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Abstract 

Overlay networks have made it easy to implement 
multicast functionality in wireless ad hoc networks. 
Their flexibility to adapt to different environments has 
helped in their steady growth. In MANETs, the position 
of nodes constantly changes; as a result, overlay multi-
cast trees that are built using location information to 
account for node movement would certainly have a low 
latency. However, the performance gains of such a tree 
are offset by the overhead involved in maintaining pre-
cise location information. As the degree of (location) 
accuracy increases, the performance improves but the 
overhead required to store and broadcast this informa-
tion also increases. In this paper, we present SOLO-
Net, a design to build a sub-optimal location aided 
overlay multicast tree, where location updates of each 
member node are event based. Our simulation results 
indicate that such a sub-optimal tree does not com-
promise the performance gains of a location aided 
overlay multicast tree. 

1. Introduction 

Mobile ad hoc networks (MANETs) are character-
ized by mobile nodes and constantly changing network 
topology. Implementing multicast in such a dynamic 
environment is a challenging task. As pointed out by 
[18], traditional IP-layer multicast (e.g. [15], [19], 
[11]) for MANETs have a lot of signaling overhead as 
it needs to take into account the network dynamics in 
addition to the (multicast) group dynamics. The wide-
spread deployment of IP multicast has been held back 
by a variety of issues [7]. Application layer (overlay) 
multicast relies on the underlying unicast protocols to 
adapt to the changing network topology. As a result, 
the application layer has to track only the group dy-
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namic. Due to its ease of implementation and flexibil-
ity to adapt, overlay multicast networks (though not as 
efficient as IP layer multicast) are finding many practi-
cal applications in MANETs. AMRoute [4], PAST-
DM [9], and LGT [5] are some of the overlay multicast 
protocols that have been proposed for MANETs. In 
recent years, we have seen a dramatic increase in re-
search interest shown towards context aware comput-
ing and location-sensing techniques [2], [10], [14], 
[26], [16], [20]. Consequently, position based approach 
for routing (e.g. [5], [21]) is becoming practical. This 
paper presents SOLONet, a design that uses location 
information of member nodes to build an overlay mul-
ticast tree.  

Application layer multicast is not as efficient as IP-
based multicast. As can be seen in Figure 1(b,c), data 
exchange between member nodes requires traversing 
other member nodes. The latency increases as the 
number of nodes increases. This delay can be greatly 
reduced when the overlay tree is built by taking into 
account the member node positions (Figure 1c). Such a 
tree would keep track of member node’s movement 
and would be frequently updated to account for any 
change in the node positions. The nodes that are physi-
cally close to each other would be neighbors in the 
logical tree (Figure 1c) and the logical distance of any 
member node from the source node will be propor-
tional to its actual distance from the source.  

Figure 1: Random vs location-aided overlay tree. 
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It is quite clear that a location aware overlay tree 
would give considerable improvements in the perform-
ance over any random overlay tree (Figure 1b). How-
ever, there are several issues with this approach that 
need close attention. How to effectively distribute the 
location information of each member node to other 
members? How precise should the location information 
be? How often should this information be updated? 
Location broadcast is a costly affair and if every node 
starts to broadcast its current location information, then 
it would quickly lead to the broadcast storm problem 
[17] [22]. Several papers have proposed methods to 
carry out broadcast with minimum overhead. Wu and 
his team [23] [24] have suggested a number of optimi-
zations (using the concept of dominating set) to carry-
out efficient broadcast in MANETs. The method pro-
posed in our paper builds location-aided overlay trees 
without the need for any member node to broadcast its 
location information. 

Intuitively, precise location information would lead 
to a better overlay tree. However, obtaining exact loca-
tion of an object is a difficult task, especially in indoor 
environments where ad hoc networks are usually im-
plemented. Frequent updates would be necessary to 
maintain the accuracy of this information. As the node 
number and mobility increases, the update frequency 
would exponentially increase. There is a tradeoff be-
tween the advantages of building a location-aided over-
lay tree versus the distribution and precision of this 
location information. In SOLONet, the physical topol-
ogy is divided into smaller areas (cells) having a cer-
tain geometric shape (e.g., triangle, square, hexagon, 
etc.). The idea is to make location updates event-based. 
A node will report a change in its location only when it 
crosses border to a neighboring cell. A leader node is 
selected in each cell to localize certain operation, aid in 
service discovery and to reduce the number of broad-
cast messages. A node wishing to form or join an exist-
ing overlay network (for a particular service) would 
query its local leader instead of broadcasting the query 
to each node in the network. The leader node also 
maintains information about each node in its cell. The 
amount of information maintained depends on a par-
ticular implementation. Using NS2 (for simulations), 
we compare the performance of our design with an 
optimal overlay tree. We also evaluate the scalability 
and performance for different member size and cell 
areas. We also look at the effects of different location 
update frequencies on performance. 

The rest of the paper is structured as follows. Sec-
tion 2 summarizes previous work on overlay multicast. 
Section 3 presents an in-depth description of our de-
sign. Section 4 presents a detailed analysis of our 
leader selection algorithm. In Section 5 we present our 

simulation results. Finally, Section 6 concludes the 
paper and presents directions for future research. 

2. Related Research. 

Several overlay multicast protocols (e.g. [9] [5] [6] 
[3] [1]) have been proposed and studied in recent past. 
Many of them have addressed the issue of building an 
efficient overlay multicast tree. The NICE [3] project 
aims to address the issues involved in data stream ap-
plications – real-time data applications that are charac-
terized by a very large set of receivers having low 
bandwidth. NICE arranges the end host into sequen-
tially numbered layers, which defines the multicast 
overlay data path. The basic operation of NICE is to 
create and maintain a hierarchy consisting of a set of 
end hosts. The members at the top of the hierarchy 
maintain state about O(log N) other members, where N 
is the number of nodes in the network. Member nodes 
keep information about members 'near' to them in the 
hierarchy and have limited knowledge about other 
members. This structure helps localize the effects of a 
member failure. Hosts at each layer are partitioned into 
clusters that have a cluster leader. The leader selection 
in NICE does not make use of any location or the bat-
tery strength information. In NICE, each cluster size 
depends on the set of hosts that are close to each other; 
whereas, in our approach, the cell edges (physical 
boundaries) define the membership. NICE is not de-
fined for MANETs and hence it does not take into ac-
count node movement. 

Progressively Adaptive Sub-Tree in Dynamic Mesh 
PAST-DM [9] is an overlay multicast protocol defined 
for MANETs. It tries to eliminate redundant physical 
links so that the overall bandwidth consumption of the 
multicast session is reduced. The virtual mesh in 
PAST-DM constantly adapts to the changes in the un-
derlying network topology. Each node implements a 
neighbor discovery protocol using the extended ring 
search algorithm. The nodes periodically exchange link 
state information with their neighbors in a non-
flooding manner. Thus, by looking at the link state of 
each node, a node gets a view of the entire topology. 
This information is used to build a source-based tree. 
PAST-DM yields a stable tree quality at the cost of 
higher overhead, which increases with the periodicity 
of the link state updates. 

Location Guided Tree (LGT) [5] is a small group 
multicast scheme similar to DDM [12]. It builds over-
lay multicast trees (in MANET) using geometric dis-
tance as the heuristic of link costs. The scheme pro-
poses two tree construction algorithms: greedy k-ary 
tree construction (LGK) and Steiner tree construction 
(LGS). The algorithms are based on the assumption 
that longer geometric distances require more network-
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level hops to reach destination. LGS constructs the 
Steiner tree using link costs as their geometric lengths. 
With LGK, source node selects k nearest neighbors as 
its children and partitions the remaining nodes accord-
ing to their distance to the children nodes. Similar to 
LGT, our approach uses location information to form 
an overlay tree. However, in our approach, the location 
updates are event based and hence not very frequent. 
LGT is a small group multicast scheme and may not 
scale well. 

3. Design of SOLONet 

Before getting into the details of the design, this 
section will discuss various components involved. 

3.1. Location and Geometry Identification 

We assumes that each node knows the topology 
(and the cell structure) of the given area. Organizers of 
special events (like football game or a concert), where 
overlay multicast may be implemented, may distribute 
a coordinate file or a hash function that defines the 
topology. The users of the mobile device, who wish to 
participate in the multicast network, may download the 
file from the organizer’s website or request a copy 
from a neighboring node that has already joined the 
network. We also assume that each node knows its 
current location. This information may be relative to 
some point in the topology and can be computed using 
the hash function or the coordinate file. To monitor 
their movement, nodes may use location sensing tech-
niques like GPS in outdoor environment or one of the 
several indoor location sensing techniques (e.g. [2], 
[10], [14], [26], [16], [20]) available. 

3.2. Cell Identification 

When the ad-hoc network comes online for the first 
time, it would run some form of an IP allocation algo-
rithm (e.g., Prophet Algorithm [27]) to get a unique IP 
address. This IP address will be used to identify each 
node. In the next few sections, we discuss how the to-
pology is partitioned into disjoint cells. 

3.2.1. Shape of the cell. Our design doesn’t put any 
restriction on the shape of the cells. In theory, the to-
pology can be divided into several (non-overlapping) 
cells of any shape. However, by using regular cell 
structures (which repeat over the entire area), we can 
make use of the geometric properties of that shape. 
Each shape will have its own advantages. A hexagon 
can closely resemble a coverage area for a given cell, 
while a square shape is easier to divide into smaller 
areas if the density of nodes in a cell is high. 

3.2.2. Size of the cell. Our design requires that all 
nodes in any cell are in the coverage area of each other. 

For example, in a square, two the ends of a diagonal 
are points that are farthest apart. Therefore, if the 
square cells were chosen, then the size of the cell 
should be such that the length of the diagonal is less 
than the coverage radius. This will ensure that all the 
nodes in the cell are within each others coverage. Simi-
lar calculations can be done for cells of other shapes 
using the geometric properties of their shape. 

3.2.3. Center of the cell. Since the cell topology 
would be known to each node, computing the center of 
its current cell would not be difficult (using some geo-
metric property of the cell’s shape). During this phase, 
the nodes perform some geometric calculation (de-
pending on the method used for representing their loca-
tion) to determine which cell it is current present. This 
information will help them set their cell ID (CID) pa-
rameter. The CID would change when the node moves 
to a different cell. 

3.3. Member Nodes and Leaders 

Each cell would have a local leader to assist the tree 
building process. This section gives an overview of the 
responsibilities of a member and a leader node. 

3.3.1. Node responsibilities. When a node enters a 
new cell, it defers it’s disconnect message to the old 
leader till it is able to connect to the leader in the new 
cell. The node waits for a time equal to the periodicity 
of the beacon (Section 3.3.2) in an attempt to know 
who the local leader is (Figure 2a). After receiving the 
beacon message, this node would know the leader’s IP 
address or other relevant details (Figure 2b). The node 
would then send an association message to the new 
leader. The scenario where the leader’s beacon mes-
sage is lost or the neighboring cell has no leader is dis-
cussed in later sections.  

Figure 2: Node association with a new leader after 
crossing cell boundary. 

d) After successful 
association, it disconnects 

with the old leader. 

c) After hearing the 
beacon, it associates with 

the new leader 

b) It maintains its association with 
the old leader till it hears a beacon 

from the new leader. 

a) A member node cross 
the border into a 
neighboring cell

326



Table 1: Typical state table at each leader node 

Node ID X Y Type of Service Battery strength Time in Cell 
12 76.22 108.37 Gateway to Internet 50% 4 min 27 sec 
57 73.76 111.29 Live Surgery Video 89% 1 min 12 sec 
23 75.32 105.12 Medical Record Files 24% 4 Sec 

Figure 3: Time-line showing all the communication happening in a cell. 

After successfully associating with a new leader, 
the node disconnects from the old leader (Figure 2c, 
2d). This deferred disconnect procedure ensures that a 
node is always connected to at least one leader. Since 
the node has just crossed the cell boundary, it is most 
likely going to be in the coverage of the old leader. 
After association with the new leader, the node pro-
vides it with information about its current location, 
battery power and service that it can provide. After the 
first update, all subsequent updates to this leader carry 
only the battery and current location information. 

3.3.2. Leader responsibilities. As explained in the 
previous section, nodes constantly update the local 
leader with information about their location (and ser-
vice type, battery strength, etc). A leader node would 
maintain a table containing information about each 
node in its cell. The leader node maintains this infor-
mation till it receives a disconnect message from a 
node that has left its cell. Rows in such a table may 
look like the ones shown in Table 1. The leader node 
periodically broadcasts a beacon packet to all the 
nodes in its cell. This beacon message aids in leader 
selection process, serves as a feedback to the nodes 
and indicates that the leader node is alive. The beacon 
packet is discussed in detail in Section 4.2. Figure 3 
shows a typical communication time-line in every cell. 
Storing service type of each node is important for ser-
vice discovery by other nodes in the network. 

Additional responsibilities of a leader could be 
time slicing of node transmissions or cell splitting. If 
the node density in a cell is higher than a certain 
threshold, the leader may assign time slots to each 
node to avoid collisions between their transmissions. 
These time slots may be carried in the beacon message 
sent by the leader (Figure 3). Another alternative to 
solve the high cell density problem could be cell split-
ting. We do not discuss cell splitting in this paper due 
to page limitation. The next section gives a detailed 
description of the role a leader node plays in service 

discovery and how a location-aided overlay tree is 
formed. 

3.4. Service Discovery 

When a member node wishes to get a particular 
service, it would query its local leader. The node may 
provide the address (if known) of the source node that 
provides the requested service. For example, there 
may be a few nodes in the network that act as gateway 
nodes and provide access to the Internet. A node that 
wishes to access the Internet may request its local 
leader to find a gateway node. If the requesting node 
knows the IP of a gateway node, it may provide the IP 
along with its request to the local leader nodes. After 
receiving such a request, the leader node checks its 
local table (similar to Table 1) to see if the source 
node is in its list (i.e., in the same cell). If the re-
quested node is not found locally, the leader broad-
casts (forwards) the request to all other leaders (Figure 
4b). It must be noted that this message exchange be-
tween leaders may be multi-hop communication as the 
leader nodes may not have a direct link between them. 
In this broadcast message, the leader node provides IP 
address of the requesting node and the CID. We have 
tried to keep the broadcast message as small as possi-
ble by having only two items (IP and CID) in the mes-
sage. This broadcast is only between leader nodes. 
Since there are very few leader nodes in the entire 
network the broadcast overhead will be very low. 
Each leader node, upon receiving such a broadcast, 
checks their local node list to see if the requested (ser-
vice) node is in its cell. If the requested node is found, 
then the leader forwards the request (message) to that 
node (Figure 4). 

In the event that the requesting node doesn’t get 
any response for a timeout period, it resends its re-
quest. Certain request may not generate any reply ei-
ther because there is no node in the entire network that 
can provide the requested service or because the 

Node transmissions (may be slotted) 

Forward any service discovery broadcast received. If there are any service discovery request from local nodes, send them 
to other leaders. Reply to any pending service discovery queries (from other leaders) if the requested node is in this cell. 

Beacon Message 

Time
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leader in the requested node’s cell is dead (Figure 7). 
Both of these problems can be solved if the timeout 
period follows an exponential back-off scheme. Such 
a scheme would give enough time for the leader selec-
tion process to complete in requested cell or provides 
enough time for a new node (that provides the re-
quested service) to settle down (i.e. associate with a 
local leader and register its service, etc). The system 
can be configured so that after a certain number of 
timeouts, a node stops making request for that service. 

3.5. Joining an Overlay Tree 

The node that provides services (like data storage, 
access to Internet, computing resources etc) to mem-
ber nodes in the multicast tree is referred to as the 
source node. The source node is the root of the multi-
cast tree built for providing a particular service. It 
stores the CIDs of the member nodes that it is cur-
rently serving. When a source node receives a request 
for service (from a new member), it extracts the CID 
(from the request message) and finds the position of 
the requesting node. The position is assumed to be in 
the center of the requestor’s cell. Simulations in Sec-
tion 5.1 investigate the performance with this assump-
tion. The source node now checks its internal tree-
table to find node(s) that may be in the same cell or 
neighboring (closest) cell as the requesting node. It 
now contacts the requesting node and provides it with 
the IP address of a member node nearest to it. The 
source also provides appropriate information to this 
‘nearest’ node about the requesting node (Figure 4c). 
With this information, the requesting node can now 
connect to a near-by (physically close) member node, 
which would in turn provide the required service 
(Figure 4d). As our simulations confirm, the latency 
with this approach is much lower compared to the case 
where a source node randomly selects a node in the 
tree for the requestor to connect to. 

In case of prioritized overlay multicast [25], the 
source node will also provide information about the 
priority of the service that it provides. This would help 
in the formation of a prioritized overlay tree. At the 
time of request, the requesting node may be part of 
some other group(s) having a different priority. For 
example, in a particular hospital, all doctors, nurses or 
resident students doctors may have their own category 
(viz doctor_net, nurse_grp, student_org) in addition to 
a common (low priority) group called hospital_net. In 
an emergency, a group of doctors, nurses and residents 
may form a high priority network to address a specific 
patient case. Priority tree and its formation is dis-
cussed more in detail in [25]. 

Figure 4: Overlay tree with location information.  

3.6. Event-based Update 

As mentioned earlier, every source maintains a list 
of member nodes that it serves (directly or through 
other members). A member node updates the source 
with its new location (CID) only if it changes its cell. 
This is an important contribution of our design – an 

a)

 Leader broadcasts the request to other leaders 

A node wants to join an existing overlay tree 

New overlay tree. 

Source node located. Source contacts the requestor and 
gives address of the nearest node to connect to. 

Leader nodes
Source node Member nodes 

Requesting node

b)

c)

d)
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event-based update; the event being crossing the cell 
boundary. This approach reduces the amount of loca-
tion updates and the associated overhead. The source 
node can alter the tree structure depending on the up-
dates that it receives. Although the resulting (location 
aware) tree is sub-optimal, one can appreciate the 
gains of this method if it were to be compared with the 
expensive broadcast approach needed when precise 
location information in desired. Simulation results in 
Section 5.1 show that there is not much of a perform-
ance penalty when the source assumes the center of a 
cell (as its location for each node) for building (or 
reorganizing) the overlay tree. 

4. Leader Selection for Cells 

Before we get into the details of the leader section 
process, Sections 4.1 and 4.2 look at some of the ar-
rangements in our design that aid this process.  

4.1. Responsibilities of Leaders 

Every leader performs activities that can aid in the 
selection of a new leader in case of its failure. In addi-
tion to the location and the service information, each 
leader also maintains battery status and the time a par-
ticular node spent in its cell (Table 1). Weights are 
assigned to the battery strength, time-in-cell and 
node’s current location information. The entries in the 
list are sorted according to the result of this weighting 
function. This sorted list is broadcasted in the beacon 
message (Section 4.2). The first two nodes or the top 
10% nodes (whichever is greater) in this sorted list are 
called candidate nodes – meaning that these nodes are 
potential candidates for leadership in case the current 
leader fails. Listed below are some important parame-
ters used to choose the candidate nodes. 

4.1.1. Time information. It has been observed in 
[8] that hosts that have been stationary for a period of 
time are more likely to remain stationary as compared 
to those currently in motion. Thus choosing a node 
that has shown little movement or no movement as the 
leader would greatly increase the chances that it would 
stay in that cell for a long time. 

4.1.2. Battery strength. A leader has a lot of re-
sponsibilities and this demands battery power. A node 
which has good battery strength should be selected as 
the leader, so that it can perform the leadership re-
sponsibilities without interruption for a long time. 

4.1.3 Location. A leader situated more or less to-
wards the center of the cell can serve all the cell nodes 
with little delay. Even if this node were to be in mo-
tion, it would take a longer time for it to move out of 
the cell due to its distance from the cell’s periphery. 

The next section shows how the sorted list is made 
available to all the nodes in the cell through the bea-
con packet (Figure 5). 

Figure 5: Beacon message from the leader node. 

4.2. Beacon Message 

Every leader periodically broadcasts a beacon 
packet containing a sorted list (described in 4.1) of 
nodes in its cell. These beacons serve three purposes. 

4.2.1. Leader’s heartbeat. Beacon is a way for the 
leader to tell the other nodes that it is alive. If nodes 
do not receive beacons for a pre-configured timeout 
period, they would suspect that the leader is no longer 
available. The use of timeout will help prevent false 
detection. A beacon packet may be lost due to noise, 
multi-path fading, or collision with some other trans-
mission. Noise and fading depend on environmental 
conditions while collision (although rare) may depend 
on density of member nodes. Collision can be reduced 
by assigning time-slots to each node (Section 3.3.2). 

The timeout value is not fixed and will depend on 
several factors (e.g., noise and collision rate in that 
environment). It will be available to the nodes at start 
up when they acquire the topology coordinates (or 
hash function). The leader node may become unavail-
able for the following two reasons. The user ‘pulled 
the plug’ – turned off the device in an unconventional 
manner (e.g., suddenly removed the batteries). In such 
a scenario, the leader node would die without inform-
ing any other node. The other case is when a leader 
sends a message saying that it is stepping down but 
the message was lost (perhaps due to noise or colli-
sion). The use of periodic beacon will help detect the 
above two scenarios. 

NID X - Other nodes NID X - Candidate Nodes 

- Member Nodes 

Beacon message 
carrying sorted 
list of nodes 

NID 5 
NID 12 
NID 27 
NID 17 
NID 8 
NID 42 

- Leader Node 
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Figure 6: Communication time-line – failure of a leader and selection of a new leader. 

4.2.2. Aid in leader selection. The beacon message 
contains the sorted list of nodes (Figure 5). Leader 
failures are very rare; however, in case the current 
leader fails, all the nodes examine the sorted (node) list 
that came in the previous beacon broadcast. The first 
two nodes in the list are the candidate nodes i.e., nodes 
that can become leaders. The first candidate node has 
to acknowledge that it is taking leadership before the 
next beacon period. If it fails to do so, the second can-
didate node sends a broadcast declaring itself as the 
leader. The possibility that both the nodes become un-
available at the same time is very rare and if it hap-
pens, then after another timeout, the next candidate 
node in the sorted list takes over the leadership. 

4.2.3. Feedback to each node. The beacon message 
can serve as a feedback to each node to indicate that its 
message (containing location and battery information) 
reached the leader without any error. The beacon mes-
sage would help identify the IP address of the new 
leader node when a node crosses over into a new cell. 
In case of a crowded cell, the beacon may also contain 
the time slots telling each node when to transmit its 
information thus avoid collisions between two (or 
more) nodes. Implementing slotted transmission in a 
non-dense cell is optional. Nodes can also use the bea-
con to synchronize their clock with the leader node. 

4.3. Hello!! Anybody Home? 

This section describes a worst case scenario. When 
a node crosses border and enters a neighboring cell, it 
maintains its association with the old leader and waits 
for the beacon from the new leader. What if there is no 
leader in the new cell or if the leader there died? In our 
design, the node waits a little longer than the timeout 
period mentioned above. This would give other nodes 
(originally present in that cell) enough time to take 
over the leadership. After this long wait, if there is still 
no sign of a beacon from a leader, the node assumes 
that the neighboring cell was empty – no leader nor 

member nodes were present. The node now broadcasts 
a message containing its IP and its desire to become 
the leader (Figure 7a). Since the cell size is such that 
any node in that cell will hear this broadcast, the node 
waits for a small timeout period for response from any 
other node that might recently enter the cell (Figure 
7b). If there was another node that entered the cell at 
approximated the same time, the node with the lower 
IP would take over the leadership. After the node has 
taken the leadership responsibility, it sends a discon-
nect message to the old leader. During this leader elec-
tion process, the node was still associated with the old 
leader. Since the node has recently crossed the border, 
the inaccuracy in its location information would be 
similar to the location inaccuracy for a node in the 
older cell which is near the border of the cell. 

Figure 7: Leader selection during initialization or 
when no leader is present in a new cell. 

Sudden death 
of leader node Beacon message 

missing.
Second Beacon 

message missing.

Nodes assume leader is still present and 
continue to send him their information. 

After timeout period, nodes know that leader is no longer present. 
The first candidate node takes on the leadership responsibility. 

The new leader informs other leaders that 
it has taken the leadership responsibility. 

Leader 
Selected Cell is without a leader Normal Operation 

Back to 
normal 

Operation 

Beacon 
message 

Other nodes provide the new leader with 
detailed information about themselves. 

I am 192.168.0.7 I am 192.168.0.2

I am 192.168.0.18 

I am the leader 

a)

b)

c)
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4.4. Initiation of Leader Selection 

There are three scenarios when a leader selection is 
required as described below: 

4.4.1. When the network first comes online. When 
the network first comes online, the nodes follow the 
procedure mentioned in Section 4.3 to decide who 
would be their local leader. The first leader may not be 
the best leader in terms of battery power, location and 
other factors. However, one of the responsibilities of 
the leader node is to find a good replacement leader, 
hence subsequent leaders would be wisely chosen. 

4.4.2. Leader wishes to give up leadership. There 
can be different cases that may cause a leader to give 
up its leadership – proximity to the cell boundary, run-
ning low on battery or the user has gracefully switched 
off (shut down) the mobile device. After it has decided 
to quit, the leader sends a broadcast message informing 
all the nodes. One of the candidate nodes takes over 
the leader responsibilities. 

4.4.3. Exceptional cases – rare in occurrence. 
Leader’s quit message was lost due to collision or 
noise or the user switch off the device in an unconven-
tional manner. Both these conditions are seldom possi-
ble and would be detected by the absence of beacon 
messages for a timeout period. The leader selection 
strategy is the same as that described in Section 4.2.2. 

5. Simulations 

Simulations were carried out using NS2.26. As of 
this writing, NS2 doesn’t have any extension for simu-
lating overlay multicast in MANETs. With the help of 
C-programming and bash scripting, the traffic pattern 
generated by CMU’s cbrgen utility was modified to 
represent a location-aided overlay network. The setdest 
utility was used to generate different node positions 
and movement patterns. The nodes in the simulation 
move according to the ‘random waypoint’ model [13]. 
The first set of simulations compares an optimal tree 

(which is built by using precise location information of 
member nodes) and our proposed sub-optimal (SO-
LONet) overlay tree. This comparison is done for two 
different areas: 500x500m2 and 800x800m2. The sec-
ond simulation set aims to show the scalability of our 
design. We compare the performance for 10, 15, 20 
and 30 member nodes. The third simulation set com-
pares the performance for difference choices of cell 
area and for different number of member nodes. We 
compare the performance for 25x25, 50x50, 100x100 
125x125 and 250x250m2 for a topology of 500x500 
m2. In all the three scenarios, the file size used for 
transfer is 50KB and the packet size is 512 bytes. 

5.1. Optimal vs Sub-Optimal (vs Random) 

Each node updates its local leader with information 
about their current location. The periodicity of this 
update determines the accuracy of the location infor-
mation present at the local leader. This location infor-
mation will be used during the formation of the loca-
tion-aware tree. As mentioned earlier, there is a trade 
off between the frequency of updates and the overhead 
involved. With lower update times, the node informa-
tion will be most current at the leader nodes. However 
if each node were to initiate frequent updates, the net-
work would be swamped with update packets. This 
section presents results of simulations for different 
update times. The simulation is performed for an area 
of 500x500m2 and 800x800m2. The cell size in both 
cases was chosen to be 100x100m2. The movement 
pattern was 5 m/sec with a pause time of 10 sec. The 
total number of nodes was set to 150 and the number of 
member nodes was kept at 15. These nodes used center 
of their (respective) cells as their location during the 
formation or the joining of the overlay tree. In each 
case, the (tree building) start time was a randomly cho-
sen value between 0 and the update value (chosen for 
that particular simulation scenario). For example if the 
update value chosen was 70 sec, then the start time 
would be randomly distributed between 0 – 70 sec.  
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Figure 8: Comparison between accurate location information and location reported as the center of the cell. 
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By having start-up time between 0 and update time, 
we try to simulate the situation where an overlay tree 
was built using location information that was updated 
“start-time” sec before. Each simulation result is the 
average of 50 different scenarios. From Figure 8, it is 
clear that the performance of a sub-optimal tree closely 
matches with that of an optimal tree. Figure 8 also 
shows the performance when no location information 
is used (i.e., a random overlay tree). 

5.2. Scalability Consideration 

We repeated the above simulations for an area of 
500x500m2 for different number of member nodes – 
10, 15, 20, and 30 nodes. The update time of 20 sec 
was chosen – which meant that the nodes updated their 
location information randomly in 0 to 20 sec. The re-
sults in Figure 9 show that the completion time in-
creases with the increase in the member nodes. This 
was expected. The simulation also ascertains the scal-
ability of our design – the performance of optimal and 
a sub-optimal tree is very close. 

5.3. Effects of Smaller Cell Size 

The aim of this set of simulations was to find a re-
lation between the performance and cell size. Cell sizes 
of 25x25, 50x50, 100x100 125x125 and 250x250m2

were checked. The topology area was chosen to be 
500x500m2. The simulations also had varying member 
size – 10, 15, 20 and 30 members. The movement pat-
tern was 1 m/sec with a pause time of 10sec. It is easy 
to see from the result in Figure 10 that the performance 
holds an inverse relation with the cell size. Smaller 
area gives an improvement in the performance. This is 
because smaller areas imply higher accuracy in the 
location information used for building the location tree. 

However, it should be noted that this improvement 
in performance is offset by an increase in the service 
broadcast overhead. When the topology is divided into 
large number of smaller cells, any broadcast (during 
service discovery – Section 3.4) would go through 
more leaders and will take longer to reach the entire 
leader set. This would generate a very high overhead. 
As a result, the service discovery process will be 
slower and very inefficient. On the other hand, with 
larger cells, the location accuracy is lowered but the 
communication overhead and the propagation delays 
are reduced. Thus, there is a tradeoff between the over-
head in service discovery and the performance of the 
overlay tree. The discussion about optimizing this 
tradeoff is beyond the scope of this paper and is part of 
our future work. Smaller cell size is not recommended 
if the node mobility is high. This is because, with high 
mobility, nodes will constantly cross cell boundaries 
triggering frequent location updates. 

There was a significant degradation in the perform-
ance when the entire topology (500x500m2) was 
viewed as one big cell. The values noted are shown in 
Table 2. Since all the nodes (including the source 
node) report the center of the cell as their location, the 
source node finds all of the nodes as nearest to itself - 
resulting in a star topology, where the source node 
makes direct connections with all the requesting nodes. 
This increases the overhead (and collisions) at the 
source node resulting in a considerable loss of per-
formance. 

Table 2: Completion time values for cell size of 
500x500 (entire topology) 

Nodes 10 15 20 30 

Time 29.5 67.5 140.4 256.8 
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Figure 9: Scalability of the protocol.  Figure 10: Performance of SOLONET for different cell 
sizes and member nodes. 
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6. Conclusion and Future Work 

This paper presents SOLONet, a design to build 
sub-optimal overlay multicast trees, where the physi-
cal topology is divided into smaller cells having a lo-
cal leader to perform various tasks. The paper also 
gives a detailed description of local (cell) leader selec-
tion process and the use of a beacon message for car-
rying out various activities in a cell (including leader 
selection). Our simulation results show that SOLONet 
is scalable and its performance closely matches that of 
an optimal overlay multicast tree. It was also observed 
that smaller cell area gives better performance as the 
location accuracy increases. In our current simula-
tions, we have considered square cells; however, in the 
future, we plan to test SOLONet with other shapes. 

As a future direction, we are exploring ways to 
construct a degree bounded location aware overlay 
multicast tree which would have minimum single-
point-failure nodes. We are also investigating an algo-
rithm that can adaptively divide a cell into smaller 
sub-cells if the density of nodes increases beyond a 
certain value. Smaller cell size gives better perform-
ance but higher broadcast overhead. We are looking at 
ways to reduce the service discovery broadcast over-
head small size cells.  
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