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Abstract

TCP is suboptimal in heterogeneous wired/wireless
networks because it reacts in the same way to losses
due to congestion and losses due to link errors. In
this paper, we propose to improve TCP performance in
wired /wireless networks by endowing it with a classi-
fier that can distinguish packet loss causes. In contrast
to other proposals we do not change TCP’s congestion
control nor TCP’s error recovery. A packet loss whose
cause is classified as link error will simply be ignored by
TCP’s congestion control and recovered as usual, while
a packet loss classified as congestion loss will trigger
both mechanisms as usual. To build our classification
algorithm, a database of pre-classified losses is gathered
by simulating a large set of random network conditions,
and classification models are automatically built from
this database by using supervised learning methods.
Several learning algorithms are compared for this task.
Our simulations of different scenarios show that adding
such a classifier to TCP can improve the throughput
of TCP substantially in wired/wireless networks with-
out compromizing TCP-friendliness in both wired and
wireless environments.

Keywords: TCP, wireless links, loss cause classifica-
tion, machine learning

1 Introduction

TCP is the most widely used protocol in the Internet.
Its success lies in its reliable transfer and its capacity
in avoiding congestion. However, its congestion con-
trol, which was developed in the eighties, is based on
the fact that packet losses are mainly due to buffer
overflows. Hence, it is not adapted to nowadays net-
works where wireless links are common. Indeed, TCP
has no mechanism to distinguish losses caused by link

errors from losses caused by congestion, and it reduces
systematically its rate whenever it faces a packet loss.
This reduction is not justified when there is no con-
gestion and the consequence is that the throughput of
TCP over wireless links is lower than what it could be.
Several studies have highlighted the bad behaviour of
TCP over wireless links (e.g. [33, 39, 41, 3]).

A straightforward solution to increase the through-
put of TCP over wireless links is to prevent it from
reducing its rate when it faces a loss due to a link er-
ror as it does when it faces a congestion event. Two
possibilities have been proposed in the literature. The
first one consists of hiding link error losses from the
sender (for example by splitting the TCP connection
[2], or retransmitting in the data link layer). However,
such solutions assume some network support. The sec-
ond approach, which is the one adopted in this paper,
consists of endowing one of the end systems with an
algorithm that classifies the packet loss causes.

Characterizing analytically the network conditions
leading to a certain type of packet loss is difficult be-
cause real networks are very complex systems but also
because their behaviours depend on a large number of
random external factors (e.g., user behaviours, current
topologies) which are difficult to model analytically.
On the other hand, it is quite easy to simulate the
network behaviour (e.g. with a network simulator like
ns-2[28]) or to gather data from observation of the be-
haviour of a real network. This is the typical situation
where automatic learning techniques are useful. These
algorithms are general techniques to extract a model
of a system only from data obtained either by direct
observations or by simulations of this system. Of inter-
est for our problem are supervised learning algorithms
which focus on the approximation of an input/output
relationship only from observations of examples of this
relationship.



So, we propose here to apply supervised learning
algorithms to automatically derive models for discrim-
inating the two possible packet loss causes and then
use these models to improve the performance of TCP
in wired/wireless networks. The paper is structured
as follows. In Section 2, we discuss related works on
loss cause classification. In Section 3, we give a short
general introduction to supervised learning algorithms.
The application of learning algorithms requires the gen-
eration of a database from which to infer a model. Sec-
tion 4 describes how we generate this database. In the
same section, we describe the four learning algorithms
that are applied to this problem and we evaluate their
performance on an independent part of the database.
These methods are also compared to the packet loss
classifiers proposed in Veno and Westwood. In Sec-
tion 5, we describe how we propose to enhance TCP
with these classifiers and we discuss the different cri-
teria that should be taken into account when choosing
a particular classification model. Section 6 evaluates
our extension of TCP with these classification models
with several simulations. The new protocols are evalu-
ated along essentially three criteria: the gain in wireless
links, TCP-friendliness, and bandwidth usage. Finally,
we conclude and we give some future work directions.

In order to allow other researchers to compare their
classification rules to ours, the database, the TCL code
to generate it, the full description of all input variables,
and the ns-2 code of some classifiers are available
electronically at [24].

2 Related works

Several papers (e.g., [12, 32, 4, 26, 7, 34]) have stud-
ied the problem of the classification of loss causes in
wireless networks. Two approaches have been mainly
considered. The first one is to rely on the support of
the network to perform the classification. For example,
TCP-Jersey [40] requires the use of ECN [15] and clas-
sifies a loss as due to congestion when there is a con-
gestion notification. The solution in [5] requires the
knowledge of the loss rate on the wireless link which
could be provided by the base station.

In this paper, we have adopted the second approach
that relies only on information available at the end-
systems. There are mainly three indicators that can
be used at the end-systems to predict loss causes: the
inter-arrival times, the one-way delays, and the round-
trip-times. These three indicators have been used in
the literature. The round-trip-time is used for example
in the HMM approach of [26], in Westwood [38], and
in NewReno-FF [4]. The inter-arrival times are used
by Biaz and Vaidya [7], and the one-way delays by

Zigzag [12], Veno [19], and Spike [34]. Among these
three indicators, it has been pointed out in [31] and [6]
that the round-trip-time alone was not a good indicator
of loss causes. Indeed, a modification in the return
path affects the round-trip-time without affecting the
loss cause. Furthermore, the study in [12] has shown
that the inter-arrival times and the one-way delays are
complementary when it comes to predict loss causes.
So, this suggests that contrary to previous works, we
should try and combine all these indicators to design a
good classification rule.

In all these works except for [26], the rule is derived
in an ad-hoc way and tuned manually using a restricted
number of topologies. Westwood [38] classifies a loss as
due to a link error when the current round-trip-time is
lower than 1.4RTT,,;, where RTT,,;, is the minimal
round-trip-time estimated since the beginning of the
session. The value of 1.4 is the one that yields the
best result in their simulations. Veno [19] estimates
the backlog by using only the interarrival times and
considers that the loss is due to congestion if the back-
log is higher than 3. Similar ad-hoc rules are proposed
in [7], Spike [34], and Zigzag [12].

The limitations of such approaches are highlighted
in [12]. Cen et al. have evaluated the latter three
rules in three types of topology with one bottleneck
and they have shown that each rule is better than the
other two in one of the topologies. They have thus
proposed to combine these three rules by first trying to
predict the topology of the network and then choosing
the most appropriate rule accordingly. However, it is
always possible to find a configuration that does not
correspond to any of the three topologies considered.
Hence, Cen et al.’s rule suffers from the same drawback
as the previous ones, even though it is more general.

The approach in [26] is more in the line with the
approach adopted in this paper. The classification rule
is designed automatically by using a learning algorithm
based on Hidden Markov Models. Nevertheless, only
one indicator, the round-trip-time, is considered and
learning is carried out only on one kind of topology
(with one bottleneck, symmetrical one-way and return
paths, and fixed flows). Hence, one should expect the
learned model to be applicable only in such topology.

In the light of this analysis, our approach extends
existing works in two directions. First, instead of using
only one indicator, we will combine several of them in
our classification rules. Second, and more importantly,
the rules will be tuned automatically by supervised
learning techniques from a large database of losses ob-
served by simulation in very diverse and randomized
network conditions. In this way, we will hopefully ob-
tain a rule that will work as well as possible in average



instead of the best possible rule for a specific network
topology though inadequate in most cases. Further-
more, to verify the good average behaviour of our rules,
we will evaluate them at classifying loss causes in an-
other large number of randomized topologies not seen
during the learning stage. Such large-scale evaluation
will certainly highlight the feasibility of the approach.

Let us also outline the passive nature of our clas-
sifier. An alternative approach would be to adopt a
probing scheme like in TCP-Probing [35]. In this pro-
tocol, when a data segment is lost, the sender tries to
identify the cause by initiating a probe cycle (during
which data transmission is suspended) to monitor net-
work conditions. By comparing the measured RTTs
of probes the sender determines the level of congestion
and TCP will react accordingly. This contrasts with
our approach, which tries to infer the loss cause with-
out probing.

It is also important to note that our goal is to explore
a design path that consists in adding a classifier to TCP
without changing its congestion control algorithm, nor
its error recovery algorithm. In our proposal, a loss
classified as due to a link error will simply be ignored
by the congestion control algorithm, and retransmitted
in the usual way. Other papers have instead focused
on the improvement of those algorithms (e.g. TCP-
Westwood [38] and TCP-Veno [19]). Another example
is proposed in [37] where the dynamics of TCP in the
context of wireless/mobile networks is studied, with
the goal of improving smoothness without damaging
responsiveness.

Therefore, even though we only address the loss
classification problem in this paper, we have to
keep in mind that improving TCP in heterogeneous
wired /wireless networks and mobile networking has
multiple facets. In [36] the authors discuss a general
framework to address TCP design principles in this
context. Among other things, the paper discusses the
requirements of error detection and proposes related
error recovery techniques.

3 Supervised learning

Automatic learning denotes methods which aim at ex-
tracting a model of a system (in our case, a computer
network) from the sole observation (or the simulation)
of this system in some situations. By model, we mean
some relationships between the variables used to de-
scribe the system. The goal of this model may be to
predict the behaviour of this system in some unencoun-
tered situations or to help understanding its behaviour.

Supervised learning is the part of automatic learning
which focuses on modeling input/output relationships.

More precisely, the goal of supervised learning is to
identify a mapping from some input variables to some
output variable on the sole basis of a sample of obser-
vations of these variables. Formally, the sample of ob-
servations is called the learning sample LS and is a set
of input/output pairs, LS = {< z1,y1 >,< Za,y2 >
yoo oy < TN,YN >}, where x; is the vector of values of
the input variables (also called the attributes) corre-
sponding to the ith observation (also called an object)
and y; is its output value. Attribute values may be
discrete or continuous. The goal of supervised learning
can be formulated as follows: From a learning sample
LS, find a function f(x) of the input attributes that
predicts at best the outcome of the output attribute
y for any new unseen values of . When the output
takes its values in a discrete set {C1,Ca,...,Cp}, we
talk about a classification problem and when it is con-
tinuous, we talk about a regression problem.

This problem is solved by a (supervised) learning
algorithm. Loosely speaking, a learning algorithm re-
ceives a learning sample and returns a function f (an
hypothesis or a model) which is chosen in a set of can-
didate functions (the hypothesis space). There exist
many learning algorithms, which differ mainly in the
hypothesis space but also in the optimization algorithm
that searches this space for a good model. Among the
most popular supervised learning algorithms, there are
decision trees and neural networks.

The main criterion used to assess learning algo-
rithms is their prediction accuracy, i.e. the way the
model they produce generalizes to unseen data. Usu-
ally, the ranking among algorithms depends largely on
the problem and how well the basic hypotheses of the
learning algorithm are satisfied by this problem. An-
other important criterion is the interpretability of the
learning algorithm, i.e. if it produces comprehensible
models or not. A third criterion is the computational
efficiency of the method, i.e. the time needed to learn
a model but also the time to apply this model to make
new predictions. In general, there is a tradeoff between
these three criteria. An accurate method is likely to
be resource demanding or induces non comprehensi-
ble models, while interpretable models are often not
very accurate. Also, the relative importance assigned
to each criterion is highly application-dependent. This
makes existing algorithms complementary and none of
them can be claimed to be globally superior to all other
ones.

In this paper, we will make use of three differ-
ent families of learning algorithms that are briefly de-
scribed in Section 4.2. For a complete reference on
supervised learning algorithms, see for example [13] or
[23].



4 Loss classification by super-
vised learning

In this section, we focus on the problem of the deriva-
tion and the evaluation of a model for predicting loss
causes by using supervised learning techniques. The
question of the application of this model to improve
TCP performance will be addressed in the next sec-
tions.

4.1 The Database

To solve our problem of losses classification, each ob-
servation < x;,y; > of our learning sample will be an
input/output pair where the inputs z; are some vari-
ables that describe the state of the system at the oc-
currence of a loss and the (discrete) output y; is either
C to denote a loss due to congestion or LE to denote
a loss due to a link error.

To make the model generally applicable, the obser-
vations in the database must be as much as possible
representative of the conditions under which we will
apply the classification model. So, the database gener-
ation should take into account all the uncertainties we
have a priori about the topology of the networks, the
user behaviours, and the protocols. The way we gen-
erated our observations is described in Section 4.1.1.
Another important question is the choice of the input
variables which is discussed in Section 4.1.2.

4.1.1 Database generation

The database was generated by simulations with the
network simulator ns-2[28]. To generate our observa-
tions of losses, we have used the following procedure: a
network topology is generated randomly and then the
network is simulated during a fixed amount of time,
again by generating the traffic randomly. At the end
of the simulation, all losses that have occurred within
this time interval are collected in the database. This
procedure is repeated until we have a sufficient num-
ber of observations in the database. In practice, the
larger the learning sample, the better it is for super-
vised learning algorithms. In our study, we have col-
lected 35,441 losses that correspond to more than one
thousand different random topologies. This large diver-
sity of scenarios is necessary to ensure the generality of
the obtained rules.

To generate a random topology, we first select a ran-
dom number of nodes (between 10 and 600) and then
choose randomly the connections between these nodes.
The bandwidth, the propagation delay and the buffer
size of the links were chosen randomly. The bandwidth

is chosen between 56Kb/s and 100Mb/s while the prop-
agation delay varies between 0.1ms and 500ms. As
Droptail is the most widely deployed policy [16], our
simulations all use this latter policy.

The number of wireless links, their place in the
topology, the error model and the loss rate were also
drawn at random. The error models are either the sim-
ple uniform error model, to mimic random losses, or the
two-state Gilbert-Elliott model, to mimic bursty losses.
These two models are often used to simulate wireless
losses (eg. [38], [21]).

Concerning the traffic, 60% of the flows at least
were TCP flows! and the others were chosen randomly
among TCP and other types of traffic based on udp
and proposed by ns-2. The senders, the receivers, and
the duration of each traffic were set randomly. Thus,
the database contains losses belonging to short and
long TCP sessions. This random choice of traffic length
allows us to avoid making any assumption about the
network load which is randomized in the database.

The randomness of all network conditions may be
questioned, but it has two intrinsic merits. Firstly, it
creates no bias, which could otherwise be criticized.
Secondly, the existence of possibly unrealistic topolo-
gies and flows in our learning set can only reduce the
accuracy of our learning algorithms. So, we can con-
sider our learning set as an unbiased worst case.

4.1.2 The choice of the inputs

The choice of the input variables is directed by several
constraints. Of course, it should be possible to pre-
dict a congestion event from the observation of these
variables. For our classification models to be practi-
cally useful, these variables should also be measurable
(either at the receiver or at the sender side). The su-
pervised learning method should also be taken into ac-
count when choosing the inputs. Some learning algo-
rithms, like for example decision trees, are, at least
to some extent, able to distinguish automatically rele-
vant variables from irrelevant ones for a specific prob-
lem. However, other learning algorithms, like neural
networks, suffer more in the presence of useless vari-
ables and, hence, it is always preferable to restrain the
set of inputs as much as possible.

At the end system, the information we can mea-
sure to predict congestion is the inter-arrival times and
(the variations of) the one-way delay (RFC1323). Sub-
sequently we will also use the term queuing delay to
denote the one way delay. These measures can be ob-
tained at both sides. Indeed, to compute these values,

I We have chosen Newreno but any other version of TCP
could be used.



a host only needs the instant the packet was sent and
the instant it was received. At the receiver side, the
instant when the packet is received is known and the
moment when the packet was sent is the timestamp of
the packet it received. At the sender side, the instant
when the packet was sent is carried in the acknowledg-
ment and the instant the packet was received is the
timestamp of the acknowledgment. The one-way delay
is then the difference between the timestamp of the ac-
knowledgment and the timestamp of the TCP packet,
and is actually the real one-way delay minus the differ-
ence between the clocks of the sender and the receiver.
This difference is not important in our study since we
will see below that our inputs are based only on relative
variation of the one-way delay.

To compute our inputs, we use the information pro-
vided by the three packets following the loss and the
packet that precedes it.2 We could choose to include in
our inputs directly the values of the inter-arrival times
and the one-way delay for these packets. However, this
will make the model dependent on absolute values of
these measures, which is not a good idea if we want our
models to be as much as possible independent of the
particular network conditions. So, instead, we propose
to use as inputs only relative values of these measures
normalized in different ways.

To this end, we further compute the average, the
standard deviation, the minimum, and the maximum of
the one-way delay and inter-arrival times for the pack-
ets that are sent during one round-trip-time and we
maintain these values at each time for the last two
round-trip-times before the current time. Owur final
inputs are then various functions (about 40) relating
these (8) values at the occurrence of a loss to the inter-
arrival times and the one-way delays of the three plus
one packets surrounding the loss.

To give some examples of the inputs, let us define
the following four groups of packets: the packets for
the two preceding round-trip-times, the packet before
the loss and the three packets after the loss. Then, for
both indicators (i.e. inter-arrival times and one-way
delay), we include in the inputs the ratios between the
averages, the minima, and the maxima of this indica-
tor in all pairs of groups. We also consider the ratio
between the maximum in one group and the minimum
in another group of each indicator. Denoting by x the
value of one of the two indicators for the packet ei-
ther after or before the loss, the following inputs were
also included: *>#, where y and o are the average and

2Since the variation in the down-link has no effect on the
losses undergone on the up-link we do not consider the one-way
delay and the inter-arrival times of the acknowledgment.

standard deviation of the same indicator in one of the
two groups corresponding to the round-trip-time.

We have also introduced among the inputs the num-
ber of losses, which in most TCP releases can be ob-
tained only at the receiver side. Nevertheless, our ex-
periments show that this input is not important for the
classification of packet loss. So, since all other inputs
can be computed indifferently at both sides, the classi-
fication of losses can be carried out either by the sender
or by the receiver.

The complete description of all input variables is
available in [24].

4.2 Supervised learning methods

We have chosen to compare here three different families
of learning algorithms with quite different characteris-
tics. We give below only a brief description of these
algorithms. We refer the interested readers to the cor-
responding references for further details.

Decision trees [10]. This is one of the most pop-
ular learning algorithms. A decision tree represents
a classification model with a tree where each interior
node is labeled with a binary test based on one input
attribute and each terminal node is labeled with a value
of the output (here C' or LE). Figure 2 shows the top
of one decision tree that was built for this problem.
To classify an observation with such a tree, we simply
propagate it from the top node to a terminal node ac-
cording to the test issues and the prediction for this
observation is the value associated with the terminal
node. A decision tree is built automatically from the
learning sample in a greedy top-down fashion. The al-
gorithm starts from the whole learning sample that it
recursively splits with binary tests. A score measure
is defined to evaluate how well a test is able to sepa-
rate observations of different classes in a node and the
test that maximizes this score measure is selected at
each node. The splitting of a node is stopped when the
output is constant in this node or some stopping crite-
rion is met (e.g. the size of the local subsample goes
below some threshold or the split is deemed non signif-
icant according to some statistical test). The two main
advantages of decision trees with respect to other learn-
ing algorithms is their readibility (by construction) and
their computational efficiency (both for learning the
tree and for testing it). In our experiments, we have
used the algorithm for decision tree induction proposed
in [10].

Tree bagging [9] and tree boosting [18]. Al-
though they present several nice characteristics, deci-
sion trees are often not competitive with other learning
methods in terms of accuracy. In supervised learn-



ing, ensemble methods are generic techniques that im-
prove a learning algorithm by learning several models
(from the same learning sample) and then by aggre-
gating their predictions. In our experiments, we will
use two ensemble methods with decision trees: bagging
and boosting. Bagging builds each tree of the ensem-
ble from a bootstrap sample® drawn from the original
learning sample. With boosting, the trees are built in
sequence. Each tree is built by increasing the weights of
the learning sample cases that are misclassified by the
previous trees of the sequence (the exact weight update
formulas can be found in [18]). In both cases, the pre-
diction of the ensemble of trees for a new observation
is the majority class among the classes predicted by
all trees for this observation. Both methods often im-
prove very importantly the accuracy of decision trees.
However, since they require to build T decision trees
instead of one (in our experiments, T was fixed to 25),
the computing times and the memory required to store
a model is T" times higher than for a classical decision
tree.

Multilayer perceptrons [8]. Multilayer percep-
trons are a particular family of artificial neural net-
works. Neural networks represent a model as the in-
terconnection of several small units called perceptrons
that compute a weighted average of their inputs and
send this average through a non linear functions (usu-
ally a hyperbolic tangent). This method usually gives
more accurate models than decision trees but a neural
network is not interpretable and is also much more de-
manding in terms of computing times and computer re-
sources. In our experiments, we have used a Levenberg-
Marquard optimization algorithm to learn neural net-
works and we have tried several neural network archi-
tectures. Only the best results are presented.

Of course, we have also tested other learning algo-
rithms on our problem, but a preliminary study [20] has
shown that the selected ones provide the best results in
this case. For our experiments in this paper, we have
used a data mining software called PEPITo?, as well
as our own implementation of bagging and boosting.

4.3 Model evaluation

Usually, the error rate of the model at classifying loss
causes in the learning sample is very small since the
learning algorithm explicitly tries to minimize this er-
ror. Thus, this error is not a good indication of the
ability of the model at classifying losses in new unseen

3A bootstrap sample from a learning sample LS of size N
is obtained by sampling N observations uniformly and with re-
placement from LS.

4http://www.pepite.be

topologies. To get a more reliable estimate of the er-
ror of the classifier, we have thus randomly divided the
database into two parts: a learning sample that is used
to learn the model and a test sample on which the
resulting classifier is tested. Since the losses in both
samples are obtained from different topologies, the er-
ror rate of the model at classifying losses in the test
sample gives a good idea of the probability of misclas-
sification of our model in a new situation.

When evaluating a model, there are two errors of
interest: the probability that the model misclassifies
a congestion event as a link error and the probability
that it misclassifies a link error as (an error due to) a
congestion event. We will denote these errors respec-
tively Erre and Errpg. Of course, it is important to
minimize these two types of errors but we will show
later that if we want to provide TCP-friendliness for
example, we need especially to minimize errors on con-
gestion. So, independently of the application of the
model, it is very desirable to be able to favour the ac-
curacy of the prediction of one type of loss over the
other.

Actually, all learning algorithms chosen here not
only provide a class prediction for each value of the
inputs z but also provide an estimate of the probabil-
ity of each class, C' or LE, given z, i.e. two numbers
P(C|z) and P(LE|z) such that P(C|z)+P(LE|z) = 1.
The class given by the model is then LE if P(LE|xz)
is greater than a threshold P, and C otherwise. By
default, the value of Py, is fixed to 0.5 so as to treat
each class equally. However, by changing the thresh-
old, we can easily favour the accuracy of the prediction
of one class over the other. By taking P;, lower than
0.5, more losses will be predicted as due to link error
and hence, we will decrease Erry g and increase Errc.
On the opposite, by taking P, greater than 0.5, we will
decrease Errc and increase Errpp. So, this parameter
allows us to obtain different classification models with
different tradeoff between the two types of errors. It is
also important to note that, whatever the classification
model, the user can choose the tradeoff that fits ones
application without re-running the learning algorithm.
All one has to do is to change the value of P, when
making a prediction with the model.

In the next section, we will evaluate classification
models with different values of Py,.

4.4 Results

The database of 30,441 losses has been randomly di-
vided into a learning sample of 25,000 cases and a test
sample with the remaining 10,441 cases. A classifica-
tion model is built with each method on the learning
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Figure 1: The classification errors obtained by each
method when varying Py,

Table 1: Comparison of the different learning algo-
rithms.

Method AUC | Time (usec)
DT 0.9424 1
MLP 0.9761 144
Bagging | 0.9796 37
Boosting | 0.9840 33

sample and its two types of errors Errg and Errpp
are evaluated on the test sample for different values of
Py, going from 0.02 to 0.98 by step of 0.02. Figure 1
plots Errpg in function of Erre when varying Py, for
the four methods. The best models on this graph are
those which are the closest to the origin.

The results are quite good, especially considering
the diversity of the network topologies represented in
the test sample. The curves clearly show that there is
a tradeoff between the two types of error. It is possible
to reduce the error of one class to zero but this is al-
ways at the expense of the other. One important thing
to note is that we can decrease greatly the error on the
classification of LE without increasing too much the
error on the detection of congestions. We also observe
that the curves are not symmetrical: we have more er-
rors over LE than over C. This could be explained by
the fact that an error due to a link error could happen
just before a congestion event. In this case, it is im-
possible to distinguish this error from an error really
due to congestion and this loss will be most probably
misclassified as a congestion loss. So, this certainly
contributes to the fact that there are more errors on
the classification of link errors than on congestions.

By flipping the curves of Figure 1 with respect to the
axis Errpp = 50%, we get exactly the so-called ROC

curves (Receiver Operating Characteristic) often used
in the machine learning literature [14]. The area under
this curve, denoted AUC, is a popular measure to com-
pare the quality of different methods: the higher the
area, the better the method. Table 1 reports this values
for the different learning algorithms. For comparison,
a method that would guess the loss cause at random
would have an AUC of 0.5. All classifiers are much
better than random guess. Among them, the decision
tree is certainly the worst one. The Neural network is
better (especially for the extreme values of P;p,). Bag-
ging and boosting are very close to each other and also
consistently better than the other two methods.

For comparison, we have also evaluated the
rules of Veno [19] and Westwood [38] over our
test set of 10,441 losses. We obtained respec-
tively (Errc, Errpg) = (54.29%,0.50%) and (Erre,-
Errpg) = (63.20%,4.25%). The point corresponding
to TCP, which has no mechanism to distinguish loss
causes, is (Errc, Errpg) = (0,100%). These results
are much worse than what we obtain with our ap-
proach. For example, for the same value of Errpg
as Veno and Westwood, boosting gives respectively an
error Erre of about 22% (for Py, = 0.18) and 8% (for
Py, = 0.4). This shows that our rules are much bet-
ter than these two latter rules in average over a large
number of random topologies even though the Veno’s
or Westwood’s rules can sometimes be better in some
specific network conditions.

Another important criterion to compare learning al-
gorithms is the computing times needed to make a
classification. To give a rough idea of the requirement
of each classifier, the last column of Table 1 gives for
each method the average time® needed to classify one
loss from the test sample, assuming the inputs have
been computed. The decision tree is by far the fastest
model. The neural network is the slowest model and
bagging and boosting are more than 30 times slower
than the decision tree. In terms of the computer re-
source needed to store the model, the decision tree is
again the cheapest model while boosting and bagging
multiply the requirement by about 25 (the number of
trees in the ensemble).

4.5 Interpretability of decision trees

Even if decision trees are not the best method in terms
of accuracy, one of its advantages is that it provides in-
terpretable rules. So, it is interesting to try and explain
the tests that appear at the top of the tree. Figure 2
shows the first three levels of the tree that was built

5The classifier is implemented in C and runs on a Pentium 4
2.0 GHz
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Table 2: The notations used

L list of the 3 packets following the
loss (d is due to the fact that these
packets generate duplicates ack)

! list of the packets received during
the previous rtt

L2 list of the packets received during
the rtt preceding the previous rtt

Bl the packet received just Before the
Loss

Blga the queuing delay of Bl

Lf;, X €{d,1,2} | inter-arrival times of the L™ packets

qu7X e {d,1,2}
Avg, Max, Min

queuing delays L packets
respectively average, maximal

and minimal
Avg(L)—Avg(X)
Std(L)

Fet(X,L) is equal to

from our database. Tests from deeper nodes are used
to refine the classification. The notations used in the
tests are described in Table 2. The colour in the rect-
angular box reflects the proportion of the two types of
losses among the losses that reach this node.

The first test is [Max(LZ,)/Avg(L},) < 1] and when
it is true, the loss is more probably due to conges-
tion (the left box is mainly dark grey). In fact, if
Mazx(LY,) < Avg(L},) , the packets received after the
loss arrive in a more “confined” manner than during
the round-trip-time preceding the loss. If the pack-
ets are more “confined”, then it is very likely that the
queue is long and it is not surprising that the loss is
most probably due to congestion.

The test Blya/Min(L};) <1 = LE, which appears
at two positions, is also very intuitive in the case of one
flow and one bottleneck. Let us explain it in this case.
In fact, if the loss is due to a congestion event, then
the packet preceding the loss is in the end of the buffer
and then its queuing delay (Blyq) is the highest one a
packet can have. So if after a loss, one packet can have
a queuing delay longer than Bl,q, then the loss was not
due to a congestion event but to a link error.

The test qud/Avg(Lgd) < 1= LE is comparable
to the previous test.

The other tests include the two variables
Fet(LY,, L?) and Fet(L, L{,), which are in fact
very similar. The values 1 and 1.6 are difficult to
explain but the idea behind these tests is that if the
average of the inter-arrival times following the loss is
“too” far (i.e. low in this case) from the average of this
indicator one round-trip-time or two round-trip-times
before, then the packets are more “confined”. Thus,
again, it is very likely that a queue was growing and
the loss is most probably due to congestion.

Note that our aim in this section is only to show
that the rules, although they are produced automati-
cally by a computer program from the set of random
simulations, are to a certain extent interpretable. How-
ever, the reader should be aware that these rules only
give a very partial picture of the whole decision tree
and the way a packet loss is classified is much more
complex than the simple tests illustrated here. This
is even more so for the boosting model that combines
several trees.



5 Choosing the best method to
improve TCP performance

The way we propose to enhance TCP (Newreno) with
a classification model is the following: Each time a loss
is detected by a triple duplicate, its cause is determined
by the classification model. If the loss is classified as
due to congestion, the sender proceeds as usual (i.e.
it divides its congestion window by two). Otherwise,
it maintains its congestion window constant. Subse-
quently, we will call this protocol TCP+classifier.

At this point, we have at our disposal several classi-
fication models corresponding to different learning al-
gorithms and different tradeoffs between the two types
of error (by changing P;,). So, the question is now
which particular combination should be used to im-
prove TCP performance in wireless case without losing
TCP-friendliness. In this section, we discuss the differ-
ent constraints that must be taken into account when
choosing a particular classification model.

5.1 Practical
protocol

implementation of the

The computing times to make a prediction and the
computer resource needed to store the model are not
negligible in most cases. What we can afford according
to these criteria will depend on which side we decide
to put the classification algorithm. If the sender is
in charge of the classification, using a relatively com-
plex classification algorithm could be a problem if the
sender has a great number of clients (which is usually
the case when the sender is a server). So, it could be
desirable to trade some accuracy for more efficiency by
using a decision tree instead of boosting. Of course, if
the sender has a benefit in providing the highest rate
to the receivers, or if it has only a few clients (e.g.
proxy), it may still prefer to use boosting. On the
other hand, if the receiver is in charge of the classifi-
cation, the complexity of the algorithm will not be an
issue anymore and there is no reason to avoid using
the boosting model. However, once a loss is classified,
the receiver will need to send the classification result
to the sender or at least a message where it asks the
sender not to decrease its rate. The problem is that
by allowing this kind of exchange, we will open greatly
the door to distrusted receivers.

This discussion shows that there is an interest even
in less accurate models, for computational efficiency
reasons. So, to make our experiments independent of
the particular choice of implementation, we will evalu-
ate both the decision tree and the boosting classifier,

the first model because it is the fastest one and the
second model because it is the most accurate.

5.2 The effect of misclassifying conges-
tions

Once a classification method is chosen, we have also
to choose the tradeoff between the two types of error,
i.e. a value of P;,. One important criterion to select
this value is the constraint that our protocol should be
TCP-Friendly([17], [27]). The notion of TCP-Friend-
liness has been defined in the context of wired net-
works but this definition can be extended to the case
of wireless networks. A TCP-Friendly protocol in wire-
less network is a protocol that allows TCP to have a
throughput similar to the one it would get if it were in
competition with another TCP in similar conditions.

If a TCP+-classifier misclassifies quite often its con-
gestion losses in wired networks, it will be unfair to
TCP since it will force TCP to decrease its rate to
avoid congestion. And if it is in competition with simi-
lar traffics, then a global misclassification will lead the
network to a blackout, followed by timeout expirations.
Thus, instead of reacting to triple duplicates like TCP
would, TCP+-classifier would wait for the timeout ex-
piration and thus get in average less throughput than
a normal TCP.

To demonstrate this idea, we have augmented TCP
Newreno with the classification rule of Veno [19], re-
ferred to as TCP+Veno-classifier, which misclassifies
many congestion losses (Errc = 54.29%). We have
simulated a scenario where TCP is in competition with
such a TCP+Veno-classifier and we get the behaviour
presented at the top of Figure 3. Unsurprisingly, the
TCP+Veno-classifier, which reduces its window size
less often than TCP, gets much more bandwidth than
the latter. Moreover, the lower part of the same fig-
ure shows on one hand the throughput of an aggregate
of TCP+Veno-classifiers competing over one link, and
on the other hand another simulation with an aggre-
gate of TCP flows in similar conditions. This time, the
standard TCP aggregate gets much more bandwidth,
because all flows better control congestion.

So, for their own benefit and the benefit of the com-
munity, a host should not use a model that makes many
errors on the detection of losses due to congestion.
Thus, in other words, high enough values of P, should
be preferred when choosing a classification model.
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Figure 3: The effect of misclassifying congestion losses.
Top: A TCP+Veno-classifier vs TCP. Bottom: Link
utilization by an aggregate of TCP+Veno-classifiers,
compared to the link utilization an aggregate of stan-
dard TCPs would get

5.3 The maximum classification error
on congestion still offering TCP-
friendliness

The previous section has shown that to preserve TCP-
Friendliness and good usage of the bandwidth, the mis-
classification of congestion should not be too high. It
is clear that if the misclassification of congestion re-
mains close to zero, the TCP+classifier will be TCP-
friendly. The higher Errg, the lower Errpg, and thus
the higher the gain in wireless case. But the question
is how far from zero can we go without losing TCP-
Friendliness. In this section, we try and find analyti-
cally the maximal value of Err¢ for which we still have
TCP-friendliness. This bound will allow us to fix the
value for Py, for a given classifier.

If TCP-Friendliness is provided in the case of wired
networks, it will be provided in the case of wireless
networks. So, we will try and find the maximum er-
ror preserving TCP-Friendliness only in the case of
wired networks. To provide TCP-Friendliness, the
TCP+-classifier should have a throughput belonging to
[Y/xBiep, K Byep| with K < 1.78 [17] and where By is
the throughput of TCP following the same path as the
TCP+classifier.

Suppose that we have one TCP and one
TCP+classifier following the same path, passing
through the network, which is considered as a black
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box, and that both traffics lose a proportion p of their
packets. The TCP+classifier is a normal TCP except
that it reacts only to a proportion p.(1— Err¢) of pack-
ets instead of p in the case of a normal TCP. So, ac-
cording to Padhye et al. [30], the throughput of the
TCP classifier, if we assume that there is no delayed
acknowledgment (b = 1), is equal to:

1
RTT\/2Y + Tymin(1, 34/ 225 )pY (1 + 32p2Y2)

Be =

where Y = 1 — Erre, while the one of TCP is equal
to

1

Btcp =
RTT\/22 + Tymin(1,3/22)p(1 + 32p?)

The goal is to find the maximal value for Erre such

that

Bc

F(Errc,p, RTT,Ty) = <K

tcp

It can be shown that F, over the definition do-
main(i.e. RTT,Ty > 0 a,d p, Errc € [0,1]), mono-
tonically decreases with RTT and increases with Tj.
Hence, if Frrr—o < K and Fry4+0 < K, we have
necessarily

F(BErre,p, RTT, Ty) < K YRTT, Ty, p

Furthermore, Frrr—0 = Fry— 400 = F(Erre,p,0,00),
and F(Errc,p,0,00) can be decomposed into:

(1+32p%) o [3p
VI—Errc° (1432p2(1— Erre)?) if 3y % =<1
(1+32p%) : [3p(1—Errc)
(lerrc)(lJrSprQ(l;Errc)z) if 3/ >
(1+32p ) otherwise

3\/%p(lerrc)(le?:sz(lerrc)Q)
(1)

The curve of F' corresponding to the last condition is
under the one corresponding to the second condition for
all values of p (such as 34/3p/s > 1) and Errc. Hence,
it is sufficient to bound F for the first two conditions
for all p and Erre to globally bound F'. The conditions
341/3pr/s < 1 and 34/3p/g > 1 are equivalent respectively
to p < 8hr~0.3 and p > 0.3.

Figure 4 shows these two curves in function of Erra
and p. We can see that to keep a ratio between the
throughputs of TCP classifier and TCP below 1.78, we
need to keep Errc below 18%. This value is much
lower than the value of Errc for both Veno and West-
wood.

It is important to note that the functions corre-
sponding to the first two conditions of Eq. (1) are both

6Using b = 1 in the formula was recommended in [22]
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Figure 4: The graph corresponding to F'(Errc, p, 0, 00)

increasing with p. So it is sufficient to find Erre that
makes K greater than F' corresponding to the maxi-
mum plausible value of p.

6 Simulations with the learned
models

We have chosen to restrict our experiments to the mod-
els given by the decision tree method and the one given
by boosting. The decision tree is chosen for its low com-
plexity which makes it usable at the sender side, and
the second method is chosen for its accuracy. Boosting
gives the best results among the other methods. It can
be implemented at the receiver side or at the sender
side if the computational cost is less an issue.

From the previous discussions, it is clear that the
characteristics of a TCP+-classifier will greatly depend
on the chosen value of Py,. So, we test here both meth-
ods with different values of Py, that provide errors on
congestion slightly lower but also greater than the an-
alytical bound of 18% determined in the previous sec-
tion. More precisely, for DT, we use the parameter val-
ues P;p,=0.5, 0.08, and 0.04 corresponding respectively
to (Erre, Errpe) = (6.0%,12.09%), (15.93%, 5.86%)
and (29.85%, 3.65%) on Figure 1. We also compare
the results given by boosting with the parameter val-
ues equal to 0.5, 0.25, and 0.2. These values corre-
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spond to the points (Errc, Errpp) = (4.63%,8.03%),
(15.32%,1.25%), and (20.71%,0.68%) on the same fig-
ure.

For comparison, we test also the classification rule
used by Veno. We have chosen Veno because its two
errors are lower than the ones of Westwood. Note that
we have only used the classification rule of Veno, not
the whole protocol. Indeed, Veno and Westwood react
in a more sophisticated way when a packet loss is clas-
sified as due to a link error. In this paper, we have only
tested the effect of the accuracy of the classification.

In this section, we evaluate the classification mod-
els in wireless and wired networks along three criteria:
the gain obtained in wireless links, the fairness towards
TCP, and finally the bandwidth usage. The last crite-
rion is less important than the others but it can still
motivate a choice or another. All the experiments have
been done with ns-2. The ns-2 code for the two clas-
sifiers can be found at [24].

6.1 The improvement in lossy links

We test the topology used in [38] and illustrated in
Figure 6. It represents a hybrid network. The first
part, (Sender-BS), is wired, and the second part, which
connects the base station to the sink, is wireless. The
bottleneck is the wireless link, which has a bandwidth
equal to 11Mb/s. To have a good point of comparison,
we run also simulations with an artificial TCP that
classifies perfectly the cause of losses detected by triple
duplicates.

We compare the throughput with each classification
model when we vary the packet loss rate from 0 to
5% over the wireless link. Each simulation is run 50
times. Figure 8 illustrates the throughput obtained by
a perfect and a normal TCP, and also the throughput
obtained by the classifiers we have tested. The most
important thing to note is that some TCP+classifiers
can get throughput very close to the one of the perfect
TCP. These models are Boosting-0.25 and Boosting-
0.2. Veno is not far from them. In the middle, we have
DT with parameter 0.04 which doubles the throughput
of TCP when the loss rate becomes high (i.e. > 3%).

We can see however that all methods improve TCP
even if some of them improve it only slightly. The
gains we obtain with DT-0.5 and Boosting-0.5 are es-
pecially low in this scenario, but they give higher gain
in other scenarios. In fact the gain depends on a lot of
factors. Among them we have the congestion window
sizes, which reduces the gain when it is small. Actually,
with very small congestion window size, TCP will be
more often in the slow start phase and the losses will
be detected by timeouts and not by triple duplicates.
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The classifiers, in this case, have no effect and the gain
is not significant.

6.1.1 The gain in very lossy networks (Ad-hoc)

Due to the intermittent connections in ad-hoc net-
works, TCP flows obtain very low throughput with
such technology. The losses are often detected at the
expiration of timeouts and are rarely detected by triple
duplicate acknowledgments. We thus expect that our
classifiers would not perform well.

For this experiment, we used 20 ad-hoc topologies.
Each contains 50 mobiles moving according to the
model from [11], often used in the literature, and using
AODV as the routing protocol. 100 TCP flows have
been run (for at least 145 seconds) and the results are
recorded in Table 3. The first four columns are respec-
tively the average, maximum, minimum and standard
deviation of the ratio between the goodput obtained
with our classifier and the goodput obtained by TCP
in the same conditions. The last column is the pro-
portion of scenarios for which this ratio is lower than
1, indicating a lower goodput with our classifier than
with TCP.

In average, all classifiers improve performance with
respect to TCP. In only very few cases (less than 5%),



Table 3: Results in ad-hoc networks

Classifier avg | max | min | stdev | p(r < 1)
Boosting-0.2 1.58 | 2.70 | 0.85 | 0.46 4/100
Boosting-0.25 | 1.53 | 2.53 | 0.97 | 0.42 1/100
Boosting-0.5 1.23 | 1.74 1 0.32 0/100
DT-0.04 1.38 | 2.08 | 0.87 | 0.385 3/100
DT-0.08 1.25 | 1.67 | 0.9 | 0.259 1/100
DT-0.5 112 | 14 1 0.178 0/100

the use of our classifiers leads to slightly lower goodput
than what Newreno would offer in similar conditions.
A deeper analysis of our simulations reveals that the
difference in these cases is often due to the misclassifi-
cation of only one or two congestions. The maximum
gain can reach 170% (with Boosting-0.2). However, it
appears that this huge gain usually happens in very
bad conditions, i.e., when the TCP throughput does
not exceed 3kbps. In this case, the correct classification
of four or five losses allows to avoid timeout expirations
and increases the total throughput by 2 or 3kbps, which
is negligible but represents a high relative increase. As
observed previously the gain with the classifier is not
very high in scenarios where most of the losses are not
detected early by triple duplicate acknowledgments.

6.1.2 Round-trip time effect

Another important factor that influences the gain of
TCP with classifiers is the round-trip-time. When the
RTT increases, TCP needs more time to recover its
throughput after a loss, and a classifier which does not
decrease its throughput has a big advantage over a nor-
mal TCP. However, when the round-trip-time increases
too much and the flow loses packets, the throughput
decreases significantly and the number of sent pack-
ets decreases also. Since the error model is based on
the number of packets, the number of lost packets de-
creases, and then the classifier can recover less often.
Thus the gain decreases. The number of losses detected
by triple duplicates is an important factor on the gain,
and the gain depends on everything that can affect the
number of losses (e.g. packet size).

We choose here to show the effect of the round-trip-
time on the gain in the case of DT-0.5, i.e. the worst
model. To this end, we use a simple wireless link with
bandwidth equal to 2Mb/s and we vary the propaga-
tion delay from 1ms to 50ms. We compare the through-
put of TCP with the one of DT-0.5 with different val-
ues of the loss rate, and plot the ratio between them
on Figure 9. We can see that even DT-0.5, the worst
of our models, can offer a good gain.
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6.1.3 A note about MAC retransmissions

The simple uniform error model and the two-states
Gilbert-Elliott one have been used as basis to learn
our classification models. Because they do not take
MAC retransmissions into account, these error models
have often been considered as too simplistic and that
makes questionable the performance of our models in
an environment with retransmissions. To give an idea
of how our classification models behave in the presence
of retransmissions, we have carried out some prelim-
inary experiments with Qarmas, a radio layers simu-
lator developed by France Telecom over Opnet. This
simulator is used to carry out performance studies and
is considered as very reliable. To ensure this reliability,
the simulator is fed by the real algorithms developed
and used by the vendors (e.g. Alcatel, Nokia) as well
as the exact parameter values. To stick even more to
reality, timers are introduced and are calibrated using
real experimental results.

We have chosen UMTS for our experiments, with
a RAB of 384Kbps. The number of retransmissions,
which is vendor specific, was chosen among 3, 7 and
unlimited with the usage of a timeout (whose default
value was fixed to 1 second). In these experiments,
we noticed, unsurprisingly, a higher rate of misclassi-
fications due to link error losses in comparison with
scenarios without MAC retransmissions. However, in-
vestigation of these misclassifications has shown that
more than 90% of the radio layer losses that were mis-
classified as congestion losses, were actually caused by
RLC buffer overflow. So, although they do not corre-
spond to congestion at the IP layer as usually meant,
they are nevertheless caused by congestion at the ra-
dio layer and the reduction of the congestion window
which is induced by the misclassification is actually the
right action to take in this situation.

6.2 TCP-friendliness
6.2.1 Wired network

In the previous section we have tested the different
models in wireless link, and we have compared the gain
obtained by each one. In this section we compare their
fairness towards TCP in the wired case, which is an
important criterion that should be fulfilled by the clas-
sification model. We evaluate TCP-Friendliness on a
topology commonly used for this purpose (e.g [1], [25]),
illustrated in Figure 5 with n = 2. Each experiment
consists of running two concurrent TCPs: a standard
one (Newreno) and another one using one of the tested
models. We plot in Figure 10 the ratio between the
throughput of both TCPs. We can see that the Veno
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when they are in competition with normal TCP

classifier is far from being fair. The ratio is close to five
which makes it totally unfair towards TCP. Boosting-
0.2 offers a ratio slightly lower than three, when DT-
0.04 got 1.5 time as high as TCP throughput. All the
other models offer a ratio close to one.

6.2.2 Wireless Network

To know if a classifier is TCP-Friendly in a wireless net-
work, we should run two TCPs in competition and re-
place one of them with a TCP+-classifier. If the remain-
ing TCP has similar throughput in both cases, then the
TCP classifier is TCP-Friendly. The goal of this section
is to show that a protocol can have a higher through-
put than TCP in wireless network and still maintain
TCP-Friendliness. We carry out this study only with
Boosting-0.25 and DT-0.04.

We use the topology of Figure 5 (n = 2) where the
wireless link is the common one. One flow is TCP and
the other is either TCP or TCP with one of the two
models. We vary the loss rate of the wireless link from
1 to 9%, and each experiment is run 100 times.

The top of Figure 11 shows the evolution of TCP in
the three cases as a function of the loss rate. We can see
that the evolution is exactly the same and the curves
are very close to each other, which means that the TCP
flow gets the same throughput irrespective of whether
the competitor is TCP or one of our TCP+classifier.
However, Boosting-0.25 and DT-0.04 get much more
bandwidth than TCP as we can see on the last two
graphs of Figure 11. Thus, a protocol can have more
bandwidth than TCP in the wireless case and at the
same time maintain TCP-Friendliness. In other words,
the additional throughput of Boosting-0.25 and DT-
0.04 is not at the expense of a concurrent TCP.
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6.3 Link capacity usage

In section 5.2, we have discussed the effect of misclassi-
fying the congestion on bandwidth usage. To show this
effect according to the classification model, we have
used an aggregate of 4 similar flows competing over
one link (topology of Figure 5 with n = 4) and we have
computed their goodput, throughput, and efficiency”.
The results are illustrated in Table 4.

"The efficiency is defined as the ratio between the goodput
and the throughput.

Table 4: The bandwidth usage

Throughput | Goodput | Efficiency
NewReno 98.51 96.00 97.45
Veno 94.44 89.68 94.96
DT-0.5 98.51 96.00 97.45
DT-0.08 98.51 96.00 97.45
DT-0.04 99.58 96.04 96.44
Boosting-0.5 98.51 96.00 97.45
Boosting-0.25 99.82 96.77 96.95
Boosting-0.2 100.00 95.75 95.75




On this topology where all losses are obviously due
to congestion, Boosting-0.5, DT-0.5, and DT-0.08 per-
fectly classify all packet loss causes. Consequently,
these methods give exactly the same results as TCP
NewReno. Veno’s rule is the classification method that
gives the worst results along the three criteria. Its low
bandwidth usage is a consequence of the misclassifica-
tion of congestion losses that worsen the congestion and
finally trigger timeouts. Boosting-0.2 occupies slightly
more bandwidth than TCP NewReno, but it provides a
lower goodput. Its behaviour is similar to Veno but its
FErre is still lower. DT-0.04 and Boosting-0.25 yield
a better link usage than NewReno and also a better
goodput. Nevertheless, their efficiency is slightly lower
than NewReno’s. Some congestion losses are misclas-
sified by these rules, which prevents TCP from reduc-
ing its window and yields a more stable throughput.
However, unlike with Veno’s rule, the misclassifications
are not frequent enough to lead to timeout expirations
and thus the bandwidth is higher than with NewReno
and close to the capacity of the link. On the other
hand, DT-0.04 et Boosting-0.25 lose more packets and
thus require more retransmissions, which explains their
lower efficiency.

6.4 Multiple bottlenecks

Until now, all the experiments have been carried out
over topologies with one bottleneck. In this section,
for comparison, we use the topology with two bottle-
necks illustrated in Figure 7. The bandwidth of both
bottlenecks is chosen at 3Mb/s. In each cluster, we
have one Newreno and one of our classifiers. We com-
pute the throughput and the goodput of each flow and
summarize them in Tables 5, 6, and 7. Note that DT-
0.5 and Boosting-0.5 , which made no classification er-
rors during this experiment, behave exactly like TCP
NewReno. So, in all tables, the line corresponding to
NewReno and that of DT-0.5 and Boosting-0.5 are sim-
ilar.

Tables 5 and 6 show that Boosting-0.2 consumes less
bandwidth and offers the lowest efficiency. Again, this
is a consequence of its more frequent misclassifications
of congestion losses that trigger timeout expirations.
The other classifiers are quite equivalent. From these
three

Other classifiers provide a better usage of the re-
sources. As they better classify loss causes, they often
reduce their rate together with the TCP flow belonging
to the same cluster and this yields a better usage of the
links without affecting fairness. Table 7 shows the ratio
between the throughput of TCP and the throughput of
the other flow in the same cluster. We observe that the
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Table 5: Efficiency of each cluster (%)

Cluster 1 | Cluster 2 | Cluster 3
NewReno 95.36 98.93 98.87
DT-0.5 95.36 98.93 98.87
DT-0.08 97.95 98.59 99.01
DT-0.04 98.55 98.69 98.74
Boosting-0.5 95.36 98.93 98.87
Boosting-0.25 94.76 99.01 99.07
Boosting-0.2 95.41 98.16 98.45

Table 6: Throughput, goodput, and efficiency (%) in
paths 0-1 (top) and 1-2 (bottom)

Throughput | Goodput | Efficiency
NewReno 90.67 89.00 98.16
DT-0.5 90.67 89.00 98.16
DT-0.08 94.55 92.6 97.94
DT-0.04 95.63 93.72 98.01
Boosting-0.5 90.67 89.00 98.16
Boosting-0.25 97.33 95.67 98.29
Boosting-0.2 93.56 91.09 97.36

Throughput | Goodput | Efficiency
NewReno 96.00 94.33 98.26
DT-0.5 96.00 94.33 98.26
DT-0.08 96.21 94.56 98.28
DT-0.04 95.61 93.75 98.05
Boosting-0.5 96.00 94.33 98.26
Boosting-0.25 98.00 96.33 98.30
Boosting-0.2 94.75 92.45 97.58

Table 7: Fairness ratio

Clust 1 | Clust 2 | Clust 3 | Average
NewReno 1.59 1.08 1.12 1.26
DT-0.5 1.59 1.08 1.12 1.26
DT-0.08 1.33 1.05 1.08 1.15
DT-0.04 1.16 1.29 1.01 1.15
Boosting-0.5 1.59 1.08 1.12 1.26
Boosting-0.25 1.09 1.16 1.16 1.14
Boosting-0.2 1.22 1.08 1.28 1.19




Table 8: Throughput (%) in a dynamic scenario

0-60s | 60-100s | 100-140s | 140-200s
NewReno | 62.99 | 64.79 62.87 63.51
Dt-0.04 91.50 | 73.46 94.73 72.63

ratios are very close to the one provided by NewReno.
So, all tested models offer good fairness towards the
TCP flow belonging to their cluster.

6.4.1 Dynamic scenario

Since our classifiers are based on past measurements,
one could imagine that their accuracy and efficiency
could decrease in dynamic scenarios where the load
changes throughout the same connection from high to
low or from low to high. However, the memory of
our classifiers does not exceed two round-trip times.
Therefore, the values of the inputs are only helpless for
classifying losses during the two round-trip times fol-
lowing the load change. The worst case is thus when a
loss occurs in each of the two RTTs following the load
changes and it can only lead to two misclassifications.
We thus expect that load changes will essentially have
a negligible impact on our results.

The multiple bottleneck topology of Figure 7 has
been used to show that the accuracy and the efficiency
are indeed maintained in dynamic scenarios. The link
1-2 has been replaced by a wireless link and now each
cluster does not contain more than one flow. The sim-
ulation consists in running cluster 1 alone for 40 sec-
onds, then starting cluster 2 and stopping it after 60
seconds and finally running cluster 3 after 140 seconds.
Table 8 compares the average throughput of NewReno
and DT-0.04 over the different time intervals. The DT-
0.04 classifier still clearly outperforms TCP. As another
control experiment, we ran the four simulations inde-
pendently (rather than in sequence), so as to eliminate
any bias due to past events, and we observed similar
results.

6.5 Discussion

Figure 12 summarizes the results obtained in the previ-
ous sections. It illustrates the gain versus the fairness
for all the models we have tested in the previous sce-
narios. The vertical line represents the limit of TCP-
friendliness according to [17], i.e. @ = 1/1.78 = 0.56.
Classifiers on the right of this line are considered to be
TCP-friendly and the closer a classifier is to the line
x = 1, the fairer it is towards TCP.
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Figure 12: Fairness (over wired links) versus the gain
(over wireless links)

If we forget the computational constraints, the
Pareto optimal classifiers are Boosting-0.2, Boosting-
0.25, DT-0.08, and Boosting-0.5. Boosting-0.2 gives
the best gain in wireless link but it is not TCP-friendly.
Among the other classifiers, Boosting-0.25 is the one
that clearly provides the best tradeoff between gain and
fairness. Its gain is only slightly lower than the gain of
Boosting-0.2 and it is only slightly less fair than DT-
0.08 and Boosting-0.5. Furthermore, our experiments
in Section 6.3 have shown that it correctly uses the link
capacity. So, we advocate its use in all situations.

Nevertheless, for computational efficiency reasons,
we may prefer to use single decision trees that com-
pute faster classification and require less memory. In
this case, the two classifiers of interest are DT-0.04
and DT-0.08. DT-0.08 offers a very good fairness and
a reasonable gain. DT-0.04 is less fair but it has a
higher gain. Strictly, DT-0.04 can still be considered
as TCP-friendly because it lies at the right of the line
x = 0.56. However, its misclassification rate on conges-
tion is equal to about 29% which is much higher than
the maximum value of Errc which was computed in
Section 5.3. Hence, if TCP-friendliness is very impor-
tant, DT-0.08 should be preferred.

7 Conclusion

In this paper, we have proposed to apply supervised
learning techniques to automatically derive a classi-
fier that can distinguish losses due to congestion from
losses due to link errors in the case of wired/wireless
networks. To this end, we have gathered an important
number of losses together with their causes by simulat-
ing different random topologies and we have applied on
the resulting learning sample different supervised learn-
ing algorithms, namely Decision trees, Tree bagging,
Tree boosting, and Neural networks. Each method
gives a different model and, by adjusting one common
parameter, can offer different tradeoffs between the two



types of error: error on losses due to congestion versus
error on losses due to link errors. All methods gave
quite good results in terms of error rates and, further-
more, they are all much better than the simple ad-hoc
classification rules used in other protocols, like Veno
or Westwood. Among all methods, the tree boosting
algorithm gives the best results.

Then, we have proposed to extend TCP with such a
classifier by simply preventing TCP from reducing its
window size when the loss is classified as due to a link
error. This protocol was evaluated from the point of
view of throughput and TCP-friendliness in wired and
wireless networks.

From an analytical derivation, we have shown that
to be TCP-friendly, the classification model should mis-
classify less than 18% of the losses due to congestion.
Our simulations have shown that, when the model is
tuned to satisfy this constraint, it is possible to in-
crease significantly the throughput over wireless links
while maintaining TCP-friendliness in all cases.

Among all methods, tree boosting offers the most
significant gain. Decision trees are an interesting alter-
native as they still provide a significant gain but at a
lower computational cost.

In this paper, we have tested the efficiency of our
classification models in a very straightforward exten-
sion of Newreno. Nevertheless, it is clear that we could
also combine them with more sophisticated protocols
that have been proposed for wireless networks like for
example Veno or Westwood. We believe that this could
greatly improve these protocols given the very poor
quality of the classification rules they use.

We see three potential limitations to our approach.
First, we have not taken into account losses detected
by timeout expiration, which were thus all considered
as signs of congestion. However, even without clas-
sifying such losses, the throughput gains observed in
our simulations are already excellent and we can only
improve these results by taking into account timeout
expirations when designing the loss classifier.

A second potential limitation is that our database
was generated from simulated networks (topologies and
traffics) which may differ to a certain extent from ac-
tual ones. However, the learning sample was generated
by randomizing all networks conditions. Hence, there
is no bias in the classifier. We have also carried out
experiments with a more realistic topology generator
(BRITE [29]) that have not shown significant differ-
ences in terms of performance of the classifiers with
respect to the results presented in this paper. Fur-
thermore, restraining the learning to actual topologies
and flows can only improve the accuracy of the already
excellent classification.
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Another potential limitation is that the performance
of our classification models could depend on the choice
of the queuing policies and the error models. Actually,
we have carried out experiments with several combina-
tions of queuing policies (Droptail or RED) and error
models (uniform or Markovian-Gilbert model) to see if
these parameters influence the resulting classification
model. It appears from these experiments that, for a
given queuing policy, the error model does not influence
the classification model. On the other hand, it is more
difficult to classify losses with RED than with Drop-
tail. This is not surprising since congestion losses with
Droptail are due to a buffer overflow while they can be
more random in RED. Nevertheless, loss classifications
when RED is used are not so bad. For example, the
error rate with DT-0.5 goes from 6.34% with Droptail
to 9.37% with RED.
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