

Data Aggregation in Sensor Networks using Learning Automata

M. Esnaashari1, M. R. Meybodi1,2

1Soft Computing Laboratory, Computer Engineering and Information Technology Department
Amirkabir University of Technology, Tehran, Iran

2 Institutes for Studies in Theoretical Physics and Mathematics (IPM)
School of Computer Science, Tehran, Iran

(Esnaashari,mmeybodi)@aut.ac.ir

Abstract: One way to reduce energy consumption in
wireless sensor networks is to reduce the number of
packets being transmitted in the network. As sensor
networks are usually deployed with a number of
redundant nodes (to overcome the problem of node
failures which is common in such networks), many
nodes may have almost the same information which
can be aggregated in intermediate nodes, and hence
reduce the number of transmitted packets. Aggregation
ratio is maximized if data packets of all nodes having
almost the same information are aggregated together.
For this to occur, each node should forward its
packets along a path on which maximum number of
nodes with almost the same information as the
information of the sending node exist. In many real
scenarios, such a path has not been remained the same
for the overall network lifetime and is changed from
time to time. These changes may results from changes
occurred in the environment in which the sensor
network resides and usually cannot be predicted
beforehand. In this paper, a learning automata based
data aggregation method in sensor networks when the
environment's changes can not be predicted
beforehand will be proposed. In the proposed method,
each node in the network is equipped with a learning
automaton. These learning automata in the network
collectively learn the path of aggregation with
maximum aggregation ratio for each node for
transmitting its packets toward the sink. To evaluate
the performance of the proposed method computer
simulations have been conducted and the results are
compared with the results of three existing methods.
The results have shown that the proposed method
outperforms all these methods, especially when the
environment is highly dynamic.
Index Terms: Sensor Networks, Data Aggregation,
Learning Automata

1. Introduction

Sensor nodes are very prone to failure due to their
limited resources and abilities. One major reason for

this failure is exhausting energy resources and for this
reason energy is a vital factor in sensor networks.
Multi-hop routing which is a way for gathering
information of every node in every part of the network
at the sink is one of the major energy consuming tasks
performed throughout the lifetime of a sensor network.
For this reason, each node should try to find a path to
the sink using which minimum energy is consumed by
the network. One way to do so is for every node to
compute the amount of energy consumed on each path
separately, and then to choose the path with the least
energy consumption [16]. One problem with such a
method is that, it needs a way of computing energy
consumption along each path. Another way is to make
use of data aggregation technique. In data aggregation
technique, packets with related information are
combined together in intermediate nodes to form a
single packet before further forwarding to the sink.
This reduces the number of transmitted packets in the
network and as a result, less energy is consumed.
Using this method, a node has to select a path along
which maximum number of nodes exists with related
packets. We refer to this path for each node as the
Aggregation Path of that node hereafter.

Finding Aggregation Path for each node is not so
simple considering only local information. A simple
approach to find an approximation of this path is to use
a greedy algorithm. Each node tries to forward its
packets to a neighbor which has related information to
that of the node as it is done in [12]. The problem of
finding Aggregation Path for each node becomes even
more complicated if the information possessed by each
node differs during the lifetime of the network. In such
a situation, Aggregation Path of each node changes
from time to time and hence, nodes should adapt
themselves to these changes.

In this paper a new method based on learning
automata has been proposed to make nodes capable of
adapting themselves to changes occurred in their
Aggregation Paths. In the proposed method, each node
in the network is equipped with one learning
automaton. These learning automata collectively learn

 2

the Aggregation Paths of all nodes of the network and
adapt nodes to the changes occurred in the paths.

To evaluate the performance of the proposed
method several experiments have been conducted and
the results are compared with the results of three
different methods: i) LEACH algorithm [11], ii)
method given in [12] which performs data aggregation
with no learning, and iii) method given in [14] which
performs data aggregation using Q-learning. The
results have shown that the proposed method
outperforms all these methods, especially when
Aggregation Paths are highly dynamic.

The rest of this paper is organized as follows.
Section 2 gives an overview on related works reported
on data aggregation in sensor networks. Learning
automata as a basic learning strategy used in the
proposed method will be discussed in section 3. The
problem statement is given in section 4 and in section
5 the proposed method is presented. Simulation results
are given in section 6. Section 7 is the conclusion.

2. Related Work

Some of the methods reported recently for data
aggregation in sensor networks such as [1], [2] and [3],
are query based methods. In these methods a query is
generated at the sink and then is broadcasted through
the network. Each node, upon receiving this query,
processes it partially, and then passes it on to its
neighbors. After the query is processed completely, its
result will be sent back to the sink. In this scenario,
some nodes just process the query, and some others,
propagate it, receive partial results, aggregate the
results, and send them back to the sink.

In some other works, such as [4], [5], [6], [7], [8]
and [11], the network is first clustered, and then cluster
heads are used for aggregating data packets in each
cluster separately. Among these methods, LEACH1
protocol which was introduced by Heinzelman et al.
attracted more attention. The operation of LEACH is
separated into two phases: the setup phase and the
steady state phase. During the setup phase, a
predetermined fraction of nodes p, elect themselves as
cluster heads by comparing a chosen random number
with a predefined threshold. In the steady state phase,
cluster heads, aggregate reported data from their
cluster member nodes and forward aggregated data to
the sink. Lotfinezhad, and Liang in [9] try to
investigate the effect of partially correlated data on the
performance of the clustering methods for data
aggregation. They have shown that partially correlated
data has a strong effect on the clustering performance,
meaning that the lower is the data correlation; the

1 Low Energy Adaptive Clustering Hierarchy

lower is the clustering performance. They have also
shown that the amount of energy consumed in a single
node is strongly related to its position in the network; a
node far from the sink may consume more energy than
other nodes. They have also shown that the network
lifetime is inversely proportional to total consumed
energy.

Some other methods are also reported for data
aggregation in sensor networks. Guestrin et. al. in [10]
try to approximate the data generated in a single node
for a specific period of time with a third order
equation, and send the coefficients of this equation to
the sink instead of data itself. Dasgupta et. al. in [19]
assume that each node in the network has the ability to
aggregate data. Based on this assumption, they present
a method for maximizing network lifetime. They
define the network lifetime as the time elapsed before
the first node dies due to energy exhaustion. This
method tries to find an aggregation tree rooted at the
sink spanning all the sensors and maximizes the
lifetime of the network. For this purpose, they first find
all possible aggregation trees and then, make use of a
heuristic approach to find the one which can maximize
the lifetime of the network.

Beaver and Sharaf in [12] propose an algorithm
which tries to find paths along which, sensors
belonging to the same group (i.e. sensing the same
phenomenon) reside. In this algorithm, sink will
initiate a "path construction" packet through the
network. Each node, upon receiving this packet for the
first time, set its parent to the sender of the packet, and
then forwards the packet to its neighbors. If a node
receives "path construction" again, it checks whether
sender of the packet belongs to the same group as itself
or not. If so, this node, changes its parent to this new
sender of "path construction". This way, each path to
the sink will consist of mostly the nodes belonging to
the same group and hence aggregation ratio along the
path will be increased. This method performs well in
situations where nodes do not change their groups
during the lifetime of the network.

Very few efforts in data aggregation make use of
learning. Radivojak et. al. in [13] uses machine
learning technique to force sensor nodes to send only
specific data required by the sink. Learning algorithm
used in this method is executed in the sink and its
results are propagated throughout the network. Beyens
et al. in [14] use a Q-learner in each node forcing the
node to send its data via a path along which
aggregation ratio is maximum. They regard the sensor
network as a Multi-Agent System (MAS) in which the
agents are the sensor nodes. Each agent has a number
of actions equal to the number of its neighbor nodes.
Each action is to select one of the neighbors for
forwarding the packets of the node towards the sink. A

 3

Q-value is associated with each action. When data is
routed from the node A to the sink via neighbor node
B, a feedback is given by B to A. The feedback is
computed based on the number of hops from B to the
sink and the aggregation ratio gained in B. This
feedback is used in A to update the Q-value of the
action corresponding to the selection of B. After the
learning, the neighbor corresponding to the action with
the highest Q-value is chosen for forwarding the node's
data towards the sink.

Learning automata is proved to perform well in the
dynamic environments of wireless, ad hoc and sensor
networks. Haleem and Chandramouli in [23] use
learning automata to address a cross-layer design for
joint user scheduling and adaptive rate control for
downlink wireless transmission. The proposed method
tends to ensure that user defined rate requests are
satisfied by the right combination of transmission
schedules and rate selections. Nicopolitidis et. al. in
[24] propose a bit rate control mechanism based on
learning automata for broadcasting data items in
wireless networks. A learning automaton is used in the
server which learns the demand of wireless clients for
each data item. As a result of this learning, the server is
able to transmit more demanded data items by the
network more frequently. Same authors in [25]
propose a learning automata based polling protocol for
wireless LANs in which the access point uses a
learning automaton to assign to each station a portion
of the bandwidth proportional to the station's need. A
decentralized approach of the above method is also
given in [26, 27]. Ravana and Morthy in [28] propose
Learning-TCP, a novel learning automata based
reliable transport protocol for wireless networks,
which efficiently adjusts the congestion window size
and thus reduces the packet losses. Learning automata
is also used in cellular radio networks to dynamically
adjusting the number of guard channels [29, 30, 31].
Recently, a few attempts are made for applying
learning automata to sensor networks [22, 32, 33]. In
[22], Gholipour and Meybodi propose a learning
automata-based mobicast routing protocol for wireless
sensor networks. The proposed protocol uses learning
automata to adaptively determine the location and the
shape of the forwarding zone in such a way that the
number of activated nodes in each forwarding hop
along the routing path is almost the same. A clustering
algorithm using cellular learning automata is proposed
by Esnaashari and Meybodi in [32]. In this clustering
algorithm, each node is equipped by a learning
automaton. Learning automaton of each node in
cooperation with the learning automata of the
neighboring nodes determines the role of the node to

be a cluster head or a cluster member. Same authors in
[33] propose a learning automata-based scheduling
solution to the dynamic point coverage problem. In the
proposed scheduling algorithm, the learning automaton
of each node learns the sleep duration of that node
based on the movement pattern of a single moving
target point in the network.

3. Learning Automata

Learning automata is an abstract model which
randomly selects one action out of its finite set of
actions and performs it on a random environment.
Environment then evaluates the selected action and
responses to the automata with a reinforcement signal.
Based on selected action, and received signal, the
automata updates its internal state and selects its next
action. Figure 1 depicts the relationship between an
automata and its environment.

Environment can be defined by the triple
{ , , }E cα β= where

1 2{ , , ..., }rα α α α= represents a
finite input set,

1 2{ , , ..., }rβ β β β= represents the output

set, and 1 2{ , , ..., }rc c c c= is a set of penalty
probabilities, where each element ci of c corresponds
to one input of action iα . An environment in
which β can take only binary values 0 or 1 is referred
to as P-model environment. A further generalization of
the environment allows finite output sets with more
than two elements that take values in the interval [0,
1]. Such an environment is referred to as Q-model.
Finally, when the output of the environment is a
continuous random variable which assumes values in
the interval [0, 1], it is referred to as an S-model.
Learning automata are classified into fixed-structure
stochastic, and variable-structure stochastic. In the
following, we consider only variable-structure
automata.

R a n d o m E n v i r o n m e n t

L e a r n i n g A u t o m a t a

α (n)

β (n)
Figure 1. Relationship between learning automata and its

environment

A variable-structure automaton is defined by the
quadruple { , , , }p Tα β in which

1 2{ , , , }rα α α α= L represents the action set of the
automata,

1 2{ , , , }rβ β β β= L represents the input set,

1 2{ , , , }rp p p p= L represents the action probability

 4

set, and finally)](),(),([)1(npnnTnp βα=+ represents
the learning algorithm. This automaton operates as
follows. Based on the action probability set p,
automaton randomly selects an action iα , and performs
it on the environment. After receiving the
environment's reinforcement signal, automaton updates
its action probability set based on equations (1) for
favorable responses, and equations (2) for unfavorable
ones.

(1)ijjnjpanjpnjp
nipanipnip

≠∀−=+
−+=+

)(.)()1(
))(1.()()1(

(2)ijjnjpb
r

bnjp

nipbnip

≠∀−+
−

=+

−=+

)()1(
1

)1(

)().1()1(

In these two equations, a and b are reward and penalty
parameters respectively. For a = b, learning algorithm
is called PRL −

2, for b << a, it is called PRL ε
3, and for

b = 0, it is called IRL −
4. For more information the

reader may refer to [15][21]. The only application of
learning automata to sensor networks has been
reported in [22].

4. Problem Statement
 Consider N sensor nodes s1, s2, …, sN which are
scattered randomly throughout a large LxL rectangular
area (A) to monitor a certain phenomenon ζ such as
temperature, humidity, etc. The location of each node
si is presented by (xi, yi). Every node si is activated
periodically, measures the ζ at the moment and

reports the measured value of ζ (iζ$) to the sink node

using a multi-hop routing scheme. We say iζ$ and

jζ$ are almost equal and their values can be aggregated

using MEAN operator if i jζ ζ ε− < for a small

value 0ε > . Considering a dense network, measured
value of ζ is almost equal in some certain region

(AΩ ⊂) around each node i, and hence iζ$ can be

aggregated with  ,j jsζ ∀ ∈ Ω . ζ partitions the A into

M regions 1Ω , 2Ω , …, MΩ with the following
properties:

2 Linear Reward-Penalty
3 Linear Reward epsilon Penalty
4 Linear Reward Inaction

•   ; , , 1, 2, ...,i j i j ks s k Mζ ζ ε− < ∀ ∈ Ω =

• ; 1, 2, ...,i for i MΩ ≠ ∅ =

• ;i j for i jΩ ∩ Ω = ∅ ≠

•
1

M

i
i

A
=

Ω =U

We assume that each kΩ can be approximated with
a simple circle with center (Xk, Yk) and radius Rk. Also
we assume that ζ changes from time to time in

different parts of the network and hence, 1Ω , 2Ω , …,

MΩ are not static regions, but their positions and
radiuses vary during the network lifetime.

The aim of the network is to periodically collect in
the sink node the estimate of the position, the radius

and the estimated ζ$ (kΖ) about each region kΩ . For
this to be achieved each node i reports its position and

estimated iζ$ to the sink node periodically.
We define a data gathering round to be the time

during which all nodes of the network be activated
once and report their information to the sink. Each data
gathering round is identified by a unique number
called data gathering round number which starts from
1 and increases by one at the end of each data
gathering round. Using the process of data aggregation
one can reduce the number of packets received at the
sink in each data gathering round approximately to its
ideal number which is the number of regions in the
environment at that round. Without data aggregation,
N data packets so many of which are redundant are
received by the sink node one form each node.
Performing data aggregation provides longer lifetime
for the network. Network lifetime is defined to be the
time elapsed from the network startup to the time at
which a node in the network dies [19]. To measure
network lifetime we use Round of Death metric
defined as the data gathering round number at which
the first death in the network occurs.

Figure 2. A schematic of the simulated environment with
18 sensor nodes, and 5 different climates. Dashed circles

 5

give different partitions of the network based on the estimate
of the temperature

To specify the problem more clearly, without loss
of generality, we make use of a specific application in
which nodes have the ability to sense the temperature,
hence ζ is temperature in this application. We assume
that several circular climates exist in the environment
each having a different temperature, and moving along
a specific direction with a specific velocity. The
velocity and direction of the movement of each climate
may be changed randomly in time. These climates and
their temperatures partition the area of the network into
different parts (Ω) each having a different
temperature. Figure 2 depicts such an environment
with 18 sensor nodes, and 5 climates. Dashed circles in
this figure give different partitions of the network
based on the estimate of temperature in different
nodes. Note that these dashed circles have some area in
common, since each Ω is estimated by a circle.
However, it's not a complicated task for the sink node
to make a more accurate estimation of Ω s in which
these common areas are removed.

Each sensor node reports the temperature of the
climate in which it resides. If it happens for a node to
reside in more than one climate region, its sensor will
sense the temperature equal to the mean temperature of
all climates it resides in. A large static climate is
assumed to be in the environment which covers the
whole area A of the network and its temperature is
assumed to be 0. With the above assumptions, one can
simply computes the temperature each node reports in
figure 2. For example, s2 and s5 report 37, s4 reports -6,
and s3 reports mean of 37 and -6 which is 15.5. In
addition s1, s7, s8, s9, s10, s15 and s18 report 0 as their
estimations.

5. The Proposed Method

 In the network every node si has an internal clock
which activates the node every t seconds to measure ζ
and report it to the sink using a multi-hop routing
scheme. The proposed routing scheme consists of two
phases: route discovery phase and route selection
phase. The route discovery phase of the routing
scheme is first used to find for each node a number of
alternative routes towards the sink. The route selection
phase is then used to select a route among all
alternative routes using which more aggregation can be
performed.

Data aggregation is performed along each route to
the sink wherever it is possible. Data and location
aggregation will be done at the same time; that is
wherever data aggregation is performed, location
aggregation is also performed. In location aggregation,
the positions of the nodes whose data are aggregated

are averaged to find an estimate of the center of the
region to which they belong. The estimated radius of
the region then becomes the distance between the
estimated center and the farthest node. Without
location aggregation, a single aggregated packet
resulted from aggregating n different packets from n
different nodes, must contain the positions of all n
nodes. This makes the aggregated packet too long
which consumes higher energy for transmission.

In order to have more aggregation in the network
each node must try to route its packets toward the sink
using a path along which more aggregation can be
performed. Since the positions of the regions changes
dynamically, the routing algorithm must adapt itself to
these changes. To achieve the above two goals each
node in the network is equipped with a learning
automaton which is responsible for selecting the next
best hop to forward the packets towards the sink
during a data gathering round. In the rest of this
section, we first describe the first version of the
proposed algorithm which we call it the basic
algorithm in order to give the main idea. Then two
improvements to the basic algorithm are given to
further improve the aggregation ratio and prolong the
network lifetime.

5-1. Route Discovery Phase

The route discovery algorithm is used to discover

all possible paths for each node of the network towards
the sink. The algorithm is based on the simple flooding
method. Sink node initiates a "Path Construction"
packet and broadcasts it throughout the network. This
packet contains a parameter called “DistanceToSink”
which is set to 1 at the sink node. Other nodes wait to
receive the "Path Construction". Upon receiving this
packet, three different cases may be arisen:

(a) A "Path Construction" packet with lower
"DistanceToSink" than that of current packet has
been previously received at this node. In this case,
the newly received packet is ignored.
(b) The previously received "Path Construction"
packets have equal "DistanceToSink" with that of
current packet. In this case, sender of the "Path
Construction" is added to the routing table as a
new alternative path to the sink, "DistanceToSink"
is increased by 1, and the packet is broadcasted
over the network again.
(C) The previously received "Path Construction"
packets have greater "DistanceToSink" than that
of current packet. This means that a path with
fewer numbers of hops to the sink is found. So, all
the previously found paths are removed from the
routing table. Then sender of the currently

 6

received "Path Construction" is added as a path to
the sink, "DistanceToSink" is increased by 1, and
finally the packet is broadcasted over the network
again.

The algorithm continues until each node in the
network discovers all its paths with the same number
of hops toward the sink. For each path, only storing the
next hop in the routing table of the node will be
sufficient.

At the end of the route discovery phase, each node
in the network has a list of all its neighbors using
which it can forward its packets toward the sink. We
use RoutingListi (RLi) to refer to this list for node si
where |RLi| is the number of entries in this list.

5-2. Route Selection Phase

After the route discovery phase is over each node
in the network is activated every t seconds and reports
its information to the sink node.

In this phase each node uses a learning automaton
for selecting the next best hop to forward its packets
towards the sink during each data gathering round.
This way, each node gradually learns the best neighbor
(the neighbor with the most related data) for
forwarding its packets toward the sink.

The learning automaton associated to node si
referred to by LAi has |RLi| actions whose probability

of selecting each is initially set to 1

iRL
. Each action

of the LAi corresponds to the selection of one of the
neighboring nodes listed in the RLi to be used for
forwarding packets of si towards the sink. After node si
is activated and has measured the temperature, it asks
its learning automaton to select one of its neighboring
nodes (actions) for forwarding the measured
temperature toward the sink. Data are aggregated
during the route selection phase. The action selected
by the automaton will be rewarded or penalized based
on the acknowledgment received from the selected
neighboring node. How to penalize or reward the
selected action will be described later.

Between two subsequent activations of node si it
may receive two different packet types from its
neighbors; data packet and acknowledgement packet.
A data packet contains measured temperature by the
sender of the packet and its location whereas
acknowledgment packet is the response of a neighbor
to a data packet sent by si to that neighbor. A data
packet transmitted by node si contains three different
parameters:
- Ki which specifies the number of packets

aggregated into that packet

- 
, iiζ
Κ

 which is the aggregated data computed using

equation (3):

(3)


 

,
1

1

i

i i

n

j
j

n

ζ

ζ

ζ

Κ

=

+

=
+

∑

In the above equation, n is the number of packets
received at node si.

- (), ,,
i ii ix y

Κ Κ
 which is the aggregated location and

computed using equations (4):

(4)
,

,

1

1

1

1

i

i i

i

i i

n

j
j

n

j
j

x

x
n

y

y
n

x

y

Κ

Κ

=

=

+

=
+

+

=
+

∑

∑

Received data packets are temporary stored and will be
processed upon the next activation of si.

In the following we discuss what a node performs
when activated and what a node performs during the
time between two subsequent activations.

Node si upon its nth activation performs the
following operations:

- si sets Ki = 1.

- si senses its surrounding environment to measure iζ .

- si sets  
, ii iζ ζΚ = , , ii ix xΚ = , , ii iy yΚ =

- If no data packet is received during the (n-1)th
activation and nth activation of si then

o si creates a data packet containing 
, iiζ Κ ,

(, iix Κ , , iiy Κ) and Ki.

- else If any data packet is received then
o For each received packet from any neighbor j
do

 If the inequality (5) is satisfied then
• si performs data aggregation using a
recursive version of the equation (3) given
in equation (6)
• si performs location aggregation using a
recursive version of equations (4) given in
equations (7)
• si sets Ki = Ki + Kj
• si uses equation (8) to compute the data
aggregation ratio (DARi,j)
• DARi,j is sent back to node sj via an
acknowledgement packet as the feedback
from the environment.

 7

o si creates a data packet containing  , iiζ Κ ,

(, iix Κ , , iiy Κ) and Ki.

- LAi selects one of its actions (say action k) to determine
the neighbor to which newly made data packet should
be forwarded.

- Newly created data packet and the data packets
received from the neighbors of si, for which inequality
(3) is not satisfied, are transmitted to neighbor k.

(5)  
, ,i ji j

ζ ζ ε
Κ Κ

− <

ε is a threshold which specifies the maximum
difference between measured temperatures below
which aggregation can be performed.

(6)
 

, ,

,

i ji j
i i

i j

i j

ζ ζ
ζ

Κ Κ

Κ

Κ + Κ ⋅
=

Κ + Κ

⋅

(7)

, ,

,

, ,

,

i ji j
i i

i ji j
i i

i j

i j

i j

i j

x x
x

y y
y

Κ Κ

Κ

Κ Κ

Κ

Κ ⋅ + Κ ⋅
=

Κ + Κ

Κ ⋅ + Κ ⋅
=

Κ + Κ

(8)   

,

, , , ,(,) (,)

2

i j

i j i ji j i j

DAR

Min Max
U

ζ ε ζ ε ζ ε ζ ε

ε

Κ Κ Κ Κ

=

+ + − − −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

where

(9)
; 0

()
0 ; 0

x x
U x

x

≥
=

<

⎧
⎨
⎩

Upon receiving the acknowledgment packet

containing DARk,i by si, LAi penalizes or rewards its
selected action (action k). If DARk,i is greater than
threshold AcceptRate, then action k is rewarded
according to equations (10)

(10)
,

,

(1) () .().(1 ())
(1) () .(). ()

k k k i k

l l k i l

p n p n DAR p n
p n p n DAR p n l l k

α
α

+ = + −
+ = − ∀ ≠

and otherwise, it is penalized according to equations
(11)

(11)
,

,
,

(1) (1 .(1)). ()
.(1)

(1) (1 .(1)) ()
1

k k i k

k i
l k i l

p n DAR p n
DAR

p n DAR p n l l k
r

β
β

β

+ = − −
−

+ = + − − ∀ ≠
−

Where in equations (10) and (11), α is the reward
rate, and β is the punishment rate.

If by any means, node si does not receive any
acknowledgment from node sk, LAi penalizes its
selected action according to equations (11) considering
DARk,i as zero. Node si then retransmits its measured
temperature via one of its neighboring nodes listed in
RLi other than node sk. If no other neighboring node
exists in RLi, node si transmits a RouteRequest packet
to all of its neighboring nodes. If a neighboring node l
receives the packet and si is not listed in its RLl, it
replies with a RouteReply message. Node si gathers the
received RouteReply packets and adds them to its RLi.
The LAi of si is reinitialized with all actions having the
same action probabilities. If node si does not receive
any RouteReply packet, then it can be regarded as a
dead node which at this time, the network lifetime is
considered to be over.

5-3. Improvements

In this section we discuss two improvements to the
method proposed in the previous section. For the sake
of clarity in presentation in the rest of this paper we
call the proposed method as "Basic Algorithm", and
the basic algorithm with the first improvement as
"Algorithm 1" and with the second improvement as
"Algorithm 2".
Algorithm 1: In algorithm 1 unlike the basic algorithm
in which only the aggregation ratio between the node
and the next node in the routing path is considered for
choosing a neighboring node, the aggregation ratio
between the node and its two next nodes in the routing
path is considered for choosing a neighboring node.
For the network of figure 3, if the basic algorithm is
used then node s10 chooses one of its neighbors s7, s8
and s9 at random for sending its packets towards the
sink, whereas algorithm 1 chooses node s7. This is
because the second node from s10 in the routing path
passed through s7 is node s6 which is in the same
region as s10 and hence its information can be
aggregated with information of s10.

Algorithm 1 performs the following. Each node si
upon receiving a data packet from its neighbor sj in its
nth activation time, computes DARi,j using equations
(8) and (9), and then makes use of equation (12) for
computing Enhanced-DARi,j. Once Enhanced-DARi,j is
computed, this will be sent back to node sj as the
response of node si.

(12), ,(, ())i j i j iEnhanced DAR Max DAR MRR n− =

 8

Figure 3 Network of node s10 and the environment around it

In equation (10), MRRi stands for Maximum
Received Reward and is defined by equation (13).

(13) (),1
() max ;i k i it n

MRR n DAR for k RL
≤ ≤

= ∈

The max operation is performed over all responses
received by node si from the network startup until the
time it is computed.

Using this algorithm, in the network of figure 3, the
computed Enhanced-DARi,j at node s7 is more than that
of nodes s8 and s9. This is because DARi,j in all three
nodes are equal, but MRR at node s7 is more than that
in nodes s8 and s9 which results in higher probability of
selecting node s7 by node s10.

Algorithm 2: Algorithm 2 is algorithm 1 in which
when a node cannot find a neighboring node for data
aggregation (a neighboring node in the same region)
such as node s6 in figure 3, it chooses a neighboring
node with more residual energy for forwarding its
packets. Using this algorithm, a node located at the
boundary of a region, forward it packet to the outside
of its region using a neighbor with highest residual
energy. This means that routing inside a region is
performed based on data aggregation ratio between
nodes whereas routing between different regions is
performed based on residual energy.

In algorithm 2, upon receiving a packet in node si
from the neighboring node sj, Enhanced-DARi,j, is
computed. If this ratio is more than AcceptRate, node si
sends back a favorable response to LAj. Otherwise,
node si considers its residual energy to compute the
response to action i of LAj; if the normalized residual
energy (NREi computed using equation (14)) is more
than AcceptRate, the response is favorable and is
unfavorable otherwise.

 (14) i
i

EL
NRE

MaxEnergyLevel
=

In the above equation, ELi is the residual energy level
of node si and MaxEnergyLevel is the residual energy
level of a full battery charged node.

6. Experimental Results

To evaluate the performance of the proposed
method several experiments have been conducted. In

the first two experiments, the basic algorithm is
compared with three different methods: i) LEACH
algorithm proposed in [11], ii) method given in [12]
with no learning, and iii) method given in [14] which
uses Q-learning. In the third experiment, the
performance of the proposed data aggregation
algorithm is studied by comparing the number of
packets received at the sink node in each data
gathering round by the number of packets which
needed to be received at the sink at that round. The
fourth experiment compares algorithms 1 and 2 with
the Basic Algorithm. Last experiment studies the
convergence behavior of learning automata in different
nodes of the network.

All simulations have been implemented using NS2
simulator. We have used IEEE 802.11 as the MAC
layer protocol, two ray ground as the propagation
model and omnidirectional antenna. Nodes are placed
randomly on a 2 dimensional area of size
100(m)x100(m). Energy model specified in [19] is
used for estimating amount of energy consumed for
packet transmissions. All packets except for data
packets, which are 525 bytes long, are assumed to be 8
bytes long. Environment is modeled by 12 circular
climates; each has its own temperature, direction and
velocity of movement. Climates are moving using
random way point movement strategy with a velocity
which is randomly selected from a normal distribution
with 001.=µ and 0001.=σ . Movements of the
climates are bounded to the boundaries of the network,
and hence if a climate happens to get out of the
environment boundaries, it changes its direction by
180 degree and comes back to the environment of the
network. In all experiments, α and β for the proposed
algorithm are set to .1, and ε (acceptable range of
aggregation) is set to 5. Also α and β parameters in
Q-learning method are set to .1 and .01 respectively.
These values are selected experimentally. t which is
the time interval between two consecutive sending of
data to the sink in each node is equal to 10 seconds.
AcceptRate is set to .85. Simulations are performed for
50, 100, 200, 300, 400, and 500 nodes. The results are
averaged over 50 runs.

Experiment 1: In this experiment, we study the
total number of packets received at the sink node.
Figure 4 depicts the results for the proposed method
and three existing methods mentioned earlier. This
figure shows that the proposed method outperforms
methods i, ii, and iii by 66%, 37%, and 9%,
respectively. Figure 5 compares the results obtained
for the proposed method with the results obtained for
other three methods for N = 500 when µ varies in the

 9

range [0, .05]. This figure shows that the proposed
method has no superiority over other methods when
climates have no movement (µ =0), but it works better
as µ increases.

0

5000

10000

15000

20000

25000

30000

35000

40000

50 100 200 300 400 500

Number of Nodes

To
ta

l N
um

be
r o

f R
ec

ei
ve

d
Pa

ck
et

s
at

 th
e

S
in

k Basic Algorithm
Q-Learning
Without Learning
Leach

Figure 4. Total number of received packets at the sink

0

5000

10000

15000

20000

25000

30000

35000

40000

0 0.0001 0.0005 0.001 0.005 0.01 0.05

µ

To
ta

l N
um

be
r o

f R
ec

ei
ve

d
Pa

ck
et

s
at

 th
e

S
in

k Basic Algorithm
Q-Learning
Without Learning
Leach

Figure 5. Changes in total number of received packets at

the sink node with respect to changes in µ

Experiment 2: In this experiment, we study the
mean energy consumption of nodes in the network.
Figure 6 shows that the proposed method outperforms
all other three methods in terms of mean energy
consumption. It should be noted that in the proposed
method, the overhead of the acknowledgement packets
has also been taken into consideration for estimating
the total energy consumption. We found out that on
average, the amount of energy consumed for sending
or receiving acknowledgement packets by each node is
about 30% of the total energy consumed by that node.
However, reduction of the total number of data packets
transmitted throughout the network in the proposed
method can compensate the overhead of these
acknowledgment packets. The proposed method works
well when climate zones are moving. To show this,
we compared the results obtained for the proposed
method with the results obtained for other methods for
N = 500 for different values of µ changing between 0

and .05. The comparison whose result is given in

figure 7 shows that the proposed method performs
better in terms of mean energy consumption as µ

increases.
Figure 8 compares the lifetime of the network for

the proposed method and other three methods in terms
of the Round of Death metric. Higher lifetime for the
proposed algorithm as shown in figure 8 is due to
reduction in the number of transmitted packets in the
network. As it can be seen from figure 8, when the
number of nodes in the network increases, Round of
Death decreases. This is mainly due to the fact that in a
denser network, sensor nodes near the sink relay more
packets and hence their energy is depleted earlier
resulting in a lower Round of Death.

Experiment 3: This experiment is conducted to
study the efficiency of the proposed method with
respect to the information received at the sink node
during a data gathering round. For this purpose, we
compare the number of packets actually received at the
sink node using the proposed method and the number
of packets which needed to be received at the sink
node in each data gathering round. Figure 9 which
gives this comparison shows that by applying the
proposed method, number of packets received at the
sink node in each data gathering round gradually
approaches to its ideal amount, which is, the number of
regions in the environment in that round. Peaks in this
figure correspond to sudden changes in the number of
regions due to the movements of climates. It can be
seen that the proposed algorithm learns new routing
paths and hence adapts the network to these changes.

0

5

10

15

20

25

30

35

50 100 200 300 400 500

Number of Nodes

M
ea

n
En

er
gy

 C
on

su
m

pt
io

n
of

 N
od

es

Basic Algorithm
Q-Learning
Without Learning
Leach

Figure 6. Mean energy consumption of node

 10

0

5

10

15

20

25

30

35

40

0 0.0001 0.0005 0.001 0.005 0.01 0.05

µ

M
ea

n
En

er
gy

 C
on

su
m

pt
io

n
of

 N
od

es

Basic Algorithm
Q-Learning
Without Learning
Leach

Figure 7. Changes in mean energy consumption of nodes

with respect to changes in µ

0

200

400

600

800

1000

1200

1400

50 100 200 300 400 500

Number of Nodes

Ro
un

d
of

 D
ea

th

Basic Algorithm
Q-Learning
Without Learning
Leach

Figure 8. Network lifetime based on the Round of

Death metric

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Data Gathering Round

Nu
m

be
r o

f P
ac

ke
ts

 R
ec

ie
ve

d
at

 th
e

S
in

k Basic Algorithm
Number of Regions

Figure 9. Number of packets received at the sink in each

data gathering round for Basic Algorithm vs. the number of
packets which must be received at the sink at that round

Experiment 4: In this experiment, the basic

algorithm is compared with algorithms 1 and 2 with
respect to the mean energy consumption of nodes and
the total number of packets received at the sink node.
As it is shown in figures 10 and 11, comparing to the
basic algorithm, algorithms 1 and 2 both results in
lesser number of received packets at the sink and lower
mean energy consumption in each node. This indicates
that higher data aggregation ratio can be obtained

using algorithm 1 or 2. Figure 12 compares basic
algorithm, algorithm 1 and algorithm 2 in terms of
network lifetime. As before, Round of Death metric is
used for this purpose. It can be seen that algorithm 1
and algorithm 2 both result in longer lifetime for the
network.

0

2000

4000

6000

8000

10000

12000

14000

50 100 200 300 400 500

Number of Nodes

To
ta

l N
um

be
r

of
 P

ac
ke

ts
 R

ec
ei

ve
d

at
 th

e
S

in
k Basic Algorithm

Algorithm 1
Algorithm 2

Figure 10. Total number of packets received at the sink

0

2

4

6

8

10

12

14

16

18

50 100 200 300 400 500

Number of Nodes

M
ea

n
E

ne
rg

y
Co

ns
um

pt
io

n
of

 N
od

es Basic Algorithm
Algorithm 1
Algorithm 2

Figure 11. Mean energy consumption of nodes

0

200

400

600

800

1000

1200

1400

1600

50 100 200 300 400 500

Number of Nodes

Ro
un

d
of

 D
ea

th

Basic Algorithm
Algorithm 1
Algorithm 2

Figure 12. Network lifetime based on the Round of

Death metric

Experiment 5: This experiment is conducted to

better understand the convergence behavior of learning
automata residing in the nodes of the network. For this
purpose we keep track of the action probability vectors

 11

of 3 learning automata residing in nodes s27, s42, and s21
of network of figure 13. RL27 has three entries
corresponding to s16, s26 and s36 as shown in figure
13(a). Thus learning automaton LA27 has three actions
each corresponds to one of these nodes. None of s16,
s26 and s36 is in the same region as node s27; and hence
no aggregation can be performed. As a result, the
action probability of none of the actions of LA27
approaches 1 as it is depicted in figure 14. RL42 has
three entries s31, s32 and s33 (figure 13(b)). Node s32 is
in the same region as s42 and hence s32 can aggregate
packets received from s42. Therefore, as it shown in
figure 15, the probability of action corresponding to s32
approaches 1. Finally, RL21 has three entries s10, s20 and
s30 (figure 13(c)). Node s21 is in the same region as s10
and s20 and hence both s10 and s20 can aggregate
packets received from s21. As a result, the probability
of the two actions corresponding to s10 and s20
approach .5 whereas the probability of the action
corresponding to s30 approaches 0. This is depicted in
figure 16.

Figure 13. (a) Environment around node number s27 and its
neighbors, (b) Environment around node number s42 and its
neighbors, (c) Environment around node number s21 and its

neighbors

0

0.1

0.2

0.3

0.4

0.5

1 30 59 88 117 146 175 204 233 262 291 320 349 378
Time

Pr
ob

ab
ili

ty

Action 1 (Neighbor 16)
Action 2 (Neighbor 26)
Action 3 (Neighbor 36)

Figure 14. Action probabilities for node s27

0

0.2

0.4

0.6

0.8

1

1.2

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323
Time

Pr
ob

ab
ili

ty

Action 1 (Neighbor 31)
Action 2 (Neighbor 32)
Action 3 (Neighbor 33)

Figure 15. Action probabilities for node s42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392

Time

Pr
ob

ab
ili

ty

Action 1 (Neighbor 10)
Action 2 (Neighbor 20)
Action 3 (Neighbor 30)

Figure 16. Action probabilities for node s21

7. Conclusion

In this paper we proposed a novel method based on
learning automata for data aggregation in wireless
sensor networks especially when the environment's
changes can not be predicted beforehand. In this
method each node in the network is equipped with a
learning automaton. The learning automaton has a
number of actions each of which corresponds to one of
the neighbors of the node. The learning automaton for
each node helps the node to find the next best hop for
forwarding its packets toward the sink with the aim of
performing as much as data aggregation as possible. It
was shown through simulations that the proposed
method outperforms the existing methods in terms of
network's lifetime especially when the environment is
highly dynamic.

References

[1] Y. Xu, W. C. Lee, J. Xu, and G. Mitchell, "Processing

Window Queries in Wireless Sensor Networks", IEEE
International Conference on Data Engineering
(ICDE'06), Atlanta, GA, April 2006.

[2] R. Rosemark and W. C. Lee, "Decentralizing Query
Processing in Sensor Networks", the Second
International Conference on Mobile and Ubiquitous
Systems: Networking and Services (Mobiquitous'05),
San Diego, CA, July, 2005, pp. 270-280.

 12

[3] J. Winter, Y. Xu, and W. C. Lee, "Energy Efficient
Processing of K Nearest Neighbor Queries in Location-
aware Sensor Networks", the Second International
Conference on Mobile and Ubiquitous Systems:
Networking and Services (Mobiquitous'05), San Diego,
CA, July, 2005, pp. 281-292.

[4] G. Bontempi and Y. Le Borgne, “An adaptive modular
approach to the mining of sensor network data”,
Workshop on Data Mining in Sensor Networks, SIAM
SDM, Newport Beach, CA, USA, April 2005.

[5] C. Liu, K. Wu, and J. Pei, "A Dynamic Clustering and
Scheduling Approach to Energy Saving in Data
Collection from Wireless Sensor Networks", In
Proceedings of the Second Annual IEEE
Communications Society Conference on Sensor and Ad
Hoc Communications and Networks (SECON'05), Santa
Clara, California, USA, September, 2005.

[6] O. Younis and S, Fahmy, "An Experimental Study of
Routing and Data Aggregation in Sensor Networks", In
Proceedings of the International Workshop on
Localized Communication and Topology Protocols for
Ad hoc Networks (LOCAN), held in conjunction with
The 2nd IEEE International Conference on Mobile Ad
Hoc and Sensor Systems (MASS-2005), November 2005.

[7] R. Virrankoski and A. Savvides, “TASC: Topology
Adaptive Spatial Clustering for Sensor Networks”,
Second IEEE Intl. Conf. on Mobile Ad Hoc and Sensor
systems", Washington, DC, November, 2005.

[8] S. Soro and W. Heinzelman, "Prolonging the Lifetime
of Wireless Sensor Networks via Unequal Clustering,"
Proceedings of the 5th International Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor
Networks (IEEE WMAN '05), April 2005.

[9] M. Lotfinezhad and B. Liang, “Effect of partially
correlated data on clustering in wireless sensor
networks,” in Proceedings of the IEEE International
Conference on Sensor and Ad hoc Communications and
Networks (SECON), Santa Clara, California, October
2004.

[10] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin and S.
Madden, “Distributed Regression: An Efficient
Framework for Modeling Sensor Network Data”, Intel
corporation, 2004.

[11] W. Heinzelman, A. Chandrakasan, H. Balakrishnan,
"Energy-efficient communication protocol for wireless
microsensor networks", Proc. of 33rd Hawaii Intl. Conf.
on System Science (HICSS '00), January 2000.

[12] J. Beaver, M. A. Sharaf, A. Labrinidis, and P. K.
Chrysanthis, “Location-Aware Routing for Data
Aggregation in Sensor Networks”, Proc. of the 2nd
Hellenic Data Management Symposium, 2003.

[13] P. Radivojac, U. Korad, K. M. Sivalingam and Z.
Obradovic, "Learning from Class-Imbalanced Data in
Wireless Sensor Networks," IEEE Semiannual
Vehicular Technology Conference, VTC-Fall 2003, Vol.
5, pp. 3030-3034, Orlando, Florida, U.S.A., October
2003.

[14] P. Beyens, M. Peeters, K. Steenhaut and A. Nowe,
"Routing with Compression in Wireless Sensor
Networks: a Q-learning Approach", In "Fifth European

Workshop on Adaptive Agents and Multi-Agent Systems
(AAMAS 05), Paris, France", 2005.

[15] K. S. Narendra and M. A. L. Thathachar, Learning
Automata: An introduction, Prentice Hall, 1989.

[16] R. Shah and J. Rabaey, "Energy Aware Routing for
Low Energy Ad Hoc Sensor Networks", in Proceedings
of the IEEE Wireless Communications and Networking
Conference (WCNC), Orlando, Florida, March 2002.

[17] M. Ilyas, I. Mahgoub, "Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems", CRC
Press, London, Washington, D.C., 2005.

[18] K. Akkaya, M. Younis, "A Survey on Routing Protocols
for Wireless Sensor Networks", Elsevier Ad Hoc
Network Journal, pp. 325-349, 2005.

[19] K. Dasgupta, K. Kalpakis and P. Namjoshi, “An
Efficient Clustering-based Heuristic for Data Gathering
and Aggregation in Sensor Networks”, IEEE Wireless
Communications and Networking Conference, Vol.4,
No. 1, March, 2003

[20] W. Heinzelman, A. Chandrakasan, H. Balakrishnan,
“Energy Efficient Communication Protocol for Wireless
Microsensor Networks”, Intl. Conf. on System Sciences,
Hawaii, January 2000.

 [21] M. A. L. Thathachar and P. S. Sastry, “Varieties of
Learning Automata: An Overview”, IEEE Transaction
on Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol. 32, No. 6, pp. 711-722, 2002.

 [22] M. Golipour and M. R. Meybodi, “LA-Mobicast: A
Learning Automata based Mobicast Routing Protocol
for Wireless Sensor Networks”, Sensor Letters, Vol. 6,
No.2, pp. 305-311, April 2008.

[23] M. Haleem and R. Chandramouli, “Adaptive downlink
scheduling and rate selection: a cross layer design”,
Special issue on Mobile Computing and Networking,
IEEE Journal on Selected Areas in Communications,
vol. 23, no.6, June 2005.

[24] P. Nicopolitidis, G. I. Papadimitriou and A. S.
Pomportsis, “Exploiting Locality of Demand to
Improve the Performance of Wireless Data
Broadcasting”, IEEE Transactions on Vehicular
Technology, vol.55, no.4, pp. 1347-1361, July 2006.

[25] P. Nicopolitidis, G. I. Papadimitriou and A. S.
Pomportsis, “Learning-Automata-Based Polling
Protocols for Wireless LANs”, IEEE Transactions on
Communications, vol.51, no.3, pp. 453-463, March
2003.

[26] P. Nicopolitidis, G. I. Papadimitriou, M. S. Obaidat
and A. S. Pomportsis, “Carrier-sense-assisted Adaptive
Learning MAC Protocol for Distributed Wireless
LANs”, International Journal of Communication
Systems, Wiley, vol.18, no. 7, pp. 657-669, September
2005.

[27] P. Nicopolitidis, G. I. Papadimitriou and A. S.
Pomportsis, “Distributed Protocols for Ad-Hoc
Wireless LANs: A Learning-Automata-Based
Approach”, Ad Hoc Networks Journal, Elsevier, vol.2,
no.4, pp. 419-431, October 2004.

[28] B. V. Ramana and C. S. R. Murthy, “Learning-TCP: A
Novel Learning Automata Based Congestion Window
Updating Mechanism for Ad hoc Wireless Networks”,
in Proc. 12th IEEE International Conference on High

 13

Performance Computing, pp. LNCS 454-464,
December 2005.

[29] H. Beigy, and M. R. Meybodi, “A Learning Automata
Based Dynamic Guard Channel Scheme”, Lecture
Notes on Information and Communication Technology,
Vol. 2510 Springer Verlag, pp. 643-650, Nov. 2002.

[30] H. Beigy and M. R. Meybodi, "An Adaptive Uniform
Guard Channel Algorithm: A learning Automata
Approach", Lecture Notes in Intelligent Data
Engineering and Automated Learning, Springer
Verlag, LANCES 2690, Berlin, Heidelberg, Germany,
pp. 405-409, 2003.

 [31] H. Beigy and M. R. Meybodi, "Learning Automata
based Dynamic Guard Channel Algorithms", Journal
of High Speed Networks, 2008, to appear.

[32] M. Esnaashari and M. R. Meybodi, "A Cellular
Learning Automata based Clustering Algorithm for
Wireless Sensor Networks", Sensor Letters, Vol. 6, pp.
1-13, 2008, to appear.

[33] M. Esnaashari and M. R. Meybodi, " Dynamic Point
Coverage in Wireless Sensor Networks: A Learning
Automata Approach", Lecture Notes in Computer
Science Springer Verlag, Kish Island, Iran, pp. 758-
762, to appear.

