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Abstract

The design of single transceiver based multi-channel multi-
hop wireless mesh networks focuses on the trade-off between
rapid neighbor synchronization and maximizing the usage of
all available channels. Existing designs are confined to the
MAC layer and scale poorly as the network grows in cover-
age and density. We recently proposed Dominion as a cross-
layer architecture that includes both medium access control
and routing. Dominion eliminates the need for neighbor syn-
chronization at the MAC layer and pushes the intelligence up
the network stack. At the MAC layer, a node switches chan-
nels according to a deterministic schedule which guarantees
that a node converges with each of its neighbors periodically.
At the network layer, the channel-hopping aware routing sub-
strate routes traffic along the frequency domain, i.e., packets
along a multi-hop route generally traverse via multiple chan-
nels. In this paper, we present the complete design, analysis
and evaluation of Dominion and make four new contributions.
Firstly, we extend Dominion to support goal-oriented routing.
Source nodes can locally choose to maximize throughput or
minimize end-to-end latency without requiring any changes
in the network. Secondly, we describe a technique that re-
moves all intra-flow interference. In absence of extrinsic in-
terference, Dominion now allows network flows to maintain
constant throughput and deterministic end-to-end latencies ir-
respective of distance. Thirdly, via theoretical modeling and
analysis, we provide expected throughput and end-to-end la-
tencies for network flows. Finally, via extensive QualNet
simulations we show that Dominion achieves 1064% higher
throughput than IEEE 802.11 while being 299% fairer.

1 Introduction

In recent times, numerous wireless mesh networks [4, 7,
20] have been deployed to provide Internet connectivity to
their local communities. However, the growth of such net-
works may have been inhibited due to a scalability problem.
As most contemporary wireless mesh networks using IEEE
802.11 (hereon, simply 802.11) operate on the same channel
to maintain network connectivity, network flows are prone to
intra-flow and inter-flow interferences. This problem is fur-
ther exaggerated as most mesh networks feature only a small

number of gateway nodes (often as few as one), where the
traffic to and from the Internet converges. The interference
severely affects the quality of service to end-users during
peak times. To limit service degradation, most mesh networks
do not span more than a few hops from a gateway node.

A popular method to scale wireless mesh networks is to ex-
ploit an off-the-shelf 802.11 transceivers’ capability to switch
channels.1 In a multi-channel network, a node and its neigh-
bor must be switched to the same channel (synchronized or
converged) to exchange data packets. At the same time,
disjoint links should remain on distinct channels to maxi-
mally exploit multi-channel diversity. An effective neigh-
bor synchronization mechanism that scales with the num-
ber of channels remains a challenging problem. Multichan-
nel MAC (MMAC) [26] and Slotted Seeded Channel Hop-
ping (SSCH) [1] are two existing designs that exploit multi-
channel diversity using only a single commodity transceiver.
MMAC and SSCH are MAC layer solutions that provide dis-
tinct neighbor synchronization mechanisms to maintain net-
work connectivity. We detail the challenges faced by both in
Section 2.

To mitigate issues with neighbor synchronization, we pre-
sented a preliminary design of Dominion [23] as a cross-layer
architecture for stationary wireless mesh networks. The de-
sign of Dominion spans both the MAC and the network lay-
ers. Dominion entirely avoids the problem of neighbor syn-
chronization at the MAC layer by pushing intelligence up the
network stack. At the MAC layer, Dominion divides the net-
work into distinct logical subnetworks. Each subnetwork is
assigned a static and deterministic channel hopping schedule
from which the member nodes do not deviate. The sched-
ule guarantees that all pairwise subnetworks converge peri-
odically. Nodes converging on a channel access the wire-
less medium via CSMA using 802.11. At the routing layer, a
routing substrate aware of the MAC layer’s channel-hopping
schedule routes traffic along the frequency domain, i.e., pack-
ets along a multi-hop route generally traverse via multiple
channels. Dominion’s cross-layer architecture additionally
simplifies the MAC implementation as both the core logic and
the buffers for data packets reside at the routing layer instead
of at the MAC layer.

1We are concerned only with orthogonal channels and not overlapping
channels. Presently, 802.11a and 802.11b/g have 12 and 3 such channels
respectively.
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In this paper, we present the complete design, analysis and
evaluation of Dominion and make four new contributions.
Firstly, we extend the previously proposed graph-theoretic
model for the multi-channel wireless mesh network to sup-
port goal-oriented routing. A source node may locally se-
lect to maximize throughout or minimize end-to-end latency
(based on the needs of the application) without requiring any
changes in the network. Concretely, routing for a different
goal is as simple as applying a different set of weights to
the edges of an abstract graph. Secondly, within the rout-
ing substrate itself, we improve the algorithm to eliminate all
intra-flow interference within multi-hop routes. In absence
of extrinsic interference, Dominion end-nodes can now sus-
tain constant throughput between themselves irrespective of
their distance, i.e., hop count. By locating and using mul-
tiple intra-flow interference free routes, Dominion is able to
multiplex the attainable throughput. Thirdly, we thoroughly
analyze the properties of the routing algorithm and give ex-
pected values for throughput and end-to-end latencies. Fi-
nally, using the QualNet [24] network simulator, we present:
(i) detailed benchmarks that characterize the effect of the vari-
ous design space parameters; and (ii) comparative evaluations
that highlight the differences between SSCH and Dominion.
Not surprisingly, the results closely match our analytical ob-
servations. As a baseline comparison, our experimental re-
sults show that Dominion improves throughput by 1064% and
fairness by 299% over 802.11. Against SSCH, Dominion im-
proves throughput by 93% and fairness by 291%.

The rest of the paper is organized as follows: Section 2
presents closely related existing designs. Dominion’s MAC
layer and the channel-hopping schedule is presented in Sec-
tion 3. Meanwhile, the abstract graph model, goal-oriented
routing, and routing strategies are discussed in Section 4.
Next, in Section 5, we analyze the expected throughput and
end-to-end latency of routes. The experimental evaluation is
presented in Section 6. Section 7 reviews other related work,
and lastly, we conclude in Section 8.

2 Preliminaries

In this section, we briefly discuss existing single transceiver
solutions and the challenges faced by each of them.

Since switching a node’s transceiver to another channel in-
curs a delay (around 80 µs [11]), solutions that exploit multi-
channel diversity with a single transceiver use timeslots to
amortize the cost of a channel switch. A node switches to a
given channel for the duration of a timeslot during which it
may transmit multiple packets. For example, a timeslot dura-
tion of 10 ms is sufficient to transmit approximately 28 1024-
byte UDP packets at the maximum 802.11a MAC bit rate of
54 mbits/s. It should also be noted that single transceiver so-
lutions that exploit multi-channel diversity assume some form
of time synchronization across nodes. As shown by Bahl
et al [1], loose time synchronization (±1 ms) provided by
software-aided methods [10] should adequately suffice.

Based on the 802.11 Power Saving Mechanism,

MMAC [26] nodes converge on a pre-defined rendezvous
control channel at the start of a timeslot. During a conver-
gence period, nodes broadcast their pending traffic queues.
Based on information obtained from its neighbors, a node
determines the channel it switches to until the next conver-
gence period. A node attempts to converge with the neighbor
for which the node has the most pending packets. Due to
the need for a control channel, MMAC scales poorly as the
number of channels increase.

SSCH [1] improves upon MMAC by eliminating the need
for a control channel by using optimistic synchronization.
Each node generates its own cyclical schedule based on a ran-
dom seed and modulo arithmetic. The schedule guarantees
that each node converges with a given neighbor at least once
every schedule cycle. As nodes locally broadcast their sched-
ule once every timeslot, nodes learn (or update) the schedule
of their neighbors during the periodic convergence. To main-
tain a network flow, a node synchronizes its schedule (i.e., de-
viates from its current schedule) with its next hop neighbor.
To allow synchronization with multiple neighbors simultane-
ously, SSCH permits partial synchronization by empirically
hopping across 4 different schedules (the authors term this
optimistic synchronization). Areas where the network density
and traffic loads are high, e.g., areas close to the gateways,
optimistic synchronization with multiple neighbors becomes
increasingly difficult. A node may synchronize with a neigh-
bor, only to find that the neighbor has deviated away from that
schedule if the neighbor has its own local traffic to satisfy.

Other related work is discussed in Section 7.

3 MAC: Channel-Hopping Schedule
Unlike MMAC and SSCH, Dominion does not use individ-
ual schedules per node. Instead, Dominion divides nodes into
distinct logical subnetworks. Each subnetwork is assigned a
deterministic channel hopping schedule. The schedule guar-
antees that all pairwise subnetworks converge periodically.
The convergence of subnetworks allows a node to commu-
nicate with any of its neighbors irrespective of their home
subnetworks. Once nodes converge on a given channel, the
wireless medium is accessed using 802.11. In this section, we
first present a preliminary channel hopping (scheduling) al-
gorithm where the number of available channels k is a prime.
Next, we generalize the algorithm to an arbitrary number of
channels. Lastly, we briefly discuss the assignment of nodes
to subnetworks.

3.1 Preliminary Schedule

The preliminary scheduling algorithm assumes that the num-
ber of available available channels k is a prime. The nodes are
grouped into k subnetworks (labeled s0 through sk−1). We
use modulo arithmetic to facilitate guaranteed subnetwork
convergence. Concretely, the following function C is used
to determine the schedule for subnetwork si during timeslot
t:
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C(si, t) =

8><>:
0, if i = 0, t = 0;
C(s0, i − 1), if 0 < i < k;
[C(si, t − 1) + i] mod k, t > i

(1)

The first subnetwork s0 starts on channel 0 at t = 0.2 Ev-
ery other subnetwork si converges with the first subnetwork
at t = i − 1 to determine it’s seed, i.e., starting point. The
rest of the schedule (for values of t > i) is calculated using
modulo arithmetic with the subnetwork identifier i as the ad-
ditive constant3. This implies that subnetwork s0 remains on
channel 0. For all other subnetworks si, the channel schedule
is calculated based on its schedule for the previous timeslot.

The preliminary scheduling algorithm has the following
properties:

• Starting with t = k, the schedule cycle repeats every k
timeslots. The schedule can be minimally represented
via one schedule cycle.

• Each of the k subnetworks converges with every other
k − 1 subnetwork exactly once during the schedule cy-
cle, i.e., every k timeslots. This implies that each sub-
network spends one timeslot (per schedule cycle) in soli-
tude, i.e., not converging with a foreign subnetwork.

Given this, only
k + 1

2
channels are “occupied” during

any given timeslot.

To utilize all k channels simultaneously, the channel hop-
ping schedule can be generated as if there were 2k− 1 avail-
able channels. Note that this new schedule assumes that
2k − 1 is prime, irrelevant of the primeness of k. While this

new schedule uses 2k− 1 total channels, only
2k − 1 + 1

2
=

k channels are occupied during any given timeslot. Thus the
number of total channels can be reduced to k on a per-timeslot
basis. For each timeslot t, starting with s0 (and downwards to
s2k−2), the values of C(si, t) and C(sj , t) are replaced with a
value from [0, k−2] in sequential order if C(si, t) = C(sj , t),
i.e., if the subnetworks converge. As described before, a sin-
gle subnetwork observing solitude will remain – this subnet-
work is assigned to channel k − 1.

Assuming a uniform distribution of nodes amongst the sub-
networks, only half as many nodes will be switched to chan-
nel k − 1 as any other channel – every other channel will
have exactly two converging subnetworks. To mitigate this
slight discrepancy in the nodes-to-channels distribution, we
“add” a new subnetwork (i.e., s2k−1) that converges with this
solitudnal subnetwork. Adding a new subnetwork improves
the probability of nodes in the previously-solitudnal network
having a currently convergent neighbor. More concretely, the
probability of a previously-solitudnal node having a converg-

ing neighbor improves from
1

2k − 1
to

1
k

, i.e., nodes can now

have neighbors converging in the new subnetwork s2k−1 in-
stead of in its own subnetwork alone.

2Channels are 0-offset.
3Note that there is no schedule for t < i, however, this will soon be

mitigated.

3.2 Generalizable Schedule

The schedule can be generalized to an arbitrary k channels by
first generating a schedule as if P (2k−1) channels are avail-
able, where P (x) is the smallest prime number greater than or
equal to x. Immediately, subnetworks higher than s2k−1 are
discarded. Next, the number of channels is reduced to k (as
described before). However when 2k − 1 is not prime, in ad-
dition to the one solitudnal network, there may be a few addi-
tional (up to P (2k−1)−2k−1) pseudo-solitudnal networks,
i.e., these subnetworks converge with the now discarded sub-
networks. These solitudnal subnetworks can be converged on
the remaining channels (one pair at a time). At worse, given
that P (2k− 1) > 2k− 1, some subnetworks converge multi-
ple times during a schedule cycle. Note that each subnetwork
still converges with every other foreign subnetwork at least
once during the schedule cycle.

The deterministic schedule requires that the network be di-
vided into S = 2k distinct subnetworks. Furthermore, it pro-
vides a compact schedule cycle of T = P (2k − 1), where
P (x) is the smallest prime greater than or equal to x. Since
the schedule repeats every T timeslots, we use the notation tj
to indicate all timeslots t ≡ j (mod T ). As an example, we
present a schedule in Table 1 for a network with 4 available
channels. In this example, the schedule cycle duration T is 7
timeslots. Each of the 8 subnetworks converge with the other
7 subnetworks during the schedule cycle. To further illustrate
this example, Fig. 1(a) shows a sample 802.11 network with
64-nodes. Figs. 1(b)-1(h) show the state of a network using
the Dominion MAC (nodes are assigned to subnetworks using
an uniform random function). The aggregation of the tem-
poral topologies yields the same connectivity as the single-
channel 802.11 topology.

Table 1: Schedule for a 4 channel network. Subnet si

switches to channel C(si, tj) during timeslot t, where t ≡ j
(mod 7).

C(si, tj) t0 t1 t2 t3 t4 t5 t6

s0 0 0 0 0 0 0 3
s1 0 3 1 1 1 1 0
s2 1 0 1 3 2 2 1
s3 2 1 0 1 2 3 2
s4 3 2 2 0 1 2 2
s5 2 2 3 2 0 1 1
s6 1 1 2 2 3 0 0
s7 3 3 3 3 3 3 3

3.3 Subnetwork Assignment

An ideal subnetwork designation assigns an equal number of
nodes to each of the S subnetworks either randomly or based
on spatial reuse. A one-way uniform hashing function (for ex-
ample, the SHA-1) may be used to determine a node’s home
subnetwork. Stated differently, a node A’s home subnetwork
may be determined by simply using the following mathemat-
ical operation: SHA1(MacAddress(A)) mod S. Another
way is based on spatial reuse: using a globally optimal assign-
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(a) 802.11 topology (b) Dominion topology at t0 (c) Dominion topology at t1 (d) Dominion topology at t2

(e) Dominion topology at t3 (f) Dominion topology at t4 (g) Dominion topology at t5 (h) Dominion topology at t6

Figure 1: A Dominion network maintains the same connectivity as a single-channel network, while fully utilizing all avail-
able channels (in this example, 4 channels). Note that the aggregation of Dominion’s temporal topologies yields the same
connectivity as the single-channel 802.11 topology.

ment [19] (possible for synthetic networks) or locally based
on two-hop neighborhood [16].

4 Routing

As a Dominion network simultaneously utilizes multiple
channels, it naturally incurs reduced intra-flow and inter-flow
interference as compared to 802.11. As a result, Dominion
tends to sustain higher throughput when experiencing multi-
ple simultaneous flows. However, a routing strategy oblivious
to the underlying channel-hopping schedule may yield unde-
sirably high end-to-end-latencies. An example is presented
in Section 4.1. In this section, we discuss strategies to mini-
mize end-to-end latency, an approach to eliminate intra-flow
interference altogether, and further optimize throughput by
using multiple routes. The proposed solution entails the rout-
ing substrate to convert the network link-state into an abstract
graph, which can be use to calculate routes that either mini-
mize the end-to-end latency or maximize the throughput. The
novelty of the proposed approach is that changing the goal
of a route is as simple as changing the assignment of edge
weights.

4.1 The Case for Intelligent Routing

If data packets need to reach the destination node rapidly
(“as soon as possible”), routing for low end-to-end latency
remains an important goal. Using a 4 channel network (see
Table 1), Fig. 2 illustrates a scenario where the shortest path
(based on hop count) incurs a higher end-to-end latency than a
longer path. Suppose node A (belonging to s3) needs to send
a single packet to a neighboring node B (in s4) at t0. Sub-
networks s3 and s4 do not converge until t6. Hence, node A

t6 t1

t0

A B C
s ss3 54

Figure 2: A longer route may minimize the end-to-end la-
tency.

“stalls” for 6 timeslots. However, if node A relays the packet
via intermediate node C (in s5), the packet can reach the node
B at timeslot t1.

Due to the constant channel hopping, the route that mini-
mizes end-to-end delay is time variant. For example, if node
A desired to send a packet to node B at time t1 (instead of
at t0), the single hop route AC will minimize the end-to-end
latency. However, there are at most T unique routes (one per
timeslot) that minimize end-to-end latency.

4.2 Eliminating Intra-flow Interference

A big drawback of single-channel routing protocols is that
all transmissions share the same medium, which results in
intra-flow interference within multi-hop routes. Intra-flow in-
terference not only affects the throughput, but also adversely
effects the end-to-end latency due to delays caused by con-
tention. Multi-channel routing protocols are also prone to
intra-flow interference (albeit to a lesser degree) if nodes
along a route transmit on the same channel at the same time.
Within Dominion, as nodes within a subnetwork operate on
the same channel, intra-subnetwork hops induce intra-flow in-
terference. We can eliminate all intra-flow interference: (i) by
assigning a specific time at which a hop should be active, i.e.,
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when a node should transmit; and (ii) by selecting hops along
a route that do not interfere with previous hops. Even though
distant nodes may exploit spatial reuse, we conservatively re-
quire the later. Below, we present an overview of how these
two goals can be achieved. The actual mechanism to derive
an intra-flow interference path is described in Sections 4.3
and 4.4.

With Dominion’s deterministic channel-hoping schedule, a
link is only active during certain timeslots. This can be veri-
fied by examining the (channel, time)-tuples set that describe
the channel and timeslots when a link is active. For exam-
ple, in Fig. 2, as nodes A and B converge on channel 2 at
t6, the link AB is characterized by the (channel, time)-tuples
set {(2, t6)}. The size of the such a set depends on the link
itself. For example, an intra-subnetwork link is characterized
by T distinct tuples. However, most inter-subnetwork links
are characterized by exactly one tuple. As mentioned in Sec-
tion 3, only when T 6= 2k − 1, a few inter-subnetwork con-
verge multiple times during a schedule cycle. In Section 4.3,
we describe how a link that converges multiple times during a
schedule cycle is assigned exactly one (channel, time)-tuple.

Given k available channels, and T as the length of the
schedule cycle, there are k · T distinct (channel, time)-tuples.
If every hop along a route is characterized by a distinct tuple,
intra-flow interference is eliminated – as none of nodes will
transmit on the same channel, at the same time. Section 4.4
presents the algorithm that selects such routes.

Ignoring channel switching delays and in absence of ex-
trinsic interference, a single flow can maintain a constant
throughput with a non-interfering route. The throughput
would be approximately 1

T

th the MAC bit rate irrespective
of distance (hops). Further, if there are m non-interfering
routes such that none of hops of the m routes interfere with
each other, the throughput increases to m

T
th the MAC bit rate.

Stated differently, throughput of Dominion flows depends on
the number of non-interfering routes rather than on distance.
Based on this premise, Dominion’s routing substrate seeks to
locate as many non-interfering paths as possible.

4.3 Abstract Network Model
A new abstract graph is constructed locally by a source node
whenever it has a data packet for a previously unencountered
destination node. Each physical node A is replaced with T +1
virtual nodes in the abstract graph. The first T virtual nodes,
labeled A0 through AT−1, are the temporal nodes. Each tem-
poral node uniquely represents the physical node during each
of the T timeslots of a schedule cycle. Temporal edges cycli-
cally connect these temporal nodes, i.e., there is a one-way
temporal edge from each node At to A(t+1) mod T for all
t < T . Temporal edges represent the passage of one timeslot.
Fig. 3 expands node A (in a 4 channel network) from Fig. 2.

For each link in the physical topology, we add a virtual con-
nectivity edge from temporal nodes At to Bt for all t during
which their respective physical nodes converge. In the illus-
trated example, the physical links from node A to nodes B
and C are translated to connectivity edges from A6 to B6 and

A A2 A4 A5 A61

0

A0

B6C

A3

A7

Connectivity Edge
Temporal Edge
Base Edge

Figure 3: Expansion of a physical node in the abstract graph
model.

A0 to C0, respectively. Note that a physical link with multiple
convergence periods is now represented by multiple virtual
edges, i.e., each connectivity edge is associated with exactly
one (channel, time)-tuple. The final virtual node, labeled AT ,
is a base node that represents the physical node itself. As
routes start and terminate only end nodes, base nodes are re-
quired only for source and destination nodes. A base node is
connected to its respective temporal nodes via base edges.

4.4 Goal Oriented Routing

A node may want to minimize end-to-end latency (e.g., for
multimedia traffic) or maximize throughput (e.g., for large
file transfers). The routing substrate empowers a source node
to make such decisions locally at run time, by simply chang-
ing edge weights of the abstract graph on a per-flow basis, and
without any changes in the network. We assign edge weights
based on the following plausible simplifications:

• The entire network is dormant, i.e., there is no network
activity except for a single packet being transmitted from
source node A to destination node B. This assumption
allows us to ignore delays due to medium contention
(which are not trivial to calculate in a distributed sys-
tem).

• As both the time to switch to another channel and the
time to transmit a single packet are substantially less
than the duration of a timeslot, we ignore such delays.
This allows us to focus on minimizing the aggregate stall
time.

Next, we define the two primary goal-oriented routing sub-
strates and describe their respective edge weight assignments.

• Low Latency (LL) routing: The goal is to minimize the
aggregate stall time at each intermediate node. Hence,
the weight assignment should aid the routing substrate
in selecting a route with the minimum end-to-end delay.
To this effect, each temporal edge is given a weight of 1
as the packet is stalled for one timeslot. Whereas each
connectivity edge is given a cost of 0 as the packet is
being currently transmitted.
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• High Throughput (HT) routing: The goal of HT routing
is to select the best quality links. Hence, each connec-
tivity edge is weighted equivalent to the multiplicative
inverse of the underlying physical link’s probability to
successfully forward a packet. Whereas each tempo-
ral edge is given a weight of 0 as it is irrelevant. This
weight assignment can be used to locate the route with
the smallest ETX cost [8]. With this weight assignment
scheme, by giving a weight of 0 to temporal edges, it
may seem that we are reducing the abstract graph back
to the network link state. However, the abstract graph
allows us to assign a schedule to the network hops (used
to eliminate intra-flow interference – described next) and
break ties between two similar routes. To break a tie be-
tween routes, the other weight system is used as a sec-
ondary key.

For both LL and HT routing, Dijkstra’s algorithm [6] is
used to find the shortest path between the respective base
nodes of the source and the destination in the abstract graph.
This path represents the shortest route from the source node
A to destination node B, with each hop along the route as-
signed exactly one (channel, time)-tuple. To eliminate intra-
flow interference, if the path contains two or more connectiv-
ity edges with the same tuple, all but one of them are tem-
porarily discarded. If possible, the edges in the middle of
the path are chosen to preserve the connectivity of source and
destination nodes to their neighbors. This is a heuristical ap-
proach and may be suboptimal: it may prune the edge that
actually yields the optimal solution. Nonetheless, in practice,
we find that this approach suffices.

Dijkstra’s algorithm is run repeatedly (up to a certain
limit, which is discussed further in Section 5), until a non-
interfering path is found. If a non-interfering path can not be
found, the shortest path is used as a fall-back. We show in
Section 5 a non-interfering path can be found with high prob-
ability. If a non-interfering path is found, it is stored as a valid
path and the process is re-run to locate more paths until no
more non-interfering paths can be found. In essence, Domin-
ion divides a network flow into multiple subflows. However
prior to computing the next path, all temporarily discarded
links are restored. Further, for each connectivity edge in the
last located path, all congruent connectivity edges are pruned
from the abstract graph. Two edges are said to be congruent
if they are assigned the same (channel, time)-tuple. Pruning
congruent edges eliminates “inter-subflow interference” and
allows throughput to scale with the number of routes found.

The routing substrates described above are based on a cen-
tralized algorithm. It is made distributed by using a link state
protocol, i.e., maintaining the link-state at each node.

4.5 Additional Issues
TCP performance over single-channel multi-hop wireless net-
works remains a formidable challenge [2]. As such, we do not
directly evaluate TCP performance in this paper. However,
we take certain steps in improving Dominion to deliver pack-
ets in order. The ideas mentioned here along with tasks left

as future work (mentioned in Section 8) should allow TCP to
work fluidly atop a Dominion network.

As two subflows may have different end-to-end latencies
packets may arrive out-of-order. Particularly, a subflow may
originate at an earlier timeslot and deliver packets to the des-
tination node later than another subflow. This poses a prob-
lem for transport protocols such as TCP which expect their
packets to arrive in order. As a result, for LL routing an ad-
ditional subflow is started only if it delivers packets in order.
As is the case with locating an additional intra-flow interfer-
ence path, a connectivity edge in the middle of the route is
temporarily discarded and the algorithm is recomputed if an
additional path delivers packet out-of-order. While this opti-
mization reduces the number of packets arriving out-of-order
substantially, the problem is not completely eliminated. Pack-
ets remaining in the buffer of an intermediate node will have
to wait until the next schedule cycle to be forwarded – result-
ing in out-of-order delivery. As packet timeliness is only of
secondary importance with HT routing, the routing substrate
(or alternatively, the application itself) at the destination node
can be directed to lazily resequence the packets.

If a node only needs to transmit a few packets (e.g., TCP
ACKs), a variant of LL routing, Low Latency Now (LLN)
routing can be used. The key idea is that since only a few
packets need to be sent, it may be acceptable to have minimal
subflow interference as throughput is of only secondary im-
portance. Due to the cyclical channel hopping schedule, the
shortest path (based on end-to-end latency) between a source
and a destination node is time variant. We can simply use the
shortest path available at the given instance – now – instead
of computing and using a path that is part of a multi-path so-
lution. To compute a LLN route, all base edges except one for
the source node are pruned – the base edge to the current tem-
poral node is maintained. The destination node’s base edges
remains unaffected. If packets can not be delivered within
the same timeslot, the remnant packets may use a different
route causing minimal intra-subflow interference. However,
packets will generally arrive in-order.

5 Analysis

In this section, we first present the expected end-to-end de-
lay for both high throughput (HT) and low latency (LL) rout-
ing. To simplify our analysis, we focus on the shortest path
located by both routing substrates. Stated differently, we do
not address multi-path routing or the impact of intra-flow free
routes. The experimental results presented in Section 6 show
that empirical results with these options match the simpler an-
alytical results. Next, to address the issue of algorithm com-
plexity, we calculate the probability of a path being intra-flow
interference free. With this information, we calculate an ef-
fective limit that Dijkstra’s algorithm must be rerun to locate
an intra-flow interference-free path. We finish by analyzing
the time complexity of Dijkstra’s algorithm on the abstract
graph.
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5.1 Expected End-to-End Latency

The lowest (or best) delay for a path depends on its hop count.
In the best case, a packet can depart the source node at the
time of packet origin and continue its traversal to the des-
tination node during the same slot. Therefore, the lowest
delay for a route R is simply Ω(delay) = 0. The high-
est (or worst) delay for a route is when each hop induces a
stall time of T − 1 slots. The highest delay for a route R is
O(delay) = |R| · (T − 1), where |R| is the hop count.

The expected delay for a route is in between these two ex-
tremes. As the next hop for HT routing is chosen without re-
gard to the delay, the expected end-to-end delay for the short-
est HT route R is:

Ex[delayHT] = |R| ·
T

2
(2)

To validate our analysis, we plot the above result along side
empirical results in Section 6.3.

The expected delay for a LL route depends on many vari-
ables but most importantly on the number of acyclic routes
between a source and destination node. This is a non-trivial
calculation for real topologies. As such, we simplify the prob-
lem by solving for the expected end-to-end delay between a
source and any destination node |R| hops away. This gives
us the lower-bound on the expected end-to-end delay with
LL routing. Further, we make make the following assump-
tions: (i) the nodes are located as lattice points on a torus, (ii)
the transmission range r is equivalent at each node, (iii) ran-
dom assignment of nodes to subnetworks, and (iv) 2k − 1 is
prime, i.e., T = 2k − 1. Assumptions (i) and (ii) imply that
each node will have exactly α neighbors, where the value of
α depends on r and density of the lattice. Assumption (iv)
implies that a subnetwork will converge with another foreign
subnetwork exactly once during the schedule cycle. It is an
acceptable assumption as it is true for both k = 3 and k = 12
(the maximum number of channels in 802.11b/g and 802.11a
respectively).

We begin by calculating the expected delay for a node one
hop away, and generalizing to a node |R| hops away. How-
ever, before we delve further, the difference between the num-
ber of “available” neighbors for a source node and any of the
intermediate nodes along a route should be noted. As routes
are acyclic, an intermediate node only has at most α−1 avail-
able neighbors, i.e., one of the neighbors is already a pre-
decessor in the path. We use α′(h) to imply the number of
neighbors. In other words, α′(0) = α for the first hop and
α′(h) = α − 1 for any intermediate hop (i.e., 0 < h < |R|)
along the route.

With LL routing, a node transmits a packet to to next node
as soon as possible after packet reception (for a source node,
the packet reception time is the packet generation time). We
denote the time of packet reception as t = 0 for a given node.
This stall time could be as low as zero if the two nodes are
presently converging. However, this only occurs if the next
node is part of the same subnetwork or is part of the presently
converging foreign subnetwork. The probability that a node

is converging with a particular neighbor at the time of packet
reception is 1

k (i.e., 2 out of 2k subnetworks). The probability
that any of the α′(h) neighbors belongs to either of these two

subnetworks is given by Pconv(h, t=0) = 1−
(
1− 1

k

)α′(h)
. If the

hop does not converge at the time of packet origin, LL routing
will select the neighbor that is first to converge. For any given
slot t, where t > 0, the probability that a link to any one of its
neighbor is active is dependent on: (i) the probability that the
hop has not already converged, i.e., 1−P (conv(h, t−1); and
(ii) the probability that there is a neighbor that converges with
the currently converging subnetwork. For all slot t, where
t > 0, the number of available subnetworks reduces by one
as there is exactly one foreign subnetwork that converges per
slot. This follows so that when t = T − 1, there is exactly
one subnetwork remaining and convergence is guaranteed.
Hence, the probability that a hop converges at time t is:

Pconv(h,t) =

8<:1 −
`
1 − 1

k

´α′(h)
, if t = 0;`

1 − Pconv(h,t−1)

´
· (1 −

“
1 − 1

T−t

”α′(h)
), otherwise.

The expected delay at a single hop is the sum of all possible
values of t multiplied by the probability that the hop will be
active at this time. To get the total end-to-end latency for the
route, this value is multiplied by the number of hops.

Ex[delayLL] =

|R|−1X
h=0

T−1X
t=0

Pconv(h,t) · t (3)

5.2 Intra-flow Interference Free Path
Dijkstra’s algorithm is repeatedly executed to locate an intra-
flow interference-free path. To derive a mathematically in-
tuitive limit for rerunning Dijkstra’s, we first determine the
probability that a selected path is intra-flow interference free.
The HT routing metric chooses paths based on the ETX
quality of connectivity edges and is oblivious to it’s (chan-
nel, time)-tuple assignment. Recall from Section 3, there are
total of k ·T distinct (channel, time)-tuples. Generally, a con-
nectivity edge is assigned a given tuple with probability 1

k·T
if using random assignment of nodes to subnetworks. There
is an exception to this: a route with two consecutive intra-
subnetwork hops features two consecutive connectivity edges
with the same (channel, time)-tuple. However, this is trivially
mitigated by picking one of the other T−1 connectivity edges
for the physical link. However, we take the conservative ap-
proach (which also simplifies the problem) and ignore such
possibilities. Hence, the probability of the shortest HT route
R being intra-flow interference-free is:

Pdistinct =

8>><>>:
0, if |R| > k · T ;
|R|−1Y
h=0

„
1 −

h

k · T

«
, otherwise.

(4)

Fig. 4 shows the probability of a selected path being intra-
flow interference free on the primary y-axis (the left side).
With 12 available channels, a route with |R| = 6 hops has
a 0.95 probability of being intra-flow interference free. With
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Figure 4: The probability of a selected path being intra-flow
interference free and the estimated number of computations
to locate such a path.

6 channels, the probability reduces to 0.79. If an interfering
path is found, the algorithm is recomputed after temporarily
discarding one of the offending connectivity edges. While
this increases the probability of finding a non-interfering path
(as the offending edge is removed), for our calculations, we
maintain the same (lower) probability of additional paths be-
ing intra-flow interference free. With this conservative ap-
proach, we estimate the number of times Dijkstra’s must be
recomputed to have a 99% probability of finding a intra-flow
interference free route. The results are shown on the sec-
ondary y-axis (on the right side) of the aforementioned figure.
While the practical upper bound on the number of recomputa-
tions is less than half a dozen, we take a pessimistic approach
and use a much higher limit of 100 for our implementation.

5.3 Algorithm Complexity
Given a graph G = (V,E), Dijkstra’s algorithm implemented
using Fibonacci heaps completes in O(|E|+ |V | log |V |) [6].
We can compute the computational complexity of the routing
algorithm by counting the total number of edges and nodes in
the abstract graph.

Assuming T = 2k−1, the abstract graph has 2k (i.e., T+1)
virtual nodes for every physical node, for a total of 2|V |k or
O(|V |k) nodes. There are 2k−1 connectivity edges for each
intra-subnetwork link, whereas there is exactly 1 connectivity
edge for all inter-subnetwork links. With random subnetwork
assignment, the probability of such an intra-subnetwork link
is Pintra-subnet = 1

2k . Hence, the expectation for the total num-
ber of connectivity edges, |Ec|, in the abstract graph is:

Ex [|Ec|] = Pintra-subnet · |E| · (2k − 1) + (1 − Pintra-subnet) · |E| · 1

=
1

2k
· |E| · (2k − 1) +

„
1 −

1

2k

«
· |E| · 1

=
|E| · (2k − 1)

k
< 2|E|

Further, there are 2k − 1 temporal edges for each physi-
cal node for a total of |V |(2k − 1) temporal edges. Finally,

the virtual base nodes of the physical source and destination
nodes are connected to each of their 2k − 1 respective tem-
poral nodes. Thus, there are a total of 2|E| + |V |(2k − 1) +
2(2k − 1), or O(|E|+ |V |k) edges. As a result, the cost of a
single iteration of Dijkstra’s algorithm on the abstract graph
is O (|E|+ |V |k log (|V |k)). This step is executed up to 100
times to locate each intra-flow interference-free path. The
process is repeated until all paths are found. At best, there are
2k− 1 non-interfering paths between two nodes, i.e., one per
slot. Therefore, the complexity of locating multiple routes is
O

(
|E|k + |V |k2 log (|V | · k)

)
.

6 Experiments
We evaluate Dominion using the Qualnet v3.9 network
simulator [24]. The first set of experiments comprehen-
sively evaluate the various design parameters of Domin-
ion. Next, the comparative experiments evaluate Dominion
against SSCH [1] and 802.11 under various scenarios. We
find that Dominion outperforms both 802.11 (by an order of
magnitude) and SSCH in aggregate throughput and fairness.

6.1 Implementation

We implement Dominion using the Qualnet network simula-
tor v3.9 [24]. Most of the code resides at the network layer
with a few hooks in to the MAC layer. To promptly switch
channels when they are due, the MAC layer attempts only 1
DCF (vs. 7 for 802.11) transmission at a time for each packet.
A packet is dropped after 14 successive DCF failures, akin
to two 802.11 retries. Dominion uses source routing akin to
DSR [15]. Each packet includes a Dominion header specify-
ing the hop count, the sequence of intermediate nodes, and
the channel and time at which the intermediate nodes must
transmit. As an example, a packet traversing 5 hops would
incur an overhead of 35 bytes due to source routing.

A node maintains a packet buffer equivalent to the max-
imum number of the packets that can be transmitted in a
single timeslot. FIFO queuing of buffered packets does not
bode well for intermediate nodes. A packet arriving at an
intermediate node maybe not be scheduled to depart until a
later timeslot. To prevent head-of-line blocking, separate per-
timeslot FIFO queues are maintained.

However, per-timeslot FIFO queues still present a problem
of flow starvation. Imagine a scenario where both node A
and node B have an ongoing flow to destination node D via
intermediate node C. Node A converges with node C at t1 and
node B converges with node C at t2. Lastly, node C converges
with node D at t3. The flow with an earlier convergence to
node C (i.e., node A at timeslot t1) will fill up node C’s buffer
for timeslot t3, starving the flow from node B. Hence, we
maintain per-timeslot, per-flow FIFO queues. During a given
timeslot, packets from the various per-flow FIFO queues are
transmitted using a round-robin scheduler.

Yet a small problem remains – at node C, packets for times-
lot t3 are arriving twice as fast (incoming at both t1 and t2)
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as they can be forwarded. In such a scenario, packets may be
dropped at intermediate nodes. To prevent buffer overflows,
we use flow control to block the arrival of new packets. Once
a per-flow queue contains as many packets as can be trans-
mitted within a single timeslot, the flow of packets is blocked
until the next schedule cycle. As the 2-byte time stamp field is
generally unused by 802.11 ACK packets, we use it to deliver
the “buffer is now full” directive to the previous hop neighbor.

Lastly, we acquired the code for SSCH from its authors.
The original SSCH code was implemented in Qualnet v3.6,
which we ported to v3.9. However, the current implementa-
tion of SSCH has an intrinsic problem – it requires the num-
ber of channels to be prime. Thus to make a fair comparison,
we use 11 as the number of channels for all comparative ex-
periments.

6.2 Methodology
The physical layer uses the two-ray path-loss model and
the constant shadowing model. As a result, the phys-
ical links exhibited temporal variance. The TX-POWER
and RX-SENSITIVITY of transceivers use the specifica-
tions of the popular Wistron NeWeb DCMA-82 802.11a/g
adapter [28]. The transceiver can transmit at 22.5 dBm us-
ing the maximum 802.11a MAC bit rate (54 mbits/s). The
nodes also used a low-powered omnidirectional antenna (5
dBi at 80% efficiency). Both virtual carrier sensing (i.e., no
RTS-CTS packets) and autorate fallback (i.e., nodes always
transmit at 54 mbits/s) were disabled. All 12 802.11a chan-
nels were used. The cost of a switching to another channel is
80µs [11].

While Dominion was evaluated using various parameters,
we establish a set of default settings. These settings are vali-
dated in Section 6.3. We use these default settings for all our
experiments unless mentioned otherwise. The default topol-
ogy uses 100 nodes placed in a 1 km2 square, with the node
locations chosen using uniform random placement. The max-
imum shortest distance between any two nodes in the default
topology (with the configured transceiver settings) is 7 hops.
The timeslot duration for both Dominion and SSCH is set to
10 ms. Nodes used the HT routing substrate.

A dynamic routing protocol induces substantial overhead
for route discovery and maintenance (or recovery) inhibiting
maximum attainable throughput [3]. As a result, we use static
routing to eliminate the routing overhead.4 Prior to the ex-
perimentation, we execute a bootstrap process to gauge the
“steady-state” quality of each link. During the bootstrap pro-
cess, each node broadcasts a few hundred HELLO message at
random intervals. At the completion of the bootstrap process,
the quality of each link is calculated based on the proportion
of HELLO messages received by each neighbor. With this
information, we calculate static routes for both 802.11 and
SSCH using ETX [8]. A set of high quality links (i.e., for-
ward transmission probability of 85% or higher) is used to
determine routes for Dominion. Comparatively, ETX only
selects the best available links unless a “worse link” provides

4We partially evaluate 802.11 with DSR to verify this claim.
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Figure 5: Route length vs. throughput

a shorter path – in our experiments, more than 96% of links
selected by ETX had a forward transmission probability of
85% or greater. Finally, there is a minor competitive advan-
tage for both 802.11 and SSCH (in our experimental results):
in contrast to Dominion, the former do not incur the overhead
of source routing.

Lastly, based on the link state information, each Domin-
ion node was assigned a subnetwork to minimize the number
of nodes in each subnetwork within their local 2-hop neigh-
borhood. Subnetworks can also be assigned dynamically if
each node piggybacks information about its neighbors atop
periodic HELLO messages [16].

The experiments were performed using constant bit rate
(CBR) flows over UDP. A 1024-byte packet was offered every
100 µs safely saturating the maximum MAC bit rate. Each in-
dividual simulation lasted 30 seconds, with network flow(s)
starting at the 15 second mark and terminating at the end. To
reduce statistical anomalies, each throughput-based bench-
mark was evaluated 5 times with a different set of flows. All
results are described using the mean of the experimental runs.

6.3 Dominion Characteristics

In the first two experiments, we study the effect of route
length. For these experiments, we execute only one flow per
trial. Fig. 5 shows that the goodput of a network using 802.11
reduces inversely with increasing hop count. Note that the
maximum goodput is not equal to the native MAC bit rate (54
mbits/s) primarily due to packet acknowledgment overhead.
On the other hand, Dominion (with 12 channels) using only
a single route maintains a constant goodput approximately
equivalent to 1

23

th the maximum goodput irrespective of the
hop count. This matches the theoretical observation made in
Section 4.2. Using multiple routes, Dominion achieves higher
throughput by locating multiple non-interfering routes. Note
that 802.11 outperforms Dominion for shorter routes, but Do-
minion excels with longer routes. Throughput of Dominion
flows depends on the number of non-interfering routes rather
than on the distance between nodes.

As shown before in Section 5.1, the end-to-end latencies in
Dominion depend on the route length. To effectively evalu-
ate the end-to-end latencies, we randomly select 50 different
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routes of each possible path length. As mentioned previously,
the longest route in our default topology is 7 hops. However,
due to the scarcity of long routes, the evaluation of end-to-end
latencies was limited routes 6 hops long. To precisely mea-
sure the end-to-end latency, all network flows transmit only
one data packet. Further, these flows are time-staggered to
not cause interference with each other. We use a timeslot of 2
ms for this experiment, however, results can be multiplied by
a linear factor to approximate results for other durations.

Fig. 6 shows the mean end-to-end latency experienced by
HT, LL and LLN routing substrates. Notice that the end-to-
end latencies for LLN routing are under 50 ms for routes as
long as 6 hops. We believe this is an acceptable delay for
web traffic loads. For HT routing, the experimental end-to-
end latencies closely match the theoretical results derived in
Section 5.1. The end-to-end latencies for HT routing are ap-
proximately 3 times worse than LL and LLN routing.

For the next set of experiments, we use 50 random flows
of varying length, to evaluate aggregate network throughput.
To mitigate the effect of varying route length, we present
distance-normalized results, i.e., each flow’s throughput is
given a weight equivalent to the distance between its end
nodes. Fig. 7 shows the performance of Dominion if the
maximum number of subflows is 3, 6, and unlimited (i.e.,
23 with 12 channels). Unlimited subflows provides the best
result when there are fewer simultaneous flows, but the 6 sub-
flows and later the 3 subflows outperform unlimited subflows
as the number of simultaneous flows increase. This can be
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reasoned as more subflows create greater contention across
network flows. Automatically adjusting the number of sub-
flows utilized at run time remains an interesting idea for fu-
ture extensions.

Fig. 8 shows that assigning nodes to subnetwork based on
a 2-hop geographic neighborhood provides a noticeable im-
provement over random subnetwork assignment.

While we use the default timeslot duration of 10 ms, a
smaller timeslot duration should theoretically only affect the
throughput of the network marginally. With a 10 ms timeslot
duration, a 80 µs switching delay implies a relatively neg-
ligible 0.8% penalty. With a smaller timeslot duration, the
switching penalty increases linearly. However, Fig. 9 shows
that the overhead does not remain linear with decreasing
timeslot duration as theoretically expected. This is because
the transceiver can not switch to the designated channel until
the packet in flight is delivered to (or received from) a neigh-
bor. As mentioned earlier, Dominion minimize this delay
by only attempting 1 DCF transmission per attempt. While
a 2 ms timeslot incurs noticeable degradation, intermediate
timeslots of 3, 4, and 5 ms provide interesting trade-off points
between high throughput and reduced end-to-end latencies.

Finally, Fig. 10 shows the effect of maintaining link state
of varying link qualities. Link quality has minimal effect with
HT routing, as ETX based routing naturally selects high qual-
ity links However, the performance of LL routing varies sig-
nificantly as it is oblivious to link quality. The best LL route
attempts to minimize end-to-end latency, and may select poor
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quality links when low quality links are used. It should be
noted that this plot also shows the trade-off between HT and
LL routing in terms of throughput. HT routing provides sig-
nificantly better throughput than LL routing. However, the
question of an appropriate minimal link quality can not be
answered without evaluating the end-to-end latencies. Fig. 11
shows that LL routing with higher quality links (75%, 85%,
and 95%) performs noticably better than with lower quality
links (50%). This may seem surprising as a shorter tempo-
ral route can be chosen with the numerous additional links
provided by a lower quality link state. However due to the in-
creased packet drop rates, and hence packet retransmissions,
lower quality links are ineffective. We settle on a links with
85% or greater probability of successful transmission as ef-
fective links.

6.4 Comparative Evaluation

Fig. 12 shows that both Dominion and SSCH achieve an order
of magnitude higher aggregate throughput than 802.11 with
random flows. The throughput increases substantially as the
numbers of flows increase. It should be noted that 802.11 is
included only as a strawman as it operates on a single chan-
nel only (observe that a more “sophisticated” 802.11 is not
possible as using multiple channels partitions the network).

SSCH does achieve higher actual throughput than Domin-
ion for a small number (≤25) of simultaneous flows, how-
ever, Fig. 13 shows that in terms of normalized through-

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

T
hr

ou
gh

pu
t (

in
 1

06  b
its

/s
)

# Flows

Dominion
SSCH + Static ETX

802.11 + Static ETX
802.11 + DSR

Figure 12: Actual aggregate throughput
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Figure 13: Normalized aggregate throughput
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put (i.e., each flow’s throughput is given a weight equiv-
alent to the distance between its end-nodes), both perform
similarly even with fewer flows (with Dominion performing
much better with more). This implies that Dominion achieves
lower throughput (for those scenarios) only because of its ten-
dency to be fair, i.e., sustain longer flows better. With 50
simultaneous random flows, on average, Dominion achieves
achieves 1064% and 93% higher distance-normalized aggre-
gate throughput than 802.11 and SSCH respectively.

SSCH does achieve minimally higher aggregate through-
put than Dominion for up to 15 simultaneous flows, how-
ever, Fig. 14 shows that SSCH’s performance is highly vari-
ant based on the flow selection. This can be reasoned by the
intrinsic synchronization mechanism used by SSCH: a node
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attempts to synchronize with the neighbor for which it has
the most packets. As a result, a source node almost contin-
ually synchronizes with its next hop neighbor, reducing the
throughput for any flow for which it is an intermediate node.

Further, Jain’s fairness index [14] was used to evaluate
throughput distribution amongst individual flows. In Jain’s
Fairness Index, a 1.0 represents optimal fairness. Fig. 15
shows that both SSCH and 802.11 fare poorly compared to
Dominion. With 50 simultaneous random flows, Dominion
is 299% and 291% fairer than both 802.11 and SSCH re-
spectively. This further explains why Dominion performs
slightly worse than SSCH in terms of aggregate throughput
with fewer flows (Figs. 12 and 13).

Next we evaluate the effect of varying density on Dominion
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Figure 18: Bi-directional gateway flows

and SSCH. For this experiment, we generate two new topolo-
gies – one with half the total area and the other with double
the total area. As a result, the maximum shortest distance
between any two nodes is 10 hops for the larger topology
and only 4 hops for the smaller topology. Fig. 16 shows that
Dominion achieves higher aggregate throughout than SSCH
under both topologies. Fig. 17 is another experiment that
compares the effect of using a different number of channels
for Dominion and SSCH. Dominion outperforms SSCH with
both 7 channels and 3 channels. Quite surprisingly, Domin-
ion with 3 channels matches the throughput of SSCH with 7
channels when the network experiences more than 40 simul-
taneous flows.

Generally, most flows in wireless mesh networks either
originate, pass-through, or terminate at centrally located gate-
way nodes. Using only a single gateway node, we evaluate
the performance of Dominion (and others) with up to 30 si-
multaneous bi-directional gateway flows. Fig. 18 shows that
with 30 simultaneous gateway flows, Dominion achieves 55%
and 64% higher aggregate throughput than 802.11 and SSCH
respectively. To further improve performance vs. 802.11, Do-
minion and SSCH may utilize multiple transceivers per node
to further improve performance. Because neither support it
intrinsically, we use multiple co-located nodes to mimic a
gateway node with multiple transceivers. Note that only the
gateway node has multiple transceivers. Dominion3T (i.e.,
subscript indicates number of transceivers) performs remark-
ably better than the other solutions. In fact, Dominion with
a single transceiver achieves higher throughput than SSCH3T

after 15 flows.

7 Related Work
Previous research efforts can be divided into two broad cate-
gories: (i) solutions that exploit multi-channel diversity; and
(ii) solutions that exploit multi-user diversity with multi-path
routing.

Solutions that exploit multi-channel diversity with only a
single commodity transceiver are MMAC [26], SSCH [1]
and Local Coordination-based MAC (LCM MAC) [18].
MMAC and SSCH were described in Section 2. Local
LCM MAC performs coordinated channel negotiations and
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channel switching to provide multichannel support. In
essence, it improves MMAC while following similar design
principles. LCM MAC eliminates the need for strict time syn-
chronization by requiring nodes in designated nodes to con-
verge to a common control channel when idle.

The next set of solutions utilize multiple commodity
transceivers. Dynamic Channel Assignment (DCA) [29] re-
quires two transceivers per node, one for the control chan-
nel communication and the other for actual transmission of
data packets. Jain et al [13] propose a similar scheme to
DCA except the receiver decides which channel to switch to
next. Draves et al [9] propose a multi-radio routing protocol
that uses two transceivers: one operating on 802.11a and the
other on 802.11b/g. Hyacinth [25] requires two transceivers
per node, both of which are assigned different static chan-
nels such that the network remains connected. Kyasanur
and Vaidya [16] propose a routing protocol that works with
two transceivers: the first transceiver is assigned a static
home channel, whereas the second transceiver channel hops
to transmit packets.

Another set of solutions utilize (at least) one special-
ized transceiver. Nasipuri et al [22, 21] propose two
closely related multi-channel CSMA protocols that assume
a transceiver can listen to all available channels simultane-
ously. Node pairs choose the least busy channel to exchange
data packets. Extended Receiver Directed Transmission Pro-
tocol (xRDT) [18] is a recently proposed protocol that uses an
additional “busy tone” interface (coupled with a commodity
transceiver) to resolve the multichannel hidden terminal and
deafness problem.

So and Vaidya [27] propose a routing-later solution to
exploit multiple channels using only a single commodity
transceiver. The proposed protocol assigns specific channels
to routes. Whenever a node initiates route discovery, a certain
channel is assigned to route (i.e., all nodes along the route are
switched to that channel). The scheme fails to exploit maxi-
mal multi-frequency diversity when the network is experienc-
ing multiple non-disjoint flows as routes start converging to a
dominant channel.

Existing solutions that exploit multi-path routing include
Opportunistic Multi-path Scheduling (OMS) [5], which uses
multiples routes via intelligent scheduling. Extremely Op-
portunistic Routing (ExOR) [2] forwards a series of packets
through nodes, deferring the choice of next hop until after the
previous node has transmitted the packet. pTCP [12] and R-
MTP [17] are two closely related solutions that improve TCP
performance over multi-path routing.

8 Conclusion And Future Work

In this paper, we make four new contributions. Firstly, in Sec-
tion 4, we present the graph-theoretic model for the multi-
channel wireless mesh network that supports goal-oriented
routing. Nodes can locally choose to maximize through-
put or minimize end-to-end latency without requiring any
changes in the network. Secondly, in the same section, we de-

scribe a technique to remove all intra-flow interference. Sec-
tion 6.3 validates our theoretical observation that in absence
of extrinsic interference, network flows can maintain constant
throughput irrespective of distance. Next, in Section 5 via
theoretical modeling and analysis, we provide expected end-
to-end latencies for network flows. Finally, in Section 6.4, the
extensive QualNet simulations show that Dominion is able
to achieve 93% higher throughput and improve fairness by
291% over SSCH.

The two biggest drawback of the Dominion architecture
are: TCP performance and efficient support for broadcasting.
In preliminary experimentation, we find that most of TCP
problems arise due to multi-path routing. As subflows can
terminate at arbitrary time slots, the packet inter-arrival rate
is highly variant. For example, numerous packets can arrive
in a short burst during a time slot in which a subflow termi-
nates, followed by a period of no new packet arrivals until the
next time slot in which another subflow terminates. To miti-
gate this problem, we believe we can leverage previous work
that aggregate packets over multiple paths via a “middleware”
packet re-sequencer [12, 17].

To support routing primitives, we would also like to inves-
tigate the ability to efficiently broadcast messages. For exam-
ple, SSCH [1] takes a probabilistic approach for broadcasting:
each node broadcasts a message for only a part of its sched-
ule cycle. In the future, we would like to investigate and de-
rive optimizations for the trade-off between reducing network
traffic and fast dissemination of network-wide broadcasts.
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