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Abstract

We consider the problem of transmission schedul-
ing of data over a wireless fading channel with hard
deadline constraints. Our system consists of N users,
each with a fixed amount of data that must be served
by a common deadline. Given that, for each user, the
channel fade state determines the throughput per unit
of energy expended, our objective is to minimize the
overall expected energy consumption while satisfying
the deadline constraint. We consider both a linear and
a strictly convex rate-power curve and obtain optimal
solutions, based on dynamic programming (DP), and
tractable approximate heuristics in both cases. For
the special non-fading channel case with convex rate-
power curve, an optimal solution is obtained based on
the Shortest Path formulation. In the case of a linear
rate-power curve, our DP solution has a nice “thresh-
old” form; while for the convex rate-power curve we
are able to obtain a heuristic algorithm with compa-
rable performance with that of the optimal scheduling
scheme.

1 Introduction

Increasing data transmission rates provides benefits
in terms of efficiency of the bandwidth utilization and
in terms of range and quality of services offered to the
users. However, sending data at the maximum rate of-
ten decreases energy efficiency. Since many mobile
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wireless devices are battery powered, and the energy
for transmission is often a major source of energy con-
sumption, saving energy during transmission can lead
to a significant performance improvement, resulting in
smaller batteries or longer battery lifetimes. Thus, a
well designed mobile transmitter must not only max-
imize data throughput but also optimize the use of
resources, effectively cope with fading channel, and
meet operational constraints.

In this paper, we consider the problem of minimiz-
ing the energy expended by a transmitter in a wireless
network serving multiple users within a given amount
of time. A number of realistic wireless networking sce-
narios can be modeled in this way. For example, the
transmitter can be a ”backbone” node, which serves
as an access point for a set of end nodes, with limit
amount of energy and finite life time in anad-hoc net-
work, or a satellite with time-critical data (i.e., infor-
mation that must be sent before certain deadline) as
described by the authors in [1].

The communication system considered in this pa-
per consists of a single transmitter sending data to N
users, each user has a fixed amount of data that must
be received by a deadline. Time is assumed to be dis-
crete. During each time slot, at most one user can be
chosen for transmission. Our objective is to select the
user to transmit, and the associated data rate, so that
the total energy consumption is minimized subject to
a deadline constraint. The key drivers behind energy
savings in this setting are : i)varying transmission
rate over the time horizon since, as addressed in [2]
and [3], it is possible to reduce the energy consumption
by lowering transmission power and transmitting data
over a longer period of time and ii)the use of oppor-



tunistic schedulingto exploit the channel variability, as
addressed in [4].

The problem of resource allocation in wireless net-
works has received much attention in recent years. Re-
source allocation for fading multi-user broadcast chan-
nels is a popular topic in information theory. How-
ever, the resource being allocated is usually average
power or bandwidth, and the quantity to be maximized
is most often Shannon Capacity. The problems of max-
imizing throughput given a finite amount of energy,
or minimizing energy consumption given a short-time
deadline, have not been well-studied, to the best of our
knowledge. More recently, in [4], the authors try to
maximize the data throughput of an energy and time
constrained transmitter communicating to a single user
over a fading channel. They also explored the prob-
lem of using the minimum amount of energy to send
a fixed amount of data to a single user by a deadline
(i.e., the single user version of the problem that we
address here). In [2], the authors use a calculus ap-
proach to obtain energy efficient transmission policies
with arbitrary arrival and deadline constraints over a
time-invariant channel. In [3], the authors consider
the problem of sending a random number of packets
that arrive in a time interval by a deadline using the
minimum amount of energy. The transmission chan-
nel is assumed to be time invariant in their setup. Other
works that address the similar problem include [9] and
[10].

This paper is organized as follows. In section II,
we present the details of the problem formulation. In
section III, the minimum energy scheduling scheme
is obtained as the solution of a shortest path problem
when channels are known and time invariant. Cases
where all users have the same deadline and where dif-
ferent users has different deadline are both studied. In
section IV, we present the minimum energy schedul-
ing scheme for the case where users’ channels are un-
known and the rate-power curve is linear. Heuristic
algorithm is given for the case where user’s rate-power
curve is convex. Section V concludes this paper.

2 Model Description

We consider a system with a single transmitter send-
ing data to N users through N time-varying channels.
The channel for each userc, c ∈ {1, ..., N}, can be in

one of a finite setSc of states. The channel process
is represented by a vectorQ(t) = (q1(t), ..., qN (t)),
whereQ(t) ∈ S1 × ... × SN . The time axis is dis-
cretized: channels hold their states for time slots of
length T, with transitions on the boundariest = kT .
The channels’ states are assumed to be known at the
beginning of each time slot, either through direct mea-
surement or through a combination of measurement
and prediction. Furthermore, we assume no correla-
tion between channels of different users. Each user
has an amount of data that must be transmitted by a
deadline. The transmitter controls the consumed en-
ergy by adjusting the rate allocation vectorΓ(t) =
(µ1(t), ..., µN (t)), subject to the constraints that only
one user can transmit in each slot and that all of the
data must be transmitted by the deadline. The rate per
time slot assigned to the userj at time slotk is µjk.
For any given stateqjk of the channelj at time slot
k, there is a rate-power curvef(µjk, qjk) representing
the amount of energy required to transmit at rateµjk

when the channel is in stateqjk.

In this paper we address two cases of rate-power
curves. The first one is whenf(µjk, qjk) is linear
in µjk

qjk
, so thatqjk can be interpreted as the rate ob-

tained per unit of consumed energy. This kind of curve
is an accepted assumption in the low SNR regime or
for ultra-wideband transmissions. A linear rate-power
curve implies that the service of each user can be com-
pleted within a single time slot. Theoretically, there is
no limit on the energy that might be consumed during
a single time slot; practically, situations characterized
by small amount of data in short time intervals make
this assumption more realistic (the concave Shannon
curve can be approximated by a linear curve around
the origin).

The second case is whenf(µjk, qjk) is strictly con-
vex in µjk (see Fig. 1). The convexity is a reasonable
assumption due to the following two factors. First, the
Shannon capacity for an AWGN channel is a logarith-
mic function of the expended energy; second, under a
fixed modulation scheme, throughput has a linear rela-
tion to the expended energy, and since the curve could
represent a set of coding schemes, with a power lim-
itation, the curve becomes piecewise linear and con-
vex. The convexity reflects increasing costs in signal
power with each incremental increase in transmission
rate: this makes the spreading of the service over more



time slots less energy costly than concentrating it on a
single slot.

The goal of this paper is to find a transmission
schedule that minimizes the expected consumed en-
ergy, subject to a constraint on the minimum amount
of data to serve for each user and a deadline by which
it must be transmitted. We consider the time window
constraint composed byK time slots,K ≥ N . The
optimization problem becomes

min E





N
∑

j=1

K
∑

k=1

f(µjk, qjk) · τjk



 (1)

subject to the constraint that at least the initial amount
of datadj for each queue is served within a finite time
window:

K
∑

k=1

µjkτjk ≥ dj ∀j = 1, ..., N (2)

N
∑

j=1

τjk ≤ 1 ∀k = 1, ...,K (3)

whereτjk is equal to1 if the queuej has been served
during the time slotk, 0 otherwise. The inequality (2)
expresses that the service of all the users has to be com-
pleted within the frame ofK time slots, while (3) that
at most one user per slot can be served. For the re-
mainder of this paper, if not otherwise specified, we
will also assumedj = d for all users.

rate

power
improving
channel
conditions

q2 q3q1

Figure 1. Set of rate-power curves f(µjk, qjk) for users

1, 2 and 3 at time k.

3 Known Channel Quality

Let us assume that the channels’ quality is com-
pletely known, namelyqjk is known for all the users

and all the time slots. For each userj, the rate-power
curvef(µjk, qjk) is then a family of convex curves in
µjk indexed by time:

f(µjk, qjk) = fjk(µjk)

The problem (1) can be restated as minimizing

N
∑

j=1

K
∑

k=1

fjk(µjk) · τjk (4)

subject to the constraints (2) and (3). For the optimal
energy minimization policy, we can see that constraint
(3) will be met with equality due to the convexity of
the rate-power function. Note that the target of the op-
timization problem is now the minimization of the en-
ergy effectively consumed, instead of its expectation,
since a complete knowledge of the channel in the fu-
ture is assumed.

While future knowledge of the channel states is usu-
ally not realistic, the optimal solution to the schedul-
ing problem with full knowledge provides a lower-
bound on the “on-line” policies presented later. It also
shows the additional energy cost associated with lack
of knowledge of the channel state.

3.1 Time-Invariant Known Channel

Let us first consider the case when the channel is
known and time invariant, i.e. the channel quality for
each userj is equal to a constant valueQj. Knowing
the fade state is equivalent to knowing the rate-power
curve for each user; a constant fade state implies that
each user maintains the same rate-power curve for all
the time considered. This is a realistic assumption for
the slow fading wireless channel [5].

To solve the optimization problem stated in Eq.(4)
with the time invariant channel assumption, the sched-
uler must decide: 1) to which user a particular time slot
should be allocated and 2) how much power to spend.
Due to the time invariant channel, the time at which
a single user is served, and therefore the order with
which users are served, becomes irrelevant; note that
this holds only if all the users have the same deadline.
Also, given thatm slots were assigned to a particular
user with rate-power curvef(µ), to sendd amount of
data inm slots with minimum energy, the optimal pol-
icy is to consume an equal amount of power in each



of thesem time slots. This can be shown easily using
the convexity of thef(µ). Hence, to find the optimal
energy minimization policy, we need to consider only
one factor: the number of time slots allocated to each
user.

Since the time horizon considered here is finite, we
can formulate this energy minimization problem into
a deterministic shortest path problem. Due to the ir-
relevance of the service order, we assume that the
scheduler serves a user in consecutive time slots until
all data of that user are transmitted (i.e., user 2 will
not be served until all the data of user 1 are sent).
The state variablexn is then defined to be the time
at which the scheduler finishes serving usern. The
state space, denoted here asXn, is therefore a finite
set: indeed,xn can only assume integer values within
the set{n, · · · ,K − (N − n)}. The value ofxn can-
not be less thann becausen users cannot be served
using less thann time slots, which is result of the fact
that at most one user per time slot can be served; sim-
ilarly, xn cannot be greater thanK − (N − n) since
sufficient number of time slots (i.e.,N − n time slots)
must be reserved to finish the data transmission for the
remainingN − n users. At any statexn a control1

wn decides how many time slots will be used to serve
the next user, the(n + 1)st, and can be associated with
a transition from the statexn to the statexn+1. This
transition has a cost. If each user has an amount of
datad to transmit, the cost of a transition from the
nodexn = i to the nodexn+1 = j is the energy
required to serve the(n + 1)st user overj − i time
slots, i.e.(j− i)f( d

j−i
, Qn+1), where the functionf is

the considered rate-power curve, the first component
is the rate required to transmit the amountd of data
over j − i time slots andQn+1 is the channel quality
of the (n + 1)st user2. Notice that, given a statexn,
the effect of using a certain number of slots to serve
the next user is perfectly predictable because the chan-
nel is constant. Such a finite-state deterministic prob-
lem can be equivalently represented by a graphG as in
Fig. 2, with the following properties:

• The graph is composed ofN stages; the generic
stagen corresponds to the state spaceXn, namely

1In the time-varying channel formulation the decision variable
is un and represents which user is served

2Note that, due to the convexity of the rate-power curve, in
general(j − i)f( d

j−i
, Qn+1) < f(d, Qn+1)
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Figure 2. A graph G generated considering N users with

a deadline of K time slots. Consider the arc pointed by

the dash arrow: (K − (N − 1))f( d
K−(N−1) , Q1)

is the cost associated to that transition, namely it is the

energy consumption to serve the first user over the first

K − (N − 1) time slots.

the nodes of the stagen represent the set of feasi-
ble values thatxn may take.

• The arcs correspond to transitions between states
at successive stages, and each arc has an associ-
ated cost equal to the cost of the represented tran-
sition; the cost of transition towards thenth stage,
from a nodexn−1 = i to a nodexn = j, repre-
sents the additional energy consumption to serve
thenth user inj−i time slots. At the statexn = j,
n users have been served overj time slots.

• An initial state at which no user has been served
and no time slots has been used is connected to
every state of the first stage. The cost of each arc
is the energy required to serve the first user using
t time slots, witht ∈ {1, ...,K − N + 1}.

Theorem 1. Given a graph G built according to the
presented procedure, the shortest path from the initial
state to the last stage represents the optimal solution to



the optimization problem (1) in case of time-invariant
channel.

Proof. The graph includes all of the feasible solutions
to the scheduling problem. Each arc from one stage
to the next one represents the service of an additional
user using a certain amount of time, which determines
the energy cost of that transition. A path is a sequence
of arcs, each one associating a certain amount of time
slots to the service of each user: at the end of each
path, all theN users have been served using all theK

time slots available3, and the sum of the arc weights is
the total cost of that particular scheduling associated to
that path. The optimal cost is clearly achieved apply-
ing the shortest path algorithm to the graph.

Notice that i) the procedure used to generate the
graph G includes all the feasible solutions and ex-
cludes all the infeasible ones, namely all the solu-
tions that do not fulfill the deadline constraint; the
genericith user cannot be served in such a way that
the total amount of time spent to servei users exceeds
K−(N − i) time slots, otherwise the service of the re-
maining users could not be completed ii) the particular
order with which users are served does not affect the
result of the optimization problem, since all the users
transmit on a constant channel and have the same dead-
line; the optimal scheduling is a set of frames associ-
ated with the users, and the service of each user over
the number of time slots specified by a frame does not
change depending on the particular time slot at which
the service is offered. Point ii) is no longer true if
users have different deadlines, because in this case the
set of feasible solution is affected by the order of the
nodes.

The scheduling algorithm presented in Theorem 1
deals with a single deadline and the same amount of
datad for all the users. It is possible to extend this
result to the case of multiple deadlines. Here, we
consider only multiple deadlines that are feasible (i.e.,
there exists at least one scheduling scheme that will
meet all users’ deadlines). This multiple deadlines
problem can be formulated into the shortest path prob-
lem in the following two steps:

3Since we consider the general case of convex rate-power
curve, exploiting all the available time is a necessary condition
of optimality

1. Order the service of the users on a earliest dead-
line first basis

2. Build a graphG according to the procedure pre-
viously proposed, and associate a weight equal to
∞ to those arcs of the graphG that do not ful-
fill the deadline constraints. Specifically, consider
the transition from the nodexn = i to the node
xn+1 = j: if the deadline for user (n + 1), say
tn+1, is less thanj (i.e., user (n + 1)’s deadline is
not met), we will assign an infinite weight to that
transition.

We call the obtained graph with the above modified
procedureGm. It is clear that the shortest path algo-
rithm will avoid all the paths in which one or more
arcs has infinite weight, namely the paths that do not
meet the deadlines. While for the scheduling algorithm
of Theorem 1 the order with which users are served
does not affect the performance in terms of energy
consumption, in the case of multiple deadlines the ser-
vice order matters. However, constraint (3) will still be
met with equality (i.e., the transmitter will not be idle
during any time slot). Also, given thatm time slots
were allocated to useri, the transmitter will consume
an equal amount of energy in each of them time slots.
The following theorem shows the existence of an opti-
mal policy using the procedure described above.

Theorem 2. In the case of multiple deadlines and
time-invariant channel:

a) the set of feasible solutions to the optimiza-
tion problem (1) obtained ordering users on a earliest
deadline first basis still includes the optimal solution

b) the optimal solution is achieved applying the
Shortest Path formulation on the graphGm as stated
in Theorem 1.

Proof. The ordering operation on a earliest deadline
first basis generates the set of all feasible solutions.
It is straightforward to see that any other feasible
scheduling scheme that meets all deadline constraints
can be transformed to the earliest deadline scheme.
Since we are considering only feasible multiple dead-
lines and the number of states is finite, there exists an
optimal solution to the shortest path problem.

In this section, for simplicity, we assume that each
user has an equal amount of data that needs to be



served by the transmitter. However, the previous two
theorems hold even when different users have different
amount of data to be served by the transmitter.

3.2 Time-Varying Known Channel

We, now, consider the case of time-varying but
known channel quality. Specifically, the channel state
qjk is different over theK time slots but known in ad-
vance. We specialize to the case of linear rate power
curve, i.e. f(µjk, qjk) =

µjk

qjk
. Suppose that there is

only one user, then, the optimal policy is to simply se-
lect the slots with the best channel quality and transmit
the data in these slots. Since the rate-power curve is
linear, transmitting the data in a single slot or multiple
slots with the best channel does not affect the energy
cost. Clearly, transmitting in any other slot that does
not have the best channel state is not optimal. Thus,
for a single user the optimal policy is to simply select
the slot with the best channel state and empty the en-
tire data. Now, extending this result to multiple users
is not trivial, since, slots with the best channel for the
different users may overlap in time. In this case, the
optimal policy can be obtained as follows.

Consider a bipartite graph with one set of nodes
(inputs) representing theN users and the other set of
nodes (outputs) representing theK time slots. As the
channel state of each user is known for all the time
slots, we can obtain the transmission energy required
to serve the entire data of a user in a particular time
slot. Let the edge connecting the input nodej (userj)
with the output nodek (time slotk) have weight equal
to cjk, wherecjk is the energy required to serve all
the data of userj in time slotk. Thus for each userj
we haveK edges connecting to each time slot and the
weight (or the energy cost) of each edge is also known.
Clearly, the optimal policy now is simply aMinimum
Weight Matchingapplied to the above graph.

4 Minimum Energy Scheduling with a
Stochastic Channel Process

We now examine problem (1) with a stochastic
channel process. Here, the channel state of each user
is a random process over time but is assumed to be
known at the beginning of each time slot; i.e.qjk is as-
sumed known at the beginning of time slotk for each

userj but is unknown for future time slots. The chan-
nel state of each user is assumed independent of other
users and is also independent over time. First we con-
sider a linear rate-power curve and then in the next sec-
tion investigate the more general case of a convex rate-
power relationship.

4.1 Linear Rate-Power Curve

The power expenditure is assumed to be a linear
function of the transmission rate, i.e.f(µjk, qjk) =
µjk

qjk
. With a linear rate-power curve it can be shown

that it is optimal for the transmitter to transmit the en-
tire data of a user in just one slot. Intuitively, this
stems from the fact that the transmitter will only de-
cide to serve a user during a given time slot if the chan-
nel quality during that time slot is better than the ex-
pected channel quality that the user will experience in
the future. Due to the linearity of the rate power curve,
the cost per unit data is constant during the time slot.
Hence, if the transmitter decided to serve a given user,
then it follows that it should transmit all of the data be-
longing to that user. Mathematically, this follows from
the fact that the dynamic programming value function,
which measure the expected energy cost to serve that
user in the future, can be shown to be concave in the
amount of data that remains to be served. This con-
cavity, when combined with the linear rate power rela-
tionship, is sufficient to show that the optimal solution
is either not to serve the user or to transmit all of the
user’s data at once. We treat the convex rate-power
curve case in Section 4.2.

We begin by first presenting an optimal on-line pol-
icy based on dynamic programming (DP) and then
compare the performance of various simple heuristic
policies. For simplicity we assume a constant amount
of datad for each user. As each user is served within
a single time slot, the value function for the DP re-
cursion just depends on the number and the channel
conditions of the remaining users. In the more general
case where each user has a different amount of data, a
similar approach can be applied, however that would
involve keeping track of the amount of data that each
user has to be served (or at least the order of the re-
maining users in terms of how much data they each
have to be served). LetJk(nk, qk

) be the cost of hav-
ing nk users remaining to be served at time slotk,



whereq
k

is the vector whose component(qj)k is the
channel state of userj at time slotk. The recursive DP
equation for this problem can be written as,

Jk(nk, qk
) = min

uk







N
∑

j=1

d

qjk

Ij(uk) + J k+1(nk+1)







(5)
whereuk is the decision taken by the server at timek

(i.e., if a userj is serveduk = j), nk+1 is the number
of remaining users after the decision (nk+1 = nk if
no user is served, otherwise it equalsnk − 1), I is the
indicator function whose form is

Ij∗(uk) =

{

1, if uk = j∗

0, otherwise

and

J k+1(nk+1) = E
[

Jk+1(nk+1, qk+1
)
]

(6)

is the expected future cost of the decision. The sum-
mation is, finally, the actual cost of the decision, which
is either0 if no user is served, or d

qj∗k
if the userj∗

is served. To complete the recursion, thetermination
conditionis given as,

J K+1(nK+1) =

{

0, nK+1 = 0
∞, nK+1 > 0

where an infinite cost is imposed if there are unserved
users remaining after time slotK.

Theorem 3. For the multi-user stochastic channel sce-
nario with a linear rate-power curve, the optimal on-
line policy that minimizes the expected energy expen-
diture is a threshold policy of the form:

uk =

{

idle if d
qmax,k

> αk

Uqmax,k
otherwise

where

αk = J k+1(nk) − J k+1(nk − 1) (7)

is a threshold that can be easily computed off-line, and
Uqmax,k

is the selected user, whose channel is the best
among all the channels associated with the remaining
users at timek.

Proof. During each time slot the policy either serves
one user or does not serve any user. This implies that
the value function (5) can be written as,

min { min
uk∈U





N
∑

j=1

d

qjk

Ij(uk)



 +J k+1(nk − 1),

J k+1(nk)} (8)

whereU is the set of users still waiting to be served.
J k+1(nk) is the expected future cost when all the
users are delayed (nk+1 = nk) while J k+1(nk − 1)
is the expected future cost when all but one user is de-
layed (nk+1 = nk − 1). On the other hand, the cost
for consuming energy at timek is d

qj∗k
, wherej∗ is

the selected user. The user that minimizes the quan-
tity d

qj∗k
is simply the one with the best channel state

among the set of remaining users. This choice is also
justified by the fact that users have iid channel condi-
tions and the only objective is to reduce the number
of remaining users using the minimum amount of en-
ergy. Thus, the total cost of serving this user at time
k is d

qmax,k
+ J k+1(nk − 1). To satisfy (8), the op-

timal policy transmits on the best channel among the
remaining users if

d

qmax,k

+ J k+1(nk − 1) ≤ J k+1(nk) (9)

where the left side represents the cost for serving one
user, the one with the best channel, while the right side
represents the cost of delaying all the services. The
inequality (9) is equivalent to

d

qmax,k

≤ αk (10)

whereαk is defined as in (7). Thus the threshold is
equal to the difference between the expected future
cost of delaying allnk transmissions or serving one
user and delaying onlynk − 1 transmissions. Clearly,
if the cost of serving a user during the current time slot
is less than this difference, then it is better to serve a
user during this slot, otherwise it is better to delay all
transmissions.

The optimal policy is a threshold policy that re-
quires the (pre) computation of the threshold for each
time-step. To compare the performance of the opti-
mal solution, we now present simple heuristics that



are based on the solution of theoptimal stopping time
problem as described in Appendix A. Notice that the
problem we considered with only a single user reduces
to a simple optimal stopping time problem. With mul-
tiple users, however, optimal stopping time solutions
cannot be directly applied as it is possible that more
than one user would have the same stopping time. The
heuristic policies that we consider are as follows.

• OptStop Max: This policy calculates the optimal
stopping time independently for each user, fixing
the last time slot (theKth slot) as the deadline
for all the users. If two or more users have the
same optimal stopping time the policy serves the
one with the best channel. When the number of
the remaining users is equal to the time slots re-
maining until theKth slot, a greedy algorithm is
applied that transmits in each slot the user with
the best channel among the remaining users.

• OptStop Dyn: This policy is a modified version
of OptStop Max. It is called ”Dynamic” because
it updates dynamically the deadline after the ser-
vice of a user. Initially it calculates the optimal
stopping time independently for each user by fix-
ing the slotK − N − 1 as the first deadline for
the N users. After the service of the first user
(eventual collisions are always solved selecting
the user with the nest channel), the policy recal-
culates the optimal stopping times of the remain-
ing N − 1 users moving the time deadline ahead
by one slot and so on each time a user is served.
As the previous heuristic, when the number of re-
maining users is equal to the remaining slots the
same greedy algorithm is applied.

• OptStop Rand: This policy is similar toOptStop
Maxexcept that it solves the collisions randomly.

For comparison, we can also consider the optimal
algorithm, obtained in Section 3.2, that assumes com-
plete future knowledge of the channel state evolution.
Comparison with a policy that assumes channel knowl-
edge helps understand the additional energy cost of the
online policies due to lack of such knowledge.

Simulation Results

In Figure 3 we compare the performance of the op-
timal on-line algorithm with the heuristic algorithms

previously explained. The average is obtained gener-
ating 500 different channel state trajectories for each
value of the window constraint from16 to 76. It can
be noticed that the optimal off-line policy is obviously
a lower bound. The best performance possible is rep-
resented by the optimal on-line policy which turns out
to be very close to the ideal performance of the sys-
tem represented by the lower bound. WhenK is large,
the performance of the stopping-time heuristics is very
close to the optimum since the probability of collision
between the calculated optimal stopping times is low.
A worse performance is expected when the probability
of collision increases, namely when the time window
constraint is shorter. In this case, the strategies to solve
collisions characterize the heuristics’ sub-optimality.
Notice that the performance ofOptStop MaxandOpt-
Stop Dynis very good even when the deadline is small.
However the performance ofOptStop Randworsens
but this is not surprising for a policy where collisions
are randomly solved instead of choosing the best chan-
nel.

Let us focus now on a single channels’ state trajec-
tory for the previous setting. The scenario consists of
K = 24 time slots. In Figures 4, 5 and 6 we com-
pare the transmission schedule obtained by the optimal
on-line policy and the two heuristicsOptStop Maxand
OptStop Rand. On each figure the line representing
the threshold between saving or consuming energy and
the sequence of best channels among those associated
to the remaining users are reported. Notice that the
two heuristics have exactly the same threshold, since
it is calculated in the same way (optimal stopping time
strategy), and the difference in the policies is deter-
mined by the way collisions are solved. WhileOptStop
Max solves collisions transmitting on the best channel
among those eligible to be served, theOptStop Rand
chooses randomly. At each time slot, all those users
whose channel is above the threshold are eligible to
be served: in the case of the optimal on-line policy
andOptStop Maxthe user with the best channel is se-
lected; in the case ofOptStop Randthe user to serve is
randomly selected. If all the channels associated with
the remaining users are under the threshold no user is
served. Note that, sinceOptStop Randdoes not serve
the user with the best channel among those eligible to
be served, we show the quality of the used channel in
Figure 6, which may not be the best one (only when-



ever no user is served the best channel is shown). It can
be noticed thatOptStop Randimmediately under per-
forms at the first time slot where it does not transmit
using the best channel.

Finally notice, that the threshold of the optimal on-
line policy is a function of the number of the remaining
users and this intrinsically forces the system to respect
the delay constraint, thereby, serving all the users by
the short term deadline. In contrast, the threshold of
the two heuristics is calculated for each user in iso-
lation. While this leads to an easier pre-computation
phase it may lead to situations in which there are not
enough slots remaining to exploit the channel varia-
tion over time. To satisfy the deadline constraint, if the
residual time in terms of number of time slots is equal
to the number of remaining users, the threshold is no
longer considered and a greedy service is applied. In
Figure. 6, this can be observed for the policyOptStop
Randin the last two time slots.

The computation of the optimal on-line policy turns
out to be quite efficient. However, when the num-
ber of users is large (more than100) it can be sub-
stantively slower than the heuristics. In particular, the
pre-computation phase to calculate the threshold is the
most critical compared to the simpler heuristic algo-
rithms, where a threshold for each user in isolation or
a search for the best channel over few time slots has to
be implemented. In contrast, the heuristics are slightly
more complicated during service because they have to
manage the collisions.

4.2 Convex Rate-Power Curve

In this section, we consider the case of a convex
rate-power curve, i.e.Pjk = f(µjk, qjk), wheref() is
convex in rate. While the linear rate-power curve im-
plies that there is no limit on the amount of energy that
can be consumed during a single time slot and so there
is no limit on the amount of data of a single user that
can be served, the convex curve introduces a smooth
power limitation. Theoretically any user may still be
served within a single time slot but each increment in
the data rate produces an increasing additive cost of
signal power. Thus it might be better for the server to
spread the service of a single user over multiple slots.
The problem is now clearly more complex as we must
also keep track of the amount of data that remains to
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straint, fading Rayleigh distributed channels with mean

20, 16 users, linear rate-power curve, d = 450 units of

data

be transmitted by each user. This means a state space
whose vectorial component at timek is (dk, qk

), where
each componentj of dk is the residual amount of data
at timek for userj and each component ofq

k
is the

corresponding channel state.
A dynamic programming formulation as in (4.1) can

be formulated. The cost function satisfies the follow-
ing recursion,

Jk(dk, qk
) =

min
uk

0≤µukk≤duk







N
∑

j=1

f(µjk, qjk)Ij(uk) + J k+1(dk+1)







(11)

whereuk is the decision taken by the server at timek,
µukk is the transmitted amount of data of the selected
user, the summation is the actual cost of the decision (0
if no user is served andf(µjk, qjk) if userj is served)
and

J k+1(dk+1) = E
[

Jk+1(dk+1, qk+1
)
]

(12)

is the expected future cost of the decision. Thetermi-
nation conditionof the recursion imposes an infinite
cost if one or more users still have data to be sent after
the deadline:

JK+1(dK+1) =

{

0, dK+1 = 0
∞, otherwise
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optimal on-line policy
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Figure 6. Transmission schedule obtained by Opt-
Stop Rand

This problem does not allow a semi-analytical solu-
tion as in (4.1) where we are able to calculate a thresh-
old and then implement an optimal on-line policy. In
this case, we can numerically solve the recursion. The
set of rate-power curves that we consider here are the
standard curves for Shannon capacity

µjk(cjk, qjk) = log(1 + qjkcjk) (13)

where, as usual,cjk is the power per time slot required
for userj at time slotk to transmitµjk units of data
and qkj is the corresponding channel state depend-
ing on the received signal-to-noise level for channel
j. Since the optimal solution is the result of an inten-
sive numerical computation, we also propose a prac-
tical and computationally less intensive heuristic and
compare its performance with the optimal solution.
The heuristic we propose is inspired by the single-user
infinite-horizon version of the minimization problem
addressed in this section.

Infinite Horizon Heuristic
For the moment, let us ignore the deadline con-

straint and focus on asingle user. We want to min-
imize the expected consumed energy guaranteeing a
certain long term throughput to the user. Therefore,
during each time slot, the transmitter need to choose a
data rate based on the channel state of that time slot.
The formulation of this problem is given by the fol-
lowing:

min
∑

q

P(q)
exp(µq) − 1

q

s.t.
∑

q

P(q)µq = LTRG (14)

where the optimization is taken over the values ofµq,
the data rate chosen when the channel is in stateq. The
function to be minimized represents the expected en-
ergy cost averaged over all possible discrete channel
values, and the constraint represents the average long-
term rate obtained.P(q) is the probability mass func-
tion of the channel state, andLTRG is the Long Term
Rate Guarantee. The sum in the objective function is
a simple expectation of the consumed energy: for each
possible value of the channel stateq, the energy con-
sumption to transmit the amount of dataµq is evalu-
ated by inverting the convex rate-power curve of (13);



each amount of energy is then weighted with the prob-
ability of the channel state, and the sum gives the ex-
pected energy consumption. The solution of this op-
timization problem will give us, for any channel state
q, the valueµq of the data rate to offer, in order to
meet the long term rate guarantee, subject to mini-
mizing the expected consumed energy. The nonlinear
optimization problem can be computed efficiently be-
cause the objective function is convex in the energy
variable for every fixed channel stateq. Using stan-
dard Lagrange multiplier techniques as in [8], it can
be shown that a solution is optimal if and only if the
rate is allocated according to the constraints so that

the derivativesP(q)
d(

exp(µq)−1

q
)

dµq
are equalized to some

valueγ∗ for all channel valuesq that receive some ser-
vice, while all channel values receiving zero rate have
derivatives greater thanγ∗. Given the convex rate-
power curve (13), the solution to (14) is:

µq =
LTRG −

∑

q
′
∈Q P(q

′

) log
(

q
′

P(q′ )

)

∑

q
′
∈Q P(q′)

+log

(

q

P(q)

)

(15)
for channel state valuesq ∈ Q. Initially the setQ
includes all channel state values. The above equation
produces the optimal rate allocation whenever the re-
sultingµq are nonnegative. If any value is negative, it
is set to zero, and the corresponding channel state is
removed fromQ. The calculation is repeated at most
Nq−1 times, beingNq the number of possible channel
state values.

Now, to solve the multi-users problem with convex
rate-power curve, the transmitter has to make the fol-
lowing two decisions at the beginning of each time
slot: 1) to whom the time slot should be allocated. 2)
the transmission rate for a particular time slot given
this time slot is already assigned to a user. The idea
behind our heuristic algorithm for the multiple users
problem is to address the first question by selecting the
user with the best channel state, and address the second
question by applying the rates obtained for the single
user problem (i.e., the optimal solution to (14) with ap-
propriately chosen LTRG parameter). The LTRG pa-
rameter is updated at each time slot on the basis of the
amount of data already served and the remaining time
before the deadline. Specifically, our heuristic algo-
rithm consists of the following three steps: i) At the

beginning of each time slot, among users with remain-
ing data, the one with best channel state will be chosen
to be served ii) The selected user is considered in iso-
lation in computing its allocated data rate according to
(15). The LTRG parameter can be obtained from the
ratio of the amount of data that remains to be served
and the number of time slots left iii) If the number of
remaining time slots is equal to the number of remain-
ing users to be served, a greedy policy is applied.

In step (ii) above, the allocated rate is the optimal
solution to the optimization problem (14). However,
a minor subtlety arises here. The channel state distri-
bution used in (ii) is not simply that of a single user in
isolation. Rather, since each user is chosen for service
only when it has the best channel among all users, the
distribution used in (14) must be adjusted accordingly.
In particular, at each time slot the observed channel is
the maximum amongn channels, wheren is the num-
ber of users remaining to be served, with probability
1
n

, and is zero with probabilityn−1
n

, since the channel
is not considered for transmission in that time slot.
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straint; Numerical Solution of the DP formulation and In-

finite Horizon Heuristic for the multi-user, fading channel

scenario with nonlinear rate-power curve.

Comparing our heuristic with the optimal solution,
we see that the two results are very close as the time
horizon increases. As an example, the numerical so-
lution of the optimal on-line problem is obtained for
N = 3 users. The channel throughput per unit of



energyqjk is integer valued and Rayleigh distributed
with a mean of2 during each time slot. The amount
of data to serve is integer valued with the unit as min-
imum granularity. Their initial values are2, 1 and3,
respectively for the three users. The average consumed
energy is presented in Fig. 7, obtained by generating
1000 different channel state trajectories for each value
of the time window constraint. The time window con-
straint length is moved from6 to 450 time slots. The
results of the optimal policy are compared with the
results of the infinite horizon heuristic. As expected,
as the deadline constraint increases, the better is the
heuristic’s performance. In Fig. 7 a third curve is re-
ported. The second heuristic is an approximation of
the infinite horizon problem: since the optimal prob-
lem cannot be solved without discretizing data, the
performance of the infinite horizon problem is also ob-
tained discretizing data, in order to make the compar-
ison more fair. In this last case, the performance is
suboptimal even in the long term.

The numerical approach, which is a brute-force so-
lution of the dynamic programming formulation, is or-
ders of magnitude slower than the heuristic. For this
reason we limited the above example to just3 users.
However the heuristic could be easily implemented for
any number of users as its complexity is linear in the
number of users.

Another interesting heuristic can be inspired by
the Shortest Path approach of section 3.1. The con-
stant channel assumption is realistic for non-fading or
slowly fading channels. However, this approach can
be a reasonable staring point to develop an algorithm
for the fading case.

Framed Shortest Path

ConsiderN users with a common deadlineK. Each
userj had an amount of datad to transmit. A reason-
able heuristic may be

1. divide the time window inM framesK
M

time slot
long. Then, on each frame:

2. assume the channel of each user constant and
equal to the first channel quality sample

3. apply the shortest path formulation to the graphG

generated according to the procedure specified in
section 3.1, scaling the amount of datad of each
user of anM factor.

5 Conclusions

In this paper we consider the problem of schedul-
ing transmissions over a wireless channel subject to a
deadline constraint. In principle, it may be possible to
satisfy deadline constraints by simply increasing the
data rate. However, higher data rates consume more
energy; and typically the required energy is a convex
function of the data rate. Therefore, a key objective
is to minimize the total energy consumed subject to
satisfying the deadline constraints. To that end, we ex-
ploit two aspects of wireless transmission. First, since
energy is convex in data rate, we seek transmission
schemes that use the lowest possible data rate while
satisfying the deadline constraints. Second, since the
wireless channel is time-varying, we exploit oppor-
tunistic scheduling by attempting to transmit at times
that the channel conditions are good.

Specifically, we consider a single wireless trans-
mitter with N users. Each user has a fixed amount
of data that must be transmitted by a deadline. We
consider both a linear and a strictly convex rate-power
curves and obtain optimal solutions, based on dynamic
programming, and tractable approximate heuristics in
both cases. When the channel is time-invariant, we ob-
tain an optimal solution based on a Shortest Path for-
mulation. When the channel is time-varying and the
rate-power curve is linear, our dynamic programming
solution has a nice ”threshold” form. While, for the
strictly convex rate-power curve we are able to obtain a
heuristic algorithm that performs well when compared
to a ”brute-force” implementation of the dynamic pro-
gramming solution.

The problem of scheduling wireless transmissions
with a deadline constraint is very important for sup-
porting both wireless data services as well as tradi-
tional voice services; yet, understanding of this com-
plex scheduling problem remains very limited. In this
paper we address a simple version of the problem with
fixed amounts of data and known deadlines. Important
extensions to this work include scheduling transmis-
sions with stochastic traffic; obtaining ”optimal” solu-
tions when the channel is time-varying and the rate-
power curve is convex or including a power limita-
tion; supporting different classes of traffic (e.g., with
different deadlines or priorities); as well as assuming
fading channels with correlation. Finally, this investi-



gation could be headed to distributed versions of the
proposed algorithms, in order to apply these solutions
to problems in which all the elements of the networks
(servers and terminals) have complete mobility.

References

[1] A.Tarello, J.Gao, E.Modiano, “Energy Efficient
Transmission Scheduling over Mars Proximity
Links”, Proceedings ofIEEE Aerospace Conference
2006, Big Sky, MT, USA, 2006.

[2] M.Zafer, E.Modiano, “A Calculus Approach to Min-
imum Energy Transmission Policies with Quality of
Service Guarantees”, Proceedings ofIEEE INFO-
COM 2005, Miami, FL, USA.

[3] A.El Gamal, E. Uysal, B.Prabhakar, “Energy-
Efficient transmission over a wireless link via lazy
packet scheduling”, Proceedings ofIEEE INFO-
COM 2001.(2001, vol.1, pp.386-94).

[4] A.Fu, E.Modiano, J.Tsitsiklis, “Optimal Energy
Allocation for Delay-Constrained Data Transmis-
sion over a Tyme-varying Channel”, Proceedings of
IEEE INFOCOM 2003.(2003, vol.2, pp.1095-1105).

[5] T.Rappaport,Wireless Communication, Principles
and Practice, Prentice-Hall Inc., N.J., 1996.

[6] D.Bertsimas, J.N.Tsitsiklis,Introduction to Linear
Optimization, Belmont, MA, USA: Athena Scien-
tific, 1997.

[7] D.P.Bertsekas,Dynamic Programming and Optimal
Control, Belmont, MA, USA: Athena Scientific,
2000.

[8] D.P.Bertsekas,Nonlinear Programming, Belmont,
MA, USA: Athena Scientific, 1999.

[9] D. Zhang and K. Wasserman, “Transmission
schemes for time-varying wireless channels with
partial state observations”, Proceedings ofIEEE IN-
FOCOM 2002.(2003, vol.2, pp.467-476).

[10] B. Collins and R. Cruz, “Transmission policies
for time varying channels with average delay con-
straints”,Proceedings, 1999 Allerton Conference on
Communication, Control and Computing, Monti-
cello, IL, USA, 1999.

A Optimal Stopping Time

Optimal stopping problems are characterized by the
availability, at each state, of a control stopping the evo-
lution of the system. At each stage the decision maker
observes the current state of the system and decides
whether to continue the process, perhaps at a certain
cost, or stop the process and incur another cost. The
target is developing a policy to maximize the revenue,
stopping the process when theactual cost of doing it
is more convenient than continuing the process itself.

Let us consider a single user scenario of the prob-
lem discussed in this paper. The userj is waiting to
transmit on a radio channel a fixed amountd of data.
The power-rate curve is linear, so all the amount of
data can be transmitted within a single time slot. The
server has just to decide the best time slot for transmit-
ting; the transmission will be allowed when the actual
cost of transmission is less than the expected cost of
delaying that transmission. We consider an horizon of
K time slots. If the server has not transmitted after the
K − 1th time slot, it must necessarily transmit in the
Kth slot. The objective is to find a policy that mini-
mizes the expected cost of transmission.

We assume that the channel samples, denoted
q0, q1, ..., qK−1 are random and independent. A Dy-
namic Programming approach can be developed. The
control space consist of two elements,u1 andu2, de-
noting “transmission” and “idle” respectively. Letqk

denote the channel state anddk the amount of data left
in the queue at timek. The data is either completely
transmitted in a slot or the system idles in that slot. We
can write the state evolution as,

dk+1 = fk(dk, uk, qk) k = 0, 1, ...,K − 1

defined as

dk+1 =

{

0, dk = 0 or ( dk 6= 0 and uk = u1)
d, otherwise

The corresponding cost function may be written as

Eqk, k=0,1,...,K−1

[

gK(dK) +
K−1
∑

k=0

gk(dk, uk, qk)

]

where

gK(dK) =

{

d
qK

, dK 6= 0

0, otherwise,



gk(dk, uk, qk) =

{

d
qk

, dk 6= 0 and uk = u1

0, otherwise.

are respectively the cost at the last time slot and the
cost of the whole path excluding the last time slot.

The DP formulation is then

JK(dK) =

{

d
qK

, dK 6= 0

0, dK = 0,
(16)

Jk(dk, qk) =

=

{

min
[

d
qk

,J k+1(dk+1)}
]

, dk 6= 0

0, dk = 0.

When the remaining amount of data to serve at timek

is dk, the cost resulting from transmission isdk

qk
, while

J k+1(dk+1) is the expected cost of waiting. Clearly,
the optimal policy, then, is to transmit when the trans-
mission cost is smaller than the expected future cost of
delaying the transmission, i.e., if

dk

qk

≤ αk (17)

where
αk = E [Jk+1(dk+1, qk+1)]

is a threshold representing the expected future cost as-
sociated with delaying the transmission.

The policy is thus characterized by a backward and
forward process. A sequence ofαk is initially pre-
computed backward from the termination state. Then,
during the system operation, the optimal stopping time
is the one satisfying (17). The termination condition
is (16) and forces the server to transmit by the last time
slot in order to respect the deadline constraint. Fur-
ther discussions on the Optimal Stopping Time Strat-
egy can be found in [7].


