
TDMA scheduling algorithms for wireless sensor networks

Sinem Coleri Ergen Æ Pravin Varaiya

Published online: 27 May 2009

� The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Algorithms for scheduling TDMA transmis-

sions in multi-hop networks usually determine the smallest

length conflict-free assignment of slots in which each link

or node is activated at least once. This is based on the

assumption that there are many independent point-to-point

flows in the network. In sensor networks however often

data are transferred from the sensor nodes to a few central

data collectors. The scheduling problem is therefore to

determine the smallest length conflict-free assignment of

slots during which the packets generated at each node reach

their destination. The conflicting node transmissions are

determined based on an interference graph, which may be

different from connectivity graph due to the broadcast

nature of wireless transmissions. We show that this prob-

lem is NP-complete. We first propose two centralized

heuristic algorithms: one based on direct scheduling of the

nodes or node-based scheduling, which is adapted from

classical multi-hop scheduling algorithms for general ad

hoc networks, and the other based on scheduling the levels

in the routing tree before scheduling the nodes or level-

based scheduling, which is a novel scheduling algorithm

for many-to-one communication in sensor networks. The

performance of these algorithms depends on the distribu-

tion of the nodes across the levels. We then propose a

distributed algorithm based on the distributed coloring of

the nodes, that increases the delay by a factor of 10–70

over centralized algorithms for 1000 nodes. We also obtain

upper bound for these schedules as a function of the total

number of packets generated in the network.

Keywords Sensor network � Scheduling algorithm �
MAC protocol

1 Introduction

Wireless sensor networks have been proposed for a wide

range of monitoring applications such as traffic and seismic

monitoring, and fire detection [1]. Such networks consist of

a group of nodes, with sensing, signal processing and

wireless communication capabilities and limited battery

energy. The nodes must quickly report the results to a data

collection node or access point. Since the nodes are bat-

tery-powered, the medium access control (MAC) protocol

is critical in determining network lifetime.

Proposed MAC protocols for sensor networks provide

either contention based access or time division multiple

access (TDMA). The former, e.g., IEEE 802.11 [2], con-

sume more energy than TDMA protocols because they

waste energy in collisions and idle listening. Moreover,

they do not give delay guarantees. TDMA protocols are

more power efficient since nodes in the network can enter

inactive states until their allocated time slots. They also

eliminate collisions and bound the delay. For example, the

TDMA protocol for a traffic monitoring network described

in [3] has a lifetime of 1,200 days compared with ten days

using the IEEE 802.11 protocol.

The main task in designing a TDMA schedule is to

allocate time slots depending on the topology and the node

packet generation rates. A good schedule not only avoids

collisions by silencing the interferers of every receiver

node in each time slot but also minimizes the number of

S. C. Ergen (&)

Wireless Sensor Networks Lab, sponsored by Pirelli and

Telecom Italia, Berkeley, USA

e-mail: csinem@eecs.berkeley.edu

P. Varaiya

University of California, Berkeley, USA

123

Wireless Netw (2010) 16:985–997

DOI 10.1007/s11276-009-0183-0

time slots hence the latency: The larger latency may

require a higher data rate (and hence higher energy con-

sumption) to satisfy a deadline [4]. We therefore try to find

a TDMA schedule that minimizes the number of time slots.

TDMA algorithms consider either one-hop or multi-hop

scheduling. The former are for networks in which the nodes

are one hop away from the base station [4, 5], and allocate

time slots in the reverse channel depending on allocation

request and deadline of the nodes. Because the base station

is the common receiver of the transmissions, only one node

can transmit in a slot. In some sensor networks however

direct transmission from all sensor nodes to the base station

may not be feasible nor power efficient [6].

Multi-hop TDMA scheduling is more challenging than

one-hop scheduling because spatial reuse of a time slot may

be possible: More than one node can transmit at the same

time slot if their receivers are in non-conflicting parts of the

network. There are two types of conflicts, namely, primary

conflict and secondary conflict. A primary conflict occurs

when a node transmits and receives at the same time slot or

receives more than one transmission destined to it at the

same time slot. A secondary conflict occurs when a node, an

intended receiver of a particular transmission, is also within

the transmission range of another transmission intended for

other nodes. In the context of TDMA, the problem is to

determine the smallest length conflict-free assignment of

slots where each link or node is activated at least once [7].

Previous work on scheduling algorithms focus on either

decreasing the length of schedules [7, 8, 9, 10, 11, 12] or

distributed implementation [10, 13, 14, 15, 16].

Previous scheduling algorithms activating each link or

node at least once during a TDMA frame are based on the

assumption that there are many independent point-to-point

flows in the network. In sensor networks however often

data are transferred from the sensor nodes to a few central

data collectors. In traffic monitoring [17], for example, the

nodes sense the passage of vehicles at several freeway

locations or at an intersection, and transmit the data to the

access point on the side of the freeway or intersection. The

packets are transferred to the access point over the routing

tree in multiple hops. The problem therefore is to deter-

mine the smallest length conflict-free assignment of slots

during which the packets generated at each node reach the

access point over the routing tree.

The many-to-one scheduling has been addressed previ-

ously by [18, 19, 20]. Reference [18] proposes an evolu-

tionary algorithm where genetic algorithm and particle

swarm optimization are hybridized to enhance the search-

ing ability however does not provide any guarantees on the

performance. References [19] and [20] on the other hand

propose heuristic algorithms that schedule as many inde-

pendent segments as possible to increase the degree of

parallel transmission but does not consider the specific

nature of many-to-one communication nor the interference

models in wireless communication. Since each packet is

relayed on the routing path from the originating sensor

node to the access point, the many-to-one scheduling

problem requires considering precedence relations: If the

packet follows the routing path (k, k - 1,…, 2, 1), node j

should not be scheduled before node i for that packet if

j B i. Precedence constrained graphs have been studied in

the context of allocating the tasks in the precedence con-

strained task graphs to the processors in the processor

network so that the schedule length is minimized [21]. In

this problem however the tasks are already assigned to the

processors since a packet at node j has to be processed by

node j. The difficulty on the other hand comes from the

requirement of eliminating primary and secondary conflicts

in the processor network.

The original contributions of this paper are three: First,

we formulate the sensor network scheduling problem.

Second, we prove the NP-completeness of the problem.

Third, we generate a node based scheduling algorithm

which is adapted from classical multi-hop scheduling

algorithms for general ad hoc networks for the specific

sensor network configuration of nodes and data generation

patterns considering the interference graph in addition to

the connectivity graph. Fourth, we propose a novel

scheduling algorithm based on scheduling the levels of the

tree before scheduling the nodes for many-to-one com-

munication in sensor networks. Finally, we derive upper

bounds for these schedules as a function of the total

number of packets generated in the network.

The rest of the paper is organized as follows. The

transmission and network model is described in Sect. 2.

Section 3 describes the scheduling problem and proves that

it is NP-complete. We then propose two heuristic central-

ized algorithms for solving the problem: The one in Sect. 4

is based on direct scheduling of the nodes, whereas the other

is based on scheduling the levels in the routing tree before

scheduling the nodes as explained in Sect. 5. Section 6

describes a token-based distributed scheduling algorithm.

The algorithms are analyzed in Sect. 7. Simulations are

given in Sect. 8. Section 9 collects some conclusions.

2 Network and transmission model

We consider a network comprising a single access point

(AP) and several sensor nodes that periodically generate

data, possibly at different rates, for transfer to the AP.

Links are assumed to be bidirectional. This is required for

proper functioning of network protocols such as distributed

Bellman-Ford algorithms [22]. Bidirectionality is achieved

if all sensor nodes transmit at the same power. Differences

in actual transmission power due to the hardware

986 Wireless Netw (2010) 16:985–997

123

differences can be compensated by setting up links based

on received signal strength as explained in [3].

The network is represented by a graph G = (V,E). V is

the set of nodes, including the access point AP as node 1.

N = |V| is the number of nodes in G. The (undirected)

edges E , V 9 V are the (transmission) links to be

scheduled. The graph forms a tree. All traffic is destined

for AP, so every data packet at a node is forwarded to the

node’s parent in the tree rooted at the AP.

A node may interfere with another node, so these nodes

should not transmit simultaneously. The interference graph

C = (V,I) is assumed known. I ,V 9 V is the set of edges

such that ðu; vÞ 2 I if either u or v can hear each other or

one of them can interfere with a signal intended for the

other (even if they cannot hear each other). So, if u is

transmitting, v should not be scheduled to receive from

another node at the same time.

The conflict graph corresponding to G = (V,E) and C

= (V,I) is called GC = (V, EC). In GC, each node i 2 V

corresponds to the link ði; piÞ 2 E where pi is the parent of

node i in the routing tree G rooted at AP. EC comprises the

edges between node pairs in G that should not transmit at

the same time. It is generated by taking into account the

primary and secondary conflicts described in Sect. 1. EC

contains two kinds of edges. First, if ði; jÞ 2 E; ði; jÞ 2
EC; because a parent node and a child node cannot transmit

at the same time. Second, if ði; jÞ 2 I or ði; jÞ 2 E and cj is

a child of j in G; ði; cjÞ 2 EC: Because i and j interfere, if i

is transmitting, the child cj of j cannot transmit at the same

time because j would hear from both i and cj.

A scheduling frame is the time duration that starts when

each node has generated an integer number of packets and

ends when all these packets have reached AP. It is divided

into time slots. A slot is long enough to transmit one data

packet plus a guard interval to compensate for synchroni-

zation errors. A schedule assigns one or more time slots to

each edge in G or, equivalently, to each node in GC. A

node u may receive a packet from its child v during a time

slot assigned to ðv; uÞ 2 E or to node v 2 V since its

parent u is already known.

We use the following notation. The distance d(u,v)

between nodes u and v is the number of edges in the path

between them in G; and a node u is at level k if it is at

distance k from AP.

3 The scheduling problem

Each node of G (except AP) generates a positive integer

number of packets at the beginning of the scheduling

frame. Given the interference graph C, the scheduling

problem is to find a minimum length frame during which

all nodes can send their packets to AP.

Theorem 1 The scheduling problem is NP-complete.

Proof We reduce the NP-complete problem of finding the

chromatic number of a graph to the scheduling problem.

The chromatic number of a graph G is the smallest number

k such that G is k-colorable. G is k-colorable if its vertices

can be colored using k different colors in such a way that

adjacent vertices have different colors. Let GP = (VP, EP)

with VP = {v1,…, vN} be an instance of a graph whose

chromatic number we want to find. We first construct a

conflict graph GC = (V, EC). First, GC includes all the

nodes and edges of GP. Next, for each node vi, add another

node wi. Then add edges ðwi;wjÞ; ðvi;wjÞ 2 EC for all i,j.

Lastly add another node AP and edges (AP, wi) for all i. See

Fig. 1.

The conflict graph GC is such that if wi is active, none of

the nodes in Vnfwig can be active at the same time. Also, if

vi is active, none of the nodes wj or the conflicting nodes

from VP, determined by the edges EP, can be active.

We now construct a tree G = (V,E) and an interference

graph C = (V,I) whose conflict graph is GC = (V,EC). The

edges of the tree are E = {(AP, wi), (wi, vi) |1 Bi B N}.

Because AP is a parent of wi; ðwi;APÞ 2 EC for all i;

moreover ðwi;wjÞ 2 EC for all i, j, because they have the

same parent, AP. And ðvi;wiÞ 2 EC because wi is the

parent of vi.

Let I consist of edges (vi, AP) for all i, and (vi, wj), (vj,

wi), whenever (vi, vj) [EC. Since (vi, AP) [I and

ðwj;APÞ 2 E; ðvi;wjÞ 2 EC for all i, j. Lastly, if (vi, wj)

[I and ðvj;wiÞ 2 I; i 6¼ j; ðvi; vjÞ 2 EC because the parent

of one of them is interfered by a transmission of the other.

v
2

v
3

v
4v

1

GP=(VP,EP)

w
4

w
3

w
2

w
1

AP

v
2

v
3

v
4v

1

w
4

w
3

w
2

w
1

AP

v
2

v
3

v
4v

1

GC=(V,EC)

G=(V,E,I)

Fig. 1 Transformation from GP = (VP,EP) to GC = (V, EC) and

then to a tree network G = (V,E) (solid lines belong to E) with

interference graph C = (V,I) (dashed lines belong to I)

Wireless Netw (2010) 16:985–997 987

123

Thus GC is indeed the conflict graph corresponding to the

tree graph G and interference graph C.

Consider the minimum schedule length for GC such that

each node vi, wi, 1 B i B N, has one packet destined for

AP. A packet in wi takes the path (wi, AP) and a packet in vi

takes the path (vi, wi, AP). Because each wi conflicts with

the nodes wj, j = i and all nodes vi, it takes N slots to

transmit the packets generated at level one to AP,

independently of the rest of the network. Also, when the

N packets from level two arrive at level one, it takes

another N slots to forward them to AP.

Thus to minimize the time to transmit all packets to AP,

we must minimize the time to transmit the packets from

level two to level one. But the conflict graph at level two is

determined by the original graph GP, so the minimum

scheduling time is exactly 2N ? c, where c is the

chromatic number of the original graph GP. h

The scheduling problem is difficult because many sub-

sets of non-conflicting nodes are candidates for each time

slot, and the subset selected for transmission in one slot

affects the number of transmissions in the next time slot, as

some schedulable nodes may not have any packets to

transmit because of the subset selected in the previous slot.

Lemma 1 Assume that node i2V has generated gi

packets to transmit. The minimum schedule length is at

least
P

i2V gi:

Proof AP can receive at most one packet in each slot, so

at least
P

i2V gi slots are needed for all packets to reach

AP. This gives the lower bound. h

4 Node-based scheduling algorithm

The node-based scheduling algorithm has been adapted

from classical multi-hop scheduling algorithm developed

for general ad hoc networks with the idea of scheduling as

many non-conflicting set of nodes as possible in each time

slot [12, 19, 20]. The algorithm has two parts. In the first

part, we color the conflict graph GCc = (Vc,ECc) where

Vc ¼ Vnf1g;ECc ¼ EC n N1 and N1 = {(i,j)| i = 1}. In the

second part, we schedule the links in the original network,

ðu; vÞ 2 E; based on this coloring.

4.1 Coloring the network

Any algorithm can be used to color the conflict graph GCc

such that nodes i and j are assigned different colors if

ði; jÞ 2 ECc: Computing the chromatic number of a graph

is NP-complete. Incremental methods appear to be the

heuristic choice of vertex coloring [13]: Vertices are col-

ored sequentially with the colors chosen in response to

colors already assigned in the vertex’s neighborhood.

These methods vary in how the next vertex is selected and

how it is assigned a color.

Figure 2 gives such a heuristic coloring algorithm. At

the beginning of the algorithm, the nodes are ordered

according to some criterion, e.g., non-increasing order of

degree since high-degree vertices have more color con-

straints and so are more likely to require an additional color

if inserted late. The algorithm then assigns smallest color to

the nodes in that order such that none of the nodes of the

same color have an edge in the conflict graph. This algo-

rithm assigns a slot to node i in O(i) steps, so the running

time of this algorithm is O(|V|2).

4.2 Scheduling the network

A superslot in a node-based scheduling algorithm is a

collection of consecutive time slots such that each node

with at least one packet at the beginning of the superslot

transmits at least one packet during the superslot. Because

two nodes assigned the same color can transmit at the same

time, the number of slots in a superslot is at most equal to

the total number of colors used for coloring the network.

The algorithm is given in Fig. 3. After determining the

nodes corresponding to the current time slot from the

network coloring, additional nodes assigned to other colors

are added as long as the resulting set is non-conflicting.

The running time of the algorithm is then O(ldmax|V|),

where dmax is the maximum degree of a node in GC and l is

the total number of slots in the schedule.

Two examples are given in Figs. 6 and 7. G = (V,E) and

C = (V,I) are shown on the left with the resulting

GC = (V,EC). The nodes are ordered based on their degrees

in GC for the coloring, which are (s3,s2,s4,s5,s6,s7,s1) and

Fig. 2 Assigning one color to each node in the network

988 Wireless Netw (2010) 16:985–997

123

(s2,s3,s5,s6,s1,s4) in Figs. 6 and 7 respectively. The result-

ing schedules are shown in part-(a) of the figures.

5 Level-based scheduling algorithm

The level-based scheduling algorithm has three parts. In the

first part, we obtain a linear network GL = (VL, EL) with

interference graph CL = (VL,IL) resulting in the conflict

graph GCL = (VL, ECL) corresponding to the original

network. In the second part, we color this linear network. In

the third part, we schedule the links in the original network,

ðu; vÞ 2 E; based on the coloring of the linear network.

5.1 The linear network

If the original tree network has depth N, the linear network

GL = (VL,EL) has nodes VL = {v1,…, vN} with node vl

corresponding to all nodes at level l in the original network

and edges ðvi; viþ1Þ 2 EL for 1 B i \ N. The interference

graph CL = (VL, IL) includes edge (vj, vl) if there is an

interference edge between a node at level j and any node at

level l in the original network for j, l C 1. The resulting

conflict graph GCL = (VL, ECL) thus includes edge (vj, vl)

if the transmissions of a node at level j and a node at level l

conflict in the original network.

The algorithm starts by adding one node for each level

of the original tree. Then an edge is added to the edge set

EL between consecutive levels whereas an edge (vj,vl) is

added to the interference (conflict) graph of the linear

network, i.e., IL(ECL), if there is an edge between a node at

level j and any node at level l in the interference (conflict)

graph of the original network, i.e., I(EC). The algorithm in

Fig. 4 finds EL, CL and ECL. Its running time is O(|V|2).

5.2 Coloring the linear network

Any coloring algorithm can be used to color the conflict

graph of the linear network GCL = (VL,ECL). The algo-

rithm given in Fig. 2 can be used for this purpose with

Vc = VL and GCc = GCL as input, and one color assigned

to each node in VL and the number of colors, M, as output.

5.3 Scheduling the original network

If nodes vi, vj in the linear network are assigned the same

color, they do not interfere. By construction of the linear

network any two nodes in the original network, one chosen

from level i and the other from level j, can transmit at the

same time.

A superslot in a level-based scheduling algorithm is a

collection of consecutive time slots such that each level of

the tree with at least one packet at the beginning of the

superslot forwards at least one packet to the lower level

during the superslot. Because two nodes at different levels

assigned the same color can transmit at the same time, the

number of slots in a superslot is at most equal to the total

number of colors used for coloring the linear network.

The algorithm is given in Fig. 5. After determining the

levels corresponding to the current time slot from the linear

network coloring, a nonconflicting set of nodes at these

Fig. 3 Node-based scheduling algorithm

Fig. 4 Algorithm to find linear network corresponding to original

network

Wireless Netw (2010) 16:985–997 989

123

levels that have packets to transmit are selected for trans-

mission. Additional nodes from other levels are then added

as long as the resulting set is non-conflicting. The running

time of the algorithm is O(ldmax|V|), where dmax is the

maximum degree of a node in GC and l is the total number

of slots in the schedule.

Two examples are given in Figs. 6 and 7. G = (V,E) and

C = (V,I) are shown on the left with the resulting

GCL = (VL,ECL). The levels are in increasing order for

coloring. The ordering does not affect the number of colors

used in the linear network nor the schedule length for these

examples. The resulting schedules are shown in part-(b) of

the figures.

Figure 6 illustrates a topology where level-based sched-

uling performs better than node-based scheduling whereas

Fig. 7 illustrates a network where node-based scheduling

outperforms level-based scheduling. Figure 6 demonstrates

the advantage of level-based scheduling in balancing the

movement of packets across the network in a network of

higher density of the packets at high levels. In topologies of

equal density of the packets across the network or higher

packet density at low levels, giving equal chance to the nodes

balances the movement of packets as shown in Fig. 7.

6 Scalability and distributed implementation

The node-based and level-based scheduling algorithms

described above require complete topology information,

and there are two options for implementation. The first

option is to send the topology information to a central

controller, which then performs the slot assignment and

sends it back to the nodes in the network. The second

option is that each node learns the entire network topology

and executes the algorithm independently to produce

identical schedules. Both options may require a lot of

communication among the nodes, and may become inap-

propriate for large networks.

One way to bring scalability to the system is clustering

the nodes in the network. The central controller corre-

sponding to each cluster should take into account the

interferers that are outside their range while generating

schedules. The central controllers are assigned colors so

that no two conflicting controllers are assigned the same

color (e.g., a simple algorithm that constructs a D ? 1-

coloring in at most n steps is given in [23] for D and n being

the maximum degree of a vertex and the number of vertices

respectively in the graph with vertices as controllers and

edges between the conflicting controllers). The controllers

assigned to the first color then find the schedule and

broadcast this information to sensor nodes and neighboring

central controllers. Neighboring controllers with the next

color assign the time slots to the nodes inside their range,

taking into account the already assigned common nodes,

which are defined to be the nodes inside their range and the

range of at least one of the central controllers of previous

colors, and the interferers inside the range of another con-

troller. The controllers corresponding to each color consider

the schedules of the controllers of the previous colors in this

way. Since the length of the schedules are only affected by

the common nodes with the conflicting controllers and the

interference coming from neighboring controllers and the

schedules of sufficiently separated controllers are not

affected from each other, the resulting system is scalable.

Another way to achieve scalability in the system is

through distributed algorithms, in which the schedules of the

nodes are generated based on the local topology information

of the nodes. It is very hard to obtain a distributed version of

node-based and level-based scheduling algorithms. The

main reason is that these algorithms check whether the nodes

that are potential transmitters in the current slot have any

packets and skip that slot otherwise. Another reason is that

the algorithms schedule the nodes in other colors if some of

the nodes that are potential candidates for the current slot do

Fig. 5 Level-based scheduling algorithm

990 Wireless Netw (2010) 16:985–997

123

not have any packets. Such a schedule cannot be imple-

mented in their distributed version since the nodes cannot

know how many packets their interferers have due to the lack

of knowledge of global topology information.

To get an idea of the performance of a distributed algo-

rithm, we propose a simple algorithm based on the distrib-

uted coloring of the network similar to the one described in

[13]. Notice that the conflicting nodes, the nodes that have

edge between them in GC, are either one hop or two hops

away from each other in the graph Gu = (V, E [I). Assume

the nodes i and j can transmit to each other if ði; jÞ 2E[I; e.g.,

this can be achieved by increasing the transmission range of

the nodes [3]. We also assume that all the transmissions

during the generation of the schedules are successful, which

can be guaranteed by an acknowledgment. The nodes first

learn about all of their one hop and two hop neighbors in Gu

and their parents in the tree G rooted at the AP so that they can

determine their interferers in GC.

Similar to the algorithm described in [13], the color

assignment is performed in two stages. During the first

stage of the algorithm, each node picks one slot for

transmission in the order of the traversal of the depth first

search (DFS) [24] of the graph G. In the second stage, the

DFS is repeated and now each node picks as many of the

remaining colors as it can for transmission. At both stages,

the nodes send this information to their one-hop and two-

hop neighbors in Gu so that all their interferers in GC learn

about the assignment.

The DFS traversal starts with a TOKEN message gen-

erated at the AP. Upon receipt of the token, the node

performs the color assignment and then sends this infor-

mation to its one-hop and two-hop neighbors in Gu. It then

sends the token to each of its neighbors in G who have not

received the token yet. Once it finds that all its neighbors

have received the token, it sends the token back to its

parent, which is the node from which it receives the token

for the first time. At the end of the traversal, the token

carries the information of the number of colors used in the

network back to the AP.

This distributed algorithm turns out to be the distributed

version of the color assignment algorithm shown in Fig. 8.

Once the colors are assigned to each node, the nodes only

transmit in the time slots assigned to these colors if they

have a packet to transmit.

(a)

(b)

(c)

Fig. 6 An example network where level-based scheduling performs better than node-based scheduling. a Schedule for node-based scheduling

algorithm. b Schedule for level-based scheduling algorithm. c Schedule for distributed scheduling algorithm

Wireless Netw (2010) 16:985–997 991

123

The total number of token transmissions is O(|E|) at each

stage and the total number of transmissions for distributing

the color assignments is O(dmax|V|), in which dmax is the

maximum degree of the nodes in Gu.

Two examples are given in Figs. 6 and 7. The coloring

of the nodes are shown on the top right of the figures. The

colors of the nodes are assigned at the first stage whereas

the colors of the small circles next to the nodes are assigned

at the second stage. The DFS traversal order are

(s1,s2,s3,s4,s5,s6,s7) and (s1,s4,s2,s5,s3,s6) in Figures 6 and 7

respectively. The resulting schedules are shown in part-(c)

of the figures.

7 Analysis of the algorithms

We consider four cases:

Case 1 The tree graph G = (V,E) is linear, that is each

node u 2 V has at most one child. The interference graph

C = (V,I) is such that I = [.

Case 2 The tree graph G = (V,E) is general. The inter-

ference graph C = (V,I) satisfies the ancestor property, that

is, there do not exist u,v,b such that ðu; vÞ 2 I and

|d(u,b) - d(v,b)| [1. This represents the case where

shortest path routing is used with the cost of each path

being equal to the number of nodes on that path and only

nodes that can hear each other can interfere, which is the

assumption of previously proposed TDMA scheduling

algorithms.

Case 3 The tree graph G = (V,E) is general and the

interference graph C = (V,I) is such that the maximum

difference between the levels of two interfering nodes is K.

Case 4 The tree graph G = (V,E) and the interference

graph C = (V,I) are both general.

Theorem 2 Assume that each node has one packet to

transmit. For level-based scheduling algorithm, in cases 1

and 2 the maximum length of the frame is 3|V| - 3 time

slots; in case 3 it is (K ? 2)(|V|- a(|V| - 1), in which a is

the number of colors used in the linear network corre-

sponding to G and C.

Proof Case 1 If the tree graph G is linear and the inter-

ference graph C satisfies I = [, the corresponding linear

tree interference graph CL also satisfies IL = [. It is easy

to see that this linear tree can be colored optimally with

three colors when the number of levels is more than two.

The colors are assigned in a round robin fashion starting

with the node at level 1.

At the beginning of the frame, each node has exactly one

packet. In the first superslot, one packet is transmitted from

AP

s2s1

s4

 G=(V,E,I) GCL=(VL, ECL)

v1

v2

slot#:

schedule:

1 2 3 4 5 6 7

s1,s5 s4,s6 s2 s3 s1 s2 s3

superslot #:1 2 3 4 5 6

slot#:

schedule:

1 2 3 4 5 6

s2,s4 s3 s1,s5 s6,s1 s2 s3

superslot #:1 2

s5

GC=(V, EC)

s3

s6

edge
interferenceedge

s2s1

s4 s5

s3

s6

DF Stree

slot#:

schedule:

1 2 3 4 5 6

s1,s5 s2,s4 s3 s6,s1 - s2 s3 -

superslot #: 1 2

AP

s2s1

s4 s5

s3

s6

AP

(a)

(b)

(c)

Fig. 7 An example network where node-based scheduling performs better than level-based scheduling. a Schedule for node-based scheduling

algorithm. b Schedule for level-based scheduling algorithm. c Schedule for distributed scheduling algorithm

992 Wireless Netw (2010) 16:985–997

123

any level to the next lower level. Because each node is a

parent of exactly one node except for the node at the highest

level |V| - 1, it also receives one packet during the superslot.

Thus, at the end of the first superslot, each node at level less

than |V| - 1 has exactly one packet to transmit, the node at

level |V| - 1 has no packet, and each node has transmitted

exactly one packet during the superslot. This means that at

the end of the first superslot, each packet has moved by one

hop and one packet has reached the final destination AP.

In the same way, at the beginning of the second

superslot, each node at level less than |V| - 1 has one

packet to transmit, and at the end of the second superslot,

each packet has moved by one more hop, there are no more

packets at levels greater than or equal to |V| - 2 and the

node AP has received exactly one packet. Continuing in

this manner, at the end of (|V| - 1) superslots, all packets

will have reached the final destination AP.

The maximum number of time slots in each frame is at most

the product of the maximum number of slots in each superslot

and the maximum number of superslots necessary for all

packets to reach the destination AP, namely 3 (|V| - 1).

Case 2 Because the interference graph of the tree

network satisfies the ancestor property, the corresponding

linear tree interference graph CL satisfies IL = [. It can

therefore be colored optimally with three colors.

First assume that we select exactly one node to transmit

from each level (of the original tree graph G = (V,E))

corresponding to the color of the slot. At the beginning of

the frame, each node has one packet. In the first superslot,

one packet is transmitted from each level to the next lower

level. Except at the highest level, each level receives one

packet. Therefore, one packet has moved one hop closer to

the AP at each level, one packet from level one has reached

AP, and nodes at the level of the depth of the tree may have

no more packets.

At the end of the second superslot, the number of

packets transmitted from one level to one lower level is

again one except, possibly, for level depth. Each level less

than depth - 1 has one packet to transmit, while nodes at

levels depth or depth - 1 may have exhausted all packets.

Continuing in this manner, by the end of i-th superslot,

there are no more packets above some threshold level, and

there is at least one packet at levels lower than this

threshold. Since each level below the threshold is guaran-

teed to have a packet, and all levels with at least one packet

can transmit once in each superslot, one packet reaches AP

in each superslot. Therefore, the number of superslots

required for all packets to reach AP is |V| - 1. Since there

are three slots in each superslot, the maximum frame length

is again 3(|V| - 1).

The scheduling algorithm allows a subset of non-

conflicting nodes (instead of a single node) at each level

to transmit so the resulting frame length will also be at

most 3(|V| - 1).

Case 3 The worst case is when there is an interfering

edge between a node at level j and every node at level i

with |i - j| B K. The corresponding linear graph can be

colored by K ? 2 colors in that case. Assign color 1 to v1.

The color of the nodes {v2,…, vK?2} cannot be 1. Assign

the smallest color, 2, to node v2. The color of {v3,…, vK?3}

cannot be 2. Assign the smallest color, 3, to v3. Continuing

in this way, vK?2 is assigned color K ? 2. Node vK?3 is

assigned color 1, since its color is restricted not to be 2,…,

K ? 2. Thus, the algorithm colors this network with K ? 2

colors in a round robin fashion with color 1 assigned to v1.

The interference graph of any other network is a subgraph

of this worst case.

The same reasoning as in Case 2 now indicates that at

least one packet reaches AP in each superslot so the

number of superslots needed is at most |V| - 1. Hence the

frame length is at most (K ? 2) (|V| - 1) time slots.

Case 4 The number of superslots required for all packets

to reach AP is the number of packets in the network, which

is |V| - 1. The maximum number of slots in each superslot

Fig. 8 Distributed scheduling algorithm

Wireless Netw (2010) 16:985–997 993

123

is the number of colors, a. The upper bound on the frame

length is then a(|V| - 1). h

Theorem 3 Assume that node i2V has generated gi

packets to transmit. For level-based scheduling algorithm,

in cases 1 and 2 the maximum length of the frame is

3Ri2V gi time slots; in case 3 it is ðK þ 2ÞRi2V gi; and in

case 4 it is aRi2V gi; in which a is the number of colors

used in the linear network corresponding to G and C.

Proof The proof is similar to that of Theorem 2. The

number of superslots required for all packets to reach AP is

the number of packets in the network, which is Ri2V gi: The

maximum number of slots in each superslot is the number

of colors. h

Theorem 4 Assume that node i 2 V has generated gi

packets to transmit. For node-based scheduling algorithm,

the maximum length of the frame is aRi2V gi; in which a is

the number of colors used in the conflict graph GC.

Proof The proof is similar to that of Theorem 2. In node-

based scheduling, during each superslot, each node is given

at least one chance to transmit.

Let us assume that another algorithm, namely node-

level-based scheduling, schedules only one node contain-

ing at least one packet from each level of the routing tree

G = (V,E) rooted at the AP and does not schedule any

node if that level does not contain any packet. By the same

reasoning as in the proof of Theorem 2, the number of

superslots required for all packets to reach AP is the

number of packets in the network, which is Ri2V gi: Ri2V gi

is also the maximum number of superslots required for all

packets to reach AP in node-based scheduling. The

maximum number of slots in each superslot is the number

of colors. The result follows. h

Remark The chromatic number of a graph GC is at most

1 ? degmax [23], where degmax is the maximum degree of

the nodes in GC. The maximum length of the schedule in

node-based and level-based scheduling algorithms is

therefore ð1þ degmaxÞRi2Vgi; in which degmax is the

maximum degree of the nodes in GC and GCL respec-

tively. Since the minimum schedule length is Ri2V gi as

shown in Lemma 1, the worst case ratio of the length of the

frame to the optimal length is 1 ? degmax.

Lemma 2 Assume that node i 2 V has generated gi

packets to transmit. For distributed scheduling algorithm,

the maximum length of the frame is aRi2Vgi; in which a is

the number of colors used in the conflict graph GC.

Proof The proof is the same as that of Theorem 4. h

Remark Node-based scheduling algorithm can be used

for more general network topology whereas level-based

scheduling algorithm has been especially developed for

tree topologies. The upper bounds for more general

topologies in node-based scheduling algorithms depends on

the specific source-destination pairs and the number of

packets to be transmitted between them.

8 Simulation

The goal of the simulations is to compare the delay per-

formance of the centralized node-based and level-based

scheduling algorithms, and the distributed algorithm.

In the simulations, 1000 nodes are randomly distributed

in a circular area of radius 100 units. The density of the

nodes is k1 inside the radius 100ffiffi
2
p and k2 between the radius

100ffiffi
2
p and 100 units. Each topology corresponds to a different

configuration of the sensor nodes with respect to the base

station: The locations of the sensor nodes depends on the

locations that requires sensing by the application whereas

the density of the nodes depends on the number of loca-

tions to be sensed in a certain area or the accuracy the

application requires, i.e., the higher accuracy required, the

higher the density of the nodes. The transmission range,

denoted rs, is chosen to be slightly larger than the threshold

necessary for network connectivity [25].

The results discussed below are averages of the perfor-

mance of ten different random configurations. Shortest path

routing is used to construct the routing tree rooted at the AP,

which corresponds to G = (V,E) in Sect. 2. The interferers

of the nodes are determined according to the fixed power

protocol interference model [12]: Each node has its own

fixed transmission power and each node has an interference

range rm such that any node vj will be interfered by the

signal from vk if the distance between them is less than rm

and node vk is sending signal to some node other than node

vj. Therefore, C = (V,I) contain the nodes that are inside a

larger range rm, rm C rs, of each node other than its parent

and children in the routing tree G. In the coloring part of

node and level-based scheduling algorithms, the nodes are

ordered in non-increasing order of degree since high degree

vertices have more color constraints and so are more likely

to require an additional color if inserted late.

Figure 9 shows the delay of node-based and level-based

scheduling algorithms as a function of k1

k2
; for the case rm

rs
¼

2: As expected from the examples in Figs. 6 and 7, the

level-based algorithm performs better for low k1

k2
ratios

whereas node-based scheduling performs better for high k1

k2

ratios. Figure 10 shows that this is true up to a certain value

of rm

rs
: Node-based scheduling algorithm performs better at

high rm

rs
ratios.

Figure 11 shows the performance of the distributed

algorithm in terms of the ratio of its delay to that of the

centralized node-based scheduling algorithm. The delay

ratio is in the 10–70 range whereas the ratio of the number of

994 Wireless Netw (2010) 16:985–997

123

colors used in the distributed algorithm to that of centralized

algorithm is in the 1–1.3 range. This suggests the basic dis-

advantage of distributed algorithms to be the scheduling of

the nodes that do not have any packet in a specific slot,

preventing scheduling of other nodes as a result. The delay

ratio therefore increases as rm

rs
ratio increases due to the

increase in the number of colors used in the original network.

9 Conclusion

The common scheduling problem in multi-hop networks

employing a TDMA MAC protocol is to determine the

smallest length conflict-free assignment of slots where each

link or node is activated at least once. This is based on the

assumption that there are many independent point-to-point

flows in the network. In sensor networks where data are

often transferred from the sensor nodes to a few central

data collectors, the problem is to determine the smallest

length conflict-free assignment of slots during which the

packets generated at each node reach their destination. This

optimization problem is shown to be NP-complete.

We propose two centralized heuristic algorithms for

solving the problem: node-based scheduling and level-

based scheduling. In node-based scheduling, the schedule

is obtained based on the coloring of the original network

similar to classical multi-hop scheduling algorithms for

general ad hoc networks. The nodes of the color corre-

sponding to each slot with at least one packet are chosen

first and additional nodes are added afterwards. In the novel

proposed level-based scheduling on the other hand the

original network is first transformed to a linear network

where each node corresponds to a level in the original

network. The schedule of the original network is then

obtained based on the coloring of the linear network. This

scheduling algorithm schedules a non-conflicting set of

nodes corresponding to each level of the color for the

current slot and then schedules additional nodes if possible.

The movement of the packets across the network is much

better balanced in level-based scheduling for topologies of

higher density of the packets further away from the com-

mon sink whereas giving equal chance to the nodes in

node-based scheduling performs better in topologies of

equal density of the packets across the network or higher

packet density at low levels.

We also propose a simple token based distributed

algorithm to understand the performance of distributed

algorithms compared to centralized ones. The distributed

algorithm is based on a two-stage coloring algorithm at the

end of which nodes assigned the same color form a max-

imal nonconflicting set. We observe that the delay in

10
0

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

λ
1
/λ

2

de
la

y
(s

lo
t)

node based
level based

Fig. 9 Comparison of the delay of node-based and level-based

scheduling algorithms for different k1

k2
and rm

rs
¼ 2

1 1.5 2 2.5 3 3.5 4 4.5 5
1000

1500

2000

2500

3000

3500

4000

4500

r
m

/r
s

de
la

y
(s

lo
t)

node based,λ
1
/λ

2
=1/9

level based,λ
1
/λ

2
=1/9

node based,λ
1
/λ

2
=9

level based,λ
1
/λ

2
=9

Fig. 10 Comparison of the delay of node-based and level-based

scheduling algorithms for different rm

rs

1 1.5 2 2.5 3 3.5 4 4.5 5
10

0

10
1

10
2

r
m

/r
s

pe
rf

or
m

an
ce

 r
at

io

delay ratio,λ
1
/λ

2
=1/9

delay ratio,λ
1
/λ

2
=9

color ratio,λ
1
/λ

2
=1/9

color ratio,λ
1
/λ

2
=9

Fig. 11 Performance ratio of the distributed algorithm to the

centralized node-based scheduling algorithm in delay and number

of colors used in GC

Wireless Netw (2010) 16:985–997 995

123

distributed algorithm increases by a factor of 10–70 over

centralized algorithms for 1000 nodes although the number

of colors used in coloring the network is almost the same.

This suggests the basic disadvantage of distributed algo-

rithms to be the scheduling of the nodes that do not have

any packet, which prevents scheduling of other nodes as a

result. This is hard to avoid in a distributed fashion since

the global topology information is required to know whe-

ther the interfering nodes have any packets. Distributed

scheduling algorithms that improve upon this token based

algorithm in the context of sensor networks is an interest-

ing research direction.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Polastre, J., Szewczyk, R., Sharp, C., & Culler, D. (2004). The

mote revolution: Low power wireless sensor network devices, hot

chips 16: A symposium on high performance chips, August.

2. LAN-MAN Standards Committee of the IEEE Computer Society.

(1997). Wireless LAN medium access control (MAC) and physical
layer(PHY) specification (1997 ed.). New York, NY, USA: IEEE,

IEEE Std 802.11.

3. Ergen, S. C., & Varaiya, P. (2007). PEDAMACS: Power efficient

and delay aware medium access protocol for sensor networks.

IEEE Transactions on Mobile Computing, 5(7), 920–930.

4. Uysal-Biyikoglu, E., Prabhakar B., & El Gamal, A. (2002).

Energy-efficient packet transmission over a wireless link. IEEE/
ACM Transactions on Networking, 10(12), 487–499.

5. Fattah, H., & Leung, C. (2002). An overview of scheduling

algorithms in wireless multimedia networks. IEEE Wireless
Communications, 9(5), 76–83.

6. Ergen, S. C., & Varaiya, P. (2005). On multi-hop routing for

energy efficiency. IEEE Communications Letters, 9(10), 880–

881.

7. Ramanathan, S., & Lloyd, E. L. (1993). Scheduling algorithms

for multihop radio networks. IEEE/ACM Transactions on Net-
working, 1(2), 166–177.

8. Ngo, C. Y., & Li, V. O. K. (2003). Centralized broadcast

scheduling in packet radio networks via genetic-fix algorithms.

IEEE Transactions on Communications, 51(9), 1439–1441.

9. Chakraborty, G. (2004). Genetic algorithm to solve optimum

TDMA transmission schedule in broadcast packet radio networks.

IEEE Transactions on Communications, 52(5), 765–777.

10. Gandham, S., Dawande M., & Prakash, R. (2005). Link sched-

uling in sensor networks: Distributed edge colering revisited.

IEEE INFOCOM, 4 2492–2501.

11. Wang, Y., & Henning, I. (2007). A deterministic distributed

TDMA scheduling algorithm for wireless sensor networks. IEEE
WiCom, 2759–2762.

12. Wang, W., Wang, Y., Li, X., Song, W., & Frieder, O. (2006).

Efficient interference-aware TDMA link scheduling for static

wireless networks. IEEE GLOBECOM, 262–273.

13. Ramaswami, R., & Parhi, K. K. (1989). Distributed scheduling of

broadcasts in a radio network. INFOCOM, 2, 497–504.

14. Ephremides, A., & Truong, T. V. (1990). Scheduling broadcasts

in multihop radio networks. IEEE Transactions on Communica-
tions, 38(4), 456–460.

15. Tavli, B., & Heinzelman, W. B. (2004). MH-TRACE: Multihop

time reservation using adaptive control for energy efficiency.

IEEE Journal on Selected Areas in Communications, 22(5), 942–

953.

16. Wu, Z., & Raychaudhuri, D. (2004). D-LSMA: Distributed link

scheduling multiple access protocol for QoS in Ad-hoc networks.

IEEE GLOBECOM, 1670–1675.

17. Cheung, S. Y., Coleri, S., Dundar, B., Ganesh, S., Tan, C.W., &

Varaiya, P. (2006). Traffic measurement and vehicle classifica-

tion with a single magnetic sensor. Journal of Transportation
Research Board, 1917.

18. Mao, J., Wu, Z., & Wu, X. (2007). A TDMA scheduling scheme

for many-to-one communications in wireless sensor networks.

Computer Communications, 30(4), 863–872.

19. Choi, H., Wang, J., & Hughes, E. A. (2005). Scheduling on

sensor hybrid networks. IEEE ICCCN, 503–508.

20. Gandham, S., Zhang, Y., & Huang, Q. (2008). Distributed time-

optimal scheduling for convergecast in wireless sensor networks.

Computer Networks, 52(3), 610–629.

21. Bansal, S., Kumar, P., & Singh, K. (2003). An improved dupli-

cation strategy for scheduling precedence constrained graphs in

multiprocessor systems. IEEE Transactions on Parallel and
Distributed Systems, 14(6), 533–544.

22. Narayanaswamy, S., Kawadia, V., Sreenivas, R. S., & Kumar, P.

R. (2002). Power control in Ad-Hoc networks: Theory, archi-

tecture, algorithm and implementation of the COMPOW proto-

col. Proceedings of European wireless, Italy, February.

23. Hedetniemi, S. T., Jacobs, D.P., & Srimani, P. K. (2002). Fault

tolerant distributed coloring algorithms that stabilize in linear

time. International parallel and distributed processing sympo-
sium (IPDPS), April.

24. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network
flows, Prentice Hall, Inc.

25. Krishnamachari, B., Wicker, S. B., & Bejar, B. (2001). Phase

transition phenomena in wireless Ad-Hoc networks. Symposium
on Ad-Hoc wireless networks, GlobeCom2001, San Antonio,

Texas, November.

Author Biographies

Sinem Coleri Ergen received

the B.S. degree in Electrical and

Electronics Engineering from

Bilkent University, Ankara,

Turkey, in 2000, and the M.S.

and Ph.D. degrees in Electrical

Engineering and Computer Sci-

ences from University of Cali-

fornia Berkeley (UCB), in 2002

and 2005. Since July 2006, she

has been a research scientist at

Wireless Sensor Networks Lab

sponsored by Pirelli and Tele-

com Italia in Berkeley. Her

research interests are in sensor networks, wireless communications

and networking, and collaborative signal processing with a current

focus on energy efficient system design. She received Regents Fel-

lowship from University of California Berkeley in 2000 and Full

Scholarship from Bilkent University in 1995.

996 Wireless Netw (2010) 16:985–997

123

Pravin Varaiya is Nortel Net-

works Distinguished Professor

in the Department of Electrical

Engineering and Computer Sci-

ences at the University of Cali-

fornia, Berkeley. From 1975 to

1992 he was also Professor of

Economics at Berkeley. From

1994 to 1997 he was Director of

the California PATH program, a

multi-university research pro-

gram dedicated to the solution

of California’s transportation

problems. His current research

is concerned with communication networks, transportation, and

hybrid systems. He has taught at MIT and the Federal University of

Rio de Janeiro. Varaiya has held a Guggenheim Fellowship and a

Miller Research Professorship. He received an Honorary Doctorate

from L’Institut National Polytechnique de Toulouse, and the Field

Medal of the IEEE Control Systems Society. He is a Fellow of IEEE

and a member of the National Academy of Engineering. He is on the

editorial board of several journals, including ‘‘Discrete Event

Dynamical Systems’’ and ‘‘Transportation Research—C’’. He has co-

authored three books and more than 250 technical papers. The second

edition of ‘‘High-Performance Communication Networks’’ (with Jean

Walrand) was published by Morgan-Kaufmann in 2000. ‘‘Structure

and interpretation of signals and systems’’ (with Edward Lee) was

published by Addison-Wesley in 2003. Varaiya is a member of the

Board of Directors of Sensys Networks.

Wireless Netw (2010) 16:985–997 997

123

	TDMA scheduling algorithms for wireless sensor networks
	Abstract
	Introduction
	Network and transmission model
	The scheduling problem
	Node-based scheduling algorithm
	Coloring the network
	Scheduling the network

	Level-based scheduling algorithm
	The linear network
	Coloring the linear network
	Scheduling the original network

	Scalability and distributed implementation
	Analysis of the algorithms
	Simulation
	Conclusion
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

