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Abstract
Deep Learning (DL) is pervasive across a wide variety of domains. Convolutional Neural Networks (CNNs) are often used 
for image processing DL applications. Modern CNN models are growing to meet the needs of more sophisticated tasks, 
e.g. using Transposed Convolutions (TCONVs) for image decompression and image generation. Such state-of-the-art DL 
models often target GPU-based high-performance architectures, due to the high computational and hardware resource 
needs of TCONV layers. To avoid prohibitive GPU energy costs, CNNs are increasingly deployed to decentralized embed-
ded autonomous devices, such as Field Programmable Gate Arrays (FPGAs). However, this poses challenges for designing 
efficient hardware implementations of TCONV layers. This paper presents a parameterized design and implementation 
of a new TCONV module, which is synthesizable onto FPGAs. It is implemented using the High-Level Synthesis (HLS), 
through a C++ template to parameterize its functional and non-functional properties. These parameters allow kernel sizes, 
image sizes, quantization and parallelism to be varied by users. With a systematic exploration in this design space, we find 
an optimal instance of this TCONV module that achieves 6.25 Giga Outputs per Second (Gout/s) using just 1.53 W of power.  
We then use our TCONV layer in two neural networks for image decompression and image generation. Image decompression  
achieves a speed throughput of more than 30K frames-per-second (fps) using only the 16% of resources on average, image 
generation achieves an energy efficiency of 324 fps/W and outperforms comparable state-of-the-art models by at least 7.3×.
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1  Introduction

Convolutional Neural Networks (CNNs) have gained wide-
spread adoption in several applications, such as image pro-
cessing [1], speech recognition [2] and robotics [3].

Input data, in the form of multi-dimensional arrays, are 
managed through a sequence of computing layers that modu-
late the space representation to handle the complexity of 
information. While down-sampling layers progressively 
compress data to extract relevant features, up-sampling 
stages act in the opposite way, by predicting new informa-
tive content to be arranged within a wider space.

Among several up-sampling layers, Transposed 
Convolutions (TCONVs) work well with image processing 
tasks. Indeed, they exploit learnable filters to produce 
high-resolution images starting from low-resolution 
representations. They are used for image generation 
through adversarial learning, where Generative Adversarial 
Networks (GANs) [4] build new images similar to those 
belonging to the training dataset. The detection of fake 
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images in social media is an application scenario [5]. 
TCONVs are also suitable to implement pixel-level 
classification, or semantic segmentation, to highlight 
different objects within an image [6]. For instance, medical 
image segmentation makes use of TCONV-based decoders 
to analyze optic discs, retinal vessels and lungs [7]. Super-
resolution imaging [8] is another scenario that benefits from 
such up-sampling layers to deal with virtual and augmented 
reality through smart head-mounted displays [9].

However, the performance of TCONVs are often 
impacted by high computational complexity. Indeed, they 
require input data pre-processing that results in more 
computations compared with conventional Convolutions 
(CONVs) [10]. Low-latency applications are extremely sus-
ceptible to this detrimental effect, thus demanding highly-
parallelizable devices. Mainstream Graphics Processing 
Units (GPUs) effectively meet the parallelism constraint, 
but at the cost of a higher power dissipation [11]. Field 
Programmable Gate Arrays (FPGAs), other than offering a 
reasonable trade-off in terms of speed and power, also pro-
vide a flexible substrate suitable to not only deploy parallel 
CNNs, but to also infer either alternative algorithmic strat-
egies or compression techniques (e.g., data quantization) 
to further improve the overall efficiency with respect to 
GPUs. FPGA can address the complexity issue by skipping 
redundant computations [12], or revisiting the conventional 
data pre-processing [13, 14]. The FPGA implementation of 
a 16-bit TCONV-based GANs [12], where redundant com-
putations are skipped, outperformed the energy-efficiency 
on GPU by a ~ 3× factor. More aggressive quantization 
may boost such improvement, as shown in image classifi-
cation CNNs implemented on FPGAs [15, 16]. However, 
the impact of deep quantization over up-sampling models 
using TCONVs is still under-explored.

Motivated by all these preliminary considerations, we 
have recently investigated the joint impact of parallelism 
and quantization over a simple Transposed Convolutional 
Neural Network (TCNN), implemented on FPGA [17], that 
deals with image decompression. The High-Level Syn-
thesis (HLS) paradigm has been adopted, since the latter 
allows (1) the architecture to be platform-independent, and 
(2) parametric C++ templates to be used to investigate 
different configurations with minimal top-level modifi-
cations. We have performed an extensive design-space 
exploration, by either varying the input and output paral-
lelism (i.e., the number of input images and output images 
processed in parallel) or the data bit-width, to determine 
the optimum configuration, by using the commercial 
XC7Z020 FPGA. We have observed that the architecture is 
able to decompress MNIST [18] and Fashion-MNIST [19] 
with only the ~ 2.5% accuracy loss when moving from 8 to 
4 bits. Parallelism provides a 3.5× speed-up, whilst only 
requiring less than the 10% of Look-Up Tables (LUTs).

This work extends the previous investigations and pro-
vides further lines of research. Specifically, the new contri-
butions can be summarized as follows:

•	 An extended review about state-of-the-art TCNNs 
deployed on FPGAs (Section 2).

•	 A detailed presentation of the C++ TCONV layer 
template, suitable to be implemented within dataflow 
TCNNs. The impact of the specific TCONV parameters 
over the resources utilization and the speed throughput 
are presented, as well as comparisons with some state-
of-the-art competitors (Section 3). When implemented 
within the XC7Z100 FPGA device, the architecture pro-
vides 6.25 Giga Outputs per Second (Gout/s), whilst dis-
sipating only 1.53 W, using ~ 11.7k LUTs and 4.52 Mb of 
on-chip memory.

•	 A high-level design space exploration of the TCONV 
decoder from [17], using C++ #pragmas to control 
dataflow and data parallelism, memory resources, 
pipelining and loop unrolling. In particular, the trade-off 
between resources utilization and throughput is discussed 
(Section 4). The analysis, carried out in the range 8–4 
bits, shows an improvement of 3 orders of magnitude 
in the number of frames-per-second (fps), with a 16% 
average resources utilization at most.

•	 The characterization of a more complex TCNN, dealing 
with image generation through the Deep Convolutional 
Generative Adversarial Network (DCGAN) paradigm 
[20]. The impact of parallelism over the resources utiliza-
tion and throughput is presented, as well as comparisons 
with state-of-the-art DCGAN accelerators (Section 5). 
The characterization at 5-bits highlighted an energy effi-
ciency of 324.32 fps/W, which outperforms the art by at 
least ~ 7.3×.

Finally, conclusions are drawn in Section 6.

2 � Background and Related Works

Several CNNs take advantage of TCONV layers, including 
architectures tailored for image generation and models con-
ceived to either decompress data or provide super-resolution 
images. The former includes the well-known DCGAN [20] 
and consists of two networks, namely the discriminator and 
the generator. Training aims at strengthening the generator 
to build realistic images similar to the actual dataset under 
examination. While the discriminator consists of consecu-
tive Convolution (CONV) layers that progressively down-
sample the informative content for binary classification, the 
generator stacks multiple TCONV layers to build an image 
starting from a latent vector. Conversely, models for image 
decompression and super-resolution usually rely on an 
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encoder-decoder architecture. For instance, the Fast Super-
Resolution CNN (FSRCNN) [8] uses an encoder, made of 
seven CONVs layers, to extract meaningful features from 
inputs. The decoder adopts just a single TCONV layer to 
provide the final high-resolution image.

The generic TCONV layer receives a set of IC input fea-
ture maps (ifmaps), each consisting of HI × WI activations, 
and a set of OC 3-D filters, each consisting of IC kernels of 
K × K weights. As a result, the layer provides a set of high-
resolution OC output feature maps (ofmaps), each HO × WO-
sized. The ofmaps sizes are proportional to those related to 
the ifmaps by a factor S, known as stride or up-sampling 
factor. Each 3-D filter performs a 3-D TCONV processing 
the IC ifmaps, thus generating one of the OC ofmaps. Option-
ally, OC biases can be finally summed up to the ofmaps 
activations. By a top-level viewpoint, with no reference to 
the specific algorithm adopted, as depicted in Fig. 1, the 
generic TCONV layer practically matches the exoskeleton 
of conventional CONV layers. However, in order to meet the 
up-sampling behavior, the needed computations may signifi-
cantly exceed those required by CONV layers. Indeed, the 
last TCONV layer of the FSRCNN may require up to ~ 6.75 
more Multiply-Accumulations (MACs) with respect to the 
CONV layers [10]. This is due to the fact that, convention-
ally, TCONVs can be treated as direct CONVs over a dilated 
representation of the generic ifmap. To better understand 
this point, let us consider a 4 × 4 ifmap that is subjected to a 
filter having just one 2 × 2 kernel (Fig. 2); we also suppose 
S = 2. Firstly, the ifmap is up-sampled, by interleaving S–1 
zeros between adjacent activations. Then, a direct CONV is 
performed between the dilated ifmap and the 2 × 2 kernel. 
As a result, each output activation is given by 2 × 2 MACs. 
In total, considering that 64 activations are generated, this 
TCONV costs 256 MACs. In the case of a conventional 
CONV, the overall cost would have been ~ 86% lower.

High computational complexity makes it difficult to 
achieve low latency performance, typically required by real-
time systems. As a result, efforts to accelerate TCNNs on 
dedicated hardware, such as FPGAs, have been undertaken 

in recent years [10, 12–14, 21–25, 27, 28, 30]. Different 
hardware-oriented algorithmic strategies have been inves-
tigated, with the aim to trade-off the resources utilization, 
the throughput and the power dissipation. The dilation of 
ifmaps, through zeros insertion, is the primitive way to infer 
the up-sampling capability to conventional CONV engines. 
This strategy was effectively managed in [12] through the 
FlexiGAN framework, which skips the redundant computa-
tions exhibited by the zeros insertion. This is accomplished 
by adding extra control logic to coach the computing core 
about the actual patterns to be managed (i.e., the patterns 
of non-zero values). As an alternative approach, the multi-
channel-multi-kernel parallel algorithm was presented in 
[21], which rearranges K × K TCONVs into K2 separate 1 × 1 
CONVs to avoid patterns with zeros.

With the aim of transforming TCONVs into CONVs, 
the algorithm proposed in [10] decomposes wide filters 
in multiple sub-filters, to be then processed by as many 
CONV engines. Starting from the observation that specific 
TCONVs with zeros insertion exhibit S × S regular patterns 
of actual computations, the generic filter can be split into 
S × S smaller filters, each consisting of a different number of 
weights, before being supplied to the CONV engine. How-
ever, the different number of weights of each pattern results 

Figure 1   Example of TCONV 
layer with IC = 3 and OC = 3.
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in computational imbalance. The latter was addressed by 
the iterative filters sub-splitting proposed in [22], where the 
achieved efficacy was evaluated over both the FSRCNN [8] 
and the DCGAN [20] models. Both the above approaches 
[10, 22] need to pre-process filters off-chip, by making 
challenging the run-time adaptability to different configu-
rations. In order to avoid preliminary transformations, as 
demonstrated in [13], ifmaps’ activations can be properly 
re-arranged at run-time. The equivalent reconfigurable cir-
cuit was made capable to support different filter sizes and 
benchmarked using the FSRCNN [8]. Finally, filters man-
agement was also taken into account in Uni-OPU [23] to 
both addresses zero-insertion in TCONV and offer adapt-
ability to the nearest-neighboring up-sampling method that, 
in turn, dilates the ifmaps by replicating pixels instead of 
inserting zeros.

Alternative strategies strove to either leverage the Wino-
grad transformation [29] or to adopt hybrid computations 
to alleviate the high computational complexity. The former 
strategy was examined in [24], where element-wise multi-
plication manipulation was used to model multiplications 
as simpler additions and shift operations. Conversely, the 
architecture in [25] adopted a mixed approach in which 
part of TCONVs are replaced by average computations to 
minimize the overall MACs. The key benefit of such an 
approach is to improve the throughput noticeably, at the 
cost of lower accuracy.

The Input-Oriented Mapping (IOM) strategy [26] uses 
a completely different algorithm that produces the same 
outputs of the previous approaches, but avoids both zeros 
insertion and sub-filters management. The HI × WI acti-
vations of the generic ifmap are multiplied by the K × K 
kernel weights, thus providing HI × WI provisional out-
put windows. When K > S, adjacent windows overlap, by 
sharing K–S columns and rows. The overlapping areas are 
summed up to provide the actual results. The architecture 
presented in [14] firstly adopted the IOM on FPGAs, with 
reverse looping to avoid accumulations for overlaps, by 
taking into account the input coordinates for each itera-
tion. Conversely, the reconfigurable engine proposed in 
[27] dealt with overlaps by carefully using the on-chip 
Digital Signal Processing (DSP) slices to boost the speed 
performance at limited power dissipation. Results reported 
in [28] demonstrated the suitability of both the IOM and 
neural network compression to manage 2-D and 3-D GANs 
on FPGAs. They also shown that filters pruning allows 
low-weights connections to be removed and, accordingly, 
the computational efficiency to be improved. Authors 
in [30] dealt with semantic segmentation by proposing 
a parameterizable architecture to comply with different 

neural networks. They also compared the FPGA results 
with the equivalent software on GPU. While the latter dis-
sipates at least 147 W on the NVIDIA Titan X (Pascal) 
GPU, the FPGA accelerator used only 9.6 W.

In this work, we further extend the investigations about 
the FPGA implementation of IOM-based TCONV layers, 
by proposing a platform-independent HLS template, able to 
be adapted either to very low bit-width or to high parallel-
ism, in accordance with the constraint of the specific deep 
learning task to be performed. The synthesis tool is sup-
plied by HLS #pragmas to balance the trade-off between 
resources utilization, speed throughput and power dissipa-
tion, in order to achieve the highest energy efficiency.

3 � Design and Characterization of the HLS‑Based 
Transposed Convolution Layer

The generic TCONV layer, used within the TCNNs dis-
cussed in this work, is described at the C++ abstraction. 
The template is made parameterizable in terms of (a) the 
bit-width N, (b) the TCONV parameters (i.e., the kernel size 
K, the stride S, the ifmaps sizes HI, WI), and (c) the input and 
output parallelism factors (i.e., TIC and TOC). These parame-
ters allow either characterizing different configurations onto 
the same device or implementing a specific architecture on 
different devices.

3.1 � The Proposed Design

The algorithm for the proposed TCONV layer is reported 
in Listing 1. The equivalent architecture is made able to 
process TIC ifmaps in parallel, using TOC × TIC filters and 
TOC biases at the same time. While the activations are the 
actual inputs, all the weights and biases are preliminarily 
stored on-chip. At the completion of the computations, 
the circuit provides TOC ofmaps in parallel. Figure 3 
illustrates an example of top-level block diagram when 
TIC = 2 and TOC = 2. Considering the output parallelism 
factor, line 1 highlights that OC/TOC steps are required 
to generate all the ofmaps. Referring to Listing 1, for 
each iteration of the loop in line 1, the circuit takes IC/
TIC + 1 steps (line 2). The first IC/TIC steps are needed to 
compute the 3-D TCONVs between the TIC ifmaps and 
the TOC × TIC filters, to provide a group of TOC ofmaps. 
The extra step is used to (a) add the TOC biases, and 
(b) move the actual outputs out, after being temporarily 
stored within on-chip memories.
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Listing 1  The pseudocode of the Transposed Convolution Layer

Inputs: Stream of TIC ifmaps, 

OC×IC×K×K weights, 

OC biases

Output: Stream of TOC ofmaps
1: for oc=0 to OC/TOC –1 do
2: for ic=0 to IC/TIC do
3: if ic < IC/TIC then
4: Load weights and biases;

5: for hi=0 to HI–1 do
6: for wi=0 to WI–1 do
7: #pragma HLS PIPELINE II=1

8: Perform 3-D TCONVs using the IOM method

9: end for
10: end for
11: else
12: for iter=0 to HO*WO–1 do
13: #pragma HLS PIPELINE II=1

14: Biases accumulations and outputs movement

15: end for
16: end if
17: end for
18: end for

Listing 2 details the 3-D TCONV that makes use of the 
IOM strategy carried out on line 8 in Listing 1. In what fol-
lows, the reported lines refer to Listing 2, unless otherwise 
stated. The #pragma HLS PIPELINE (line 3) ensures that the 
underlining loops are parallel performed in a pipeline fash-
ion. For each clock cycle, as stated by the Initiation Interval 

(II = 1), a stream of TIC activations is read and saved in the 
array inAct (line 4). The TIC activations are multiplied by 
the respective TOC × TIC × K × K weights of the array filt, and 
subjected to columns overlap. We refer to weights to indicate 
the trained parameters of the generic neural network.

TCONV Layer 
Architecture

TIC

TOCifmaps

Filter weights

ofmaps

TOC

Figure 3   Parallel inputs and outputs of the TCONV Layer when TIC = 2 and TOC = 2.
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Listing 2  Detail of the Input-Oriented Mapping 3-D TCONVs

As a result, TOC × TIC windows of K × K provisional 
results are generated each cycle. Within each window, the 
locations having row index kr < S and column index kc < S 
are final, while the remaining cells must be overlapped 
to those belonging to subsequent windows, either in col-
umn- or row-sense. Firstly, column overlaps are managed 

1: for hi=0 to HI–1 do
2: for wi=0 to WI–1 do
3: #pragma HLS PIPELINE II=1

4: inAct = inStream.read();

5: for toc=0 to TOC –1 do
6: for tic=0 to TIC–1 do
7: for kr=0 to K–1 do
8: for kc=0 to K–1 do
9: if kc < K–S then
10: if wi=0 then
11: outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*filt(toc,tic,kr,kc); 

12: else
13: outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*filt(toc,tic,kr,kc)+ColBuff(toc,tic,kr,kc);

14: end if
15: else 
16: outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*filt(toc,tic,kr,kc); 

17: end if
18: if kc ≥ S then 
19: ColBuff(toc,tic,kr,kc–S) = outCol(toc,tic,kr,kc);

20: end if
21: if kr < K–S then
22: if kc < S then
23: if hi=0 then
24: outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc);

25: else
26: outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc)+RowBuff(toc,tic,wi,kr,kc);

27: end if
28: end if
29: else 
30: outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc);

31: end if
32: if kr ≥ S then
33: if kc < S then
34: RowBuff(toc,tic,wi,kr–S,kc) = outRow(toc,tic,kr,kc);

35: end if
36: end if
37: if tic=0 then
38: outAcc(toc,kr,kc) = outRow(toc,tic,kr,kc);

39: else
40: outAcc(toc,kr,kc) += outRow(toc,tic,kr,kc);

41: end if

in lines 9–20. There, while the outCol array collects the 
provisional results, the ColBuff array is responsible to tem-
porarily store the products to be overlapped. The column 
overlap takes place by accumulating the products belong-
ing to the first K–S columns of the current windows with 
those belonging to the last K–S columns of the windows 



1251Journal of Signal Processing Systems (2023) 95:1245–1263	

1 3

computed in the previous clock cycle (line 13). Accord-
ingly, ColBuff saves the current products having column 
index kc ≥ S (lines 18–20). The processing of the very first 
TIC activations does not entail accumulations, as stated by 
the body of lines 10–11.

Lines 21–36 report the more complex management of 
row overlaps. In this case, while the outRow array stores the 
new computations, the buffer RowBuff stores the provisional 
results to be overlapped. Specifically, the first K–S rows of 
the current windows are accumulated to the last K–S rows of 
the windows previously computed, and which share the same 
column indices. The latter were computed WI clock cycles 
before according to the raster-order alignment. In addition, 
considering that the column overlap implies that only the 
first S outputs of each row are valid for each clock cycle, 
row overlap also takes care of the latter consideration (lines 
21–22). Accordingly, RowBuff saves the current outputs hav-
ing row index kr ≥ S and column index kc < S (lines 32–36). 
The processing of the TIC activations belonging to the first 
row of the generic ifmap does not entail accumulations, as 
stated by the body of lines 23–24.

To better explain the behavior of the IOM strategy, Fig. 4 
illustrates the example in which an ifmap having HI = WI = 2 
is processed by a filter with K = 3 and the stride S = 2. The 
input activation I00 is multiplied by the weights Wij, with 
i = 0, …, 2 and j = 0, …, 2. As a result, the provisional output 

window, associated to the array outCol, and having acti-
vations Rmn, with m = 0, …, 2 and n = 0, …, 2, is placed 
within the output space. While the activations having m = 0, 
1 and n = 0, 1 are final, the remaining activations must be 
accumulated either along the columns or along the rows 
with the results provided by the subsequent products. All 
these activations are followed by an asterisk, which means 
that they concur to compose the final results to be placed in 
the generic (m.n) position. Specifically, the activations with 
n = 2 are stored within the ColBuff array for column overlap 
during the next cycle. Conversely, activations with m = 2 and 
n = 0, 1 are temporarily stored within the RowBuff array for 
subsequent row overlap. The activation R22 will be accepted 
by RowBuff during the next clock cycle, in that it must be 
preliminary subjected to column overlap.

This process is repeated for the input activation I01, which 
either fully generates or contributes to the output activations 
Rmn, with m = 2, …, 4 and n = 0, …, 2. In this step, column 
overlap definitely provides the final activations R02 and R12. 
Conversely, R22 is stored within the RowBuff array for row 
overlap purposes.

The input activation I10 belongs to the second row of the 
ifmap. Starting from this point, row overlaps will be also 
executed. After having generated the activations Rmn, with 
m = 0, …, 2 and n = 2, …, 4, those having m = 2 are accu-
mulated to the temporary results provided two cycles before, 
which share the same row index and have n = 0, 1. The pro-
visional result R22 is stored within ColBuff to be subjected 
to its final column overlap during the next cycle. Finally, 
the input activation I11 generates the final results Rmn, with 
m = 2, …, 4 and n = 2, …, 4.

In order to comply with 3-D TCONV, the TOC × TIC win-
dows are summed up in a pixel-wise manner (lines 37–41) 
to generate the provisional TOC ofmaps. Obviously, if no par-
allelism is exploited, no further computations are required 
(lines 37–38). The process is equally repeated when the 
subsequent group of TIC ifmaps is processed, thus generat-
ing a new group of provisional TOC ofmaps, which must be 
accumulated to that generated during the previous cycle. To 
manage this, an on-chip buffer, namely outBuff, is exploited. 
By a circuital point of view, the latter can be thought as TOC 
banks of S simple dual-port memories, each being HI × WI 
wide. During the writing phase, outBuff receives TOC × S × S 
activations per cycle, while during the read phase it provides 
the data as a stream of TOC activations per cycle, in order to 
well comply with the raster-order policy of either a subse-
quent TCONV layer or an external memory support.

The writing phase works as follows: according to the IOM 
strategy, the TIC ifmaps are able to generate TOC ofmaps with 
S × S valid activations per clock cycle. The generic memory bank 
stores the S × S results, into the S memories. Taking into account 
that the latter consists of S rows of S adjacent activations, the S 
memories of the bank store S activations in each cell.

m\n 0 1 2 3 4
0 R00 R01 R02

* R02
* R03 R04

1 R10 R11 R12
* R12

* R13 R14

2 R20
* R21

* R22
* R22

* R23
* R24

*

R20
* R21

* R22
* R22

* R23
* R24

*

3 R30 R31 R32
* R32

* R33 R34

4 R40 R41 R42
* R42

* R43 R44

I00 I01
I10 I11

W00 W01 W02

W10 W11 W12

W20 W21 W22
ifmap

weights

TCONV
Input-Oriented

Mapping

ofmap

Figure 4   Example of IOM-based TCONV between a 2 × 2 ifmap and 
a 3 × 3 weights kernel.
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To properly access each memory cell, the read phase 
makes use of a control logic that manages two pointers, 
namely buff_idx and cell_idx that indicates, respectively, 
which memory of the bank and which specific cell are under 
analysis. Without loss of generality, the example reported 
in Fig. 5 shows the behavior of outBuff during the read-
ing phase. There, TOC = 1, S = 2 and HI = WI = 2. In other 
words, the outBuff consists of TOC = 1 memory bank of 
S = 2 memories (i.e., Memory#0 and Memory#1). Each 
memory has HI × WI = 4 cells, each able to accommodate 
S = 2 activations. The numbers indicated in each cell refer 
to the spatial position of the activations within the ofmap 
space. The control logic follows that numbering strategy to 
furnish TOC = 1 activations per clock cycle. During the first 
cycle, buff_idx = 0 and cell_idx = 0. This state is preserved 
for two cycles, in order to get the first two activations stored 
within the Memory#0. During the third and fourth cycles, 
cell_idx = 1 and the activations R02, R03 are read. Afterwards, 
cell_idx is set again to 0, while buff_idx = 1. Accordingly, the 
activations R10 and R11 are read. Thus, cell_idx = 1 to read 
the activations R12 and R13. At this point, in order to read the 
activations R20 and R21, buff_idx = 0 and cell_idx = 2. And so 
on for the remaining activations, following a ping-pong way.

3.2 � Parametric Analysis

In order to be compliant with real FPGA-based accelera-
tion architectures, the proposed TCONV layer is equipped 
with the streaming interface of the fourth generation 
Advanced eXtensible Interface (AXI4-Stream) [31]. To 
this aim, the #pragma HLS INTERFACE axis is used.

As a first set of experiments, the proposed template 
implements several circuit configurations, in order to 
examine the trend of both resources utilization and speed 
throughput when the specific TCONV parameters are var-
ied (i.e., the kernel size K, the stride S and the ifmaps 
sizes HI, WI). The characterization is carried out using 

the Xilinx Vivado Design Suite (v2019.2) and referring 
to the XC7Z020 device at the 100 MHz clock frequency. 
The resources utilization is evaluated in terms of Look-Up 
Tables (LUTs), Flip-Flops (FFs), on-chip Block Random 
Access Memories (BRAMs) and Digital Signal Process-
ing slices (DSPs). The frames-per-second (fps) metric is 
considered for the evaluation of the speed throughput. 
Figure 6a-c illustrate the obtained trends. For each plot, 
the horizontal axis refers to the specific parameter under 
evaluation, while the vertical axis reports the resources 
utilization as well as the achieved throughput.

The impact of the stride S is reported in Fig. 6a. The 
variation of S is typically adopted in super-resolution imag-
ing, which relies on wide filters to process the ifmaps [8]. 
Accordingly, K is set to 9 and left fixed for all the configura-
tions. The other parameters are fixed to N = 8, HI = WI = 32, 
TIC = 2, TOC = 2. While LUTs, FFs, and DSPs are practically 
unaffected by S, the quantity of BRAMs grows with the lat-
ter. This is justified by the fact that the sizes of the gener-
ated ofmaps are proportional to S and, in turn, they are tem-
porarily buffered in on-chip memories to comply with 3-D 
TCONV accumulations. For example, varying S from 2 to 4 
leads to a 3.6 × increase of memory. As stated in Section 3.1, 
the on-chip buffers are made able to write data as a stream of 
TOC × S × S activations per cycle. However, in order to satisfy 
the raster-order policy of contiguous TCONV layers, the 
stored activations have to be moved out as a stream of TOC 
values per cycle. The latter directly impacts on the latency 
that becomes proportional to S. As a result, the higher S, the 
higher the latency and the lower the frame rate.

The impact of the kernel size K is reported in Fig. 6b. 
There, while K is varied between 3 and 9, the other parameters 
are fixed to N = 8, HI = WI = 32, S = 2, TIC = 2, TOC = 2. The 
computing resources (i.e., LUTs and DSPs) are strongly influ-
enced by K. This is due to the use of #pragma HLS PIPELINE 
that completely unrolls the computational loops of the IOM to 
meet the II = 1 constraint. The higher the filter size, the higher 
the number of parallel hardware replicas. Conversely, the fps 
is practically independent of K. Indeed, the negligible ~ 5.1% 
loss noted when K is moved from 3 to 9 is due to the low 
amount of extra cycles to load wider 9 × 9 kernels.

Finally, the impact of the input fmap sizes HI, WI is 
reported in Fig. 6c, where HI = WI by supposing square 
fmaps, as usually happens in CNNs. The sizes range from 8 
to 128, which is usual in image generation. The other param-
eters are fixed to N = 8, K = 4, S = 2, TIC = 2, TOC = 2. As 
expected, the throughput is strongly influenced by HI and 
WI. Indeed, wider ifmaps require more clock cycles to be 
processed by the TCONV layer. On-chip BRAMs are also 
influenced by the referred sizes, especially when HI, WI ≥ 32. 
Indeed, at the parity of S, the wider the ifmaps, the wider the 
ofmaps to be temporarily stored on-chip.

R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

0 R01 R00

1 R03 R02

2 R21 R20

3 R23 R22

Memory#0

0 R11 R10

1 R13 R12

2 R31 R30

3 R33 R32

Memory#1

buff_idx

cell_idx

fmap to be stored

Figure  5   Example of outBuff management when HI = WI = 2 and 
S = 2.
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Figure 6   Parametric analysis of 
the TCONV layer (a) varying 
S, (b) varying K, (c) varying 
HI (WI). 
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Table  1 summarizes all the performed experiments, 
by reporting (a) the parameters of each configuration, (b) 
the resources utilization (i.e., LUTs, FFs, 18 Kb BRAMs, 
DSPs), and (c) the throughput in terms of fps.

3.3 � Comparison with State‑of‑the‑Art Competitors

In this Section, the proposed TCONV layer is compared to 
several state-of-the-art FPGA-based architectures [23, 25, 
27] at a parity of bit-width N, kernel size K and stride S, as 
well as the used device. Table 2, other than reporting the 
referred parameters, provides information about (a) the out-
put image sizes (HO × WO); (b) the output parallelism, given 
by the number of images generated in parallel (TOC); (c) the 
resources utilization (i.e., LUTs, FFs, BRAMs, DSPs used); 

(d) the clock frequency; (e) the throughput in terms of Giga 
Outputs per Second (Gout/s); (f) the power consumption and 
the energy efficiency (i.e., the ratio between the throughput 
and the power). Power consumption was estimated by ana-
lyzing the post-implementation results through the power 
analysis tool available within Vivado.

The circuit having K = 3 is implemented within the 
XC7Z020 FPGA device to be compared with the direct 
competitor [25]. It can be seen that, due to the higher par-
allelism, the proposed solution exhibits twice the through-
put but at the expense of a ~ 36% lower energy efficiency. 
Indeed, the hybrid computational approach adopted in [25] 
to replace many TCONVs with simpler averages leads to a 
power dissipation of only ~ 9 mW and to a DSP slices utiliza-
tion ~ 5× lower than the proposed architecture.

Table 1   Summary of the 
TCONV layer parametric 
analysis.

Fixed Parameters Variable Parameter Resources Throughput [fps]

LUTs FFs BRAMs 
(18 Kb)

DSPs

N = 8, HI = WI = 32,
K = 9,TIC = 2,TOC = 2

S = 2 13091 7163 9 220 18348
S = 3 13234 7124 19 220 9433
S = 4 13106 6929 33 220 5649

N = 8, HI = WI = 32,
S = 2,TIC = 2,TOC = 2

K = 3 598 408 8 36 19342
K = 4 912 649 8 64 19267
K = 5 1245 836 8 100 19120
K = 7 1821 1111 9 196 18761
K = 9 13091 7163 9 220 18348

N = 8,K = 4,S = 2,
TIC = 2,TOC = 2

HI = WI = 8 940 617 4 64 255102
HI = WI = 16 899 633 4 64 74074
HI = WI = 32 912 649 8 64 19267
HI = WI = 64 756 395 48 64 4854
HI = WI = 128 922 421 128 64 1219

Table 2   Characterization of the 
HLS TCONV Layer and state-
of-the-art comparisonsa.

a Best performance in bold at the parity of device and K, S
b NA Not Available

New New New [25] [27] [27] [23]

Device XC7Z020 XC7Z020 XC7Z100 XC7Z020 XC7Z020 XC7Z100 XC7Z100
Bit-width 16 16 16 16 16 16 16
K, S 3, 2 5, 2 5, 2 3, 2 5, 2 5, 2 3, 2
HO × WO 64 × 64 64 × 64 64 × 64 NAb 64 × 64 64 × 64 NA
TOC 8 4 8 NA 2 2 64
LUTs 2.52k 2.99k 11.71k 3.82k 2.90k 15.50k 115.2k
FFs 0.82k 1.41k 10.04k 5.09k 4.30k 22.90k 241.4k
BRAMs [Mb] 1.69 1.40 4.52 0.45 0.84 0.84 17.38
DSPs 144 200 800 29 210 1120 1987
Freq. [MHz] 125 125 200 125 200 300 200
Gout/s 3.90 1.95 6.25 1.95 1.56 9.37 12.5
Power [W] 0.29 0.36 1.53 0.09 0.42 2.62 2.89
Gout/s/W 13.45 5.42 4.08 20.97 3.71 3.58 4.33
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The circuit having K = 5 is implemented within both the 
XC7Z020 and the XC7Z100 FPGA devices and directly 
compared to the reconfigurable architectures proposed 
in [27]. Both the accelerators adopt the IOM strategy for 
TCONV computations. However, in [27] VHDL tem-
plates are used to improve speed performances. When the 
XC7Z020 device is referred to, the novel architecture exhib-
its a ~ 25% higher throughput, due to the doubled parallel-
ism, even running at a ~ 37.5% lower frequency. Results 
obtained for the XC7Z100 part show that the proposed 
design is ~ 1.14× more energy-efficient than [27], while run-
ning ~ 1.5× slower. Finally, when compared to the accelera-
tor Uni-OPU [23], the proposed solution is only ~ 5.8% less 
energy-efficient, but it uses ~ 89.8%, ~ 95.8%, ~ 59.7%, ~ 74% 
less LUTs, FFs, DSPs and BRAMs, respectively.

Finally, in order to get a more insightful understanding 
about the impact of power over the time, we also retrieved 
the energy values for all the implemented circuits. Consid-
ering that all of them take the same number of clock cycles 
to complete the task, the reported energy depends on the 
clock frequency and the power consumption. The XC7Z020 
implementation with K = 3 dissipates ~ 19 μJ at 125 MHz. At 
the same frequency, the K = 5 configuration shows a ~ 24.2% 
increment due to the slightly higher power (because of the 
higher usage of computing resources to manage wider fil-
ters). As expected, the high-end XC7Z100 implementation 
led to the highest contribution of 62.8 μJ to meet the dou-
bled parallelism. When comparing the XC7Z020 and the 
XC7Z100 implementations at K = 5, while the power dissi-
pation shows a 4.25× increase, the energy ratio is only 2.7×. 
This because the XC7Z100 implementation benefits from a 
50% higher clock frequency.

4 � Characterization of a Decoder Through 
Design‑Space Exploration

This Section evaluates the suitability of the TCONV layer 
model introduced in Section 3 to be accommodated within 
dataflow architectures, consisting of stacked layers that 
exchange informative content on-chip, by reducing the off-
chip memory accesses to send and retrieve the intermedi-
ate results. The evaluation has a twofold aim: (1) examine 
the suitability of careful high-level synthesis, through the 
effective use of #pragmas; (2) determine the impact of the 
bit-width N, and parallelism configurations, over the imple-
mented architectures.

4.1 � The HLS Decoder Template

The top-level model of the TCNN for image decompression, 
namely decoder, is reported in Listing 3. Two TCONV layers 
compose the network, with the former also equipped with 
the Rectified Linear Unit (ReLU) non-linearity [32]. The 
first layer is supplied by four 8 × 8 ifmaps, and 16 filters 
of 4 × 3 × 3 weights. The stride S = 2. Accordingly, sixteen 
16 × 16 fmaps are generated and provided to the second layer 
that, in turn, uses 1 filter of 16 × 3 × 3 weights. Finally, a 
32 × 32 ofmap is provided. The #pragma HLS DATAFLOW 
is adopted to infer task-level parallelism, thus allowing the 
overlap of the computations of both the layers.

Listing 3  The pseudocode of the TCNN for image 
decompression

Input: inStream of TIC ifmaps
Output: outStream of TOC ofmaps
1: #pragma HLS INTERFACE axis port=inStream
2: #pragma HLS INTERFACE axis port=outStream
3: #pragma HLS DATAFLOW
4: TCONV Layer + ReLU;

5: TCONV Layer;
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4.2 � Evaluation of #pragmas, Bit‑Width 
and Parallelism

To evaluate the effectiveness of #pragmas, as well as the influ-
ence of bit-width and parallelism, an extensive design-space 
exploration is carried out, using the XC7Z020 FPGA device 
at f = 100 MHz. Two types of HLS designs are considered:

•	 Baseline designs, containing the minimum number of 
#pragmas to ensure the correct behavior of the synthe-
sized circuits.

•	 Optimized designs, containing additional #pragmas, to 
allow the circuits to meet hardware-oriented features, 
including pipelining and parallelism.

Table 3 summarizes the used #pragmas, by clarifying 
their behavior in hardware, and taking into account both the 
baseline designs and the optimized counterparts.

Results in terms of resources utilization are shown in 
Fig. 7a−d. Each plot refers to a specific type of resource (i.e., 
LUTs, DSPs, FFs, BRAMs, respectively). The labels reported 
in the Configurations axis must be interpreted as (type of 
implementation-TIC,TOC), where type of implementation can 
be ‘base’ for the baseline designs and ‘opt’ for the optimized 
versions. Bars of different colors refer to different bit-widths.

LUTs in Fig. 7a are mainly exploited for computations 
and control. To understand the impact of #pragmas, we 

consider the configurations having (TIC,TOC) = (2,4) as an 
example. The optimized versions use more resources. This is 
justified by the use of #pragma HLS PIPELINE that inherits 
the #pragma HLS UNROLL to allow loops bodies to perform 
the computations in parallel. For instance, when N = 6, the 
optimized version adopts ~ 2.5× more LUTs.

DSPs are used, in conjunction with LUTs, for computa-
tion purposes. Accordingly, the optimized versions, relying 
in loop unrolling and pipelining, ask for more DSPs, as high-
lighted in Fig. 7b. For example, fixed N = 8, the configura-
tion (opt-2,2) requires 14.5× more DSPs than the configura-
tion (base-2,2). As a further consideration, it is worth noting 
that N differently affects DSPs and LUTs utilization trends. 
As an example, taking into account the optimized designs 
only, while LUTs utilization progressively increases varying 
N from 8 to 6, for DSPs a downward trend occurs. Indeed, 
while the amount of occupied LUTs grow by a 2.1× factor, 
the amount of utilized DSPs decrease up to 95%. Below 6 
bits, the DSPs utilization is steady, while the LUTs utili-
zation progressively decreases. This means that, while the 
synthesizer infers multiplications and additions using DSPs 
predominantly in the range 8–6 bits, it relies on LUTs for 
lower bit-widths.

Figure 7c shows that, given that FFs mainly equip with 
pipelining the combinatorial paths, their utilization fol-
lows the LUTs trend. Conversely, BRAMs are exploited 
to buffer weights on-chip and to temporary store ofmaps 

Table 3   Detail of the used #pragmas for the TCONV-based decoder.

#pragma Baseline Optimized

HLS ARRAY_PARTITION
It partitions a multi-dimensional array into 

multiple sub-arrays.

Used for the output buffer only, to allow the circuit to proper store the TOC × S × S pixels 
provided each cycle.

Not Used Used for filters and biases to be accessed 
simultaneously by as many computing elements.

Used for row overlap buffers according to the Input-
Oriented Mapping Algorithm.

HLS RESOURCE
It specifies the type of resource to be used to 

implement a given variable.

Not Used Used to implement the output buffer as a simple dual-
port memory.

HLS PIPELINE
It provides pipelining capabilities to the referred 

function or loop. Thus, new inputs can be 
processed every II clock cycles, with II being 
the initiation interval. It inherits the #pragma 
HLS UNROLL (see below).

Not Used Used to read each new cycle (II = 1) the ifmaps’ 
activations.

Used to manage the timing of ofmaps’ activations to 
be read from the output buffer.

HLS UNROLL
It transforms loops by creating several copies of 

the body to infer parallelism.

Not Used Used to unroll loops for ifmaps acquisition, IOM 
computations and buffering.

HLS INTERFACE
It specifies which interfaces must be used by I/O 

ports.

Used to equip both input and output ports of the TCONV layer engine with the AXI4-
Stream Interface.

HLS DATAFLOW
It specifies the task-level parallelism to improve 

the concurrency of C++ functions.

Used to manage the timing of data between the two layers of the decoder. It is needed 
to ensure the correct functionality of data transfer using streams when functions are 
cascaded, as reported in the HLS guide [33].
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before being delivered either to the subsequent TCONV 
layer or as final outputs. While the optimized configura-
tions make use of proper #pragmas to instruct the synthe-
sizer to split and place memory arrays into on-chip RAMs 
(i.e., #pragma HLS ARRAY_PARTITION and #pragma 
HLS RESOURCE), the baseline designs completely lever-
age the synthesizer to arrange data storage. Let us compare 
the configurations (base-1,1) and (opt-1,1) at various N. 
As visible in Fig. 7d, at a fixed configuration in terms of 
input and output parallelism, the baseline designs have an 
irregular trend, whereas the optimized configurations have 
a constant trend, meaning that they use the same number 
of BRAMs for each bit-width. This is due to the above 
mentioned #pragmas that instruct the synthesizer to leave 
BRAMs implementation independent of the bit-width. 

Finally, as expected, for both the baseline and the opti-
mized configurations, higher (TIC,TOC) pairs mean higher 
memory requirements.

Figure 8 illustrates the frame rate variations versus N 
by means of a heat map. The optimized designs improve 
considerably the performance of the decoder, in a range 
of 2 to 3 orders of magnitude. While a higher parallel-
ism obviously leads to a higher throughput, the latter is 
independent of the bit-width. Indeed, the #pragma HLS 
PIPELINE (thus, #pragma HLS UNROLL) makes the cir-
cuit able to perform parallel computations independently 
of the data word-length.

Finally, in order to provide a trade-off picture of 
the whole set of experiments, Fig. 9 plots the average 
resources utilization versus the throughput. The average 

Figure 7   Resources utilization 
of different configuration of 
the TCONV-based decoder: 
a LUTs, b DSPs, c FFs, 
d BRAMs.
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resources utilization is the average of the percentages of 
each type of resource (i.e., LUTs utilization, FFs utiliza-
tion, BRAMs utilization, DSPs utilization). For the sake of 
clear visualization, both the axes use the logarithmic scale. 
Each point is labeled to represent a specific configuration: 
indicating the design type (i.e., baseline as ‘b’, optimized 
as ‘o’), the bit-width N and the TOC factor. For example, 
o62 represents the optimized design with N = 6 and output 
parallelism factor TOC = 2. The green points refer to the 
configurations that satisfy the minimum accuracy thresh-
old for both MNIST and Fashion-MNIST datasets, while 
red points fail in meeting these accuracy thresholds, based 
on our previous study [17].

Two main regions can be identified within the plot of 
Fig. 9: on the left, the baseline designs, whereas on the right 
the optimized counterparts. For what concerning the fps, a 
proper usage of #pragmas to infer parallelism leads to an 
overall 3 orders of magnitude improvement. However, higher 
throughput means higher resources requirements. Despite 
this, even considering the worst-case configuration o84, the 
average utilization is limited to 16%. Figure 10 magnifies the 
baseline designs points. While the fps does not significantly 
changes, a more noticeable variation occurs in terms of the 
average percentage of resources utilization. As expected, the 
higher the data bit-width N the higher the resources occupa-
tion. This because wider bit-widths reflect on wider com-
puting units (i.e., multipliers and adders), thus increasing 
the quantity of LUTs and FFs. Furthermore, as expected, 
higher TOC lead to higher resources occupation. Finally, the 
configuration b41 requires the lowest amount of resources, 
while the configurations b64, b54, b44 employ the lowest 
amount of clock cycles to complete the computations.

5 � Characterization of the Generator 
of the DCGAN Architecture

In order to further investigate the suitability of the pro-
posed TCONV layer for dataflow architectures, we con-
sider the DCGAN network. Specifically, considering the 
quality results over the MNIST dataset [34], we propose 
an FPGA accelerator dealing with 5-bit weights and acti-
vations. The chosen quantization ensures all the weights 

Figure 8   Throughput trend of different configurations of the TCONV-
based decoder.

Figure 9   Trade-off analysis 
of different configurations of 
the TCONV-based decoder. 
Each point represents a specific 
configuration: the first letter 
indicates the design type (i.e., 
baseline configuration as ‘b’, 
optimized configuration as ‘o’); 
the second value is the bit-width 
N; the third value is the output 
parallelism (i.e., the TOC factor).
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to be preliminary stored on-chip and the off-chip memory 
accesses to retrieve data to be reduced.

5.1 � The HLS DCGAN Template

Listing 4 shows the top-level pseudocode of the 
C++ model. The first Project and Reshape layer is sup-
plied by a 1 × 1 × 100 activations and 256 × 100 × 4 × 4 
weights, and performs TCONVs having K = 4 and S = 1. 

The resulting 256 4 × 4 fmaps are supplied to the second 
layer, that executes TCONVs having K = 4 and S = 2. The 
same for the third and the fourth layers, which progres-
sively up-sample fmaps from 8 × 8 to 32 × 32. The second 
and the third layers are also equipped with ReLU non-
linearity [32].

Listing 4  The pseudocode of the generator of the DCGAN 
model

Input: latent vector inStream
Output: generated image outStream
1: #pragma HLS INTERFACE axis port=inStream
2: #pragma HLS INTERFACE axis port=outStream
3: #pragma HLS DATAFLOW
4: Project and Reshape;

5: DataBuffer;

6: TCONV Layer + ReLU;

7: DataBuffer;

8: TCONV Layer + ReLU;

9: TCONV Layer;

Figure 10   Detail of trade-off 
analysis of the baseline configu-
rations TCONV-based decoder. 
Each point represents a specific 
configuration: the first letter 
indicates the design type (i.e., 
baseline configuration ‘b’); the 
second value is the bit-width 
N; the third value is the output 
parallelism (i.e., the TOC factor).
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With respect to the decoder analyzed in Section 4, the 
DCGAN requires reusing the fmaps to manage internal lay-
ers with more than one 3-D filter. Indeed, all the 3-D filters 
need the same activations to generate as many ofmaps. How-
ever, due to the streaming behavior of the architecture, the 
activations provided by the current layer are generated once 
and consumed by the next layer as soon as possible. As a 
consequence, a buffer at the interface is mandatory. This is 
the meaning of the DataBuffer function reported in Listing 
4 and placed between the Layers 1–2 (line 5) and 2–3 (line 
7). No extra buffering is needed between the Layers 3 and 
4, in that the latter uses just one 3-D filter to provide the 
output image.

5.2 � Characterization and State‑of‑the‑Art 
Comparisons

The architecture is implemented within the XC7Z045 FPGA 
and characterized over different parallelism configurations. 
Table 4 reports the resources utilization, the achieved clock 
frequency, the throughput (fps), the power dissipation, the 
energy dissipation, and the energy efficiency. Power was 
estimated considering the post-implementation results and 
using the power analysis tool. Energy was computed consid-
ering the power results and the latency to process one image 
through the entire DCGAN architecture. The configurations 
array refers to the parallelism factor TOC of each layer. For 
example, the configuration (2,2,2,1) indicates that the first, 
the second, and the third layers exhibit an output parallelism 
TOC = 2, while the last layer has TOC = 1.

Obviously, the higher the overall parallelism, the better 
the throughput. An improvement of ~ 4.6× is achieved with 
the most parallelized configuration (2,4,2,1) compared with 
the sequential (1,1,1,1) configuration, whilst power dissipa-
tion grows from 0.34W to 0.74W due to increased BRAM 
use. In addition, N = 5 practically nullifies the use of DSPs 

for computations, thus removing a not-negligible source of 
power consumption.

Parallelism positively impacts the energy dissipation. 
Indeed, a ~ 2.15× reduction is evident when moving from 
the baseline (1,1,1,1) configuration to the most parallelized 
counterpart (2,4,2,1). Considering the slight increase in 
power, the referred result is mainly due to the higher speed 
performance (i.e., the fps).

Finally, the configuration (2,4,2,1) is compared to some 
state-of-the-art counterparts, as reported in Table 5. With 
respect to the architecture presented in [21], the proposed 
accelerator shows a 7.3× improvement in terms of energy 
efficiency, even at 1.7× lower throughput. The power sav-
ing is motivated by the fact that the novel engine accom-
modates all the needed TCONV Layers on chip, as well 
as the required filter weights, thus limiting the off-chip 
memory accesses. In addition, the data treatment at 5-bit 
shrinks the area occupation for computations significantly; 
indeed, the 16-bit counterpart hugely adopts DSPs, while 
the new design takes just 1 DSP. It is also worth underlin-
ing that the counterpart [21] takes advantage of the high-
performance Alveo U200 device: it achieves the 300 MHz 
clock frequency, thus improving the fps.

In comparison with [24], at a parity of the FPGA device 
used and of the clock frequency, the architecture presented 
here is ~ 29.7% faster and exhibits an energy efficiency 
more than 10× higher. This is the direct consequence of the 
extra logic exploited in [24] to meet the transformations 
steps of the Winograd-based TCONV algorithm, as well 
as the high level of parallelism.

Finally, Table 5 shows that the 16-bit DCGAN accelera-
tor [28] accommodated within the high-end XC7VX690T 
FPGA device reaches the best throughput but at 
expense of a considerable amount of resources: it occu-
pies ~ 13.26×, ~ 23.47×, ~ 3.56× more LUTs, FFs, on-chip 
BRAMs, respectively, than the new design.

Table 4   Characterization of the HLS DCGAN model.

TOC configuration (1,1,1,1) (2,2,2,1) (2,4,2,1)

Device XC7Z045 XC7Z045 XC7Z045
Bit-width 5 5 5
LUTs 8.62k 16.88k 22.40k
FFs 10.96k 21.77k 25.08k
BRAMs [Mb] 6.68 6.89 7.03
DSPs 0 1 1
Freq. [MHz] 167 167 167
fps 52 196 240
Power [W] 0.34 0.59 0.74
Energy [mJ] 6.46 3.01 3.03
Energy Efficiency [fps/W] 152.94 332.20 324.32

Table 5   State-of-the-art comparisons of FPGA-based DCGAN models.

a Retrieved from the GOPS reported in the paper

New [21] [24] [28]

Device XC7Z045 XCU200 XC7Z045 XC7VX690T
Bit-width 5 16 16 16
LUTs 22.40k 483k 196.7k 297.12k
FFs 25.08k 726k - 588.62k
BRAMs [Mb] 7.03 77 10.9 25.03
DSPs 1 2176 603 2304
Freq. [MHz] 167 300 167 200
fps 240 400 185a 826
Power [W] 0.74 9 5.8 -
Energy [mJ] 3.03 22.50 31.32 -
fps/W 324.32 44.44 31.89 -
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6 � Conclusions

This paper presented the design of an HLS-based TCONV 
layer, based on the IOM strategy, and suitable for data-
flow-based neural network architectures. The latter consist 
of stacked layers that exchange data internally, by reducing 
the data movement from/to external memory resources. 
The accelerator was conceived at the C++ abstraction, 
using a parametric template to be adapted at different 
configurations using proper bit-widths, kernel sizes, 
strides, image sizes, parallelism factors. For purposes of 
characterization, the proposed engine was preliminarily 
examined as a standalone unit and then integrated into two 
neural networks: a decoder for image decompression, and 
the generator of the DCGAN network.

The standalone TCONV layer showed competitiveness 
when compared the state-of-the-art, being able to provide 
up to 6.25 Gout/s and dissipating only 1.53 W, using ~ 11.7k 
LUTs resources and 4.52 Mb of on-chip memory.

When used within the decoder architecture, a systematic 
design-space exploration was conducted to investigate the 
positive influence of #pragmas to infer hardware optimiza-
tions, including pipelining and parallelism. The evaluation 
ranges in the interval 8–4 bits and showed an improvement 
of 3 orders of magnitude in fps throughput, with an average 
resources utilization of at most 16%. Finally, the charac-
terization of the DCGAN at 5 bits highlighted a noticeable 
throughput of 240 fps, with an energy efficiency of 324.32 
fps/W, which outperforms the state-of-the-art counterparts 
by a factor of at least ~ 7.3×.
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