
Analysis of Bandwidth Allocation Algorithms
for Wireless Personal Area Networks

Randeep Bhatia∗ Adrian Segall† Gil Zussman‡

Abstract

A major issue in the design and operation of ad hoc networks issharing the common spectrum among
links in the same geographic area. Bandwidth allocation, tooptimize the performance of networks in
which each station can converse with at most a single neighbor at a time, has been recently studied in
the context of Bluetooth Personal Area Networks. There, centralized and distributed, capacity assignment
heuristics were developed, with applicability to a varietyof ad hoc networks. Yet, no guarantees on the
performance of these heuristics have been provided. In thispaper, we extend these heuristics such that
they can operate with general convex objective functions. Then, we present our analytic results regarding
these heuristics. Specifically, we show that they areβ-approximation (β < 2) algorithms. Moreover, we
show that even though the distributed and centralized algorithms allocate capacity in a different manner,
both algorithms converge to the same results. Finally, we present numerical results that demonstrate the
performance of the algorithms.

1 Introduction

In the last four decades, much attention has been given to the research and development of bandwidth allo-

cation and scheduling schemes for wired and wireless networks [6],[23]. The bandwidth allocation problem

in wireless ad hoc networks significantly differs from the problem in static communication networks. For

instance, one of the major problems in the design and operation of ad hoc networks is sharing the common

spectrum among links in the same geographic area. A unified framework fordealing with many variations of

this problem has been presented in [23]. In this paper, we focus on bandwidth allocation in networks in which

each station can converse with at most a single neighbor at a time. Namely, we focus on networks in which

the set of active links at any point of time constitutes a matching1 in the network graph.

This bandwidth allocation problem has been studied by Hajek and Sasaki [11], who proposed centralized

algorithms for finding a minimum length schedule to satisfy given traffic requirements. The problem has been

recently revisited mainly due to the emergence of Bluetooth (IEEE 802.15.1) Personal Area Networks (PANs)

[8] and its solution is relevant to other technologies in which a node can communicate with at most a single

∗Bell Labs, Lucent Technologies, Murray Hill, NJ 07974. E-mail:randeep@research.bell-labs.com.
†Department of Electrical Engineering, Technion, Haifa 32000, Israel. E-mail: segall@ee.technion.ac.il.
‡Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail:

gilz@mit.edu.
1A set of links is a matching, if no two links are incident to the same node.

To appear in ACM/Springer Wireless Networks (WINET), Special issue of selected papers from WiOpt'04, 2005

Master which is
also a Bridge

Slave which is
also a Bridge

Master

Slave

Figure 1: An example of a Bluetooth scatternet composed of 4 piconets.

neighbor at a time (such as IEEE 802.15.3 [15]).

In this paper we mainly focus on bipartite network graphs, rather than on networks operating according

to a specific technology. Yet, since most of the recent research regarding the considered problem has focused

on PANs, we briefly review the the main characteristics of Bluetooth and IEEE802.15.3. Bluetooth enables

portable mobile devices to connect and communicate wirelessly via short-range ad-hoc networks. Since the

radio link is based on frequency-hop spread spectrum, multiple channels (frequency hopping sequences) can

co-exist in the same wide band without interfering with each other. Two or more units sharing the same

channel form apiconet, where one unit acts as amastercontrolling the communication in the piconet and

the others act asslaves. Bluetooth uses a slotted scheme where the only allowed communication is between

a master and a slave and the master-to-slave and slave-to-master transmissions happen in alternate slots.

Connected piconets in the same geographic area form ascatternet(see for example Fig. 1). In a scatternet, a

unit can participate in two or more piconets, on a time-sharing basis, and evenchange its role when moving

from one piconet to another (we refer to such a unit as abridge).

Another PAN technology is IEEE 802.15.3 [15], whose Medium Access Control (MAC) standard is ex-

pected to be used as one of the Ultra WideBand MAC standards [19],[22].The basic topology (piconet) is a

collection ofdevices(DEVs) operating together with onePicoNet Coordinator(PNC), which allocates net-

work resources. The timing is based on a superframe which is comprised ofthree main sections: the beacon,

the optional Contention Access Period, and the Channel Time Allocation Period (Fig. 2 illustrates the struc-

ture of the superframe). The beacon is used to carry control informationto the entire piconet. The Contention

Access Period is optional and is managed according to a CSMA/CA mechanism.The Channel Time Allo-

Beacon
Contention

Access
Period

Contention Time Allocation (CTA) Period

Management
CTA

MCTA CTA 1 CTA 2 CTA n

Figure 2: The structure of a superframe in IEEE 802.15.3.

2

cation Period is composed of Channel Time Allocations (CTAs), that are used for isochronous streams and

asynchronous data connections, as well as Management CTAs (MCTAs) that are used for commands. The

CTAs are allocated by the PNC according to the DEVs requests and can be used for PNC-DEV communica-

tion as well as for inter-DEV communication. The IEEE 802.15.3 standard supports the operation of a few

piconets in the same geographic area. However, the mechanisms for inter-piconet communication are out of

the scope of the standard.

Efficient network operation requires determining the capacities that shouldbe allocated to each link (e.g.

portion of slots in Bluetooth or allocation of CTAs in IEEE 802.15.3), such thatthe network performance is

optimized. The need to find a feasible capacity allocation in Bluetooth scatternetshas been identified by Baatz

et al. [3]. In [29] the scatternet capacity assignment problem has beenformulated as a problem of minimizing

a convex function over a convex set contained in the matching polytope (similar formulations appear in [2]

and [26]) and optimal as well as heuristic algorithms for its solution have beenproposed. Sarkar and Tassiulas

[25],[26] have studied the problem of maxmin fair allocation of bandwidth in networks in which a node can

converse with at most a single neighbor at a time (similarly to the case in Bluetooth and in specific IEEE

802.15.3 networks). Finally, [9] extended the model of Hajek and Sasaki[11] by replacing the network graph

with a SINR condition (i.e. links can be simultaneously active, if a given signalto interference and noise ratio

is exceeded when transmitters use optimally chosen transmit powers).

The work in [29] presents distributed and centralized heuristics for the solution of the capacity assignment

problem in Bluetooth scatternets, but does not include a detailed analysis ofthe performance of the algorithms.

In addition, these heuristic algorithms have been developed under the assumption that Kleinrock’s approxi-

mation assumption holds. As argued by Sarkar and Tassiulas [25],[26], although the algorithms have been

developed in the context of Bluetooth scatternets, they can be applied to anyad hoc network in which a node

transmits to a single neighbor at a time, and in which multiple transmissions can take place as long as they

do not share a common node. Therefore, as mentioned above, in this paper we focus on network graphs and

not necessarily on Bluetooth scatternets. We make similar assumption to the onesmade in [29]. Namely, the

analysis is based on a static model with stationary flows and unchanging topology. We also assume that the

network graph is bipartite2 and that the capacities allocated to the links are the total bi-directional capacities.

This assumption holds in many networks of the considered type. Specifically,in [7] and [29] it is shown that

Bluetooth scatternet topologies which are nonbipartite may result in poor bandwidth utilization.

First, we extend the heuristics, presented in [29], such that they can operate with general convex objective

2A graph is called bipartite, if there is a partition of the nodes into two disjoint setsS andT such that each edge connects a node
in S with a node inT .

3

functions. We then show that an optimal solution (to a degree of accuracy of 1/M , whereM is a large

constant) can be obtained in polynomial time. Yet, since in wireless networks there is no central authority

responsible for network optimization and since the polynomial algorithms do noteasily lend themselves to

distributed implementation, we focus on the heuristic algorithms.

We analyze the performance of these heuristics and show that they are actually β-approximation (β < 2)

algorithms for the solution of the capacity assignment problem. An important property regarding the tightness

of the upper bound on their performance is also presented. Then, we show that although they allocate capacity

in a different order, the distributed algorithm converges to the same resultsas the centralized one. Finally,

numerical results are presented.

As mentioned above, Hajek and Sasaki [11] have proposed centralizedalgorithms for finding a minimum

length schedule to satisfy given traffic requirements. In our context, the scheduling problem studied in [11]

can be viewed as a feasibility test. Namely, given a set of capacities (largerthan the required flows), the

algorithm provided in [11] can verify whether or not these capacities could be allocated (without violating the

capacity constraints of the nodes and the network). Recently, Sarkar and Tassiulas [25],[26] have proposed

maxmin fair scheduling algorithms for a similar setting. We extend these models and try to obtain a set of

capacities which is not only feasible but alsominimizes a general non-linear objective function(e.g. average

delay). The main contribution of this paper is a rigorous analysis of this problem as well as of centralized and

distributed approximation algorithms for its solution.

In the specific context of Bluetooth scatternets, we view bandwidth allocationalgorithms as the missing

link between topology construction and scheduling algorithms (see the discussion in [29]). Numerous topol-

ogy construction and scheduling algorithms for Bluetooth scatternets have been recently proposed (see for

example the reviews in [4] and [27]). Since analysis of algorithms tailored for Bluetooth scatternets has been

done mostly via simulation, an analytical approach that provides rigorous bounds on the performance is of

great importance. Therefore, throughout the paper, we try to map the connections between the analyzed algo-

rithms and Bluetooth scatternets. In addition, we note that the implementation of the algorithms in networks

based on IEEE 802.15.3 will be possible only in the case inter-DEV communication is not used and DEVs do

not operate as PNCs.3

This paper is organized as follows. Section 2 presents the model and the formulation of the problem. In

Section 3, we show that the problem can be solved by centralized polynomial-time algorithms. The heuristic

algorithms presented in [29] are reviewed and extended for a general objective function in Section 4. In

3If inter-DEV communication is allowed or if a DEV can also be a PNC, the set of active links does not necessarily constitutes a
matching in a bipartite graph.

4

Section 5, we show that the heuristic algorithms areβ-approximation (β < 2) algorithms. In Section 6, we

show that the distributed and centralized algorithms converge to the same results. Section 7 presents numerical

results and Section 8 summarizes the results.

2 Model and Problem Formulation

2.1 Model and Preliminaries

We model the network by an undirected bipartite graphG = (N, L), whereN denotes the collection ofnodes

{1, 2 , . . . , n} andL denotes the set ofbi-directional links. We denote byI(i) the set of linkse = (i, j) ∈ L

that are incident on nodei. We concentrate on the total bi-directional link capacity. Hence, we assumethat

the performance of a link (e.g. the average packet delay) is a function ofthe total link flow and of the total

link capacity. LetFe be the average bi-directional flow on linke and letCe be the capacity of linke (the

units ofF andC are bits/second). We assume that the average bi-directional flow is positive on every link

(Fe > 0 ∀ e ∈ L). We definefe as the ratio betweenFe and the maximal possible flow on a link4. We also

definece as the ratio betweenCe and the maximal possible capacity of a link. It is obvious that0 < fe ≤ 1

and that0 < ce ≤ 1. We shall refer tofe as theflow on linke and toce as thecapacity of linke.

The objective of the capacity assignment algorithms, analyzed in this paper,is to minimize the sum of non-

linear decreasing functions of the links’ capacities. The function of the capacity of link e shall be denoted by

De. We assume that the flow rates (fe) are given and thatDe is a function of the link capacityce only. The

derivative ofDe(ce) is denoted byD′
e(ce). We assume the following properties of the functionDe(·)

Definition 1 De(·) is defined such that all the following hold:

• De is a nonnegative continuous decreasing function ofce with continuous first and second derivatives.

• De is convex.

• limce→fe
= ∞.

One possible application of the analyzed algorithms is to minimize the average delayin the network.

Another application is to attain proportional fair [17] capacities. In case one wishes to minimize the average

delay,De should be defined as the total delay per unit time of all traffic passing through link e. Since the

total traffic in the network is independent of the capacity assignment procedure, we can minimize the average

delay by minimizing the total delay (i.e. by minimizing
∑

e∈L De(ce)). For convenience, we shall refer to the

4For example, currently the maximal flow on a symmetricalBluetoothlink is 867.8 Kb/s.

5

function that we wish to minimize as thedelay. We note that the properties presented in Definition 1 conform

to the analytic and simulation results regarding packet delay in Bluetooth piconets presented in [12],[21],[30],

and [31].

Alternatively, if one wishes to provide some degree of proportional fairness to the links, the following

definition ofDe can be used5:

De(ce) =

−we log (ce − fe) ce > fe

∞ ce ≤ fe

. (1)

wherewe is a positive constant.

The heuristic algorithms in [29] have been developed assuming that the delayfunction is based onKlein-

rock’s independence approximation[18] which is described in the following definition:

De(ce) =

fe/(ce − fe) ce > fe

∞ ce ≤ fe

. (2)

We will show that these algorithms can be extended for the general functions described in Definition 1. This

extension is important, since it allows using the algorithms with differentdelay functions as well as with

proportional fairness functions. We note that in order to obtainnumerical resultsand to provide some insight

regarding the performance of the algorithms, we shall use Kleinrock’s approximation6.

2.2 Formulation of the Problem

The objective of the capacity assignment algorithms is to minimize the sum of non-linear decreasing functions

of the capacity (i.e. the functions -De(ce)). Accordingly, the problem ofcapacity assignment in bipartite

graphs(CAB) is formulated as follows [29]7.

Problem CAB

Given: Topology of a bipartite graph and flows(fe).

5Within the feasibility region that shall be defined in Section 2.2, (1) conforms to Definition 1
6Kleinrock’s independence approximation has been shown to provide a relatively good estimation for the delay in networks

involving Poisson stream arrivals. Therefore, it is used for thenumericalevaluation of approximation capacity assignment algorithms.
7In [29] the problem is referred to asscatternet capacity assignment in bipartite graphs(SCAB). In order to emphasize the

generalization of the analysis, we shall omit the termscatternetfrom the names of the problem and the algorithms.

6

Objective:Find capacities(ce) such that the average delay is minimized:

minimize
∑

e∈L

De (ce) (3)

subject to: ce > fe ∀ e ∈ L (4)

∑

e∈I(i)

ce ≤ 1 ∀ i ∈ N . (5)

The second set of constraints (5) reflects the fact that the total capacityof the links connected to a node

cannot exceed the maximal link capacity. Constraints similar to (5) appear in problems formulated in [2],[25],

and [26]. Henceforth we will assume that there is a feasible solution to Problem CAB. We note that the

formulation of the problem is based on the assumption that the flow rates are given by higher layer protocols,

based on the traffic statistics.

Notice that based on the Edmonds’ Theorem [10] and the analysis of Hajekand Sasaki [11], fornonbi-

partite graphsit is sufficient to replace (5) by

∑

e∈I(i)

ce ≤ 2/3 ∀ i ∈ N . (6)

Although (6) is a sufficient condition for feasible capacity allocation in nonbipartite graphs, it is not a neces-

sary condition, and therefore the obtained capacity allocation may not be optimal.

We note that when considering Bluetooth scatternets, one might want to take into account the time that is

wasted in the process of moving a bridge from one piconet to another (known as the guard time). In (5) we

neglect these guard times. In case they should be taken into account, (5) should be replaced with:

∑

e∈I(i)

ce ≤ 1 ∀ i ∈ N − B

∑

e∈I(i)

ce ≤ b ∀ i ∈ B ,

whereB is the set of bridges andb is the normalized capacity available to links connected to a bridge (b < 1).

In order to present an equivalent formulation of Problem CAB, we define theslack capacityof a node as

follows:

Definition 2 Theslack capacity of node iis the maximum capacity which can be added to links connected to

the node. It is denoted bysi and is given bysi = 1 − ∑

e∈I(i) ce.
8

8In case the algorithms are applied to nonbipartite graphs (i.e. (5) is replaced by (6)),si should be defined as2/3 −

P
e∈I(i) ce.

Similarly, in case one wishes to take into account the guard times in Bluetooth scatternets,si should be defined asb −
P

e∈I(i) ce

for bridge nodes.

7

In both algorithms, considered in this paper, all link capacities are initially equal to the flows on the

links (ce = fe, ∀ e ∈ L). Therefore, by definition, initially (before the first phase of any algorithm) si =

1−∑

e∈I(i) fe. Using the definition ofsi and settingτe = ce−fe, e ∈ L, we obtain the following formulation

of Problem CAB:

minimize
∑

e∈L

De(τe) (7)

subject to:
∑

e∈I(i)

τe ≤ si ∀i ∈ N

τe > 0 ∀e ∈ L .

We denote byτ∗
e the optimal solution to (7). As mentioned before, we assume that the problem has a feasible

solution and therefore,si must be greater than zero for alli ∈ N . Thus,0 < si ≤ 1 for all i. Additionally,

since by definitionfe > 0 andce ≤ 1, τe < 1, for all e.

3 Transformation to a Flow Problem

In this section we show that Problem CAB can be transformed to a minimum cost flow problem with a

separable convex objective function. The transformation is based on creating a super-source and a super-sink

as described in Fig. 3 and on using directional edges instead of bi-directional edges. The super-source is

connected by directed edges to all the nodes in one of the sets composing thebipartite graph. The capacities

of these edges are defined as the slack capacities (si) of the nodes to which they are connected. Similarly, the

nodes in the other set are connected to a super-sink by edges with limited capacity. The edges connecting the

nodes of the bipartite graph have unlimited capacity. The super-sink and super-source are also connected by

an edge with unlimited capacity. The flow values in the transformed network areτe. The cost of a flowτe

traversing an edgee connecting the nodes of the bipartite graph isDe(τe). The cost of a flow on any other

edge is0. A minimum cost flow in the transformed network provides a solution to Problem CAB.

The flow problem presented above is a specific case of theconvex cost flow problemdiscussed by Ahuja

et al. [1, p. 556]. In [1] a polynomial-time algorithm for finding anintegersolution to the minimum cost flow

with convex separable objective function is provided. If one needs to obtain a more accurate solution than

the integer solution (as required in our case), he could substitute eachτe by ye = Mτe, for sufficiently large

value ofM , and adjust the objective function and constraints accordingly. Ify∗e denotes an integer optimal

solution of the transformed problem,τ∗
e = y∗e/M is an optimal solution of the original problem (to a degree

of accuracy of1/M).

8

4

6

5

7

3

2

1

8

Source Sink

4

6

5

7

3

2

1

8

flow≤ s1

flow≤ s3

flow≤ s4

flow≤ s8

cost(1,4) = D(1,4)(τ(1,4))

cost(3,8) = D(3,8)(τ(3,8))

Figure 3: An example of the transformation of a bipartite graph to a flow network.

The method presented in [1] is a variant of the algorithm presented by Minoux [20] and it is in the

framework of the scaling algorithm given by Hochbaum and Shanthikumar [14]. Another algorithm for

the minimum cost flow problem, which is based on the framework of [14], was presented in [13]. Finally,

Karzanov and McCormick [16] studied a problem which generalizes the minimum non-linear cost circulation

problem and provided algorithms that differ from the algorithms provided in [14]. Their polynomial-time

algorithm for obtaining an integer solution can be used in order to obtain a solution to Problem CAB.

To conclude, there are a couple of polynomial algorithms that can be used for obtaining an integer solution

to Problem CAB, thereby providing a non-integer solution (to a degree of accuracy of1/M). However, these

algorithms cannot be easily modified in order to allow distributed implementation as required in wireless

networks.Therefore, in this paper we focus on approximation algorithms that can be easily implemented in a

distributed manner.

4 Approximation Algorithms

A capacity assignment algorithmhas to obtain a solution to Problem CAB (e.g. to determine what portion

of the slots should be allocated to each link). In this section we briefly review the centralizedanddistrib-

utedapproximation algorithms for bipartite graphs, presented in [29]. We shall refer to these algorithms as

theheuristic centralized/distributed capacity assignmentalgorithms (Algorithm HCCA/HDCA respectively).

Since these algorithms have been developed with an objective function based on Kleinrock’s approximation

(2), we extend them here for a general objective function, based on the delay function described in Definition

1.

In both algorithms, all link capacities are initially equal to the flows on the links(ce = fe, ∀ e ∈ L). The

9

algorithms select a node, allocate the slack capacity to the links connected to it, whose capacities are equal to

the flows, and update the slack capacities of the neighboring nodes. Then, another node is selected, capacity

is allocated, the slack capacities are updated, and so on. In both algorithms the nodes are selected according

to theirdelay derivatives, which are computed in the following manner.

Every nodei, that has to compute its delay derivative, obtains the optimal solution to the following local

optimization problem:

minimize
∑

e∈I(i),ce=fe

De(τe) (8)

subject to:
∑

e∈I(i),ce=fe

τe ≤ si

τe > 0 ∀e ∈ I(i), ce = fe .

This solution determines how the slack capacity of this node should be allocatedto those adjacent links, whose

capacities have not yet been assigned, in case the node would be selected for allocating capacity. The problem

described in (8) is an optimization of a convex function over a simplex [5, p. 359] (notice that in the optimal

solution, the first constraint must hold with equality). Therefore, it has a unique optimal solution that can be

obtained by using the method of Lagrange Multipliers and solving the following system of equations:

D′
e(τ

∗
e) = λ∗

i ∀e ∈ I(i), ce = fe (9)

∑

e∈I(i),ce=fe

τ∗
e = si (10)

Since the number of node’si neighbors (|I(i)|) is usually bounded by a small constant (e.g. 7 in Bluetooth),

and since there is only one constraint in the non-linear program (8), the solution to any degree of accuracy

ǫ (for a fixed constantǫ) can be found in constant time. In the specific case that Kleinrock’s independence

approximation is assumed, the optimal solution follows the square root assignment [18, p. 20]:

τ∗
e =

si
√

fe
∑

l∈I(i), cl=fl

√
fl

∀e ∈ I(i), ce = fe . (11)

After solving (9)-(10) a node computes its delay derivative according tothe following definition.

Definition 3 Thedelay derivative of node iis denoted bydi and is given by:di = |λ∗
i | .

10

For example, under Kleinrock’s approximation9:

di =

∑

e∈I(i), ce=fe

√
fe

si

2

. (12)

After a nodek is selected,the slack capacity of this node is allocated to those adjacent links, whose ca-

pacities have not yet been assigned, according to the solution of (8). Capacity is allocated to a link only once.

Hence, we define afully allocated nodeas a node whose all adjacent link capacities have been assigned10.

Accordingly, anon-fully allocated nodeis a node which has at least one adjacent link whose capacity has not

been assigned.

4.1 Centralized Algorithm (Algorithm HCCA)

Nodek, whose link capacities are next to be assigned, is selected from the non-fully allocated nodes. The

delay derivativesdi of these nodes are computed and the node with the largest derivative is selected. Algorithm

HCCA, which is based on this methodology, is described in Fig. 4. The input isthe topology and the flows

(fe), and the output is the link capacities:ce. It can be seen that the complexity of the algorithm isO(n2),

since as mentioned earlier for alli the di values can be computed in constant time to any fixed degree of

accuracy. Notice thatO(n2) is about the complexity of a single iteration in the optimal algorithm, presented

in [29].

1 setce = fe ∀e ∈ L

2 computedi ∀i ∈ N
⋂

i non-fully allocated

3 setk = arg max
i∈N

T
i non-fully allocated

di

4 setce = optimal solution of (8)∀ e : e ∈ I(k), ce = fe

5 if there existse ∈ L such thatce = fe

6 then go to 2

7 elsestop

Figure 4: Algorithm HCCA for obtaining an approximate solution to Problem CAB.

9We note that in [29], where kleinrock’s approximation was always assumed,di was defined as the square root of its current value
under this assumption (i.edi =

P
e∈I(i), ce=fe

√

fe/si). This modification does not affect the performance of the algorithms.Yet,
it simplifies their analysis.

10A fully allocated node does not necessarily utilize its full capacity.

11

4.2 Distributed Algorithm (Algorithm HDCA)

In the distributed algorithm, a token is passed by the nodes and only the node that holds the token is allowed to

allocate capacity. The algorithm is initiated by an arbitrary node that creates the token. Once a node receives

the token, it can either allocate its slack capacity or decide to send the token to aneighbor. The assignment of

slack capacity is the same as in the centralized algorithm. However, the selectionof the node which holds the

token and the decision whether it should allocate capacity or transfer the token to a neighbor is different.

Each node keeps a stack, referred to as theparents stack, that contains the identities of neighbors from

which it had previously received the token. Each node also maintains a list of non-fully allocated neighbors.

We define two possible states for the node holding the token:

• Allocation State– A non-fully allocated node enters this state when it receives the token. Atthis time

the node pushes the identity of the neighbor, that sent it the token, to the parents stack. The neighbor is

referred to as one of the node’s parents.11 The node decides to either transfer the token to a neighbor or

allocate capacity and then move to the token transfer state.

• Token Transfer State– A node enters this state after it allocates capacity or when it receives the token

from a neighbor that popped its details from the stack. In this state, one of the non-fully allocated

neighbors will receive the token. If all the neighbors are fully allocated,the token will be returned to

the first neighbor in the stack and this neighbor will be popped from the stack. The algorithm halts

when all the neighbors are fully allocated and the stack is empty (it always terminates at the initiating

node).

Fig. 5 presents the pseudocode of the procedure executed by a node inthe allocation state. Unlike the

centralized algorithm in which a node allocates capacity, if itsdi is the largest in the network, in the distributed

algorithm a node allocates capacity, if it holds the token and itsdi is larger than thedis of its neighbors.

Fig. 6 describes the pseudocode of the procedure executed by a nodein the token transfer state. A node

enters this state due to two possible events: capacity allocation by the node or receipt of the token from a

neighbor that popped its details from the stack. In this state, it can either send the token to its “best” neighbor

or return it to one of its parents.

11Unlike other distributed protocols (such as Depth First Search), a node can have a few parents.

12

1 push into the parents stack the details of the node which sent the token
2 find the node with the largestdi among the non-fully allocated neighbors and yourself
3 if it is a neighbor
4 then send the token to this neighbor
5 else
6 allocatecapacity according to the optimal solution of (8)
7 update the neighbors
8 changethe state to token transfer state

Figure 5: Algorithm HDCA – the procedure executed by a node in the allocation state.

1 find the node with the largestdi among the non-fully allocated neighbors
2 if such a node exists
3 then send the token to this neighbor
4 else
5 if the stack is empty
6 then halt
7 else
8 pop the first node from the parents stack
9 sendthe token to that parent

Figure 6: Algorithm HDCA – the procedure executed by a node in the token transfer state.

5 Approximation Ratios

In this section we show that Algorithm HCCA isβ-approximation (β < 2) algorithm for the solution of

Problem CAB. First, we present a new algorithm for the solution of ProblemCAB. Then, we prove that the

new algorithm outperforms any2-approximation algorithm. Finally, we prove that Algorithm HCCA obtains

results which are equal or better than the results obtained by the new algorithm. We note that in this section

we also present an interesting property, of the upper bound, on the performance of the algorithms.

Recall that in (8) we have defined a set of|N | non-linear programs, one for eachi ∈ N . We denote the

optimal solution of (8) for nodei by τ i
e and define the corresponding optimal valueOPTi of the objective

function as

OPTi =
∑

e∈I(i)

De(τ
i
e) . (13)

We now present a simple algorithm, referred to asAlgorithm ACA(Approximate Capacity Assignment),

for obtaining an approximate solution to the Problem CAB. We denote byτ̂e the solution obtained by Algo-

rithm ACA. For every nodei, the algorithm computes the optimal solution to (8) (i.e.τ i
e,∀i ∈ N, e ∈ I(i)).

Then, it sets for alle = (i, j) ∈ L:

τ̂e = min (τ i
e, τ

j
e). (14)

13

We first show that̂τe is a feasible solution to Problem CAB (i.e. to (7)). It is easy to see thatτ̂e > 0,∀e ∈ L

and by construction̂τe ≤ τ i
e. Sinceτ i

e is an optimal solution to (8), for nodei we have
∑

e∈I(i) τ i
e ≤ si and

hence
∑

e∈I(i) τ̂e ≤ si.

We now show that Algorithm ACA is better than a 2-approximation algorithm for the problem CAB. In

order to prove it, we first present the following lemma12.

Lemma 1 (Zussman and Segall, 2004 [29])If dj > di, thenτ j
ij < τ i

ij . If dj = di, thenτ j
ij = τ i

ij .

Theorem 1 Algorithm ACA is aβ-approximation algorithm (β < 2) for Problem CAB.

Proof: For any nodei ∈ N , τ∗
e (the optimal solution to the non-linear program (7)) is a feasible solution to

the non-linear program (8). Hence, sinceOPTi is the optimal value of the objective function for (8):

∑

e∈I(i)

De(τ
∗
e) ≥ OPTi ∀i ∈ N. (15)

Adding up for alli ∈ N and noting that the term for each edge appears exactly twice in the sum we have

2
∑

e∈L

De(τ
∗
e) ≥

∑

i∈N

OPTi. (16)

For each nodei we define a set of incident edgesJ(i) ⊆ I(i) as those edgese = (i, j) ∈ L for which

τ i
e < τ j

e , or in the case of a tie (τ i
e = τ j

e), the node indexi < j. It is easy to see thatJ(i) forms a partition of

the set of edgesL. Thus:

∑

e∈L

De(τ̂e) =
∑

i∈N

∑

e∈J(i)

De(τ̂e) =
∑

i∈N

∑

e∈J(i)

De(τ
i
e) ≤

∑

i∈N

OPTi,

where the last inequality follows from the definition ofOPTi in (13) and the fact thatJ(i) ⊆ I(i). However,

for a more tighter analysis we make the following observation. From Lemma 1 it follows that the nodej with

the smallest delay derivativedj (in case of a tie,j is selected to be the node with the largest index) must have

thatJ(j) = ∅. Thus, there is at least one nodej with J(j) = ∅, and therefore since by definitionOPTj > 0

we have
∑

e∈L

De(τ̂e) ≤
∑

i∈N,i6=j

OPTi <
∑

i∈N

OPTi

Combining this with (16) we get
∑

e∈L

De(τ̂e) < 2
∑

e∈L

De(τ
∗
e),

12Notice that [29] shows that the lemma holds for delay functions following Kleinrock’s approximation assumption. It is easy to
see that it can be extended to delay functions with the properties defined in Definition 1.

14

thus showing that Algorithm ACA is aβ-approximation (β < 2) algorithm for the Problem CAB.

Algorithm HCCA (described in Section 4.1) can be described as follows. Let τ̄e be the solution obtained

by Algorithm HCCA. At any phase, the algorithm starts out with a graph (initiallyset to the original graphG)

with slack capacitiessi (initially set to the original graphs slack capacities). In this graph, it finds the nodei

with the maximal value ofdi, solves the non-linear program (8) for that nodei optimally, and sets

τ̄e = τ i
e ∀e ∈ I(i).

It then decreases the slack capacitiessj for every nodej, which is a neighbor ofi, by the sum of̄τe, e ∈ I(j)

for all τ̄e that get set in this phase. This is done to reflect the capacity that has beenalready allocated. Any

nodei with si = 0 is removed from the graph. Also all the edgese that are assigned a valueτe in this phase

are removed from the graph. The new graph and the new slack capacitiesbecome input for the next phase.

The algorithm terminates when no more edges are left in the graph.

Let Lp be the set of edges such thatτ̄e, e ∈ Lp is set in phasep. Let τ i p
e be the optimal solution obtained

for the non-linear program (8) of nodei for the graphGp used by Algorithm HCCA in phasep along with

the slack capacitiessp
i . Let the node delay derivatives in phasep bedp

i . Note thatG1 = G, s1
i = si,∀i ∈ N ,

d1
i = di,∀i ∈ N , andτ i 1

e = τ i
e,∀e ∈ I(i). Let Ip(i) be the set of edges incident on nodei in Gp. Due to

Lemma 1 and the fact that at each phasep, the node with the largestdp
i is selected, at the end of phasep we

have

τ̄e = min (τ i p
e , τ j p

e) ∀e = (i, j) ∈ Lp. (17)

We now show that for each edge the delay obtained by the algorithm HCCA is at most the delay obtained

by the Algorithm ACA. In order to prove it, we first prove the following lemma.

Lemma 2 τ i p+1
e ≥ τ i p

e for all nodesi and edgese ∈ Ip+1(i).

Proof: Consider a nodei that does not have edges whose capacities are set at phasep. For that node,

τ i p+1
e = τ i p

e . Now consider a nodei that does not have the maximaldi at phasep but which has at least one

edge whose capacity is set at phasep (i.e. some of the edges inIp(i) are inLp). In the optimal solution of (8)

at phasep
∑

e∈Ip(i)

τ i p
e = sp

i . (18)

Similarly in the optimal solution at phasep + 1

∑

e∈Ip+1(i)

τ i p+1
e = sp+1

i . (19)

15

Since

sp+1
i = sp

i −
∑

e∈Ip(i)
T

Lp

τ̄e

and since according to (17) fore = (i, j) ∈ Lp, τ̄e ≤ τ i p
e , it follows from (18) and (19) that:

∑

e∈Ip+1(i)

τ i p+1
e ≥

∑

e∈Ip+1(i)

τ i p
e . (20)

According to Definition 1 and sincece = τe + fe, D′
e(τe) is an increasing function. Due to (20) at least

for one link connected toi, τ i p+1
e ≥ τ i p

e . Therefore, for that linkD′
e(τ

i p+1
e) ≥ D′

e(τ
i p
e). According to (9)

at each phasep, the values ofD′
e(τ

i p
e) are equal for alle ∈ Ip(i). Thus,

D′
e(τ

i p+1
e) ≥ D′

e(τ
i p
e) ∀e ∈ Ip+1(i) .

Consequently,τ i p+1
e ≥ τ i p

e ∀e ∈ Ip+1(i).

Proposition 1 Algorithm HCCA is aβ-approximation algorithm (β < 2) for the Problem CAB.

Proof: We show that̄τe ≥ τ̂e,∀e ∈ L 13, thus showing that the value of the objective function of the non-

linear program (7) for the solution̄τe is at most the value of the objective function of (7) for the solution

obtained by aβ-approximation algorithm (β < 2). It follows from Lemma 2 that for any nodei and link

e ∈ Ip(i):

τ i p
e ≥ τ i p−1

e . . . ≥ τ i 1
e = τ i

e.

Thus,τ i p
e ≥ τ i

e andτ j p
e ≥ τ j

e for a link e = (i, j) ∈ Lp. Hence, since for such a linke = (i, j), we have

τ̄e = min (τ i p
e , τ j p

e) (see (17)) and̂τe = min (τ i
e, τ

j
e) (see (14)), we have∀e = (i, j) ∈ Lp:

τ̄e = min (τ i p
e , τ j p

e) ≥ min (τ i
e, τ

j
e) = τ̂e.

Finally, we show that any upper bound on the performance of Algorithm HCCA which is based on the

relationships betweenOPTi and the optimal solution (i.e. based on (16))is not tight.

Proposition 2 Assume that there existsβ (1 < β < 2) such that

∑

e∈L

De(τ̄e) ≤
β

2

∑

i∈N

OPTi ≤ β
∑

e∈L

De(τ
∗
e), (21)

thus implying that HCCA is aβ-approximation algorithm, then there is no tight example in which the heuristic

solution (̄τe), obtained by HCCA is exactlyβ times more than the optimal solution. In other words there is no

13Recall that̄τe andτ̂e are the solutions obtained by algorithms HCCA and ACA, respectively.

16

example for which
∑

e∈L

De(τ̄e) = β
∑

e∈L

De(τ
∗
e). (22)

Proof: Assume that an example in which (22) holds exists. This implies that all inequalitiesin (21) must

hold with equalities. Specifically
∑

i∈N

OPTi = 2
∑

e∈L

De(τ
∗
e).

Therefore, for any given nodei, (15) holds with equality (i.e.OPTi =
∑

e∈I(i) De(τ
∗
e)). Consequently, since

the optimal solution for (8) is unique, we have for every linke = (i, j): τ i
e = τ∗

e = τ j
e . Thus, the solution

obtained by Algorithm ACA (̂τe) is equal to the optimal solution (sincêτe = min{τ i
e, τ

j
e }). Finally, in the

proof of Proposition 1, we have shown thatτ̄e ≥ τ̂e,∀e ∈ L. Thus

∑

e∈L

De(τ̄e) ≤
∑

e∈L

De(τ
∗
e),

which contradicts (22).

6 Convergence of the Distributed Algorithm

Due to the differences between the algorithms, the centralized algorithm (Algorithm HCCA) and the distrib-

uted algorithm (Algorithm HDCA) normally allocate capacity in different order. However, in this section we

will show that the two algorithms always converge to the same results. Since in Section 5 we have shown

that Algorithm HCCA is aβ-approximation algorithm (β < 2), this implies that Algorithm HDCA has the

same property. First, we show that the distributed algorithm halts after all the link capacities have been allo-

cated. Then, we show that these link capacities are the same as the link capacities allocated by the centralized

algorithm.

The proof that the distributed algorithm halts after all the link capacities have been allocated is based on

the fact that the token either does not traverse a link or traverses it in bothdirections. Accordingly, since the

token cannot be returned to a parent before all the neighbors are fullyallocated, the algorithm cannot halt

before all the link capacities have been allocated. The formal proof is based on the following lemmas. The

proofs of the lemmas appear in the Appendix.

Lemma 3 In Algorithm HDCA, when a nodei enters the token transfer state, it is fully allocated(ce 6=
fe ∀e ∈ I(i)).

17

Lemma 4 When Algorithm HDCA halts, every node that has been in the allocation state has also been in the

token transfer state.

The proof of Lemma 4 implies that every node that has been in the allocation statehas also executed

Step 4 described in Fig. 6 (i.e. checked the status of the stack and then eitherhalted or returned the token to a

parent). Using the above lemmas we shall now prove the following proposition.

Proposition 3 When Algorithm HDCA halts:ce 6= fe ∀e ∈ L.

Proof: Assume that when the algorithm halts, there is a linke for which ce 6= fe does not hold (eitherce is

not defined orce = fe). According to Lemma 3, nodesi andj do not enter the token transfer state during

the execution of the algorithm. Consequently, according to Lemma 4, nodei andj do not enter the allocation

state during the execution. Since nodej does not enter the allocation state, none of its neighbors ever executes

Step 4 described in Fig. 6 (since before its execution they would send the token to nodej which would enter

the allocation state). Following the argument used in the proof of Lemma 4, due tothe fact that the protocol

halts, every node that has been in the allocation state has also executed Step4 described in Fig. 6. Thus, none

of the neighbors ofj enters the allocation state and the capacities of the links connecting them toj are not

assigned.

Using a similar argument, it can be shown that none of the link capacities of the neighbors ofj are

assigned. Consequently, no node enters the allocation state and no link capacity is assigned. This is a contra-

diction to the fact that the algorithm halts.

We now need to show that the capacity allocated by Algorithm HDCA is equal to the capacity allocated

by Algorithm HCCA. Thus, we first derive a property of the delay derivative of a node in algorithms HDCA

and HCCA. Then, we prove by induction that the capacities allocated by the two algorithms are identical.

Lemma 5 When a nodei allocates capacity the delay derivatives (dks) of its non-fully allocated neighbors

do not increase.

Proof: Let k be a non-fully allocated neighbor ofi. Let d−k andd+
k be its delay derivatives just before

and just after (respectively)i allocates capacity. Denote byE(k) the set of links that are incident on nodek

(E(k) ⊆ I(k)) such thatce = fe just afteri allocates capacity. Letτk −
e andτk +

e be the optimal solutions of

nodek to (8) just before and just after (respectively)i allocates capacity. According to (9) and Definition 3,

for all e ∈ E(k), d−k = D′
e(τ

k −
e) andd+

k = D′
e(τ

k +
e) . According to Lemma 2,τk +

e ≥ τk −
e ∀e ∈ E(k).

According to Definition 1,D′
e(τe) is an increasing function and therefore,d+

k ≥ d−k .

We note that if the Kleinrock’s approximation (2) holds, the lemma results directlyfrom the definition of

18

the delay derivative of a node (12) and the square root assignment (11). We present here a simple proof for

that case. Letk be a non-fully allocated neighbor ofi. Let d−k andd+
k be its delay derivatives just before and

just after (respectively)i allocates capacity. Denote byB(k) the set of links adjacent tok (B(k) ⊆ I(k)) such

thatce = fe justbeforei allocates capacity. According to (11) and (12), following the allocation:

d+
k =

∑

e∈B(k)

√
fe −

√
fik

sk − (cik − fik)

2

=

∑

e∈B(k)

√
fe −

√
fik

(
∑

e∈B(k)

√
fe)/

√

d−k −√
fik/

√

d−i

2

. (23)

Sincei allocates the capacity, just before the allocationd−i ≥ d−k . Accordingly,

d+
k ≤

∑

e∈B(k)

√
fe −

√
fik

(
∑

e∈B(k)

√
fe)/

√

d−k −√
fik/

√

d−k

2

= d−k . (24)

Theorem 2 The capacities(ce) obtained by Algorithm HDCA are identical to the capacities obtained by

Algorithm HCCA.

Proof: According to Proposition 3, Algorithm HDCA halts only after all the link capacities have been

allocated. Thus, we have to show that these link capacities are the same as thelink capacities assigned by

Algorithm HCCA.

We need to show that when Algorithm HDCA is executed, at any given time, thefollowing properties

hold:

1. For every non-fully allocated nodej, the neighbors that allocate capacity afterj in Algorithm HCCA

are non-fully allocated (i.e. some or all neighbors which allocate capacity before it in Algorithm HCCA

are fully allocated).

2. The values of the capacities that have already been allocated are the same as in Algorithm HCCA.

In order to prove it, we assume that the above properties hold at timet− and we show that if a nodei

allocates capacity at timet (immediately after timet−), these properties continue to hold.

At time t, Algorithm HDCA selects a non-fully allocated nodei with a delay derivative (di) higher than

the delay derivatives of its non-fully allocated neighbors and allocates capacity (Step 6 in Fig. 5). We wish to

show that wheni is selected,all (and notsome) the neighbors which allocate capacity before it in Algorithm

HCCA are fully allocated.

19

Denote bydi(t) the delay derivative of nodei at timet. Denote the set of the non-fully allocated neighbors

of i at timet− by M(i) (m ∈ M(i) , if e ∈ I(i), e ∈ I(m) , and ce = fe at time t−). let tm be the time

in which a nodem allocates capacity in Algorithm HCCA. Due to the first property and due to Lemma5,

di(t
−) ≥ dm(t−) ≥ dm(tm), ∀m ∈ M(i). In order form ∈ M(i) to allocate capacity beforei in Algorithm

HCCA, dm(tm) ≥ di(tm) has to hold. However, in order fordi to become smaller thandm, one of the other

non-fully allocated neighbors ofi has to allocate capacity in Algorithm HCCA before timetm. This cannot

happen, since their delay derivatives are lower than the delay derivative of i. Thus, the nodes inM(i) allocate

capacity afteri.

Since at timet, all the neighbors ofi which allocate capacity before it in Algorithm HCCA are fully

allocated,i allocates the same capacities as in Algorithm HCCA. Thus, at timet+ (immediately after time

t) the second property holds. Moreover, since we have shown that in Algorithm HCCA,i allocates capacity

before the nodes inM(i), at timet+, the first property holds.

Finally, since the properties 1 and 2 hold before the first node allocates capacity, they also hold after the

last node allocates capacity, and therefore, the capacity values allocatedby Algorithm HDCA are identical to

the values allocated by Algorithm HCCA.

7 Numerical Results

In this section we present a few numerical examples that demonstrate the difference between the results ob-

tained by the Algorithms HCCA and HDCA, the results obtained by Algorithm ACA,and the optimal results.

In order to obtain numerical results, we assume in this section that the delay function follows Kleinrock’s

independence approximation (i.e.De(τe) = fe/τe) and that the considered bipartite graphs are Bluetooth

scatternets. First, we assume that the guard times are negligible, and therefore, no switching overheard is in-

curred by the bridges. Then, we present results for the case in which different nodes have different capacities

(resulting, for example, from the switching overhead).

From the observations made in Section 5 it follows that:

∑

e∈L

De(τ
∗
e) ≤

∑

e∈L

De(τ̄e) ≤
∑

e∈L

De(τ̂e) <
∑

i∈N

OPTi ≤ 2
∑

e∈L

De(τ
∗
e) . (25)

Namely: Optimal Solution≤ Solution by HCCA≤ Solution by ACA<
∑

i∈N OPTi ≤ 2∗(Optimal Solu-

tion).

Fig. 7 illustrates a scatternet with given flow rates (the scatternet topology isbased on the topology

presented in [24, Fig. 4]). Table 1 presents the corresponding valuesof the measures presented in (25).

20

It can be seen that there is a small difference between the optimal and the approximate solution, obtained

by Algorithm HCCA. A larger difference exists between the solutions obtained by Algorithm HCCA and

Algorithm ACA. Furthermore, there is quite a large difference between the solution obtained by Algorithm

ACA and its upper bound.

8

37

456 2

9

10.05

0.45

0.02
0.50.45

0.05
0.30.4

0.4

Figure 7: A scatternet with given flow rates.

Table 1: Optimal solution, approximate solutions, and the upper bound for thescatternet described in Fig. 7.

Notation Value
Optimal Solution

∑

e∈L fe/τ∗
e 85.68

Solution by HCCA
∑

e∈L fe/τ̄e 86.03

Solution by ACA
∑

e∈L fe/τ̂e 92.64

Upper Bound
∑

i∈N OPTi 138.36

2*Optimal Solution 2
∑

e∈L fe/τ∗
e 171.36

We note that in some cases the first two inequalities in (25) as well as the last one hold with equality.

For example, in the simple scatternet presented in Fig. 8–A,τ∗
e = τ̄e = τ̂e = 0.5, ∀e andτ i

e = 0.5, ∀i, ∀e.

Therefore:

8 =
∑

e∈L

fe

τ∗
e

=
∑

e∈L

fe

τ̄e
=

∑

e∈L

fe

τ̂e
<

∑

i∈N

OPTi = 2
∑

e∈L

fe

τ∗
e

= 16 .

The example described in Fig. 8–B illustrates a different case. In this example τ∗
e = τ̄e = τ̂e = 1/7,

∀e. On the other hand,τ1
e = 1/7, ∀e andτ i

e = 1, ∀i 6= 1, ∀e. Thus, whenǫ is close enough to1/7, the

approximate solution is relatively close to the upper bound (
∑

i∈N OPTi). Namely:

lim
ǫ→1/7

∑

i∈N OPTi
∑

e∈L
fe

τ̄e

= lim
ǫ→1/7

1 +
1/7 − ǫ

1 − ǫ
= 1 .

21

However, in this case the upper bound significantly differs from twice the optimal solution. Namely:

lim
ǫ→1/7

2
∑

e∈L
fe

τ∗
e

∑

i∈N OPTi
= 2 .

BA

Slave which is
also a Bridge

Master

Slave

6

8

4

3

5

7

2

1

Figure 8: Simple scatternets with given flow rates: (A)fe = 1/3∀e, (B) fe = ǫ∀e.

Fig. 9–A illustrates a scatternet with different values of flow representedin terms of the variablex.

Fig. 9–B presents the values of the optimal and approximate solutions as well as the upper bound for dif-

ferent values ofx. It can be seen that for all flow values, the approximate solutions are very close to the

optimal solution and that there is a relatively large difference between
∑

i∈N OPTi and the approximate so-

lutions. Fig. 10–A illustrates a more complex scatternet based on the topology described in [28, Fig. 1]. The

corresponding solutions and the upper bound are presented in Fig. 10–B. The results presented in this figure

resemble the results presented in Fig. 9–B. We note that in all the cases we have checked, the ratio of the

solution obtained by Algorithm HCCA to the optimal solution was much lower than 2.

Finally, it has been mentioned in Section 2.2 that if we wish to take into account theswitching overhead

8

37

456 2

9

1

x
2x

3x

x

3x

x

3x

x
2x3x

A

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
0

20

40

60

80

100

120

140

160

180

200

x

T
ot

al
 D

el
ay

Optimal Solution
Solution obtained by HCCA
Solution obtained by ACA
Upper Bound (based on OPT)
2*Optimal Solution

B

Figure 9: A scatternet: (A) flows expressed in terms ofx (an arrow denotes flow along a path), (B) upper bound

(
∑

i∈N OPTi), optimal solution, and approximate solutions (obtained by Algorithms HCCA andACA).

22

4x 5x4x

7x
5x

x
4x

2x

x

2x 2x

3x

7x

Master

Slave

A

0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
0

50

100

150

200

250

300

350

400

x

T
ot

al
 D

el
ay

Optimal Solution
Solution obtained by HCCA
Solution obtained by ACA
Upper Bound (based on OPT)
2*Optimal Solution

B

Figure 10: A scatternet: (A) flows expressed in terms ofx (the flow values to the non-bridge slaves in every

piconet are identical to the values in the lowest piconet), (B) upper bound, optimal solution, and approximate

solutions.

incurred by bridges in Bluetooth scatternets, the slack capacity (si) of bridge nodes should be defined as

b − ∑

e∈I(i) ce, whereb is the normalized capacity available to the links connected to a bridge. Actually,

every node in the network can have a different value of normalized capacity. This property can be used not

only to model the overhead incurred by bridges but also to model nodes withdifferent capabilities or different

channel conditions. It can be shown that the performance guaranteesprovided in this paper still hold in this

case.

We now present numerical results regarding such a network. Considerthe scatternet illustrated in Fig. 9–A.

Table 2 presents two different sets of node capacities for this scatternet.Figures 11 and 12 present the corre-

sponding solutions and the upper bound for these two scenarios. It canbe seen that although the nodes have

different capacities, the approximation ratio is much lower than 2. We note thatin most of the cases that we

have checked, Algorithm HCCA performed even better than in the situation in which all the nodes have the

same capacity.

Table 2: Two sets of node capacities in the scatternet illustrated in Fig. 9–A.

Node 1 2 3 4 5 6 7 8 9
Capacity 1 1 0.7 0.6 1 1 0.7 0.8 1
Capacity 1 0.9 0.5 0.5 0.9 1 0.5 0.9 1

23

0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

20

40

60

80

100

120

x

T
ot

al
 D

el
ay

Optimal Solution
Solution obtained by HCCA
Solution obtained by ACA
Upper Bound (based on OPT)
2*Optimal Solution

Figure 11: Upper bound, optimal solution, and approximate solutions in the Scatternet presented in Fig. 9–A

with the capacities presented in thefirst line of Table 2.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50

60

x

T
ot

al
 D

el
ay

Optimal Solution
Solution obtained by HCCA
Solution obtained by ACA
Upper Bound (based on OPT)
2*Optimal Solution

Figure 12: Upper bound, optimal solution, and approximate solutions in the Scatternet presented in Fig. 9–A

with the capacities presented in thesecondline of Table 2.

8 Conclusions and Future Study

This paper improves and analyzes heuristic centralized and distributed capacity assignment algorithms and

provides an upper bound on their performance. Those algorithms have been designed for Bluetooth scatternets

but can be applied to any ad hoc network in which a node transmits to a single neighbor at a time, and in which

multiple transmissions can take place as long as they do not share a common node.

We have shown that in bipartite graphs, a centralized solution can be obtained in polynomial time. Yet,

due to the need for low-complexity distributed algorithms, we have focused onapproximate solutions. First,

24

we have extended the heuristic algorithms presented in [29] in order to allow them to deal with general

decreasing convex objective functions. Then, we have defined a simpleapproximation algorithm and shown

that the ratio between the results obtained by this algorithm and the optimal resultsis less than two. It has been

shown that the heuristic algorithms obtain results which at the worst case arethe same as the results obtained

by the new algorithm, thus establishing that these algorithms areβ-approximation (β < 2) algorithms for

the capacity assignment problem. Moreover, we have shown that althoughthe distributed and centralized

algorithms allocate capacity in a different manner, both algorithms converge tothe same results. Finally, we

have presented numerical results and have compared the approximate solutions to the optimal solution and

the upper bound.

There are still many open problems to deal with. For example, it seems that the ratio between the ap-

proximate and the optimal solutions is much lower than 2. However, proving this property requires further

research. In addition, from a theoretical point of view, it would be interesting to design and analyze algorithms

for nonbipartite graphs. On the other hand, from a practical point of view, future study will focus on improv-

ing the distributed algorithm and on investigating its performance in a dynamic topology. Finally, we note

that a major future research direction is the development of bandwidth allocation methods that will be able to

deal with various quality-of-service requirements and to interact with topology construction, scheduling, and

routing protocols.

Acknowledgments

This research was supported by the THE ISRAEL SCIENCE FOUNDATION Grant No. 148/03. The research

of Gil Zussman was supported by a Marie Curie International Fellowship within the 6th European Community

Framework Programme.

We thank the anonymous reviewers for their helpful comments.

Appendix

Proof of Lemma 3:A nodei enters the token transfer state due to two possible events:

• Capacity allocation by the node (Step 6 in Fig. 5). In this case it is obvious thatfollowing the capacity

allocation the node is fully allocated.

• Receipt of the token from a neighborj that popped its details from the stack (Step 9 in Fig. 6). Neighbor

j pops the details of its parent from the stack only if allj’s neighbors (includingi) are fully allocated.

25

Proof of Lemma 4:Denote byi the node which initiates the algorithm. Assume that there exists a nodej that

has been in the allocation state and has not been in the token transfer state.

• If i = j, theni will not execute Step 6 (described in Fig. 6), which is a contradiction to the fact that the

algorithm halts.

• If j received the token fromi, thenj will not pop the details ofi from the stack (Step 9 in Fig. 6) and

therefore, the algorithm will not halt, which is a contradiction.

• Assume that the token traversed the following pathi, k1, k2, . . . , kl, j. Nodej will not pop the details

of kl from the stack (Step 9 in Fig. 6). Thus,kl will not pop the details ofkl−1 and, for similar reasons,

k1 will not pop the details ofi. Accordingly, the algorithm will not halt, which is a contradiction.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows, Prentice Hall Inc., New Jersey, 1993.

[2] S. Baatz, C. Bieschke, M. Frank, C. Kühl, P. Martini, and C. Scholz, “Building Efficient Bluetooth Scatternet
Topologies from 1-Factors”,Proc. IASTED WOC 2002, July 2002.

[3] S. Baatz, M. Frank, C. K̈uhl, P. Martini and C. Scholz, “Adaptive Scatternet Supportfor Bluetooth using Sniff
Mode”, Proc. IEEE LCN’01, Nov. 2001.

[4] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli, “Comparative Performance Evaluation of Scatternet Forma-
tion Protocols for Networks of Bluetooth Devices”,ACM/Kluwer Wireless Networks, Vol. 10, No. 2, pp. 197-213,
Mar. 2004.

[5] D. P. Bertsekas,Nonlinear Programming, Athena Scientific, Massachusetts, 1999.

[6] D. P. Bertsekas and R. Gallager,Data Networks, Prentice-Hall Inc., New Jersey, 1992.

[7] P. Bhagwat and S. P. Rao, “On the Characterization of Bluetooth Scatternet Topologies”,Submitted for Publica-
tion, Available at http://www.winlab.rutgers.edu/˜ pravin/publications/papers/bt-top.ps, Dec. 2004.

[8] Bluetooth Special Interest Group,Specification of the Bluetooth System – Version 1.2, Nov. 2003.

[9] S. A. Borbash and A. Ephremides, “Wireless Link Scheduling with Power Control”,Proc. WiOpt’04, Mar. 2004

[10] J. Edmonds, “Maximum Matching and a Polyhedron with (0,1) Vertices”,J. of Research of the National Bureau
of Standards, Vol. 69B, pp. 125–130, 1965.

[11] B. Hajek and G. Sasaki, “Link Scheduling in Polynomial Time”, IEEE Trans. on Information Theory, Vol. 34,
pp. 910–917, Sep. 1988.

[12] L. Har-Shai, R. Kofman, A. Segall, and G. Zussman, “LoadAdaptive Inter-Piconet Scheduling in Small-Scale
Bluetooth Scatternets”,IEEE Communications, Vol. 42, No. 7, pp. 136-142, July 2004.

[13] D. S. Hochbaum, “Polynomial and Strongly Polynomial Algorithms for Convex Network Optimization, in Net-
work Optimization Problems”, inNetwork Optimization Problems (eds: D. Z. Du and P. M. Pardalos), pp. 63-92,
World Scientific, Singapore, 1993.

[14] D. S. Hochbaum and J. G. Shanthikumar, “Convex Separable Optimization is Not Much Harder than Linear
Optimization”,J. of the ACM, Vol. 37, No. 4, pp. 843-862, Oct. 1990.

26

[15] IEEE std 802.15.3-2003, “Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fication for High Rate Wireless Personal Area Networks”, Sep. 2003.

[16] A. V. Karzanov and S. T. McCormick, “Polynomial Methodsfor Separable Convex Optimization in Unimodular
Linear Spaces with Applications”,SIAM J. Comput., Vol. 26, No. 4, pp. 1245-1275, Aug. 1997.

[17] F. P. Kelly, “Charging and Rate Control for Elastic Traffic”, European Trans. on Telecommunications, Vol. 8, pp.
33-37, 1997.

[18] L. Kleinrock,Communication Nets: Stochastic Message Flow and Delay, McGraw-Hill, New York, 1964.

[19] F. Legrand, I. Bucaille, S. Hetuin, L. De Nardis, G. Giancola, M.-G. Di Benedetto, L. Blazevic, and P. Rouzet,
“U.C.A.N.’s Ultra Wide Band System: MAC and Routing protocols”, Proc. IWUWBS’03, June 2003.

[20] M. Minoux, “Solving Integer Minimum Cost Flows with Separable Cost Objective Polynomially”,Mathematical
Programming Study, Vol. 26, pp. 237-239, 1986.

[21] D. Miorandi and A. Zanella, “Performance Analysis of Limited-1 Polling in a Bluetooth Piconet”,Proc. IEEE
PIMRC’04, Sep. 2004.

[22] D. Porcino and W. Hirt, “Ultra-Wideband Radio Technology: Potential and Challenges Ahead”,IEEE Communi-
cations, Vol. 41, No. 7, pp. 66-74, July 2003.

[23] S. Ramanathan, “A Unified Framework and Algorithm for Channel Assignment in Wireless Networks”,
ACM/Kluwer Wireless Networks, Vol. 5, No. 2, pp. 81-94, Mar. 1999.

[24] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire,“Distributed Topology Construction of Bluetooth Personal
Area Networks”,Proc. IEEE INFOCOM’01, Apr. 2001.

[25] S. Sarkar and L. Tassiulas, “End-to-end bandwidth guarantees through fair local spectrum share in wireless ad-hoc
networks”,Proc. IEEE CDC’03, Dec. 2003.

[26] L. Tassiulas and S. Sarkar, “Maxmin Fair Scheduling in Wireless Networks”,Proc. IEEE INFOCOM’02, June
2002.

[27] R. M. Whitaker, L. Hodge, and I. Chlamtac, “Bluetooth Scatternet Formation: a Survey”, To appear inAd Hoc
Networks, Vol. 3, 2005.

[28] W. Zhang and G. Cao, “A Flexible Scatternet-wide Scheduling Algorithm for Bluetooth Networks”,Proc. IEEE
IPCCC’02, Apr. 2002.

[29] G. Zussman and A. Segall, “Capacity Assignment in Bluetooth Scatternets - Optimal and Heuristic Algorithms”,
ACM/Kluwer Mobile Networks and Applications (MONET), Vol. 9, No. 1, pp. 49-61, Feb. 2004.

[30] G. Zussman, A. Segall, and U. Yechiali, “Bluetooth TimeDivision Duplex - Analysis as a Polling System”,Proc.
IEEE SECON’04, Oct. 2004.

[31] G. Zussman, U. Yechiali, and A. Segall, “Exact Probablistic Analysis of the Limited Scheduling Algorithm for
Symetrical Bluetooth Piconets”,Proc. IFIP-TC6 PWC’03, LNCS Vol. 2775 (eds: M. Conti et al.), Springer, Sep.
2003.

27

