
SOLONet: Sub-Optimal Location-Aided Overlay Network for MANETs

Abhishek Patil1, Yunhao Liu2, Li Xiao1, A.-H. Esfahanian1, and Lionel M. Ni2

1Dept of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, U.S.A.
{patilabh,lxiao, esfahanian}@cse.msu.edu

2Dept of Computer Science
Hong Kong Univ of Science and Technology

Kowloon, Hong Kong
{liu,ni}@cs.ust.hk

Abstract

Overlay networks have made it easy to implement
multicast functionality in wireless ad hoc networks.
Their flexibility to adapt to different environments has
helped in their steady growth. In MANETs, the position
of nodes constantly changes; as a result, overlay multi-
cast trees that are built using location information to
account for node movement would certainly have a low
latency. However, the performance gains of such a tree
are offset by the overhead involved in maintaining pre-
cise location information. As the degree of (location)
accuracy increases, the performance improves but the
overhead required to store and broadcast this informa-
tion also increases. In this paper, we present SOLO-
Net, a design to build a sub-optimal location aided
overlay multicast tree, where location updates of each
member node are event based. Our simulation results
indicate that such a sub-optimal tree does not com-
promise the performance gains of a location aided
overlay multicast tree.

1. Introduction

Mobile ad hoc networks (MANETs) are character-
ized by mobile nodes and constantly changing network
topology. Implementing multicast in such a dynamic
environment is a challenging task. As pointed out by
[18], traditional IP-layer multicast (e.g. [15], [19],
[11]) for MANETs have a lot of signaling overhead as
it needs to take into account the network dynamics in
addition to the (multicast) group dynamics. The wide-
spread deployment of IP multicast has been held back
by a variety of issues [7]. Application layer (overlay)
multicast relies on the underlying unicast protocols to
adapt to the changing network topology. As a result,
the application layer has to track only the group dy-

 This work was partially supported by the US National Science
Foundation (NSF) under grant ACI-0325760, by Michigan State
University IRGP Grant 41114 and by Hong Kong RGC Grants
HKUST6161/03E, HKUST6264/04E, and DAG02/03.EG02.

namic. Due to its ease of implementation and flexibil-
ity to adapt, overlay multicast networks (though not as
efficient as IP layer multicast) are finding many practi-
cal applications in MANETs. AMRoute [4], PAST-
DM [9], and LGT [5] are some of the overlay multicast
protocols that have been proposed for MANETs. In
recent years, we have seen a dramatic increase in re-
search interest shown towards context aware comput-
ing and location-sensing techniques [2], [10], [14],
[26], [16], [20]. Consequently, position based approach
for routing (e.g. [5], [21]) is becoming practical. This
paper presents SOLONet, a design that uses location
information of member nodes to build an overlay mul-
ticast tree.

Application layer multicast is not as efficient as IP-
based multicast. As can be seen in Figure 1(b,c), data
exchange between member nodes requires traversing
other member nodes. The latency increases as the
number of nodes increases. This delay can be greatly
reduced when the overlay tree is built by taking into
account the member node positions (Figure 1c). Such a
tree would keep track of member node’s movement
and would be frequently updated to account for any
change in the node positions. The nodes that are physi-
cally close to each other would be neighbors in the
logical tree (Figure 1c) and the logical distance of any
member node from the source node will be propor-
tional to its actual distance from the source.

Figure 1: Random vs location-aided overlay tree.

3240-7803-8815-1/04/$20.00 ©2004 IEEE

It is quite clear that a location aware overlay tree
would give considerable improvements in the perform-
ance over any random overlay tree (Figure 1b). How-
ever, there are several issues with this approach that
need close attention. How to effectively distribute the
location information of each member node to other
members? How precise should the location information
be? How often should this information be updated?
Location broadcast is a costly affair and if every node
starts to broadcast its current location information, then
it would quickly lead to the broadcast storm problem
[17] [22]. Several papers have proposed methods to
carry out broadcast with minimum overhead. Wu and
his team [23] [24] have suggested a number of optimi-
zations (using the concept of dominating set) to carry-
out efficient broadcast in MANETs. The method pro-
posed in our paper builds location-aided overlay trees
without the need for any member node to broadcast its
location information.

Intuitively, precise location information would lead
to a better overlay tree. However, obtaining exact loca-
tion of an object is a difficult task, especially in indoor
environments where ad hoc networks are usually im-
plemented. Frequent updates would be necessary to
maintain the accuracy of this information. As the node
number and mobility increases, the update frequency
would exponentially increase. There is a tradeoff be-
tween the advantages of building a location-aided over-
lay tree versus the distribution and precision of this
location information. In SOLONet, the physical topol-
ogy is divided into smaller areas (cells) having a cer-
tain geometric shape (e.g., triangle, square, hexagon,
etc.). The idea is to make location updates event-based.
A node will report a change in its location only when it
crosses border to a neighboring cell. A leader node is
selected in each cell to localize certain operation, aid in
service discovery and to reduce the number of broad-
cast messages. A node wishing to form or join an exist-
ing overlay network (for a particular service) would
query its local leader instead of broadcasting the query
to each node in the network. The leader node also
maintains information about each node in its cell. The
amount of information maintained depends on a par-
ticular implementation. Using NS2 (for simulations),
we compare the performance of our design with an
optimal overlay tree. We also evaluate the scalability
and performance for different member size and cell
areas. We also look at the effects of different location
update frequencies on performance.

The rest of the paper is structured as follows. Sec-
tion 2 summarizes previous work on overlay multicast.
Section 3 presents an in-depth description of our de-
sign. Section 4 presents a detailed analysis of our
leader selection algorithm. In Section 5 we present our

simulation results. Finally, Section 6 concludes the
paper and presents directions for future research.

2. Related Research.

Several overlay multicast protocols (e.g. [9] [5] [6]
[3] [1]) have been proposed and studied in recent past.
Many of them have addressed the issue of building an
efficient overlay multicast tree. The NICE [3] project
aims to address the issues involved in data stream ap-
plications – real-time data applications that are charac-
terized by a very large set of receivers having low
bandwidth. NICE arranges the end host into sequen-
tially numbered layers, which defines the multicast
overlay data path. The basic operation of NICE is to
create and maintain a hierarchy consisting of a set of
end hosts. The members at the top of the hierarchy
maintain state about O(log N) other members, where N
is the number of nodes in the network. Member nodes
keep information about members 'near' to them in the
hierarchy and have limited knowledge about other
members. This structure helps localize the effects of a
member failure. Hosts at each layer are partitioned into
clusters that have a cluster leader. The leader selection
in NICE does not make use of any location or the bat-
tery strength information. In NICE, each cluster size
depends on the set of hosts that are close to each other;
whereas, in our approach, the cell edges (physical
boundaries) define the membership. NICE is not de-
fined for MANETs and hence it does not take into ac-
count node movement.

Progressively Adaptive Sub-Tree in Dynamic Mesh
PAST-DM [9] is an overlay multicast protocol defined
for MANETs. It tries to eliminate redundant physical
links so that the overall bandwidth consumption of the
multicast session is reduced. The virtual mesh in
PAST-DM constantly adapts to the changes in the un-
derlying network topology. Each node implements a
neighbor discovery protocol using the extended ring
search algorithm. The nodes periodically exchange link
state information with their neighbors in a non-
flooding manner. Thus, by looking at the link state of
each node, a node gets a view of the entire topology.
This information is used to build a source-based tree.
PAST-DM yields a stable tree quality at the cost of
higher overhead, which increases with the periodicity
of the link state updates.

Location Guided Tree (LGT) [5] is a small group
multicast scheme similar to DDM [12]. It builds over-
lay multicast trees (in MANET) using geometric dis-
tance as the heuristic of link costs. The scheme pro-
poses two tree construction algorithms: greedy k-ary
tree construction (LGK) and Steiner tree construction
(LGS). The algorithms are based on the assumption
that longer geometric distances require more network-

325

level hops to reach destination. LGS constructs the
Steiner tree using link costs as their geometric lengths.
With LGK, source node selects k nearest neighbors as
its children and partitions the remaining nodes accord-
ing to their distance to the children nodes. Similar to
LGT, our approach uses location information to form
an overlay tree. However, in our approach, the location
updates are event based and hence not very frequent.
LGT is a small group multicast scheme and may not
scale well.

3. Design of SOLONet

Before getting into the details of the design, this
section will discuss various components involved.

3.1. Location and Geometry Identification

We assumes that each node knows the topology
(and the cell structure) of the given area. Organizers of
special events (like football game or a concert), where
overlay multicast may be implemented, may distribute
a coordinate file or a hash function that defines the
topology. The users of the mobile device, who wish to
participate in the multicast network, may download the
file from the organizer’s website or request a copy
from a neighboring node that has already joined the
network. We also assume that each node knows its
current location. This information may be relative to
some point in the topology and can be computed using
the hash function or the coordinate file. To monitor
their movement, nodes may use location sensing tech-
niques like GPS in outdoor environment or one of the
several indoor location sensing techniques (e.g. [2],
[10], [14], [26], [16], [20]) available.

3.2. Cell Identification

When the ad-hoc network comes online for the first
time, it would run some form of an IP allocation algo-
rithm (e.g., Prophet Algorithm [27]) to get a unique IP
address. This IP address will be used to identify each
node. In the next few sections, we discuss how the to-
pology is partitioned into disjoint cells.

3.2.1. Shape of the cell. Our design doesn’t put any
restriction on the shape of the cells. In theory, the to-
pology can be divided into several (non-overlapping)
cells of any shape. However, by using regular cell
structures (which repeat over the entire area), we can
make use of the geometric properties of that shape.
Each shape will have its own advantages. A hexagon
can closely resemble a coverage area for a given cell,
while a square shape is easier to divide into smaller
areas if the density of nodes in a cell is high.

3.2.2. Size of the cell. Our design requires that all
nodes in any cell are in the coverage area of each other.

For example, in a square, two the ends of a diagonal
are points that are farthest apart. Therefore, if the
square cells were chosen, then the size of the cell
should be such that the length of the diagonal is less
than the coverage radius. This will ensure that all the
nodes in the cell are within each others coverage. Simi-
lar calculations can be done for cells of other shapes
using the geometric properties of their shape.

3.2.3. Center of the cell. Since the cell topology
would be known to each node, computing the center of
its current cell would not be difficult (using some geo-
metric property of the cell’s shape). During this phase,
the nodes perform some geometric calculation (de-
pending on the method used for representing their loca-
tion) to determine which cell it is current present. This
information will help them set their cell ID (CID) pa-
rameter. The CID would change when the node moves
to a different cell.

3.3. Member Nodes and Leaders

Each cell would have a local leader to assist the tree
building process. This section gives an overview of the
responsibilities of a member and a leader node.

3.3.1. Node responsibilities. When a node enters a
new cell, it defers it’s disconnect message to the old
leader till it is able to connect to the leader in the new
cell. The node waits for a time equal to the periodicity
of the beacon (Section 3.3.2) in an attempt to know
who the local leader is (Figure 2a). After receiving the
beacon message, this node would know the leader’s IP
address or other relevant details (Figure 2b). The node
would then send an association message to the new
leader. The scenario where the leader’s beacon mes-
sage is lost or the neighboring cell has no leader is dis-
cussed in later sections.

Figure 2: Node association with a new leader after
crossing cell boundary.

d) After successful
association, it disconnects

with the old leader.

c) After hearing the
beacon, it associates with

the new leader

b) It maintains its association with
the old leader till it hears a beacon

from the new leader.

a) A member node cross
the border into a
neighboring cell

326

Table 1: Typical state table at each leader node

Node ID X Y Type of Service Battery strength Time in Cell
12 76.22 108.37 Gateway to Internet 50% 4 min 27 sec
57 73.76 111.29 Live Surgery Video 89% 1 min 12 sec
23 75.32 105.12 Medical Record Files 24% 4 Sec

Figure 3: Time-line showing all the communication happening in a cell.

After successfully associating with a new leader,
the node disconnects from the old leader (Figure 2c,
2d). This deferred disconnect procedure ensures that a
node is always connected to at least one leader. Since
the node has just crossed the cell boundary, it is most
likely going to be in the coverage of the old leader.
After association with the new leader, the node pro-
vides it with information about its current location,
battery power and service that it can provide. After the
first update, all subsequent updates to this leader carry
only the battery and current location information.

3.3.2. Leader responsibilities. As explained in the
previous section, nodes constantly update the local
leader with information about their location (and ser-
vice type, battery strength, etc). A leader node would
maintain a table containing information about each
node in its cell. The leader node maintains this infor-
mation till it receives a disconnect message from a
node that has left its cell. Rows in such a table may
look like the ones shown in Table 1. The leader node
periodically broadcasts a beacon packet to all the
nodes in its cell. This beacon message aids in leader
selection process, serves as a feedback to the nodes
and indicates that the leader node is alive. The beacon
packet is discussed in detail in Section 4.2. Figure 3
shows a typical communication time-line in every cell.
Storing service type of each node is important for ser-
vice discovery by other nodes in the network.

Additional responsibilities of a leader could be
time slicing of node transmissions or cell splitting. If
the node density in a cell is higher than a certain
threshold, the leader may assign time slots to each
node to avoid collisions between their transmissions.
These time slots may be carried in the beacon message
sent by the leader (Figure 3). Another alternative to
solve the high cell density problem could be cell split-
ting. We do not discuss cell splitting in this paper due
to page limitation. The next section gives a detailed
description of the role a leader node plays in service

discovery and how a location-aided overlay tree is
formed.

3.4. Service Discovery

When a member node wishes to get a particular
service, it would query its local leader. The node may
provide the address (if known) of the source node that
provides the requested service. For example, there
may be a few nodes in the network that act as gateway
nodes and provide access to the Internet. A node that
wishes to access the Internet may request its local
leader to find a gateway node. If the requesting node
knows the IP of a gateway node, it may provide the IP
along with its request to the local leader nodes. After
receiving such a request, the leader node checks its
local table (similar to Table 1) to see if the source
node is in its list (i.e., in the same cell). If the re-
quested node is not found locally, the leader broad-
casts (forwards) the request to all other leaders (Figure
4b). It must be noted that this message exchange be-
tween leaders may be multi-hop communication as the
leader nodes may not have a direct link between them.
In this broadcast message, the leader node provides IP
address of the requesting node and the CID. We have
tried to keep the broadcast message as small as possi-
ble by having only two items (IP and CID) in the mes-
sage. This broadcast is only between leader nodes.
Since there are very few leader nodes in the entire
network the broadcast overhead will be very low.
Each leader node, upon receiving such a broadcast,
checks their local node list to see if the requested (ser-
vice) node is in its cell. If the requested node is found,
then the leader forwards the request (message) to that
node (Figure 4).

In the event that the requesting node doesn’t get
any response for a timeout period, it resends its re-
quest. Certain request may not generate any reply ei-
ther because there is no node in the entire network that
can provide the requested service or because the

Node transmissions (may be slotted)

Forward any service discovery broadcast received. If there are any service discovery request from local nodes, send them
to other leaders. Reply to any pending service discovery queries (from other leaders) if the requested node is in this cell.

Beacon Message

Time

327

leader in the requested node’s cell is dead (Figure 7).
Both of these problems can be solved if the timeout
period follows an exponential back-off scheme. Such
a scheme would give enough time for the leader selec-
tion process to complete in requested cell or provides
enough time for a new node (that provides the re-
quested service) to settle down (i.e. associate with a
local leader and register its service, etc). The system
can be configured so that after a certain number of
timeouts, a node stops making request for that service.

3.5. Joining an Overlay Tree

The node that provides services (like data storage,
access to Internet, computing resources etc) to mem-
ber nodes in the multicast tree is referred to as the
source node. The source node is the root of the multi-
cast tree built for providing a particular service. It
stores the CIDs of the member nodes that it is cur-
rently serving. When a source node receives a request
for service (from a new member), it extracts the CID
(from the request message) and finds the position of
the requesting node. The position is assumed to be in
the center of the requestor’s cell. Simulations in Sec-
tion 5.1 investigate the performance with this assump-
tion. The source node now checks its internal tree-
table to find node(s) that may be in the same cell or
neighboring (closest) cell as the requesting node. It
now contacts the requesting node and provides it with
the IP address of a member node nearest to it. The
source also provides appropriate information to this
‘nearest’ node about the requesting node (Figure 4c).
With this information, the requesting node can now
connect to a near-by (physically close) member node,
which would in turn provide the required service
(Figure 4d). As our simulations confirm, the latency
with this approach is much lower compared to the case
where a source node randomly selects a node in the
tree for the requestor to connect to.

In case of prioritized overlay multicast [25], the
source node will also provide information about the
priority of the service that it provides. This would help
in the formation of a prioritized overlay tree. At the
time of request, the requesting node may be part of
some other group(s) having a different priority. For
example, in a particular hospital, all doctors, nurses or
resident students doctors may have their own category
(viz doctor_net, nurse_grp, student_org) in addition to
a common (low priority) group called hospital_net. In
an emergency, a group of doctors, nurses and residents
may form a high priority network to address a specific
patient case. Priority tree and its formation is dis-
cussed more in detail in [25].

Figure 4: Overlay tree with location information.

3.6. Event-based Update

As mentioned earlier, every source maintains a list
of member nodes that it serves (directly or through
other members). A member node updates the source
with its new location (CID) only if it changes its cell.
This is an important contribution of our design – an

a)

 Leader broadcasts the request to other leaders

A node wants to join an existing overlay tree

New overlay tree.

Source node located. Source contacts the requestor and
gives address of the nearest node to connect to.

Leader nodes
Source node Member nodes

Requesting node

b)

c)

d)

328

event-based update; the event being crossing the cell
boundary. This approach reduces the amount of loca-
tion updates and the associated overhead. The source
node can alter the tree structure depending on the up-
dates that it receives. Although the resulting (location
aware) tree is sub-optimal, one can appreciate the
gains of this method if it were to be compared with the
expensive broadcast approach needed when precise
location information in desired. Simulation results in
Section 5.1 show that there is not much of a perform-
ance penalty when the source assumes the center of a
cell (as its location for each node) for building (or
reorganizing) the overlay tree.

4. Leader Selection for Cells

Before we get into the details of the leader section
process, Sections 4.1 and 4.2 look at some of the ar-
rangements in our design that aid this process.

4.1. Responsibilities of Leaders

Every leader performs activities that can aid in the
selection of a new leader in case of its failure. In addi-
tion to the location and the service information, each
leader also maintains battery status and the time a par-
ticular node spent in its cell (Table 1). Weights are
assigned to the battery strength, time-in-cell and
node’s current location information. The entries in the
list are sorted according to the result of this weighting
function. This sorted list is broadcasted in the beacon
message (Section 4.2). The first two nodes or the top
10% nodes (whichever is greater) in this sorted list are
called candidate nodes – meaning that these nodes are
potential candidates for leadership in case the current
leader fails. Listed below are some important parame-
ters used to choose the candidate nodes.

4.1.1. Time information. It has been observed in
[8] that hosts that have been stationary for a period of
time are more likely to remain stationary as compared
to those currently in motion. Thus choosing a node
that has shown little movement or no movement as the
leader would greatly increase the chances that it would
stay in that cell for a long time.

4.1.2. Battery strength. A leader has a lot of re-
sponsibilities and this demands battery power. A node
which has good battery strength should be selected as
the leader, so that it can perform the leadership re-
sponsibilities without interruption for a long time.

4.1.3 Location. A leader situated more or less to-
wards the center of the cell can serve all the cell nodes
with little delay. Even if this node were to be in mo-
tion, it would take a longer time for it to move out of
the cell due to its distance from the cell’s periphery.

The next section shows how the sorted list is made
available to all the nodes in the cell through the bea-
con packet (Figure 5).

Figure 5: Beacon message from the leader node.

4.2. Beacon Message

Every leader periodically broadcasts a beacon
packet containing a sorted list (described in 4.1) of
nodes in its cell. These beacons serve three purposes.

4.2.1. Leader’s heartbeat. Beacon is a way for the
leader to tell the other nodes that it is alive. If nodes
do not receive beacons for a pre-configured timeout
period, they would suspect that the leader is no longer
available. The use of timeout will help prevent false
detection. A beacon packet may be lost due to noise,
multi-path fading, or collision with some other trans-
mission. Noise and fading depend on environmental
conditions while collision (although rare) may depend
on density of member nodes. Collision can be reduced
by assigning time-slots to each node (Section 3.3.2).

The timeout value is not fixed and will depend on
several factors (e.g., noise and collision rate in that
environment). It will be available to the nodes at start
up when they acquire the topology coordinates (or
hash function). The leader node may become unavail-
able for the following two reasons. The user ‘pulled
the plug’ – turned off the device in an unconventional
manner (e.g., suddenly removed the batteries). In such
a scenario, the leader node would die without inform-
ing any other node. The other case is when a leader
sends a message saying that it is stepping down but
the message was lost (perhaps due to noise or colli-
sion). The use of periodic beacon will help detect the
above two scenarios.

NID X - Other nodes NID X - Candidate Nodes

- Member Nodes

Beacon message
carrying sorted
list of nodes

NID 5
NID 12
NID 27
NID 17
NID 8
NID 42

- Leader Node

329

Figure 6: Communication time-line – failure of a leader and selection of a new leader.

4.2.2. Aid in leader selection. The beacon message
contains the sorted list of nodes (Figure 5). Leader
failures are very rare; however, in case the current
leader fails, all the nodes examine the sorted (node) list
that came in the previous beacon broadcast. The first
two nodes in the list are the candidate nodes i.e., nodes
that can become leaders. The first candidate node has
to acknowledge that it is taking leadership before the
next beacon period. If it fails to do so, the second can-
didate node sends a broadcast declaring itself as the
leader. The possibility that both the nodes become un-
available at the same time is very rare and if it hap-
pens, then after another timeout, the next candidate
node in the sorted list takes over the leadership.

4.2.3. Feedback to each node. The beacon message
can serve as a feedback to each node to indicate that its
message (containing location and battery information)
reached the leader without any error. The beacon mes-
sage would help identify the IP address of the new
leader node when a node crosses over into a new cell.
In case of a crowded cell, the beacon may also contain
the time slots telling each node when to transmit its
information thus avoid collisions between two (or
more) nodes. Implementing slotted transmission in a
non-dense cell is optional. Nodes can also use the bea-
con to synchronize their clock with the leader node.

4.3. Hello!! Anybody Home?

This section describes a worst case scenario. When
a node crosses border and enters a neighboring cell, it
maintains its association with the old leader and waits
for the beacon from the new leader. What if there is no
leader in the new cell or if the leader there died? In our
design, the node waits a little longer than the timeout
period mentioned above. This would give other nodes
(originally present in that cell) enough time to take
over the leadership. After this long wait, if there is still
no sign of a beacon from a leader, the node assumes
that the neighboring cell was empty – no leader nor

member nodes were present. The node now broadcasts
a message containing its IP and its desire to become
the leader (Figure 7a). Since the cell size is such that
any node in that cell will hear this broadcast, the node
waits for a small timeout period for response from any
other node that might recently enter the cell (Figure
7b). If there was another node that entered the cell at
approximated the same time, the node with the lower
IP would take over the leadership. After the node has
taken the leadership responsibility, it sends a discon-
nect message to the old leader. During this leader elec-
tion process, the node was still associated with the old
leader. Since the node has recently crossed the border,
the inaccuracy in its location information would be
similar to the location inaccuracy for a node in the
older cell which is near the border of the cell.

Figure 7: Leader selection during initialization or
when no leader is present in a new cell.

Sudden death
of leader node Beacon message

missing.
Second Beacon

message missing.

Nodes assume leader is still present and
continue to send him their information.

After timeout period, nodes know that leader is no longer present.
The first candidate node takes on the leadership responsibility.

The new leader informs other leaders that
it has taken the leadership responsibility.

Leader
Selected Cell is without a leader Normal Operation

Back to
normal

Operation

Beacon
message

Other nodes provide the new leader with
detailed information about themselves.

I am 192.168.0.7 I am 192.168.0.2

I am 192.168.0.18

I am the leader

a)

b)

c)

330

4.4. Initiation of Leader Selection

There are three scenarios when a leader selection is
required as described below:

4.4.1. When the network first comes online. When
the network first comes online, the nodes follow the
procedure mentioned in Section 4.3 to decide who
would be their local leader. The first leader may not be
the best leader in terms of battery power, location and
other factors. However, one of the responsibilities of
the leader node is to find a good replacement leader,
hence subsequent leaders would be wisely chosen.

4.4.2. Leader wishes to give up leadership. There
can be different cases that may cause a leader to give
up its leadership – proximity to the cell boundary, run-
ning low on battery or the user has gracefully switched
off (shut down) the mobile device. After it has decided
to quit, the leader sends a broadcast message informing
all the nodes. One of the candidate nodes takes over
the leader responsibilities.

4.4.3. Exceptional cases – rare in occurrence.
Leader’s quit message was lost due to collision or
noise or the user switch off the device in an unconven-
tional manner. Both these conditions are seldom possi-
ble and would be detected by the absence of beacon
messages for a timeout period. The leader selection
strategy is the same as that described in Section 4.2.2.

5. Simulations

Simulations were carried out using NS2.26. As of
this writing, NS2 doesn’t have any extension for simu-
lating overlay multicast in MANETs. With the help of
C-programming and bash scripting, the traffic pattern
generated by CMU’s cbrgen utility was modified to
represent a location-aided overlay network. The setdest
utility was used to generate different node positions
and movement patterns. The nodes in the simulation
move according to the ‘random waypoint’ model [13].
The first set of simulations compares an optimal tree

(which is built by using precise location information of
member nodes) and our proposed sub-optimal (SO-
LONet) overlay tree. This comparison is done for two
different areas: 500x500m2 and 800x800m2. The sec-
ond simulation set aims to show the scalability of our
design. We compare the performance for 10, 15, 20
and 30 member nodes. The third simulation set com-
pares the performance for difference choices of cell
area and for different number of member nodes. We
compare the performance for 25x25, 50x50, 100x100
125x125 and 250x250m2 for a topology of 500x500
m2. In all the three scenarios, the file size used for
transfer is 50KB and the packet size is 512 bytes.

5.1. Optimal vs Sub-Optimal (vs Random)

Each node updates its local leader with information
about their current location. The periodicity of this
update determines the accuracy of the location infor-
mation present at the local leader. This location infor-
mation will be used during the formation of the loca-
tion-aware tree. As mentioned earlier, there is a trade
off between the frequency of updates and the overhead
involved. With lower update times, the node informa-
tion will be most current at the leader nodes. However
if each node were to initiate frequent updates, the net-
work would be swamped with update packets. This
section presents results of simulations for different
update times. The simulation is performed for an area
of 500x500m2 and 800x800m2. The cell size in both
cases was chosen to be 100x100m2. The movement
pattern was 5 m/sec with a pause time of 10 sec. The
total number of nodes was set to 150 and the number of
member nodes was kept at 15. These nodes used center
of their (respective) cells as their location during the
formation or the joining of the overlay tree. In each
case, the (tree building) start time was a randomly cho-
sen value between 0 and the update value (chosen for
that particular simulation scenario). For example if the
update value chosen was 70 sec, then the start time
would be randomly distributed between 0 – 70 sec.

500x500

16

18

20

22

24

26

28

30

32

5 sec 10 sec 20 sec 40 sec 70 sec 100 sec

Update Period (sec)

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

500x500 Optimal 500x500 SOLONet 500x500 Random

800x800

16

21

26

31

36

41

46

51

56

5 sec 10 sec 20 sec 40 sec 70 sec 100 sec

Update Period (sec)

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

800x800 Optimal 800x800 SOLONet 800x800 Random

Figure 8: Comparison between accurate location information and location reported as the center of the cell.

331

By having start-up time between 0 and update time,
we try to simulate the situation where an overlay tree
was built using location information that was updated
“start-time” sec before. Each simulation result is the
average of 50 different scenarios. From Figure 8, it is
clear that the performance of a sub-optimal tree closely
matches with that of an optimal tree. Figure 8 also
shows the performance when no location information
is used (i.e., a random overlay tree).

5.2. Scalability Consideration

We repeated the above simulations for an area of
500x500m2 for different number of member nodes –
10, 15, 20, and 30 nodes. The update time of 20 sec
was chosen – which meant that the nodes updated their
location information randomly in 0 to 20 sec. The re-
sults in Figure 9 show that the completion time in-
creases with the increase in the member nodes. This
was expected. The simulation also ascertains the scal-
ability of our design – the performance of optimal and
a sub-optimal tree is very close.

5.3. Effects of Smaller Cell Size

The aim of this set of simulations was to find a re-
lation between the performance and cell size. Cell sizes
of 25x25, 50x50, 100x100 125x125 and 250x250m2

were checked. The topology area was chosen to be
500x500m2. The simulations also had varying member
size – 10, 15, 20 and 30 members. The movement pat-
tern was 1 m/sec with a pause time of 10sec. It is easy
to see from the result in Figure 10 that the performance
holds an inverse relation with the cell size. Smaller
area gives an improvement in the performance. This is
because smaller areas imply higher accuracy in the
location information used for building the location tree.

However, it should be noted that this improvement
in performance is offset by an increase in the service
broadcast overhead. When the topology is divided into
large number of smaller cells, any broadcast (during
service discovery – Section 3.4) would go through
more leaders and will take longer to reach the entire
leader set. This would generate a very high overhead.
As a result, the service discovery process will be
slower and very inefficient. On the other hand, with
larger cells, the location accuracy is lowered but the
communication overhead and the propagation delays
are reduced. Thus, there is a tradeoff between the over-
head in service discovery and the performance of the
overlay tree. The discussion about optimizing this
tradeoff is beyond the scope of this paper and is part of
our future work. Smaller cell size is not recommended
if the node mobility is high. This is because, with high
mobility, nodes will constantly cross cell boundaries
triggering frequent location updates.

There was a significant degradation in the perform-
ance when the entire topology (500x500m2) was
viewed as one big cell. The values noted are shown in
Table 2. Since all the nodes (including the source
node) report the center of the cell as their location, the
source node finds all of the nodes as nearest to itself -
resulting in a star topology, where the source node
makes direct connections with all the requesting nodes.
This increases the overhead (and collisions) at the
source node resulting in a considerable loss of per-
formance.

Table 2: Completion time values for cell size of
500x500 (entire topology)

Nodes 10 15 20 30

Time 29.5 67.5 140.4 256.8

Number of Nodes

0

10

20

30

40

50

60

70

10 15 20 30
Number of Nodes

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

Optimal SOLONet Random

Cell Area vs Nodes

9

14

19

24

29

34

39

44

25x25 50x50 100x100 125x125 250x250
Cell Area (sq m)

C
o

m
p

le
ti

o
n

 T
im

e
(s

ec
)

10 Nodes 15 Nodes 20 Nodes 30 Nodes

Figure 9: Scalability of the protocol. Figure 10: Performance of SOLONET for different cell
sizes and member nodes.

332

6. Conclusion and Future Work

This paper presents SOLONet, a design to build
sub-optimal overlay multicast trees, where the physi-
cal topology is divided into smaller cells having a lo-
cal leader to perform various tasks. The paper also
gives a detailed description of local (cell) leader selec-
tion process and the use of a beacon message for car-
rying out various activities in a cell (including leader
selection). Our simulation results show that SOLONet
is scalable and its performance closely matches that of
an optimal overlay multicast tree. It was also observed
that smaller cell area gives better performance as the
location accuracy increases. In our current simula-
tions, we have considered square cells; however, in the
future, we plan to test SOLONet with other shapes.

As a future direction, we are exploring ways to
construct a degree bounded location aware overlay
multicast tree which would have minimum single-
point-failure nodes. We are also investigating an algo-
rithm that can adaptively divide a cell into smaller
sub-cells if the density of nodes increases beyond a
certain value. Smaller cell size gives better perform-
ance but higher broadcast overhead. We are looking at
ways to reduce the service discovery broadcast over-
head small size cells.

7. References
[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R.

Morris, "The case for resilient overlay networks," 8th An-
nual Workshop on Hot Topics in Operating Systems (Ho-
tOS-VIII), May, 2001.

[2] P. Bahl and V. N. Padmanabhan, "RADAR: An In-
building RF-based User Location and Tracking System,"
IEEE INFOCOM, March, 2000.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy,
"Scalable Application Layer Multicast," ACM
SIGCOMM, August, 2002.

[4] E. Bommaiah, M. Liu, A. MvAuley, and R. Talpade,
"AMRoute: Ad Hoc Multicast Routing Protocol." Internet
Draft, draft-manet-amroute-00.txt, March, 2002.

[5] K. Chen and K. Nahrstedt, "Effective Location - Guided
Tree Construction Algorithm for Small Group Multicast in
MANET," IEEE INFOCOM, May, 2002.

[6] Y. Chu, S. Rao, and H. Zhang, "A Case of End System
Multicast," ACM Sigmetrics, June, 2000.

[7] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D.
Balensiefen, "Deployment Issues for the IP Multicast Ser-
vice and Architecture," in IEEE Network Magazine, Jan-
Feb, 2000.

[8] R. Dube, C. D. Rais, K. Wang, and S. K. Tripathi, "Sig-
nal stability based adaptive routing (SSA) for ad hoc mo-
bile networks," IEEE Personal Communication, February,
1997.

[9] C. Gui and P. Mohapatra, "Efficient Overlay Multicast
for Mobile Ad Hoc Networks," Wireless Communications
and Networking Conference (WCNC), March, 2003.

[10] J. Hightower, L. Liao, D. Schulz, and G. Borriello,
"Bayesian Filtering for Location Estimation," IEEE Perva-
sive Computing, July-Sept, 2003.

[11] J. Jetcheva and D. B. Johnson, "Adaptive Demand-
Driven Multicast Routing in Multi-Hop Wireless Ad Hoc
Networks," MobiHoc, October, 2001.

[12] L. Ji and M. S. Corson, "Differential Destination Multi-
cast - A MANET Multicast Routing Protocol for Small
Groups," IEEE INFOCOM, April, 2001.

[13] D. Johnson and D. Maltz, "Dynamic source routing in
ad hoc wireless networks," Mobile Computing, 1996.

[14] H. Koshima and J. Hoshen, "Personal Locator Services
Emerge," in IEEE Spectrum, February, 2000.

[15] S. J. Lee, M. Gerla, and C. C. Chiang, "On Demand
Multicast Routing Protocol," IEEE WCNC, September,
1999.

[16] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil,
"LANDMARC: Indoor Location Sensing Using Active
RFID," IEEE PerCom, March, 2003.

[17] S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu, "The
Broadcast storm problem in a mobile ad hoc network," 5th
Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), August, 1999.

[18] K. Obraczka, G. Tsudik, and K. Viswanath, "Pushing
the Limits of Multicast in Ad Hoc Networks," IEEE
ICDCS, April, 2001.

[19] E. M. Royer and C. E. Perkings, "Multicast Operation
of the Ad-Hoc On-Demand Distance Vector Routing Pro-
tocol," ACM MOBICOM, August, 1999.

[20] A. Smailagic, D. P. Siewiorek, J. Anhalt, D. Kogan, and
Y. Wang, "Location Sensing and Privacy in a Context
Aware Computing Environment," in Pervasive Comput-
ing, 2001.

[21] I. Stojmenovic, "Position based routing in ad hoc net-
works," in IEEE Commmunications Magazine, vol. 40,
July, 2002,, pp. 128-134.

[22] Y. C. Tseng, S. Y. Ni, and E. Y. Shih, "Adaptive ap-
proaches to relieving broadcast storms in a wireless multi-
hop mobile ad hoc networks," IEEE 21st International
Conference on Distributed Computing Systems, 2001.

[23] J. Wu, "Dominating-Set-Based Routing in Ad Hoc
Wireless Networks," in Handbook of Wireless Networks
and Mobile Computing, I. Stojmenovic, Ed.: John Wiley
& Sons, 2002, pp. 425-450.

[24] J. Wu and F. Dai, "Broadcasting in Ad Hoc Networks
Based on Self-Pruning," IEEE INFOCOM, March, 2003.

[25] L. Xiao, A. Patil, Y. Liu, L. M. Ni, and A.-H. Esfaha-
nian, "Prioritized Overlay Multicast in Ad-hoc Environ-
ments," IEEE Computer Magazine, Feburary, 2004.

[26] M. Youssef, A. Agrawala, and A. U. Shankar, "WLAN
Location Determination via Clustering and Probability
Distributions," IEEE PerCom, March, 2003.

[27] H. Zhou, L. M. Ni, and M. W. Mutka, "Prophet Address
Allocation for Large Scale MANETs," Ad Hoc Networks
Journal, November, 2003.

333

