https://doi.org/10.48550/arXiv.1511.06434
https://doi.org/10.48550/arXiv.1511.06434
https://doi.org/10.1109/HiPC53243.2021.00022
https://doi.org/10.1109/TVLSI.2020.3000519
https://doi.org/10.1109/TVLSI.2020.3000519
https://doi.org/10.1109/TVLSI.2020.2995741
https://doi.org/10.1109/TVLSI.2020.2995741
https://doi.org/10.3390/electronics9020286
https://doi.org/10.1109/PRIME55000.2022.9816800
https://doi.org/10.1109/TCAD.2018.2857258
https://doi.org/10.1109/TCAD.2018.2857258
https://doi.org/10.3390/jimaging6090085
https://doi.org/10.3390/jimaging6090085
https://doi.org/10.3390/electronics8070803
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1145/3242900
https://developer.arm.com/documentation/dui0534/b/
https://developer.arm.com/documentation/dui0534/b/
https://doi.org/10.1109/IJCNN.2015.7280578
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1109/IJCNN55064.2022.9892671
https://doi.org/10.1109/IJCNN55064.2022.9892671

1263Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

Stefania Perri  was born in
Cosenza, Italy, on April 6, 1971.
She received her Master degree
in Computer Science Engineer-
ing from the University of
Calabria, Italy, in 1996 and the
Ph.D. degree in Electronics Engi-
neering from the University
Mediterranea of Reggio Calabria,
Italy, in 2000. In 1996, she joined
the Department of Electronics,
Computer Sciences and Systems
of the University of Calabria as
Researcher Associate. In 2002,
she was appointed as Assistant
Professor of Electronics with the

Department of Electronics, Computer Science and Systems of the Uni-
versity of Calabria, Italy. In the summer 2004, she was a Visiting
Researcher at the Department of Electrical and Computer Engineering
of the University of Rochester, NY, USA, where in 2005 she was
appointed as Adjunct Assistant Professor for four years. In 2010, she
was appointed as Associate Professor of Electronics at the Department
of Electronics, Computer Sciences and Systems of the University of
Calabria. In 2017, she joined the Department of Mechanical, Energy
and Management Engineering of the University of Calabria. Her current
research interests include QCA-based circuits, high-performance
embedded systems, low-power design, VLSI circuits for image process-
ing and multimedia, reconfigurable computing, and VLSI design. She

is coauthor of more than 140 technical papers and holds two patents in
these fields. She serves on technical committees of several VLSI con-
ferences and as a peer reviewer for several VLSI journals. She is an
Associate Editor of the Journal of Low PowerElectronics and Applica-
tions and Sensors.

Robert Stewart  is an Associate
Professor at Heriot-Watt Univer-
sity, Edinburgh. He received his
MEng in Software Engineering in
2010, and his PhD in Computer
Science in 2013, both at Heriot-
Watt University. He was a post-
doctoral researcher then Research
Fellow from 2013, before being
appointed to a lectureship posi-
tion in 2018. His research inter-
ests are at the intersection
between high level programming
models and low level system

architectures. This includes generating deep learning hardware accelera-
tors from high-level specifications, fault tolerant runtime systems for
scalable functional languages, DSLs for FPGAs, and recently, designing
processor architectures specialised for parallel functional languages. He
is the co-author of more than 40 peer reviewed papers. He serves on the
Programme Committee and as a reviewer for multiple programming
language and parallel computing conferences and journals.

	FPGA Design of Transposed Convolutions for Deep Learning Using High-Level Synthesis
	Abstract
	1 Introduction
	2 Background and Related Works
	3 Design and Characterization of the HLS-Based Transposed Convolution Layer
	3.1 The Proposed Design
	3.2 Parametric Analysis
	3.3 Comparison with State-of-the-Art Competitors

	4 Characterization of a Decoder Through Design-Space Exploration
	4.1 The HLS Decoder Template
	4.2 Evaluation of #pragmas, Bit-Width and Parallelism

	5 Characterization of the Generator of the DCGAN Architecture
	5.1 The HLS DCGAN Template
	5.2 Characterization and State-of-the-Art Comparisons

	6 Conclusions
	References

