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Abstract

A major issue in the design and operation of ad hoc networglasing the common spectrum among
links in the same geographic area. Bandwidth allocatiomgpimize the performance of networks in
which each station can converse with at most a single nergata time, has been recently studied in
the context of Bluetooth Personal Area Networks. Theretraépred and distributed, capacity assignment
heuristics were developed, with applicability to a variefyad hoc networks. Yet, no guarantees on the
performance of these heuristics have been provided. Inptper, we extend these heuristics such that
they can operate with general convex objective functioen] we present our analytic results regarding
these heuristics. Specifically, we show that they/aapproximation ¢ < 2) algorithms. Moreover, we
show that even though the distributed and centralized itgos allocate capacity in a different manner,
both algorithms converge to the same results. Finally, vesgit numerical results that demonstrate the
performance of the algorithms.

1 Introduction

In the last four decades, much attention has been given to the resedrdeelopment of bandwidth allo-
cation and scheduling schemes for wired and wireless networks [6],J2@] bandwidth allocation problem
in wireless ad hoc networks significantly differs from the problem in statmroanication networks. For
instance, one of the major problems in the design and operation of ad hogrket® sharing the common
spectrum among links in the same geographic area. A unified framewadk&ting with many variations of
this problem has been presented in [23]. In this paper, we focus awlidth allocation in networks in which
each station can converse with at most a single neighbor at a thaenely, we focus on networks in which
the set of active links at any point of time constitutes a matchimghe network graph.

This bandwidth allocation problem has been studied by Hajek and Sadkifio proposed centralized
algorithms for finding a minimum length schedule to satisfy given traffic remerds. The problem has been
recently revisited mainly due to the emergence of Bluetooth (IEEE 802.15491dé Area Networks (PANS)

[8] and its solution is relevant to other technologies in which a node can coroatenvith at most a single
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Figure 1: An example of a Bluetooth scatternet composed of 4 piconets.

neighbor at a time (such as IEEE 802.15.3 [15]).

In this paper we mainly focus on bipartite network graphs, rather than twories operating according
to a specific technology. Yet, since most of the recent research negahe considered problem has focused
on PANs, we briefly review the the main characteristics of Bluetooth and BEEL5.3. Bluetooth enables
portable mobile devices to connect and communicate wirelessly via shog-eahljoc networks. Since the
radio link is based on frequency-hop spread spectrum, multiple charfiregla€ncy hopping sequences) can
co-exist in the same wide band without interfering with each other. Two oemnits sharing the same
channel form giconet where one unit acts asmastercontrolling the communication in the piconet and
the others act aslaves Bluetooth uses a slotted scheme where the only allowed communication is between
a master and a slave and the master-to-slave and slave-to-master transnhisgipen in alternate slots.
Connected piconets in the same geographic area fataterneisee for example Fig. 1). In a scatternet, a
unit can participate in two or more piconets, on a time-sharing basis, anckaege its role when moving
from one piconet to another (we refer to such a unit bedge).

Another PAN technology is IEEE 802.15.3 [15], whose Medium Acces#i@b(MAC) standard is ex-
pected to be used as one of the Ultra WideBand MAC standards [19];[B2]basic topology (piconet) is a
collection ofdevices DEVs) operating together with orfeicoNet Coordinato{PNC), which allocates net-
work resources. The timing is based on a superframe which is comprigleeefmain sections: the beacon,
the optional Contention Access Period, and the Channel Time AllocationdR@&ig. 2 illustrates the struc-
ture of the superframe). The beacon is used to carry control informiatibie entire piconet. The Contention

Access Period is optional and is managed according to a CSMA/CA mechahignChannel Time Allo-
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Figure 2: The structure of a superframe in IEEE 802.15.3.



cation Period is composed of Channel Time Allocations (CTAS), that are fesésochronous streams and
asynchronous data connections, as well as Management CTAs (M@i&sare used for commands. The
CTAs are allocated by the PNC according to the DEVs requests and caetdéan PNC-DEV communica-
tion as well as for inter-DEV communication. The IEEE 802.15.3 standarpostgthe operation of a few
piconets in the same geographic area. However, the mechanisms foriaueetocommunication are out of

the scope of the standard.

Efficient network operation requires determining the capacities that sheuitlocated to each link (e.g.
portion of slots in Bluetooth or allocation of CTAs in IEEE 802.15.3), such tthatetwork performance is
optimized. The need to find a feasible capacity allocation in Bluetooth scattbaseen identified by Baatz
et al. [3]. In [29] the scatternet capacity assignment problem hasfbaenlated as a problem of minimizing
a convex function over a convex set contained in the matching polytope (sfonifaulations appear in [2]
and [26]) and optimal as well as heuristic algorithms for its solution have ppegrosed. Sarkar and Tassiulas
[25],[26] have studied the problem of maxmin fair allocation of bandwidth imvoegks in which a node can
converse with at most a single neighbor at a time (similarly to the case in Bluetodtm apecific IEEE
802.15.3 networks). Finally, [9] extended the model of Hajek and S§kakby replacing the network graph
with a SINR condition (i.e. links can be simultaneously active, if a given signakerference and noise ratio

is exceeded when transmitters use optimally chosen transmit powers).

The work in [29] presents distributed and centralized heuristics for fhéi@o of the capacity assignment
problem in Bluetooth scatternets, but does not include a detailed analyisespgrformance of the algorithms.
In addition, these heuristic algorithms have been developed under the@gsuthat Kleinrock’s approxi-
mation assumption holds. As argued by Sarkar and Tassiulas [25],|#&]ugh the algorithms have been
developed in the context of Bluetooth scatternets, they can be applied &aldmc network in which a node
transmits to a single neighbor at a time, and in which multiple transmissions can takeagléong as they
do not share a common node. Therefore, as mentioned above, in thisygfeus on network graphs and
not necessarily on Bluetooth scatternets. We make similar assumption to thmadesn [29]. Namely, the
analysis is based on a static model with stationary flows and unchangingdgpdle also assume that the
network graph is bipartifeand that the capacities allocated to the links are the total bi-directional capacitie
This assumption holds in many networks of the considered type. Specifiodlf},and [29] it is shown that

Bluetooth scatternet topologies which are nonbipartite may result in podwhdth utilization.

First, we extend the heuristics, presented in [29], such that they caatepdth general convex objective

2 graph is called bipartite, if there is a partition of the nodes into two disjointSetsd 7’ such that each edge connects a node
in S with a node inT".



functions. We then show that an optimal solution (to a degree of accufatyM, where M is a large
constant) can be obtained in polynomial time. Yet, since in wireless networiesithao central authority
responsible for network optimization and since the polynomial algorithms deasily lend themselves to

distributed implementation, we focus on the heuristic algorithms.

We analyze the performance of these heuristics and show that theyt@a#yag-approximation ¢ < 2)
algorithms for the solution of the capacity assignment problem. An importapéepgoregarding the tightness
of the upper bound on their performance is also presented. Thenpwetlsét although they allocate capacity
in a different order, the distributed algorithm converges to the same resuttee centralized one. Finally,

numerical results are presented.

As mentioned above, Hajek and Sasaki [11] have proposed centralgmithms for finding a minimum
length schedule to satisfy given traffic requirements. In our context,ciimedsiling problem studied in [11]
can be viewed as a feasibility test. Namely, given a set of capacities (kwa@erthe required flows), the
algorithm provided in [11] can verify whether or not these capacitieildoeiallocated (without violating the
capacity constraints of the nodes and the network). Recently, Sartaraasiulas [25],[26] have proposed
maxmin fair scheduling algorithms for a similar setting. We extend these modelsyatoddbtain a set of
capacities which is not only feasible but al®inimizes a general non-linear objective functieng. average
delay). The main contribution of this paper is a rigorous analysis of thidgmrolas well as of centralized and

distributed approximation algorithms for its solution.

In the specific context of Bluetooth scatternets, we view bandwidth allocatgmiithms as the missing
link between topology construction and scheduling algorithms (see the slisous [29]). Numerous topol-
ogy construction and scheduling algorithms for Bluetooth scatternets emrerbcently proposed (see for
example the reviews in [4] and [27]). Since analysis of algorithms tailoreBlfeetooth scatternets has been
done mostly via simulation, an analytical approach that provides rigorausdsoon the performance is of
great importance. Therefore, throughout the paper, we try to map timections between the analyzed algo-
rithms and Bluetooth scatternets. In addition, we note that the implementation d§thighems in networks
based on IEEE 802.15.3 will be possible only in the case inter-DEV communidatimt used and DEVs do
not operate as PNCs.

This paper is organized as follows. Section 2 presents the model andiingdtion of the problem. In
Section 3, we show that the problem can be solved by centralized polynomé&lgorithms. The heuristic

algorithms presented in [29] are reviewed and extended for a gergeatltive function in Section 4. In

3|f inter-DEV communication is allowed or if a DEV can also be a PNC, the &attive links does not necessarily constitutes a
matching in a bipartite graph.



Section 5, we show that the heuristic algorithms @s&pproximation ¢ < 2) algorithms. In Section 6, we
show that the distributed and centralized algorithms converge to the sartie.r8sation 7 presents numerical

results and Section 8 summarizes the results.

2 Model and Problem Formulation

2.1 Model and Preliminaries

We model the network by an undirected bipartite gréps: (V, L), whereN denotes the collection efodes
{1,2,..., n} andL denotes the set difi-directional links We denote by (i) the set of links = (i,j) € L
that are incident on node We concentrate on the total bi-directional link capacity. Hence, we asthahe
the performance of a link (e.g. the average packet delay) is a functithredbtal link flow and of the total
link capacity. LetF, be the average bi-directional flow on lirkand letC, be the capacity of linle (the
units of F* andC are bits/second). We assume that the average bi-directional flow is pasitievery link
(F. > 0 Ye € L). We definef, as the ratio betweeh, and the maximal possible flow on a lilk We also
definec, as the ratio betweefi, and the maximal possible capacity of a link. It is obvious that f. < 1
and thatd < ¢, < 1. We shall refer tof, as theflow on linke and toc, as thecapacity of linke.

The objective of the capacity assignment algorithms, analyzed in this @afmeminimize the sum of non-
linear decreasing functions of the links’ capacities. The function of thadty of link e shall be denoted by
D.. We assume that the flow rateg ) are given and thab. is a function of the link capacity. only. The

derivative ofD.(c.) is denoted byD’ (c.). We assume the following properties of the functiog(-)

Definition 1 D.(-) is defined such that all the following hold:

e D, is anonnegative continuous decreasing function.afith continuous first and second derivatives.
e D, is convex.
e lim, .5, = oo.

One possible application of the analyzed algorithms is to minimize the averageiddtey network.
Another application is to attain proportional fair [17] capacities. In cagevaishes to minimize the average
delay, D, should be defined as the total delay per unit time of all traffic passing thriiig e. Since the
total traffic in the network is independent of the capacity assignmentguoegwe can minimize the average

delay by minimizing the total delay (i.e. by minimizing__; D.(c.)). For conveniencewe shall refer to the

ecL

“For example, currently the maximal flow on a symmetrBaietoothlink is 867.8 Kb/s.



function that we wish to minimize as tlikelay. We note that the properties presented in Definition 1 conform
to the analytic and simulation results regarding packet delay in Bluetooth psqomesented in [12],[21],[30],
and [31].

Alternatively, if one wishes to provide some degree of proportional éssrto the links, the following

definition of D, can be used

De(ce) = . (1)

wherew, is a positive constant.

The heuristic algorithms in [29] have been developed assuming that thefdetdipn is based oKlein-

rock’s independence approximati@dB] which is described in the following definition:

fe/(ce - fe) Ce > fe
De(ce) = . (2)
o0 Ce < fe
We will show that these algorithms can be extended for the general fuscestribed in Definition 1. This
extension is important, since it allows using the algorithms with diffedstay functions as well as with
proportional fairness functions. We note that in order to obtaimerical result@nd to provide some insight

regarding the performance of the algorithms, we shall use Kleinrockiajmatior?.

2.2 Formulation of the Problem

The objective of the capacity assignment algorithms is to minimize the sum of rear-tiecreasing functions
of the capacity (i.e. the functionsD.(c.)). Accordingly, the problem oapacity assignment in bipartite
graphs(CAB) is formulated as follows [29]

Problem CAB

Given:  Topology of a bipartite graph and flowg. ).

SWithin the feasibility region that shall be defined in Section 2.2, (1) condamDefinition 1

®Kleinrock’s independence approximation has been shown to providéatively good estimation for the delay in networks
involving Poisson stream arrivals. Therefore, it is used fontiaericalevaluation of approximation capacity assignment algorithms.

"In [29] the problem is referred to aatternet capacity assignment in bipartite graglS<CAB). In order to emphasize the
generalization of the analysis, we shall omit the tacatternefrom the names of the problem and the algorithms.



Objective:Find capacitiegc.) such that the average delay is minimized:

minimize > D (c.) 3)
ecL

subjectto: ¢, > f. Ve e L (4)
Zce§1WeN. (5)
ecI(i)

The second set of constraints (5) reflects the fact that the total capétitg links connected to a node
cannot exceed the maximal link capacity. Constraints similar to (5) appeasbteprs formulated in [2],[25],
and [26]. Henceforth we will assume that there is a feasible solution tddPoGAB. We note that the
formulation of the problem is based on the assumption that the flow ratesvarelwnyi higher layer protocols,
based on the traffic statistics.

Notice that based on the Edmonds’ Theorem [10] and the analysis of Hagesasaki [11], fononbi-
partite graphst is sufficient to replace (5) by

> c<2/3VieN, (6)
ecl(7)

Although (6) is a sufficient condition for feasible capacity allocation in moatite graphs, it is not a neces-
sary condition, and therefore the obtained capacity allocation may nottineabp

We note that when considering Bluetooth scatternets, one might want to talecgount the time that is
wasted in the process of moving a bridge from one piconet to anothew(kas the guard time). In (5) we

neglect these guard times. In case they should be taken into accoutin@] be replaced with:

S <1 VYieN-B
ecl(7)

Y e <b VieB,
ec(7)

whereB is the set of bridges aridis the normalized capacity available to links connected to a bridge1().

In order to present an equivalent formulation of Problem CAB, we dédfiaslack capacityof a node as
follows:
Definition 2 Theslack capacity of nodeis the maximum capacity which can be added to links connected to

the node. Itis denoted by and is given by; =1 — 3. ceB

8In case the algorithms are applied to nonbipartite graphs (i.e. (5) is eeptac(6)),s; should be defined /3 — Zeem) Ce.
Similarly, in case one wishes to take into account the guard times in Bluetaatersetss; should be defined ds— Zeel(i) Ce
for bridge nodes.



In both algorithms, considered in this paper, all link capacities are initially leiquéne flows on the
links (ce = fe, Ye € L). Therefore, by definition, initially (before the first phase of any algamijth; =
1 —Zeem) fe- Using the definition of; and setting. = ¢. — f., e € L, we obtain the following formulation
of Problem CAB:

minimize ) "~ De(r.) (7
ecL

subject to: Z . <s;VieN

ecl(7)

Te > 0Ve € L.

We denote by the optimal solution to (7). As mentioned before, we assume that the probkeaflasible
solution and therefores; must be greater than zero for ale N. Thus,0 < s; < 1 for all . Additionally,

since by definitionf. > 0 andc, < 1, 7. < 1, for all e.

3 Transformation to a Flow Problem

In this section we show that Problem CAB can be transformed to a minimum owsfpfoblem with a
separable convex objective function. The transformation is basedeating a super-source and a super-sink
as described in Fig. 3 and on using directional edges instead of bi-ditacddges. The super-source is
connected by directed edges to all the nodes in one of the sets composhigattige graph. The capacities
of these edges are defined as the slack capacitiesf(the nodes to which they are connected. Similarly, the
nodes in the other set are connected to a super-sink by edges with limiedtgaphe edges connecting the
nodes of the bipartite graph have unlimited capacity. The super-sink @ed-saurce are also connected by
an edge with unlimited capacity. The flow values in the transformed network.afEhe cost of a flowr,
traversing an edge connecting the nodes of the bipartite graptDig.). The cost of a flow on any other

edge i90. A minimum cost flow in the transformed network provides a solution to ProblaB.C

The flow problem presented above is a specific case afdheex cost flow problertiscussed by Ahuja
etal. [1, p. 556]. In [1] a polynomial-time algorithm for finding ariegersolution to the minimum cost flow
with convex separable objective function is provided. If one needs t@mirob more accurate solution than
the integer solution (as required in our case), he could substituteredghy. = M., for sufficiently large
value of M, and adjust the objective function and constraints accordingly; tfenotes an integer optimal
solution of the transformed probleny; = vy /M is an optimal solution of the original problem (to a degree

of accuracy ofl /M).
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Figure 3: An example of the transformation of a bipartite graph to a flow n&twor

The method presented in [1] is a variant of the algorithm presented by Mif#f)] and it is in the
framework of the scaling algorithm given by Hochbaum and Shanthikud¥dr [Another algorithm for
the minimum cost flow problem, which is based on the framework of [14], wasemted in [13]. Finally,
Karzanov and McCormick [16] studied a problem which generalizes the mminan-linear cost circulation
problem and provided algorithms that differ from the algorithms provided.4}.[ Their polynomial-time

algorithm for obtaining an integer solution can be used in order to obtain aaota Problem CAB.

To conclude, there are a couple of polynomial algorithms that can be aisebitiining an integer solution
to Problem CAB, thereby providing a non-integer solution (to a degreeafracy ofl /M). However, these
algorithms cannot be easily modified in order to allow distributed implementationqaged in wireless
networks.Therefore, in this paper we focus on approximation algorithms that cam&igyemplemented in a

distributed manner

4  Approximation Algorithms

A capacity assignment algorithimas to obtain a solution to Problem CAB (e.g. to determine what portion
of the slots should be allocated to each link). In this section we briefly reviewehtralizedand distrib-
utedapproximation algorithms for bipartite graphs, presented in [29]. We shfalt to these algorithms as
theheuristic centralized/distributed capacity assignmalgbrithms (Algorithm HCCA/HDCA respectively).
Since these algorithms have been developed with an objective functiot dasdeinrock’s approximation

(2), we extend them here for a general objective functii@msed on the delay function described in Definition

1.

In both algorithms, all link capacities are initially equal to the flows on the lieks= f., Ve € L). The



algorithms select a node, allocate the slack capacity to the links connectedtiosie wapacities are equal to
the flows, and update the slack capacities of the neighboring nodes, ari@her node is selected, capacity
is allocated, the slack capacities are updated, and so on. In both algoritnmadibs are selected according

to theirdelay derivativeswhich are computed in the following manner.

Every nodei, that has to compute its delay derivative, obtains the optimal solution to the fiofjdecal

optimization problem:

minimize > De(re) (8)
e€l(i),ce=fe

subject to: Z . < 8

e€l(i),ce=fe

Te > 0Ve € I(i), ce = fe .

This solution determines how the slack capacity of this node should be alldodtede adjacent links, whose
capacities have not yet been assigned, in case the node would bedstdeatcating capacity. The problem
described in (8) is an optimization of a convex function over a simplex [55f] @otice that in the optimal

solution, the first constraint must hold with equality). Therefore, it hasique optimal solution that can be

obtained by using the method of Lagrange Multipliers and solving the followiatem of equations:

DL(rZ) =X VYeelI(i),co= fe 9)
Yo o mw=s (10)
eEI(i),Ce:fE

Since the number of nodeisneighbors [/ (7)|) is usually bounded by a small constant (e.g. 7 in Bluetooth),
and since there is only one constraint in the non-linear program (8) pthos to any degree of accuracy

e (for a fixed constant) can be found in constant time. In the specific case that Kleinrock’s ercgnce
approximation is assumed, the optimal solution follows the square root assigfitéep. 20]:

= sivife g, 1(),ce = fo. (11)

> Vi

lel(i), Cl:fl

After solving (9)-(10) a node computes its delay derivative accordinigedollowing definition.

Definition 3 Thedelay derivative of nodeis denoted byl; and is given byd; = |\}].

10



For example, under Kleinrock’s approximatfon

POV A
dz‘ _ e€l(i),ce=fe . (12)

S

After a nodek is selectedthe slack capacity of this node is allocated to those adjacent links, whose ca-
pacities have not yet been assignadcording to the solution of (8). Capacity is allocated to a link only once.
Hence, we define fully allocated nodeas a node whose all adjacent link capacities have been as¥igned
Accordingly, anon-fully allocated nodés a node which has at least one adjacent link whose capacity has not

been assigned.

4.1 Centralized Algorithm (Algorithm HCCA)

Nodek, whose link capacities are next to be assigned, is selected from thaulhpaifocated nodes. The
delay derivatived; of these nodes are computed and the node with the largest derivatileciede Algorithm
HCCA, which is based on this methodology, is described in Fig. 4. The ingheisopology and the flows
(f.), and the output is the link capacities:. It can be seen that the complexity of the algorithn®ig:?),
since as mentioned earlier for althe d; values can be computed in constant time to any fixed degree of
accuracy. Notice thaD(n?) is about the complexity of a single iteration in the optimal algorithm, presented

in [29].

1 setce=f. VeelL
2 computed; Vi € N ()i non-fully allocated
3 setk = arg max d;
i€ N () < non-fully allocated
4  setc. = optimal solution of (8)Ve : e € I(k), ce = fe
5 if there existg € L such that, = f,.
6 thengoto 2
7

elsestop

Figure 4: Algorithm HCCA for obtaining an approximate solution to Problem CAB

*We note that in [29], where kleinrock’s approximation was alwaysrassix; was defined as the square root of its current value
under this assumption (i& = Zeel(i), co=fo V/fe/si). This modification does not affect the performance of the algorithfes.
it simplifies their analysis.

10A fully allocated node does not necessarily utilize its full capacity.
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4.2 Distributed Algorithm (Algorithm HDCA)

In the distributed algorithm, a token is passed by the nodes and only the mbtelidis the token is allowed to
allocate capacity. The algorithm is initiated by an arbitrary node that creae¢skén. Once a node receives
the token, it can either allocate its slack capacity or decide to send the tokeeighdor. The assignment of
slack capacity is the same as in the centralized algorithm. However, the selgfdti@enode which holds the

token and the decision whether it should allocate capacity or transfer thie tola neighbor is different.

Each node keeps a stack, referred to agprents stackthat contains the identities of neighbors from
which it had previously received the token. Each node also maintains & fishefully allocated neighbors.

We define two possible states for the node holding the token:

e Allocation State- A non-fully allocated node enters this state when it receives the tokethisAtime
the node pushes the identity of the neighbor, that sent it the token, to #retpatack. The neighbor is
referred to as one of the node’s parettdhe node decides to either transfer the token to a neighbor or

allocate capacity and then move to the token transfer state.

e Token Transfer State A node enters this state after it allocates capacity or when it receiveskine to
from a neighbor that popped its details from the stack. In this state, ones ofah-fully allocated
neighbors will receive the token. If all the neighbors are fully allocatiee token will be returned to
the first neighbor in the stack and this neighbor will be popped from th&.sfBlee algorithm halts
when all the neighbors are fully allocated and the stack is empty (it alwaysn@tes at the initiating

node).

Fig. 5 presents the pseudocode of the procedure executed by a nibdealfocation state. Unlike the
centralized algorithm in which a node allocates capacity, i;iis the largest in the network, in the distributed
algorithm a node allocates capacity, if it holds the token and iits larger than the;s of its neighbors.

Fig. 6 describes the pseudocode of the procedure executed by @rthéetoken transfer state. A node
enters this state due to two possible events: capacity allocation by the nogleeqt rof the token from a
neighbor that popped its details from the stack. In this state, it can eitheétlseioken to its “best” neighbor

or return it to one of its parents.

"Unlike other distributed protocols (such as Depth First Search), a rodkave a few parents.

12



pushinto the parents stack the details of the node which senbttent
find the node with the largeat, among the non-fully allocated neighbors and yourself
if it is a neighbor
then send the token to this neighbor
else
allocate capacity according to the optimal solution of (8)
update the neighbors
changethe state to token transfer state

O~NO O WN P

Figure 5: Algorithm HDCA — the procedure executed by a node in the allotataie.

find the node with the largegt, among the non-fully allocated neighbors
if such a node exists
then send the token to this neighbor
else
if the stack is empty
then halt
else
pop the first node from the parents stack
sendthe token to that parent

O©oo~NOULh, WN PR

Figure 6: Algorithm HDCA — the procedure executed by a node in the tolmsfer state.

5 Approximation Ratios

In this section we show that Algorithm HCCA j$-approximation ¢ < 2) algorithm for the solution of
Problem CAB. First, we present a new algorithm for the solution of Prol@lé&B. Then, we prove that the
new algorithm outperforms ard+approximation algorithm. Finally, we prove that Algorithm HCCA obtains
results which are equal or better than the results obtained by the new algo¥ib note that in this section
we also present an interesting property, of the upper bound, on tfegrpance of the algorithms.

Recall that in (8) we have defined a set|8f| non-linear programs, one for eacke N. We denote the
optimal solution of (8) for nodé by 7 and define the corresponding optimal valu&T; of the objective
function as

OPT, = > De(r}). (13)
ecl(i)

We now present a simple algorithm, referred toAdgorithm ACA(Approximate Capacity Assignment),
for obtaining an approximate solution to the Problem CAB. We denotg ltiye solution obtained by Algo-
rithm ACA. For every nodé, the algorithm computes the optimal solution to (8) (i;eVi € N,e € I(4)).
Then, it sets for alk = (i,j) € L:

o = min (77, 77). (14)

e)'e

13



We first show that, is a feasible solution to Problem CAB (i.e. to (7)). Itis easy to seeithat0, Ve € L
and by constructiort, < 7¢. Sincer! is an optimal solution to (8), for nodewe havezeel(i) 7. < s;and
henced_ . ;) 7e < si.

We now show that Algorithm ACA is better than a 2-approximation algorithm ferptoblem CAB. In

order to prove it, we first present the following lemtha

Lemma 1 (Zussman and Segall, 2004 [29])f d; > d;, thenT < 7' fdy = d;, thenTJ = Tj

Theorem 1 Algorithm ACA is a3-approximation algorithm@g < 2) for Problem CAB.
Proof: For any node € N, 7 (the optimal solution to the non-linear program (7)) is a feasible solution to
the non-linear program (8). Hence, sir@#T; is the optimal value of the objective function for (8):

Y D.(r;) = OPT; Vi€ N. (15)
ecl ()

Adding up for alli € N and noting that the term for each edge appears exactly twice in the sunvere ha

2> " De(r}) =) _OPT,. (16)

ecL 1EN

For each node we define a set of incident edgdéi) C I(i) as those edges= (i,j) € L for which

Tl < 72, orin the case of a tier{ = 72), the node index < j. Itis easy to see that(:) forms a partition of
the set of edges. Thus:

> De(7) =) Z De(ie) =" Z () <> orr,

ecL €N ecJ(i 1€EN ecJ(i 1EN

where the last inequality follows from the definition@#7; in (13) and the fact thaf (i) C (7). However,
for a more tighter analysis we make the following observation. From Lemma Hoivfothat the nodg with
the smallest delay derivativg (in case of a tiej is selected to be the node with the largest index) must have
that.J(j) = (. Thus, there is at least one nogleith J(j) = (), and therefore since by definitiahPT; > 0

we have

Y De(fe) < ) OPT; <) OPT;

ecL iEN itj i€EN
Combining this with (16) we get

D De(7) <2 De(r;

ecL ecl

2Notice that [29] shows that the lemma holds for delay functions followingriéek’s approximation assumption. It is easy to
see that it can be extended to delay functions with the properties defineimton 1.
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thus showing that Algorithm ACA is &-approximation ¢ < 2) algorithm for the Problem CAB. 0

Algorithm HCCA (described in Section 4.1) can be described as followsLige the solution obtained
by Algorithm HCCA. At any phase, the algorithm starts out with a graph (initsgiyto the original grap&)
with slack capacities; (initially set to the original graphs slack capacities). In this graph, it findntide;

with the maximal value ofl;, solves the non-linear program (8) for that nadmptimally, and sets
To =17 Ve € I(i).

It then decreases the slack capacitiefor every nodej, which is a neighbor of, by the sum ofr,, e € I(j)
for all 7. that get set in this phase. This is done to reflect the capacity that haslbbeady allocated. Any
node: with s; = 0 is removed from the graph. Also all the edgethat are assigned a valugin this phase
are removed from the graph. The new graph and the new slack capaeitiese input for the next phase.

The algorithm terminates when no more edges are left in the graph.

Let LP be the set of edges such that e € L? is setin phase. Let 1P pe the optimal solution obtained
for the non-linear program (8) of noddor the graphG? used by Algorithm HCCA in phasg along with
the slack capacitieg’. Let the node delay derivatives in phasbed’. Note thatG! = G, s} = s;,Vi € N,
dl = d;,Vi € N,andr!! = 7l Ve € I(i). Let I?(i) be the set of edges incident on nade G?. Due to
Lemma 1 and the fact that at each phasthe node with the largest’ is selected, at the end of phaseve
have

7. = min (7.7, 7 P) Ve = (i,j) € LP. 17)

We now show that for each edge the delay obtained by the algorithm HCGAvniest the delay obtained

by the Algorithm ACA. In order to prove it, we first prove the following lemma.

Lemma 2 7Pt > 7.7 for all nodesi and edges € 171 (4).

Proof: Consider a nodé that does not have edges whose capacities are set at phdsar that node,

Té Pl _ ré P_Now consider a nodéethat does not have the maximglat phase but which has at least one
edge whose capacity is set at phagee. some of the edges if# (i) are inL?). In the optimal solution of (8)

at phase

Z TP = st (18)
Similarly in the optimal solution at phage+ 1

Soorrtt =gt (19)

e IP+1 (i)
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Since
p+1 _ p —
Si = —

ecIP(i)(\ LP

and since according to (17) fer= (i, j) € L?, 7. < 7.” , it follows from (18) and (19) that:

Z z p+1 > Z (20)

e€IPt+1(3) eI+l (i

According to Definition 1 and since = 7. + f., D.(7.) is an increasing function. Due to (20) at least
for one link connected te, 7 7™ > 7P, Therefore, for that linkD? (7, ”’“) > Dg(nﬁ Py, According to (9)

at each phasg, the values ofD/, (7. ”) are equal for alb € I7(i). Thus,
Dy(riP*Y) 2 Dy(ri?) Ve € IPH1(3).

Consequentlyr: ™ > 727 Ve € IPTL(i). 0
Proposition 1 Algorithm HCCA is as-approximation algorithm@g < 2) for the Problem CAB.

Proof: We show that, > 7.,Ve € L '3, thus showing that the value of the objective function of the non-
linear program (7) for the solutiofi. is at most the value of the objective function of (7) for the solution
obtained by g3-approximation algorithmg < 2). It follows from Lemma 2 that for any nodeand link

e € IP(i):

ip i p—1 i1
T 2> T, 2T, =T,

Thus,7.? > i and/? > 7 foralink e = (i,j) € LP. Hence, since for such a link= (i, j), we have
7. = min (7.7, 72 7) (see (17)) and. = min (7, 7¢) (see (14)), we havee = (i, j) € LP:

7o =min (102, 7 7)) > min (7, 7) = 7. 0

Finally, we show that any upper bound on the performance of Algorithr@AI@hich is based on the
relationships betwee® PT; and the optimal solution (i.e. based on (18)hot tight

Proposition 2 Assume that there existig 1 < 5 < 2) such that

S D7) < 5 ST 0PT < 83 D), (21)

ecL 1EN ecL

thus implying that HCCA is g-approximation algorithm, then there is no tight example in which the heuristic

solution ), obtained by HCCA is exactly times more than the optimal solution. In other words there is no

13Recall thatr, and+, are the solutions obtained by algorithms HCCA and ACA, respectively.
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example for which

> De(7) =B De(r)). (22)

ecL ecL

Proof: Assume that an example in which (22) holds exists. This implies that all inequatit{@4d) must

hold with equalities. Specifically

> OPT; =2 D.(7}).

€N ecL

Therefore, for any given node (15) holds with equality (i.eOPT; = > ) D.(1})). Consequently, since

ecl(i
the optimal solution for (8) is unique, we have for every link= (i, j): 78 = 7% = 2. Thus, the solution
obtained by Algorithm ACA {.) is equal to the optimal solution (sindg = min{Tg,Tg’}). Finally, in the

proof of Proposition 1, we have shown that> 7., Ve € L. Thus

ZDe(?e) < ZDe(Tg)a

ecL ecL

which contradicts (22). 0

6 Convergence of the Distributed Algorithm

Due to the differences between the algorithms, the centralized algorithmr{higpgdHCCA) and the distrib-
uted algorithm (Algorithm HDCA) normally allocate capacity in different ordéowever, in this section we
will show thatthe two algorithms always converge to the same resi8iace in Section 5 we have shown
that Algorithm HCCA is as-approximation algorithm{ < 2), this implies that Algorithm HDCA has the
same property. First, we show that the distributed algorithm halts after all thedacities have been allo-
cated. Then, we show that these link capacities are the same as the linkieapédlocated by the centralized
algorithm.

The proof that the distributed algorithm halts after all the link capacities haer hllocated is based on
the fact that the token either does not traverse a link or traverses it idbetttions. Accordingly, since the
token cannot be returned to a parent before all the neighbors areafldtated, the algorithm cannot halt
before all the link capacities have been allocated. The formal proof edbas the following lemmas. The

proofs of the lemmas appear in the Appendix.

Lemma 3 In Algorithm HDCA, when a nodé enters the token transfer state, it is fully allocated #

f. Ve € I(3)).
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Lemma 4 When Algorithm HDCA halts, every node that has been in the allocation stat@$mbeen in the

token transfer state.

The proof of Lemma 4 implies that every node that has been in the allocationhsti@so executed
Step 4 described in Fig. 6 (i.e. checked the status of the stack and therheitieeror returned the token to a

parent). Using the above lemmas we shall now prove the following propasition
Proposition 3 When Algorithm HDCA haltsz, # f. Ve € L.

Proof: Assume that when the algorithm halts, there is a #rfar which ¢, # f. does not hold (eithet, is
not defined o, = f.). According to Lemma 3, nodesandj do not enter the token transfer state during
the execution of the algorithm. Consequently, according to Lemma 4,irenti®j do not enter the allocation
state during the execution. Since ngd#oes not enter the allocation state, none of its neighbors ever executes
Step 4 described in Fig. 6 (since before its execution they would send the tokodej which would enter
the allocation state). Following the argument used in the proof of Lemma 4, dbe fact that the protocol
halts, every node that has been in the allocation state has also executddi€sepibed in Fig. 6. Thus, none
of the neighbors of enters the allocation state and the capacities of the links connecting thearéaot
assigned.

Using a similar argument, it can be shown that none of the link capacities ofeigabors of;j are
assigned. Consequently, no node enters the allocation state and no kit apassigned. This is a contra-
diction to the fact that the algorithm halts. 0

We now need to show that the capacity allocated by Algorithm HDCA is equaktoapacity allocated
by Algorithm HCCA. Thus, we first derive a property of the delay datiixe of a node in algorithms HDCA

and HCCA. Then, we prove by induction that the capacities allocated by thalgerithms are identical.

Lemma 5 When a nodé allocates capacity the delay derivatives;§) of its non-fully allocated neighbors

do not increase.

Proof: Let k be a non-fully allocated neighbor of Letd, and dZ be its delay derivatives just before
and just after (respectively)allocates capacity. Denote ly(k) the set of links that are incident on noke
(E(k) C I(k)) such that, = f. just after: allocates capacity. Let* ~ andr* * be the optimal solutions of
nodek to (8) just before and just after (respectivelygllocates capacity. According to (9) and Definition 3,
foralle € E(k), d,, = D.(vF~)andd; = D.(r**). According to Lemma 275+ > 7%~ Ve € E(k).
According to Definition 1D (r.) is an increasing function and therefods, > d, . 0

We note that if the Kleinrock’s approximation (2) holds, the lemma results dirgothy the definition of
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the delay derivative of a node (12) and the square root assignniBnt\i& present here a simple proof for
that case. Lek be a non-fully allocated neighbor afLetd, andd: be its delay derivatives just before and
just after (respectively)allocates capacity. Denote 8/ k) the set of links adjacent to(B(k) C I(k)) such

thatc. = f. justbeforei allocates capacity. According to (11) and (12), following the allocation:

2

> VEe—Vix\® > Ve VTw

i = eeB(k) _ eeB(k) (23)
sk — (cik — fir) ( %(k) \/ﬁ)/\/%—\/ﬂ/\/cf

ec
Since: allocates the capacity, just before the allocatipn> d, . Accordingly,
2
%(k) Vie—=fik
aF < < —d; . (24)
( z)mv@wm d;

eeB(k

Theorem 2 The capacitiec.) obtained by Algorithm HDCA are identical to the capacities obtained by
Algorithm HCCA.

Proof: According to Proposition 3, Algorithm HDCA halts only after all the link capasiti@ve been
allocated. Thus, we have to show that these link capacities are the sameliak tapacities assigned by
Algorithm HCCA.

We need to show that when Algorithm HDCA is executed, at any given timeotlosving properties
hold:

1. For every non-fully allocated node the neighbors that allocate capacity afien Algorithm HCCA
are non-fully allocated (i.e. some or all neighbors which allocate capadibyebiein Algorithm HCCA

are fully allocated).

2. The values of the capacities that have already been allocated arenasan Algorithm HCCA.

In order to prove it, we assume that the above properties hold atttineed we show that if a node
allocates capacity at time(immediately after time—), these properties continue to hold.

At time ¢, Algorithm HDCA selects a non-fully allocated nodevith a delay derivatived;) higher than
the delay derivatives of its non-fully allocated neighbors and allocafescis (Step 6 in Fig. 5). We wish to
show that wheri is selectedall (and notsomé@ the neighbors which allocate capacity before it in Algorithm

HCCA are fully allocated.
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Denote by, (t) the delay derivative of nodieat timet. Denote the set of the non-fully allocated neighbors
of ¢ at timet™ by M (i) (m € M(i),if e € I(i),e € I(m) ,andc. = f. attimet™). lett,, be the time
in which a nodemn allocates capacity in Algorithm HCCA. Due to the first property and due to Lefma
di(t7) > dpn(t™) > dp(tm), Ym € M (7). In order form € M (7) to allocate capacity beforgn Algorithm
HCCA, d,,(t) > d;(t,,) has to hold. However, in order fai; to become smaller thad),,, one of the other
non-fully allocated neighbors afhas to allocate capacity in Algorithm HCCA before timg. This cannot
happen, since their delay derivatives are lower than the delay deeadti. Thus, the nodes i/ (i) allocate
capacity aftes.

Since at timet, all the neighbors ot which allocate capacity before it in Algorithm HCCA are fully
allocated,; allocates the same capacities as in Algorithm HCCA. Thus, at tim@mmediately after time
t) the second property holds. Moreover, since we have shown that oritign HCCA, i allocates capacity
before the nodes if/ (i), at timet™, the first property holds.

Finally, since the properties 1 and 2 hold before the first node allocgpesitg they also hold after the
last node allocates capacity, and therefore, the capacity values allbyaddglorithm HDCA are identical to

the values allocated by Algorithm HCCA. 0

7 Numerical Results

In this section we present a few numerical examples that demonstrate #rem# between the results ob-
tained by the Algorithms HCCA and HDCA, the results obtained by Algorithm A& the optimal results.

In order to obtain numerical results, we assume in this section that the deletyofu follows Kleinrock’s
independence approximation (i.€.(7.) = f./7.) and that the considered bipartite graphs are Bluetooth
scatternets. First, we assume that the guard times are negligible, andrienefewitching overheard is in-
curred by the bridges. Then, we present results for the case in wiffietedt nodes have different capacities

(resulting, for example, from the switching overhead).

From the observations made in Section 5 it follows that:

> De(r) <> De(7) <> De(7) <> OPT; <23 De(r}). (25)

ecL ecL ecL iEN ecL
Namely: Optimal Solutior< Solution by HCCA< Solution by ACA< 3",y OPT; < 2x(Optimal Solu-
tion).
Fig. 7 illustrates a scatternet with given flow rates (the scatternet topologgsisd on the topology

presented in [24, Fig. 4]). Table 1 presents the corresponding vafud® measures presented in (25).
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It can be seen that there is a small difference between the optimal andpiexiapate solution, obtained
by Algorithm HCCA. A larger difference exists between the solutions obtame Algorithm HCCA and
Algorithm ACA. Furthermore, there is quite a large difference betweendh#isn obtained by Algorithm

ACA and its upper bound.

Figure 7: A scatternet with given flow rates.

Table 1: Optimal solution, approximate solutions, and the upper bound fec#ternet described in Fig. 7.

Notation Value
Optimal Solution | >°_; fc/7; | 85.68

Solution by HCCA | ., f./7. | 86.03
Solution by ACA | >° ., fe/7e | 92.64
Upper Bound > ien OPT; | 138.36
2*Optimal Solution| 25" __; f./77 | 171.36

We note that in some cases the first two inequalities in (25) as well as the Es$iotohwith equality.
For example, in the simple scatternet presented in Fig. 8%As 7. = 7. = 0.5, Ve and7! = 0.5, Vi, Ve.

Therefore:

§:Z§<ZOPTF22%:16.

¢  eeL ‘¢ ieN ecl €

Je
8 = ) =)
eeL € ecL
The example described in Fig. 8-B illustrates a different case. In this égathp= 7. = 7. = 1/7,
Ve. On the other hand;! = 1/7, Ve andr! = 1, Vi # 1, Ve. Thus, where is close enough ta/7, the

approximate solution is relatively close to the upper bodnd.(y OPT;). Namely:

_OPT, 17 —
lim 2y OPT pp Ty
6~>1/7 ZeGL% 6—»1/7 1—¢
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However, in this case the upper bound significantly differs from twice ghienal solution. Namely:

! | @ Master

(O slave

(@ Slave which is
also a Bridge

Figure 8: Simple scatternets with given flow rates: (A)= 1/3Ve, (B) f. = eVe.

Fig. 9—A illustrates a scatternet with different values of flow represemeadrms of the variabler.
Fig. 9-B presents the values of the optimal and approximate solutions assatbi aipper bound for dif-
ferent values ofc. It can be seen that for all flow values, the approximate solutions ayeclese to the
optimal solution and that there is a relatively large difference betWyegr, OPT; and the approximate so-
lutions. Fig. 10-A illustrates a more complex scatternet based on the topa#sgsilued in [28, Fig. 1]. The
corresponding solutions and the upper bound are presented in FB. The results presented in this figure
resemble the results presented in Fig. 9-B. We note that in all the caseveveheked, the ratio of the

solution obtained by Algorithm HCCA to the optimal solution was much lower than 2.

Finally, it has been mentioned in Section 2.2 that if we wish to take into accouswit&hing overhead
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Figure 9: A scatternet: (A) flows expressed in terms ¢dn arrow denotes flow along a path), (B) upper bound

(>_icn OPT;), optimal solution, and approximate solutions (obtained by Algorithms HCCAAA).
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Figure 10: A scatternet: (A) flows expressed in terms ¢the flow values to the non-bridge slaves in every
piconet are identical to the values in the lowest piconet), (B) upper haytinal solution, and approximate

solutions.

incurred by bridges in Bluetooth scatternets, the slack capagityof bridge nodes should be defined as

b — Zeg(i) ce, Whereb is the normalized capacity available to the links connected to a bridge. Actually,
every node in the network can have a different value of normalizeccitgpdhis property can be used not
only to model the overhead incurred by bridges but also to model nodesliffiérent capabilities or different
channel conditions. It can be shown that the performance guargreded in this paper still hold in this
case.

We now present numerical results regarding such a network. Cotisedecatternetillustrated in Fig. 9—A.
Table 2 presents two different sets of node capacities for this scatt€igetes 11 and 12 present the corre-
sponding solutions and the upper bound for these two scenarios. ecseen that although the nodes have
different capacities, the approximation ratio is much lower than 2. We noténthaast of the cases that we
have checked, Algorithm HCCA performed even better than in the situatiomichvall the nodes have the

same capacity.

Table 2: Two sets of node capacities in the scatternet illustrated in Fig. 9-A.

Node 1 2 3 4 56 7 8 9
Capacity|]1 1 07 06 1 1 07 08 1
Capacity| 1 09 05 05 09 1 05 0.9

1=
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Figure 11: Upper bound, optimal solution, and approximate solutions in tgeBuet presented in Fig. 9-A

with the capacities presented in thiest line of Table 2.
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Figure 12: Upper bound, optimal solution, and approximate solutions in #ueBuet presented in Fig. 9-A

with the capacities presented in thecondine of Table 2.

8 Conclusions and Future Study

This paper improves and analyzes heuristic centralized and distributadityapssignment algorithms and
provides an upper bound on their performance. Those algorithms banedesigned for Bluetooth scatternets
but can be applied to any ad hoc network in which a node transmits to a singfidaeat a time, and in which
multiple transmissions can take place as long as they do not share a common node

We have shown that in bipartite graphs, a centralized solution can be abtaipelynomial time. Yet,

due to the need for low-complexity distributed algorithms, we have focuseghpiroximate solutions. First,
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we have extended the heuristic algorithms presented in [29] in order to allw tb deal with general
decreasing convex objective functions. Then, we have defined a sappiteximation algorithm and shown
that the ratio between the results obtained by this algorithm and the optimal is¢edisthan two. It has been
shown that the heuristic algorithms obtain results which at the worst caffeeasame as the results obtained
by the new algorithm, thus establishing that these algorithmgapeproximation ¢ < 2) algorithms for
the capacity assignment problem. Moreover, we have shown that althbegtistributed and centralized
algorithms allocate capacity in a different manner, both algorithms convete game results. Finally, we
have presented numerical results and have compared the approximétnsdlo the optimal solution and
the upper bound.

There are still many open problems to deal with. For example, it seems thattibdetween the ap-
proximate and the optimal solutions is much lower than 2. However, proving thisepy requires further
research. In addition, from a theoretical point of view, it would be irstiing to design and analyze algorithms
for nonbipartite graphs. On the other hand, from a practical point @f, figure study will focus on improv-
ing the distributed algorithm and on investigating its performance in a dynamitotppoFinally, we note
that a major future research direction is the development of bandwidth @dloecaethods that will be able to
deal with various quality-of-service requirements and to interact with tggatonstruction, scheduling, and

routing protocols.

Acknowledgments

This research was supported by the THE ISRAEL SCIENCE FOUNDAT®ant No. 148/03. The research
of Gil Zussman was supported by a Marie Curie International Fellowshipwitie 6th European Community

Framework Programme.

We thank the anonymous reviewers for their helpful comments.

Appendix

Proof of Lemma 3A nodei enters the token transfer state due to two possible events:

e Capacity allocation by the node (Step 6 in Fig. 5). In this case it is obviou$dih@aing the capacity

allocation the node is fully allocated.

e Receipt of the token from a neighbpthat popped its details from the stack (Step 9 in Fig. 6). Neighbor

j pops the details of its parent from the stack only ifjélneighbors (including) are fully allocated.
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Proof of Lemma 4Denote byi the node which initiates the algorithm. Assume that there exists a jibde

has been in the allocation state and has not been in the token transfer state.

e If i = j, theni will not execute Step 6 (described in Fig. 6), which is a contradiction to tttetat the

algorithm halts.

e If j received the token from then; will not pop the details of from the stack (Step 9 in Fig. 6) and

therefore, the algorithm will not halt, which is a contradiction.

e Assume that the token traversed the following path, k-, . . ., k;, 7. Nodej will not pop the details
of k; from the stack (Step 9 in Fig. 6). Thus,will not pop the details of;_; and, for similar reasons,

k1 will not pop the details of. Accordingly, the algorithm will not halt, which is a contradiction.
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