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Abstract: One way to reduce energy consumption in 
wireless sensor networks is to reduce the number of 
packets being transmitted in the network. As sensor 
networks are usually deployed with a number of 
redundant nodes (to overcome the problem of node 
failures which is common in such networks), many 
nodes may have almost the same information which 
can be aggregated in intermediate nodes, and hence 
reduce the number of transmitted packets. Aggregation 
ratio is maximized if data packets of all nodes having 
almost the same information are aggregated together. 
For this to occur, each node should forward its 
packets along a path on which maximum number of 
nodes with almost the same information as the 
information of the sending node exist. In many real 
scenarios, such a path has not been remained the same 
for the overall network lifetime and is changed from 
time to time. These changes may results from changes 
occurred in the environment in which the sensor 
network resides and usually cannot be predicted 
beforehand. In this paper, a learning automata based 
data aggregation method in sensor networks when the 
environment's changes can not be predicted 
beforehand will be proposed. In the proposed method, 
each node in the network is equipped with a learning 
automaton. These learning automata in the network 
collectively learn the path of aggregation with 
maximum aggregation ratio for each node for 
transmitting its packets toward the sink. To evaluate 
the performance of the proposed method computer 
simulations have been conducted and the results are 
compared with the results of three existing methods. 
The results have shown that the proposed method 
outperforms all these methods, especially when the 
environment is highly dynamic. 
Index Terms:  Sensor Networks, Data Aggregation, 
Learning Automata 
 
1. Introduction 

Sensor nodes are very prone to failure due to their 
limited resources and abilities. One major reason for 

this failure is exhausting energy resources and for this 
reason energy is a vital factor in sensor networks. 
Multi-hop routing which is a way for gathering 
information of every node in every part of the network 
at the sink is one of the major energy consuming tasks 
performed throughout the lifetime of a sensor network.  
For this reason, each node should try to find a path to 
the sink using which minimum energy is consumed by 
the network. One way to do so is for every node to 
compute the amount of energy consumed on each path 
separately, and then to choose the path with the least 
energy consumption [16]. One problem with such a 
method is that, it needs a way of computing energy 
consumption along each path. Another way is to make 
use of data aggregation technique. In data aggregation 
technique, packets with related information are 
combined together in intermediate nodes to form a 
single packet before further forwarding to the sink. 
This reduces the number of transmitted packets in the 
network and as a result, less energy is consumed. 
Using this method, a node has to select a path along 
which maximum number of nodes exists with related 
packets. We refer to this path for each node as the 
Aggregation Path of that node hereafter.  

Finding Aggregation Path for each node is not so 
simple considering only local information. A simple 
approach to find an approximation of this path is to use 
a greedy algorithm. Each node tries to forward its 
packets to a neighbor which has related information to 
that of the node as it is done in [12]. The problem of 
finding Aggregation Path for each node becomes even 
more complicated if the information possessed by each 
node differs during the lifetime of the network. In such 
a situation, Aggregation Path of each node changes 
from time to time and hence, nodes should adapt 
themselves to these changes.  

In this paper a new method based on learning 
automata has been proposed to make nodes capable of 
adapting themselves to changes occurred in their 
Aggregation Paths. In the proposed method, each node 
in the network is equipped with one learning 
automaton. These learning automata collectively learn 
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the Aggregation Paths of all nodes of the network and 
adapt nodes to the changes occurred in the paths.  

To evaluate the performance of the proposed 
method several experiments have been conducted and 
the results are compared with the results of three 
different methods: i) LEACH algorithm [11], ii) 
method given in [12] which performs data aggregation 
with no learning, and iii) method given in [14] which 
performs data aggregation using Q-learning. The 
results have shown that the proposed method 
outperforms all these methods, especially when 
Aggregation Paths are highly dynamic. 

The rest of this paper is organized as follows. 
Section 2 gives an overview on related works reported 
on data aggregation in sensor networks. Learning 
automata as a basic learning strategy used in the 
proposed method will be discussed in section 3. The 
problem statement is given in section 4 and in section 
5 the proposed method is presented. Simulation results 
are given in section 6. Section 7 is the conclusion. 
 
2. Related Work 

Some of the methods reported recently for data 
aggregation in sensor networks such as [1], [2] and [3], 
are query based methods. In these methods a query is 
generated at the sink and then is broadcasted through 
the network. Each node, upon receiving this query, 
processes it partially, and then passes it on to its 
neighbors. After the query is processed completely, its 
result will be sent back to the sink. In this scenario, 
some nodes just process the query, and some others, 
propagate it, receive partial results, aggregate the 
results, and send them back to the sink.  

In some other works, such as [4], [5], [6], [7], [8] 
and [11], the network is first clustered, and then cluster 
heads are used for aggregating data packets in each 
cluster separately. Among these methods, LEACH1 
protocol which was introduced by Heinzelman et al. 
attracted more attention. The operation of LEACH is 
separated into two phases: the setup phase and the 
steady state phase. During the setup phase, a 
predetermined fraction of nodes p, elect themselves as 
cluster heads by comparing a chosen random number 
with a predefined threshold. In the steady state phase, 
cluster heads, aggregate reported data from their 
cluster member nodes and forward aggregated data to 
the sink. Lotfinezhad, and Liang in [9] try to 
investigate the effect of partially correlated data on the 
performance of the clustering methods for data 
aggregation. They have shown that partially correlated 
data has a strong effect on the clustering performance, 
meaning that the lower is the data correlation; the 
 
1 Low Energy Adaptive Clustering Hierarchy  

lower is the clustering performance. They have also 
shown that the amount of energy consumed in a single 
node is strongly related to its position in the network; a 
node far from the sink may consume more energy than 
other nodes. They have also shown that the network 
lifetime is inversely proportional to total consumed 
energy. 

Some other methods are also reported for data 
aggregation in sensor networks. Guestrin et. al. in [10] 
try to approximate the data generated in a single node 
for a specific period of time with a third order 
equation, and send the coefficients of this equation to 
the sink instead of data itself. Dasgupta et. al. in [19] 
assume that each node in the network has the ability to 
aggregate data. Based on this assumption, they present 
a method for maximizing network lifetime. They 
define the network lifetime as the time elapsed before 
the first node dies due to energy exhaustion. This 
method tries to find an aggregation tree rooted at the 
sink spanning all the sensors and maximizes the 
lifetime of the network. For this purpose, they first find 
all possible aggregation trees and then, make use of a 
heuristic approach to find the one which can maximize 
the lifetime of the network. 

Beaver and Sharaf in [12] propose an algorithm 
which tries to find paths along which, sensors 
belonging to the same group (i.e. sensing the same 
phenomenon) reside. In this algorithm, sink will 
initiate a "path construction" packet through the 
network. Each node, upon receiving this packet for the 
first time, set its parent to the sender of the packet, and 
then forwards the packet to its neighbors. If a node 
receives "path construction" again, it checks whether 
sender of the packet belongs to the same group as itself 
or not. If so, this node, changes its parent to this new 
sender of "path construction". This way, each path to 
the sink will consist of mostly the nodes belonging to 
the same group and hence aggregation ratio along the 
path will be increased. This method performs well in 
situations where nodes do not change their groups 
during the lifetime of the network.  

Very few efforts in data aggregation make use of 
learning. Radivojak et. al. in [13] uses machine 
learning technique to force sensor nodes to send only 
specific data required by the sink. Learning algorithm 
used in this method is executed in the sink and its 
results are propagated throughout the network. Beyens 
et al. in [14] use a Q-learner in each node forcing the 
node to send its data via a path along which 
aggregation ratio is maximum. They regard the sensor 
network as a Multi-Agent System (MAS) in which the 
agents are the sensor nodes. Each agent has a number 
of actions equal to the number of its neighbor nodes. 
Each action is to select one of the neighbors for 
forwarding the packets of the node towards the sink. A 
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Q-value is associated with each action. When data is 
routed from the node A to the sink via neighbor node 
B, a feedback is given by B to A. The feedback is 
computed based on the number of hops from B to the 
sink and the aggregation ratio gained in B. This 
feedback is used in A to update the Q-value of the 
action corresponding to the selection of B. After the 
learning, the neighbor corresponding to the action with 
the highest Q-value is chosen for forwarding the node's 
data towards the sink. 

Learning automata is proved to perform well in the 
dynamic environments of wireless, ad hoc and sensor 
networks. Haleem and Chandramouli in [23] use 
learning automata to address a cross-layer design for 
joint user scheduling and adaptive rate control for 
downlink wireless transmission. The proposed method 
tends to ensure that user defined rate requests are 
satisfied by the right combination of transmission 
schedules and rate selections. Nicopolitidis et. al. in 
[24] propose a bit rate control mechanism based on 
learning automata for broadcasting data items in 
wireless networks. A learning automaton is used in the 
server which learns the demand of wireless clients for 
each data item. As a result of this learning, the server is 
able to transmit more demanded data items by the 
network more frequently. Same authors in [25] 
propose a learning automata based polling protocol for 
wireless LANs in which the access point uses a 
learning automaton to assign to each station a portion 
of the bandwidth proportional to the station's need. A 
decentralized approach of the above method is also 
given in [26, 27]. Ravana and Morthy in [28] propose 
Learning-TCP, a novel learning automata based 
reliable transport protocol for wireless networks, 
which efficiently adjusts the congestion window size 
and thus reduces the packet losses. Learning automata 
is also used in cellular radio networks to dynamically 
adjusting the number of guard channels [29, 30, 31]. 
Recently, a few attempts are made for applying 
learning automata to sensor networks [22, 32, 33]. In 
[22], Gholipour and Meybodi propose a learning 
automata-based mobicast routing protocol for wireless 
sensor networks. The proposed protocol uses learning 
automata to adaptively determine the location and the 
shape of the forwarding zone in such a way that the 
number of activated nodes in each forwarding hop 
along the routing path is almost the same. A clustering 
algorithm using cellular learning automata is proposed 
by Esnaashari and Meybodi in [32]. In this clustering 
algorithm, each node is equipped by a learning 
automaton. Learning automaton of each node in 
cooperation with the learning automata of the 
neighboring nodes determines the role of the node to 

be a cluster head or a cluster member. Same authors in 
[33] propose a learning automata-based scheduling 
solution to the dynamic point coverage problem. In the 
proposed scheduling algorithm, the learning automaton 
of each node learns the sleep duration of that node 
based on the movement pattern of a single moving 
target point in the network. 
 
3. Learning Automata 

Learning automata is an abstract model which 
randomly selects one action out of its finite set of 
actions and performs it on a random environment. 
Environment then evaluates the selected action and 
responses to the automata with a reinforcement signal. 
Based on selected action, and received signal, the 
automata updates its internal state and selects its next 
action. Figure 1 depicts the relationship between an 
automata and its environment. 

Environment can be defined by the triple 
{ , , }E cα β=  where 

1 2{ , , ..., }rα α α α=  represents a 
finite input set, 

1 2{ , , ..., }rβ β β β=  represents the output 

set, and 1 2{ , , ..., }rc c c c= is a set of penalty 
probabilities, where each element ci of c corresponds 
to one input of action iα .  An environment in 
which β can take only binary values 0 or 1 is referred 
to as P-model environment. A further generalization of 
the environment allows finite output sets with more 
than two elements that take values in the interval [0, 
1]. Such an environment is referred to as Q-model. 
Finally, when the output of the environment is a 
continuous random variable which assumes values in 
the interval [0, 1], it is referred to as an S-model. 
Learning automata are classified into fixed-structure 
stochastic, and variable-structure stochastic. In the 
following, we consider only variable-structure 
automata. 

 

R a n d o m  E n v i r o n m e n t 

L e a r n i n g  A u t o m a t a 

α ( n )  

β ( n )   
Figure 1. Relationship between learning automata and its 

environment 
 

A variable-structure automaton is defined by the 
quadruple { , , , }p Tα β  in which 

1 2{ , , , }rα α α α= L represents the action set of the 
automata, 

1 2{ , , , }rβ β β β= L  represents the input set, 

1 2{ , , , }rp p p p= L  represents the action probability 
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set, and finally )](),(),([)1( npnnTnp βα=+  represents 
the learning algorithm. This automaton operates as 
follows. Based on the action probability set p, 
automaton randomly selects an action iα , and performs 
it on the environment. After receiving the 
environment's reinforcement signal, automaton updates 
its action probability set based on equations (1) for 
favorable responses, and equations (2) for unfavorable 
ones. 

(1)ijjnjpanjpnjp
nipanipnip

≠∀−=+
−+=+

                )(.)()1(
                   ))(1.()()1(

 

(2)ijjnjpb
r

bnjp

nipbnip

≠∀−+
−

=+

−=+

          )()1(
1

)1(

                                )().1()1(  

In these two equations, a and b are reward and penalty 
parameters respectively. For a = b, learning algorithm 
is called PRL −

2, for b << a, it is called PRL ε
3, and for 

b = 0, it is called IRL −
4. For more information the 

reader may refer to [15][21]. The only application of 
learning automata to sensor networks has been 
reported in [22]. 
 
4. Problem Statement 
      Consider N sensor nodes s1, s2, …, sN which are 
scattered randomly throughout a large LxL rectangular 
area (A) to monitor a certain phenomenon ζ  such as 
temperature, humidity, etc. The location of each node 
si is presented by (xi, yi). Every node si is activated 
periodically, measures the ζ  at the moment and 

reports the measured value of ζ  ( iζ$ ) to the sink node 

using a multi-hop routing scheme. We say iζ$  and 

jζ$ are almost equal and their values can be aggregated 

using MEAN operator if i jζ ζ ε− <  for a small 

value 0ε > . Considering a dense network, measured 
value of ζ is almost equal in some certain region 

( AΩ ⊂ ) around each node i, and hence iζ$  can be 

aggregated with  ,j jsζ ∀ ∈ Ω . ζ  partitions the A into 

M regions 1Ω , 2Ω , …, MΩ with the following 
properties: 

 
2 Linear Reward-Penalty 
3 Linear Reward epsilon Penalty 
4 Linear Reward Inaction 

•   ; , , 1, 2, ...,i j i j ks s k Mζ ζ ε− < ∀ ∈ Ω =  

• ; 1, 2, ...,i for i MΩ ≠ ∅ =  

• ;i j for i jΩ ∩ Ω = ∅ ≠  

• 
1

M

i
i

A
=

Ω =U  

We assume that each kΩ can be approximated with 
a simple circle with center (Xk, Yk) and radius Rk. Also 
we assume that ζ  changes from time to time in 

different parts of the network and hence, 1Ω , 2Ω , …, 

MΩ are not static regions, but their positions and 
radiuses vary during the network lifetime. 

The aim of the network is to periodically collect in 
the sink node the estimate of the position, the radius 

and the estimated ζ$  ( kΖ ) about each region kΩ . For 
this to be achieved each node i reports its position and 

estimated iζ$  to the sink node periodically.  
We define a data gathering round to be the time 

during which all nodes of the network be activated 
once and report their information to the sink. Each data 
gathering round is identified by a unique number 
called data gathering round number which starts from 
1 and increases by one at the end of each data 
gathering round. Using the process of data aggregation 
one can reduce the number of packets received at the 
sink in each data gathering round approximately to its 
ideal number which is the number of regions in the 
environment at that round. Without data aggregation, 
N data packets so many of which are redundant are 
received by the sink node one form each node. 
Performing data aggregation provides longer lifetime 
for the network. Network lifetime is defined to be the 
time elapsed from the network startup to the time at 
which a node in the network dies [19]. To measure 
network lifetime we use Round of Death metric 
defined as the data gathering round number at which 
the first death in the network occurs. 

 

 
Figure 2. A schematic of the simulated environment with 
18 sensor nodes, and 5 different climates. Dashed circles 
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give different partitions of the network based on the estimate 
of the temperature 

To specify the problem more clearly, without loss 
of generality, we make use of a specific application in 
which nodes have the ability to sense the temperature, 
hence ζ  is temperature in this application. We assume 
that several circular climates exist in the environment 
each having a different temperature, and moving along 
a specific direction with a specific velocity. The 
velocity and direction of the movement of each climate 
may be changed randomly in time. These climates and 
their temperatures partition the area of the network into 
different parts ( Ω ) each having a different 
temperature. Figure 2 depicts such an environment 
with 18 sensor nodes, and 5 climates. Dashed circles in 
this figure give different partitions of the network 
based on the estimate of temperature in different 
nodes. Note that these dashed circles have some area in 
common, since each Ω  is estimated by a circle. 
However, it's not a complicated task for the sink node 
to make a more accurate estimation of Ω s in which 
these common areas are removed. 

Each sensor node reports the temperature of the 
climate in which it resides. If it happens for a node to 
reside in more than one climate region, its sensor will 
sense the temperature equal to the mean temperature of 
all climates it resides in. A large static climate is 
assumed to be in the environment which covers the 
whole area A of the network and its temperature is 
assumed to be 0. With the above assumptions, one can 
simply computes the temperature each node reports in 
figure 2. For example, s2 and s5 report 37, s4 reports -6, 
and s3 reports mean of 37 and -6 which is 15.5. In 
addition s1, s7, s8, s9, s10, s15 and s18 report 0 as their 
estimations.  
 
5. The Proposed Method 

 In the network every node si has an internal clock 
which activates the node every t seconds to measure ζ  
and report it to the sink using a multi-hop routing 
scheme. The proposed routing scheme consists of two 
phases: route discovery phase and route selection 
phase. The route discovery phase of the routing 
scheme is first used to find for each node a number of 
alternative routes towards the sink. The route selection 
phase is then used to select a route among all 
alternative routes using which more aggregation can be 
performed. 

Data aggregation is performed along each route to 
the sink wherever it is possible. Data and location 
aggregation will be done at the same time; that is 
wherever data aggregation is performed, location 
aggregation is also performed. In location aggregation, 
the positions of the nodes whose data are aggregated 

are averaged to find an estimate of the center of the 
region to which they belong. The estimated radius of 
the region then becomes the distance between the 
estimated center and the farthest node. Without 
location aggregation, a single aggregated packet 
resulted from aggregating n different packets from n 
different nodes, must contain the positions of all n 
nodes. This makes the aggregated packet too long 
which consumes higher energy for transmission.  

In order to have more aggregation in the network 
each node must try to route its packets toward the sink 
using a path along which more aggregation can be 
performed. Since the positions of the regions changes 
dynamically, the routing algorithm must adapt itself to 
these changes. To achieve the above two goals each 
node in the network is equipped with a learning 
automaton which is responsible for selecting the next 
best hop to forward the packets towards the sink  
during a data gathering round. In the rest of this 
section, we first describe the first version of the 
proposed algorithm which we call it the basic 
algorithm in order to give the main idea. Then two 
improvements to the basic algorithm are given to 
further improve the aggregation ratio and prolong the 
network lifetime. 

 
5-1. Route Discovery Phase 

 
The route discovery algorithm is used to discover 

all possible paths for each node of the network towards 
the sink. The algorithm is based on the simple flooding 
method. Sink node initiates a "Path Construction" 
packet and broadcasts it throughout the network. This 
packet contains a parameter called “DistanceToSink” 
which is set to 1 at the sink node. Other nodes wait to 
receive the "Path Construction". Upon receiving this 
packet, three different cases may be arisen: 

(a) A "Path Construction" packet with lower 
"DistanceToSink" than that of current packet has 
been previously received at this node. In this case, 
the newly received packet is ignored.  
(b) The previously received "Path Construction" 
packets have equal "DistanceToSink" with that of 
current packet. In this case, sender of the "Path 
Construction" is added to the routing table as a 
new alternative path to the sink, "DistanceToSink" 
is increased by 1, and the packet is broadcasted 
over the network again. 
(C) The previously received "Path Construction" 
packets have greater "DistanceToSink" than that 
of current packet. This means that a path with 
fewer numbers of hops to the sink is found. So, all 
the previously found paths are removed from the 
routing table. Then sender of the currently 
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received "Path Construction" is added as a path to 
the sink, "DistanceToSink" is increased by 1, and 
finally the packet is broadcasted over the network 
again. 

The algorithm continues until each node in the 
network discovers all its paths with the same number 
of hops toward the sink. For each path, only storing the 
next hop in the routing table of the node will be 
sufficient. 

At the end of the route discovery phase, each node 
in the network has a list of all its neighbors using 
which it can forward its packets toward the sink. We 
use RoutingListi (RLi) to refer to this list for node si 
where |RLi| is the number of entries in this list.  
 
5-2. Route Selection Phase 

After the route discovery phase is over each node 
in the network is activated every t seconds and reports 
its information to the sink node.  

In this phase each node uses a learning automaton 
for selecting the next best hop to forward its packets 
towards the sink during each data gathering round. 
This way, each node gradually learns the best neighbor 
(the neighbor with the most related data) for 
forwarding its packets toward the sink. 

The learning automaton associated to node si 
referred to by LAi has |RLi| actions whose probability 

of selecting each is initially set to 1

iRL
. Each action 

of the LAi corresponds to the selection of one of the 
neighboring nodes listed in the RLi to be used for 
forwarding packets of si towards the sink. After node si 
is activated and has measured the temperature, it asks 
its learning automaton to select one of its neighboring 
nodes (actions) for forwarding the measured 
temperature toward the sink.  Data are aggregated 
during the route selection phase. The action selected 
by the automaton will be rewarded or penalized based 
on the acknowledgment received from the selected 
neighboring node. How to penalize or reward the 
selected action will be described later.  

Between two subsequent activations of node si it 
may receive two different packet types from its 
neighbors; data packet and acknowledgement packet. 
A data packet contains measured temperature by the 
sender of the packet and its location whereas 
acknowledgment packet is the response of a neighbor 
to a data packet sent by si to that neighbor. A data 
packet transmitted by node si contains three different 
parameters: 
- Ki which specifies the number of packets 

aggregated into that packet 

- 
, iiζ
Κ

 which is the aggregated data computed using 

equation (3):   

(3) 


 

,
1

1

i

i i

n

j
j

n

ζ

ζ

ζ

Κ

=

+

=
+

∑

In the above equation, n is the number of packets 
received at node si. 

- ( ), ,,
i ii ix y

Κ Κ
 which is the aggregated location and 

computed using equations (4): 

(4) 
,

,

1

1

1

1

i

i i

i

i i

n

j
j

n

j
j

x

x
n

y

y
n

x

y

Κ

Κ

=

=

+

=
+

+

=
+

∑

∑

Received data packets are temporary stored and will be 
processed upon the next activation of si.  

In the following we discuss what a node performs 
when activated and what a node performs during the 
time between two subsequent activations. 

Node si upon its nth activation performs the 
following operations: 

- si sets Ki = 1. 

- si senses its surrounding environment to measure iζ . 

- si sets  
, ii iζ ζΚ = , , ii ix xΚ = , , ii iy yΚ =  

- If no data packet is received during the (n-1)th 
activation  and  nth activation of si then 

o si creates a data packet containing 
, iiζ Κ , 

( , iix Κ , , iiy Κ ) and Ki. 

- else If any data packet is received then 
o For each received packet from any neighbor j 
do 

 If the inequality (5) is satisfied then  
• si performs data aggregation using a 
recursive version of the equation (3) given 
in equation (6) 
• si performs location aggregation using a 
recursive version of equations (4) given in 
equations (7) 
• si sets Ki = Ki + Kj 
• si uses equation (8) to compute the data 
aggregation ratio (DARi,j) 
• DARi,j is sent back to node sj via an 
acknowledgement packet as the feedback 
from the environment. 
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o si creates a data packet containing  , iiζ Κ ,                               

( , iix Κ , , iiy Κ ) and Ki.  

- LAi selects one of its actions (say action k) to determine 
the neighbor to which newly made data packet should 
be forwarded.  

- Newly created data packet and the data packets 
received from the neighbors of si, for which inequality 
(3) is not satisfied, are transmitted to neighbor k. 

 

(5)  
, ,i ji j

ζ ζ ε
Κ Κ

− <

ε  is a threshold which specifies the maximum 
difference between measured temperatures below 
which aggregation can be performed. 

(6)
 

, ,

,

i ji j
i i

i j

i j

ζ ζ
ζ

Κ Κ

Κ

Κ + Κ ⋅
=

Κ + Κ

⋅

  

(7)

, ,

,

, ,

,

i ji j
i i

i ji j
i i

i j

i j

i j

i j

x x
x

y y
y

Κ Κ

Κ

Κ Κ

Κ

Κ ⋅ + Κ ⋅
=

Κ + Κ

Κ ⋅ + Κ ⋅
=

Κ + Κ

 

(8)   

,

, , , ,( , ) ( , )

2

i j

i j i ji j i j

DAR

Min Max
U

ζ ε ζ ε ζ ε ζ ε

ε

Κ Κ Κ Κ

=

+ + − − −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

where 

(9)    
; 0

( )
0 ; 0

x x
U x

x

≥
=

<

⎧
⎨
⎩

 

 
Upon receiving the acknowledgment packet 

containing DARk,i by si, LAi penalizes or rewards its 
selected action (action k). If DARk,i is greater than 
threshold AcceptRate, then action k is rewarded 
according to equations (10)  

 

(10)
,

,

( 1) ( ) .( ).(1 ( ))                   
( 1) ( ) .( ). ( )                

k k k i k

l l k i l

p n p n DAR p n
p n p n DAR p n l l k

α
α

+ = + −
+ = − ∀ ≠

and otherwise, it is penalized according to equations 
(11)  
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,

,
,
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k i
l k i l

p n DAR p n
DAR
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r

β
β

β
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−

+ = + − − ∀ ≠
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Where in equations (10) and (11), α  is the reward 
rate, and β is the punishment rate.  

If by any means, node si does not receive any 
acknowledgment from node sk, LAi penalizes its 
selected action according to equations (11) considering 
DARk,i as zero. Node si then retransmits its measured 
temperature via one of its neighboring nodes listed in 
RLi other than node sk. If no other neighboring node 
exists in RLi, node si transmits a RouteRequest packet 
to all of its neighboring nodes. If a neighboring node l 
receives the packet and si is not listed in its RLl, it 
replies with a RouteReply message. Node si gathers the 
received RouteReply packets and adds them to its RLi. 
The LAi of si is reinitialized with all actions having the 
same action probabilities. If node si does not receive 
any RouteReply packet, then it can be regarded as a 
dead node which at this time, the network lifetime is 
considered to be over.   
 
5-3. Improvements 

In this section we discuss two improvements to the 
method proposed in the previous section. For the sake 
of clarity in presentation in the rest of this paper we 
call the proposed method as "Basic Algorithm", and 
the basic algorithm with the first improvement as 
"Algorithm 1" and with the second improvement as 
"Algorithm 2". 
Algorithm 1: In algorithm 1 unlike the basic algorithm 
in which only the aggregation ratio between the node 
and the next node in the routing path is considered for 
choosing a neighboring node, the aggregation ratio 
between the node and its two next nodes in the routing 
path is considered for choosing a neighboring node. 
For the network of figure 3, if the basic algorithm is 
used then node s10 chooses one of its neighbors s7, s8 
and s9 at random for sending its packets towards the 
sink, whereas algorithm 1 chooses node s7. This is 
because the second node from s10 in the routing path 
passed through s7 is node s6 which is in the same 
region as s10 and hence its information can be 
aggregated with information of s10. 

Algorithm 1 performs the following. Each node si 
upon receiving a data packet from its neighbor sj in its 
nth activation time, computes DARi,j using equations 
(8) and (9), and then makes use of equation (12) for 
computing Enhanced-DARi,j. Once Enhanced-DARi,j is 
computed, this will be sent back to node sj as the 
response of node si. 

(12), ,( , ( ))i j i j iEnhanced DAR Max DAR MRR n− =
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Figure 3 Network of node s10 and the environment around it 

In equation (10), MRRi stands for Maximum 
Received Reward and is defined by equation (13). 

(13) ( ),1
( ) max ;i k i it n

MRR n DAR for k RL
≤ ≤

= ∈  

The max operation is performed over all responses 
received by node si from the network startup until the 
time it is computed. 

Using this algorithm, in the network of figure 3, the 
computed Enhanced-DARi,j at node s7 is more than that 
of nodes s8 and s9. This is because DARi,j in all three 
nodes are equal, but MRR at node s7 is more than that 
in nodes s8 and s9 which results in higher probability of 
selecting  node s7 by node s10.  

Algorithm 2: Algorithm 2 is algorithm 1 in which 
when a node cannot find a neighboring node for data 
aggregation (a neighboring node in the same region) 
such as node s6 in figure 3, it chooses a neighboring 
node with more residual energy for forwarding its 
packets. Using this algorithm, a node located at the 
boundary of a region, forward it packet to the outside 
of its region using a neighbor with highest residual 
energy. This means that routing inside a region is 
performed based on data aggregation ratio between 
nodes whereas routing between different regions is 
performed based on residual energy. 

In algorithm 2, upon receiving a packet in node si 
from the neighboring node sj, Enhanced-DARi,j, is 
computed. If this ratio is more than AcceptRate, node si 
sends back a favorable response to LAj. Otherwise, 
node si considers its residual energy to compute the 
response to action i of LAj; if the normalized residual 
energy (NREi computed using equation (14)) is more 
than AcceptRate, the response is favorable and is 
unfavorable otherwise. 

 (14) i
i

EL
NRE

MaxEnergyLevel
=  

In the above equation, ELi is the residual energy level 
of node si and MaxEnergyLevel is the residual energy 
level of a full battery charged node. 

 
6. Experimental Results 

To evaluate the performance of the proposed 
method several experiments have been conducted. In 

the first two experiments, the basic algorithm is 
compared with three different methods: i) LEACH 
algorithm proposed in [11], ii) method given in [12] 
with no learning, and iii) method given in [14] which 
uses Q-learning. In the third experiment, the 
performance of the proposed data aggregation 
algorithm is studied by comparing the number of 
packets received at the sink node in each data 
gathering round by the number of packets which 
needed to be received at the sink at that round. The 
fourth experiment compares algorithms 1 and 2 with 
the Basic Algorithm. Last experiment studies the 
convergence behavior of learning automata in different 
nodes of the network.  

All simulations have been implemented using NS2 
simulator. We have used IEEE 802.11 as the MAC 
layer protocol, two ray ground as the propagation 
model and omnidirectional antenna. Nodes are placed 
randomly on a 2 dimensional area of size 
100(m)x100(m). Energy model specified in [19] is 
used for estimating amount of energy consumed for 
packet transmissions. All packets except for data 
packets, which are 525 bytes long, are assumed to be 8 
bytes long. Environment is modeled by 12 circular 
climates; each has its own temperature, direction and 
velocity of movement. Climates are moving using 
random way point movement strategy with a velocity 
which is randomly selected from a normal distribution 
with 001.=µ  and 0001.=σ . Movements of the 
climates are bounded to the boundaries of the network, 
and hence if a climate happens to get out of the 
environment boundaries, it changes its direction by 
180 degree and comes back to the environment of the 
network. In all experiments, α  and β  for the proposed 
algorithm are set to .1, and ε  (acceptable range of 
aggregation) is set to 5. Also α  and β  parameters in 
Q-learning method are set to .1 and .01 respectively. 
These values are selected experimentally. t which is 
the time interval between two consecutive sending of 
data to the sink in each node is equal to 10 seconds. 
AcceptRate is set to .85. Simulations are performed for 
50, 100, 200, 300, 400, and 500 nodes. The results are 
averaged over 50 runs. 

Experiment 1: In this experiment, we study the 
total number of packets received at the sink node. 
Figure 4 depicts the results for the proposed method 
and three existing methods mentioned earlier. This 
figure shows that the proposed method outperforms 
methods i, ii, and iii by 66%, 37%, and 9%, 
respectively. Figure 5 compares the results obtained 
for the proposed method with the results obtained for 
other three methods for N = 500 when µ  varies in the 
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range [0, .05]. This figure shows that the proposed 
method has no superiority over other methods when 
climates have no movement ( µ =0), but it works better 
as µ  increases.   
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Figure 4. Total number of received packets at the sink  
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Figure 5.  Changes in total number of received packets at 

the sink node with respect to changes in µ  
 

Experiment 2: In this experiment, we study the 
mean energy consumption of nodes in the network. 
Figure 6 shows that the proposed method outperforms 
all other three methods in terms of mean energy 
consumption. It should be noted that in the proposed 
method, the overhead of the acknowledgement packets 
has also been taken into consideration for estimating 
the total energy consumption. We found out that on 
average, the amount of energy consumed for sending 
or receiving acknowledgement packets by each node is 
about 30% of the total energy consumed by that node. 
However, reduction of the total number of data packets 
transmitted throughout the network in the proposed 
method can compensate the overhead of these 
acknowledgment packets. The proposed method works 
well when climate zones are moving.  To show this, 
we compared the results obtained for the proposed 
method with the results obtained for other methods for 
N = 500 for different values of µ  changing between 0 

and .05.  The comparison whose result is given in 

figure 7 shows that the proposed method performs 
better in terms of mean energy consumption as µ  

increases.  
Figure 8 compares the lifetime of the network for 

the proposed method and other three methods in terms 
of the Round of Death metric. Higher lifetime for the 
proposed algorithm as shown in figure 8 is due to 
reduction in the number of transmitted packets in the 
network. As it can be seen from figure 8, when the 
number of nodes in the network increases, Round of 
Death decreases. This is mainly due to the fact that in a 
denser network, sensor nodes near the sink relay more 
packets and hence their energy is depleted earlier 
resulting in a lower Round of Death. 

Experiment 3: This experiment is conducted to 
study the efficiency of the proposed method with 
respect to the information received at the sink node 
during a data gathering round. For this purpose, we 
compare the number of packets actually received at the 
sink node using the proposed method and the number 
of packets which needed to be received at the sink 
node in each data gathering round. Figure 9 which 
gives this comparison shows that by applying the 
proposed method, number of packets received at the 
sink node in each data gathering round gradually 
approaches to its ideal amount, which is, the number of 
regions in the environment in that round. Peaks in this 
figure correspond to sudden changes in the number of 
regions due to the movements of climates. It can be 
seen that the proposed algorithm learns new routing 
paths and hence adapts the network to these changes.  
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Figure 6. Mean energy consumption of node  

 



 
 

 10

0

5

10

15

20

25

30

35

40

0 0.0001 0.0005 0.001 0.005 0.01 0.05

µ

M
ea

n 
En

er
gy

 C
on

su
m

pt
io

n 
of

 N
od

es

Basic Algorithm
Q-Learning
Without Learning
Leach

 
Figure 7. Changes in mean energy consumption of nodes 

with respect to changes in µ  
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Figure 8. Network lifetime based on the Round of 

Death metric 
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Figure 9. Number of packets received at the sink in each 

data gathering round for Basic Algorithm vs. the number of 
packets which must be received at the sink at that round  

 
Experiment 4: In this experiment, the basic 

algorithm is compared with algorithms 1 and 2 with 
respect to the mean energy consumption of nodes and 
the total number of packets received at the sink node. 
As it is shown in figures 10 and 11, comparing to the 
basic algorithm, algorithms 1 and 2 both results in 
lesser number of received packets at the sink and lower 
mean energy consumption in each node. This indicates 
that higher data aggregation ratio can be obtained 

using algorithm 1 or 2. Figure 12 compares basic 
algorithm, algorithm 1 and algorithm 2 in terms of 
network lifetime. As before, Round of Death metric is 
used for this purpose. It can be seen that algorithm 1 
and algorithm 2 both result in longer lifetime for the 
network. 
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Figure 10. Total number of packets received at the sink  
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Figure 11. Mean energy consumption of nodes  
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Figure 12. Network lifetime based on the Round of 

Death metric 
 
Experiment 5: This experiment is conducted to 

better understand the convergence behavior of learning 
automata residing in the nodes of the network. For this 
purpose we keep track of the action probability vectors 
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of 3 learning automata residing in nodes s27, s42, and s21 
of network of figure 13.  RL27 has three entries 
corresponding to s16, s26 and s36 as shown in figure 
13(a). Thus learning automaton LA27 has three actions 
each corresponds to one of these nodes. None of s16, 
s26 and s36 is in the same region as node s27; and hence 
no aggregation can be performed. As a result, the 
action probability of none of the actions of LA27 
approaches 1 as it is depicted in figure 14. RL42 has 
three entries s31, s32 and s33 (figure 13(b)). Node s32 is 
in the same region as s42 and hence s32 can aggregate 
packets received from s42. Therefore, as it shown in 
figure 15, the probability of action corresponding to s32 
approaches 1. Finally, RL21 has three entries s10, s20 and 
s30 (figure 13(c)). Node s21 is in the same region as s10 
and s20 and hence both s10 and s20 can aggregate 
packets received from s21. As a result, the probability 
of the two actions corresponding to s10 and s20 
approach .5 whereas the probability of the action 
corresponding to s30 approaches 0. This is depicted in 
figure 16. 

 

 
Figure 13. (a) Environment around node number s27 and its 
neighbors, (b) Environment around node number s42 and its 
neighbors, (c) Environment around node number s21 and its 

neighbors 
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Figure 14. Action probabilities for node s27 
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Figure 15. Action probabilities for node s42 
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Figure 16. Action probabilities for node s21 

7. Conclusion 

In this paper we proposed a novel method based on 
learning automata for data aggregation in wireless 
sensor networks especially when the environment's 
changes can not be predicted beforehand. In this 
method each node in the network is equipped with a 
learning automaton. The learning automaton has a 
number of actions each of which corresponds to one of 
the neighbors of the node. The learning automaton for 
each node helps the node to find the next best hop for 
forwarding its packets toward the sink with the aim of 
performing as much as data aggregation as possible. It 
was shown through simulations that the proposed 
method outperforms the existing methods in terms of 
network's lifetime especially when the environment is 
highly dynamic. 
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