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Abstract Most current WSN MAC protocol implemen-

tations have multiple tasks to perform—deciding on correct

timing, sending of packets, sending of acknowledgements,

etc. However, as much of this is common to all MAC

protocols, there is duplication of functionality, which leads

to larger MAC protocol code size and therefore increasing

numbers of bugs. Additionally, extensions to the basic

functionality must be separately implemented in each

MAC protocol. In this paper, we look at a different way to

design a MAC protocol, focusing on the providing of

interfaces which can be used to implement the common

functionality separately. This leaves the core of the MAC

protocol, determining only when to send, which is sub-

stantially different for each protocol. We also look at some

examples of MAC extensions that this approach enables.

We demonstrate a working implementation of these prin-

ciples as an implementation of B-MAC for TinyOS, and

compare it with the standard TinyOS B-MAC implemen-

tation. We show a 35% smaller code size, with the same

overall functionality but increased extensibility, and while

maintaining similar performance. We also present results

and experiences from using the same framework to

implement T-MAC, LMAC, and Crankshaft. All are

demonstrated with data from real-world experience using

our 24 node testbed.

Keywords Wireless sensor networks � MAC protocols �
Protocol architecture

1 Introduction

Current Medium Access Control (MAC) protocol design

for Wireless Sensor Networks (WSNs) covers a wide

variety of different tasks. A MAC protocol is responsible

not only for deciding when to send packets, but also what

to send. For example, generating the standard Unicast

sequence of RTS/CTS/DATA/ACK messages is usually

the responsibility of the MAC protocol after the application

has provided a data packet to be sent. The MAC must

maintain an internal state machine monitoring which one of

these packets it last sent or received, enabling it to deter-

mine what packet should be sent/received next.

Unfortunately, the decision about whether a MAC’s

implementation of Unicast uses RTS/CTS messages (which

are seen by some designers as overhead, and by others as

required for reliability) tends to be a somewhat haphazard

affair. Often, whether they are required should be an

application-level decision, and so some MAC protocols

that implement RTS/CTS allow this functionality to be

switched off and on at run or compile time. However, this

is another example of a feature that may or may not be in a

given MAC protocol depending on the whims of its

designer.

Given that we have a set of functionality that should be

common to all MAC protocols, but certain implementa-

tions do or do not have particular features implemented, we

lose out on the advantage of common functionality: the
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idea that we can ideally use any given MAC protocol as a

drop-in replacement. Additionally, because the duplication

of effort results in both increased bug count due to multiple

implementations of the same ideas (e.g., Unicast), and a

system that is hard to extend, we conclude that the current

design brief for MAC protocols has a number of significant

problems, and so should be rethought.

In this paper we will set out an improved design brief for

MAC protocols, and show how these principles can be

implemented efficiently by demonstrating our example

kB-MAC protocol. The same principles will then be shown

to work for k-layers implementations of T-MAC, LMAC,

and Crankshaft, and we will show more data gathered from

these protocols.

2 Rethinking MAC protocols

We wish to redesign the process for creating a MAC pro-

tocol such that the common functionality that does not

necessarily need to be in a MAC protocol itself can be

separated out. The first step to achieving this is to deter-

mine what is common functionality, and what are MAC-

specific requirements.

2.1 Existing concepts

Before we can start rethinking the design process for MAC

protocols, we need to look at the current state of the art.

Current WSN MAC protocols are usually grouped in two

different groups: TDMA protocols (LMAC [22], TRAMA

[17], PEDAMACS [2], etc) and CSMA-based protocols

(S-MAC [24], T-MAC [21], B-MAC [15], etc). These two

approaches are usually regarded as being very different.

Even within each approach there are many different pro-

tocols that all do things in drastically different ways.

However, despite all the apparent differences, all of these

protocols have one thing in common—they are designed to

manage the available time in the radio medium in order to

fulfil certain metrics while sending/receiving messages

(latency, energy usage, etc).

Specifically, they all do this by managing when a partic-

ular node can send messages—TDMA protocols do this by

separating the available time into slots and allowing nodes

only to send in their slot; CSMA protocols do this by making

nodes perform carrier sense before sending (and in the case

of protocols like S-MAC, also by waiting until the beginning

of the next ‘‘frame’’). In total, a MAC protocol must do three

things: given an application wishes to send a packet, deter-

mine what time this node will be able to send; perform a

message exchange to send the packet at that point; and

transmit appropriate control packets to maintain MAC pro-

tocol operation, for example synchronisation messages.

2.2 Role separation

We then looked at separating the large existing MAC

protocols into 3 parts: below the MAC, above the MAC

and a kMAC layer. This set of layers we refer to collec-

tively as the MAC stack, and together they should do

everything a traditional monolithic MAC layer would do

on its own.

Our first task was looking at the modules required

‘‘below’’ the kMAC layer. Working from the conclusions

of Sect. 2.1, we know that MAC protocols need to send/

receive packets, and to decide when to send/receive. The

former can be achieved with a ‘‘dumb’’ packet layer (no

queueing, minimal latency, switches radio on/off only

when told to); the latter requires medium activity detection

(as part of the ‘‘dumb’’ packet layer) and/or a time syn-

chronisation layer. Time synchronisation can also then be

used to generate ‘‘frames’’ (periodic timers, as used by all

TDMA protocols and S/T-MAC), but it would need to be

designed such that it will not interfere with protocols that

do not require time synchronisation (e.g., B-MAC [15]).

The biggest question regarding how much we can pull

out of a standard MAC layer was deciding what a kMAC

layer actually really needs to do. Or in other words,

knowing what a complete MAC stack needs to do, what

makes one MAC protocol different from another? Our

conclusion was simple: time management. One of the

standard opinions about the role of WSN MACs is power

management, and time management can be considered an

extension of this—one of the time management roles is

deciding when to switch the radio on/off, but the other is

deciding when to start sending a packet sequence. How-

ever, once a node has started a packet sequence (e.g., all

of Unicast after the RTS message), the code becomes

remarkably generic and MAC-portable, yet is currently still

embedded within the MAC. What if we could extract

that—let the MAC decide when to initiate packet sequen-

ces, but then hand off to a generic module to perform the

actual sequence itself? This new transmission layer module

could then be reused in other MAC protocols.

Now that basic packet sending/receiving, time synchro-

nisation, and the sending of particular packet sequences

have all been separated out, the kMAC layer only needs to

contain time management: that is, the maintenance of the

knowledge about what time is a good time to send packets;

allocating blocks of time as required by the transmission

layer modules in order to allow them to both send and

receive data; and switching the radio on/off as appropriate

for the individual protocol. A block of time is simply an

interval during which the radio is exclusively handed over

to a particular transmission module which has previously

requested that the kMAC layer give it n milliseconds in

order to send a packet sequence; conversely time blocks are
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also allocated when a packet comes in informing the local

node that another node will be performing a packet sequence

for a short period from now and so the local node should not

give the radio over to other transmission-layer requests for

that time. Note that when we talk about a good time to send a

packet, we imply that this is a time with a high probability

that the destination node will be able to receive the packet,

which is information that the kMAC layer needs to keep

track of as part of its time management role.

2.3 Design conclusions

Given our new formulation of a MAC protocol stack, we

redefine the required modules and connections as follows

(see Fig. 1 for an overview of how these interact):

– Packet layer—responsible for the actual sending/

receiving of a packet, radio state changes (Rx/Tx/

sleep) and for providing carrier sense functions (for

CSMA-based kMAC protocols). The sending/receiving

radio state here is ‘‘dumb’’—it does things right now,

with no options for delay or smart decisions considered.

In the case of byte-based radios, we also provide a

platform-specific byte interface layer (which can only

be talked to via the Packet layer), and for packet-based

radios the Packet layer is a slim layer on top of the

existing hardware capabilities. This allows us to

abstract away from the differences of these two

paradigms, as only packet-level information is required

for the kMAC implementation.

– Network Time layer—responsible for storage and

generation of time-synchronisation information to pro-

vide event synchronisation, e.g., frame timers. This is

not required by all kMAC layers and therefore optional.

However, there are several reasons to include the

Network Time layer here. First, time-synchronisation

information is useful to a large quantity of WSN MAC

layers, due to the energy savings that can be made if

nodes are able to agree when transmit/receive periods

should be. Second, the information is potentially useful

to other layers. Finally, doing accurate timing infor-

mation above the MAC layer, given the uncertainty of

timing in at least the 10-ms range above most WSN

MAC protocols is very difficult. For these reasons, we

designed the Network Time layer as a general service

to the entire application stack.

– The Network Time layer can, through its placement in

the stack, override the kMAC layer’s decisions on

when to keep the radio in receive mode in order to do

neighbour discovery. The overrides will make the radio

be in receive mode more than it would be normally, but

will not switch the radio off when the MAC wishes it to

be on, or switch the radio from transmit to receive

mode (or vice versa).

– The Network Time layer here provides the same

interfaces as the Packet layer in addition to the

Network Time interface in order to allow insertion of

time-synchronisation headers in packets on their way

to/from the Packet layer itself. For more information,

see Sect. 2.5.

– kMAC—responsible for time management. Allocates

time blocks in response to requests from the Transmis-

sion layer, at times that are considered to be ‘‘good’’.

Talks to the Packet/Network Time layer in order to

send its own control packets, as well as for carrier-

sense checking in order to determine if the radio

medium is free for sending (for CSMA-based kMAC

layers), and decides when to switch the radio on and

off. Passes packet send requests/receive events from/to

the Transmission layer to/from the Packet/Network

Time layer, possibly adding and removing headers on

said packets along the way. Given the roles now

allocated to other layers, the kMAC layer will be

considerably smaller than a traditional MAC layer.

– Multiplexer—(de-)multiplexer to allow for the kMAC

to only provide a singular interface to the upper

modules, yet talk to many Transmission layer modules.

– Transmission layer—contains the Unicast, Broadcast

and other application-level primitives of this nature.

Requests time blocks from the kMAC layer as required,

and then sends packets during the allocated time. By

allowing a MAC stack to contain multiple Transmis-

sion layer modules, the kMAC framework provides a

simple means to extend MAC protocols with non-

standard operations. The transmission layer is fully

explored in Sect. 3. Some examples of non-standard

Transmission layer modules are given in Sect. 6.

ApplicationApplication

Packet layerPacket layer

Multiplexer
Traditional

MAC Protocol

MACλ

Demultiplexer

Network time layer

Transmission

Fig. 1 A traditional MAC protocol versus the kMAC protocol stack
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– Demultiplexer—provides the standard MAC interface to

the application and hands off the packets from the

application to the appropriate Transmission layer

module.

There is one limitation on the choice of MAC protocol for

the kMAC layer: packet exchanges should performed in a

contiguous block of time. To allow optimal flexibility, this

block of time should be usable for both sending and

receiving by a node. Most TDMA protocols restrict which

nodes can send during a time slot, and therefore restrict

which packet exchanges (and thereby transmission mod-

ules) can be used with such a protocol. Contention-based

MACs generally do not have such restrictions and thus allow

optimal flexibility in choosing transmission modules to use.

2.4 k interfaces

As we wish to define common connections between the

kMAC and Transmission layers to enable reuse of the

Transmission modules, we need to define some standard

interfaces for these connections. We use here the terminol-

ogy of nesC [5] to provide common semantics, and also

because our reference implementation is implemented on top

of TinyOS [9]. There should however be no obstructions to

implementing this with any other WSN software platform.

All modules in the kMAC stack use the standard Tiny-

OS Send and Receive interfaces for passing messages

up and down the stack. Furthermore, we define the Allo-

cateTime interface, which defines the necessary function-

ality for a Transmission module to allocate time from the

kMAC layer. In general, a Transmission level module

requires a single instance of the AllocateTime interface

(see Table 1), plus one instance of the Send and Receive

interfaces per message type [e.g., the Broadcast module

requires a single Send/Receive interface set, and a standard

Unicast requires 4 Send/Receive interface sets (RTS, CTS,

DATA and ACK)]. The kMAC layer, however, only needs

to provide a single instance of each of AllocateTime and

Send/Receive to the Multiplexer module. The Multiplexer

module provides generic multiplexing services to create a

parametrised interface to both AllocateTime and Send/

Receive, thus enabling the capability for multiple Trans-

mission layer modules to be enabled in a single stack,

without having to deal with the multiplexing complexity in

each kMAC layer.

Individual Transmission layer modules could be

implemented using a single Send/Receive interface set per

module. However for modules that require multiple mes-

sage types (e.g., Unicast), the implementers of the Trans-

mission modules would have to both add their own type

field to the sent messages, and do de-multiplexing of the

different types at the receiver side. As the Multiplexer

module allows for multiple instances of Send/Receive

already (in order to allow multiple Transmission modules

in a single application), the Transmission layer protocol

design can be simplified by using multiple Send/Receive

interface sets, and this also removes the necessity for the

overhead of an additional type field.

The interface between the packet layer and the kMAC

layer is much simpler, and as this is more in keeping with

traditional WSN MAC design, we will not cover it in detail

Table 1 AllocateTime interface

Name Type Arguments Return Function

requestBlock Command uint16_t ms,

am_addr_t to

error_t Request a period of ms milliseconds to send a message to to, which can be the

broadcast address. A return value of FAIL indicates a persistent failure i.e., the

requested period is too long

requestSafeBlock Command uint16_t ms,

am_addr_t to

error_t As requestBlock, but asks the kMAC layer to trade off increased latency for a

better chance of success. Should only be called after a previous block has run to

completion, but has completely failed i.e., no response has been received from

any other nodes at all

startBlock Event void Called on the successful start of a period. Always corresponds to the last call to

requestBlock or requestSafeBlock

cancelBlock Command void Cancel a previous requestBlock or requestSafeBlock request. Should only be called

before the requested block has started

endBlock Event bool myStart void Called at the end of a period, where myStart indicates whether this was a block

started at this node or a block initiated by another node’s packet

sleepRemaining Command void Switch the radio off for the remaining length of the AllocateTime period. This is

intended for periods when there will be packets in the air, but none of them are

destined for this node

sendTime Command uint16_t length,

bool firstPacket

uint16_t Query how long a packet of length bytes should take to be transmitted with the

relevant headers. firstPacket indicates if the packet will be the first packet in the

packet sequence, which can be used by protocols using low-power listening

techniques to determine whether a long preamble will be used
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here. The Packet layer must provide interfaces to change

the radio state (Tx/Rx/sleep), and also to send/receive

packets using the commands and events of the Send and

Receive interfaces. For a CSMA-based kMAC layer, the

Packet layer will also require an interface to carrier-sense

operations. As we stated before, the Packet layer is

‘‘dumb’’ in the sense that all of the smart decisions

regarding when to send, to listen and to sleep are decided

by the particular kMAC layer in use.

2.5 Network time

In order for many MAC protocols to operate correctly, they

require a mechanism to synchronise nodes so that differing

nodes can agree on events happening at the same time e.g.,

synchronised awake times. Additionally, placing this

between the packet layer and the kMAC layer also allows

us to integrate time synchronisation information into each

outgoing packet, thus reducing the need for additional

control packets whenever we are sending other data

packets. However, as we wish the Network Time layer to

not override kMAC-layer decisions about when to send

packets, in the case where we do not have a sufficient rate

of outgoing packets to guarantee time synchronisation, the

Network Time layer will send a packetRequired event

(Table 2) to the kMAC layer requesting that it send a

packet ‘‘soon’’ in order to maintain time synchronisation.

In keeping with the idea of the Network Time layer as a

generic layer, and also because we wish to provide infor-

mation to modules other than the kMAC layer, we need to

define the timing information appropriately. We started with

the work of Li et al. [12] on the global schedule algorithm

(GSA), but then expanded it one step further. In GSA, nodes

keep track of how much time has passed since they were

switched on, and add this information to their outgoing

packets. If a node sees an incoming packet with a greater age

than the local age, the local age is updated to be the same as

the incoming packet, thus allowing the network to converge

towards a shared timing value based on the oldest (first

switched-on) node’s age. Note that although we chose to use

a synchronisation algorithm which results in a global net-

work synchronisation, this is an implementation decision,

not a decision resulting from the requirements of the design.

In the original implementation of GSA, schedule infor-

mation was also distributed with the age value in order to

calculate the correct current frame timer for the MAC pro-

tocol. The schedule information consisted of the time since

the last frame timer event, where a frame is a span of time

with fixed length and that starts simultaneously at all nodes.

In the kMAC framework, we have a separate TimeSync

module, which is used by the kMAC framework as a storage

location for the current local value of the age value, and a

separate FrameTimer module which derives frame-timer

events from this age value. The FrameTimer module pro-

vides periodic frame timers through the FrameTimer inter-

face (see Table 3), to all application modules that require this

capability (not just kMAC layers that need it)—e.g., for

experiments that require an entire field of nodes to make a

measurement at the same time (a commonly wanted

requirement for many biological experiments being proposed

for sensor networks). We do this by taking the age value

modulus the frame length to provide a frame timer every time

(localAge mod FrameTime) = 0. This allows the creation of

multiple frame timers for different application modules,

while only requiring synchronisation on the single age value.

All of the periodic frame timers also have an allowable

‘‘fuzz’’ value: if because of updating the local clock, we

jump over the time when we should have fired a frame

timer, but we jump over by less than the ‘‘fuzz’’ value, then

we fire the timer anyways. This bounds the acceptable jitter

in the frame timer event. In the event we jump too far over

the event point, the safest approach is usually just to skip

the event entirely and wait for the next one (e.g., not doing

a TDMA frame that is out of sync with the other nodes).

This allows us to cope with small changes in the network

clock due to varying speeds of clocks on different nodes.

3 Transmission layer modules

In this section we will look at how to implement Trans-

mission layer modules, with a focus towards the standard

set of WSN Transmission modules on top of the kMAC

layers i.e., the set of functions that would be expected from

a standard MAC protocol. An exploration of what can be

done with non-standard modules is in Sect. 6.

Table 2 TimeSync interface

Name Type Arguments Return Function

packetRequired Event void Notify the kMAC layer that it should send a packet soon to maintain synchronisation

sendDummySyncPacket Command void Request the time synchronisation module to send an empty packet for the purpose of

time synchronisation, when the kMAC layer has no useful data to send

isSyncPacket Event message_t

msg

bool Ask the kMAC layer whether the message msg was useful to maintain time

synchronisation. Only packets that are likely to be received by all neighbours

should be indicated as such
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3.1 Notes on transmission module design

Before we go into a more detailed look at how to build

basic Transmission modules, a number of features of the

AllocateTime interface should be noted:

– The point of an AllocateTime period is to grab time in

order to send packets, with a reasonable guarantee

about our neighbours being in a state where they are

able to receive our packets. A node does not need to be

in an AllocateTime period for any other purpose.

– The AllocateTime period (as marked by a startBlock()

event) is only started when the kMAC layer deems it

appropriate to start sending. In CSMA-based protocols

this will be determined via a carrier sense mechanism of

random length (to resolve contention issues between

multiple nodes wishing to start AllocateTime), and in

TDMA-based protocols this is dictated by the time slot

mechanism.

– The kMAC layer will piggyback information about the

remaining AllocateTime period on outgoing packets, in

order to place other nodes into the AllocateTime state

as well. If the MAC protocol implemented uses a slot

structure, this may be avoided as the allocation will

always be for an entire slot.

– Once an AllocateTime period is started, it cannot be

stopped. This is because of the difficulty of telling other

(possibly asleep) nodes of this change of plans. A node

can be told to go to sleep for the rest of the time period

however (via sleepRemaining()).

3.2 Broadcast

Broadcast is simply implemented on top of a single set of

Send/Receive and AllocateTime interfaces. Sending is

implemented as follows:

1. Call requestBlock() for sendTime(packet length, true)

milliseconds.

2. On startBlock(), call send().

3. On sendDone(), call sleepRemaining().

4. On reception, call sleepRemaining() as no other

packets will be forthcoming in this period. The

receiving node can determine the remaining length of

this period from the message it received.

3.3 Unicast

Unicast is somewhat more complicated than Broadcast,

partly because it can have variants both with and without

RTS/CTS. For the case with RTS/CTS, an example

implementation runs as follows. During the initialisation of

this module, we calculate the time it takes to send each of

the control packets. We calculate this by asking the lower

layers how long it takes to send a packet with only the

control information required by those lower layers. This is

achieved by calling sendTime with a zero packet length in

the Multiplexer layer, which will in turn use the sendTime

call in the kMAC layer etc. As the RTS packet will be the

first packet of the message exchange, we set the firstPacket

parameter of the sendTime function to true for RTS, and

false for both the CTS and ACK packets.

To send a packet, we first calculate the time needed to

send the packet itself by calling the sendTime(packet

length, false). Then we add the previously calculated

durations for the RTS, CTS and ACK packets, and some

platform-dependent allowance for processing and radio

state transition delays. We then call requestBlock() with

the calculated time to complete the packet exchange. On

startBlock(), we start to cascade through the RTS-CTS-

DATA-ACK sequence i.e., we send an RTS packet using

send(), wait to receive a CTS, then send a DATA packet

with send(), then wait to receive the ACK. After receiving

Table 3 FrameTimer interface

Name Type Arguments Return Function

setFrameTime Command uint32_t ms,

uint32_t fuzz

void Set time between frame timers (ms milliseconds) as well as allowable fuzz time

(fuzz milliseconds)

clearFrame Command void Stop this FrameTimer

frameStart Command uint32_t Retrieve the local time at which the current frame started

frameIndex Command uint32_t Retrieve the time in milliseconds since the start of the current frame

globalTime Command globaltime_t Retrieve the current value of the network time

frame Event sanitystate_t

sanity

void Indicates that the new frame has started. sanity indicates whether the network time

layer has fully synchronised or is still in one of the start-up phases

frameGuaranteed Event sanitystate_t

sanity

void Indicates that fuzz milliseconds have passed since the start of the frame.

Arguments as frameGuaranteed

frameSkipped Event void Indicates that one or more frame events have been skipped due to network time

re-synchronisation
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the ACK packet, we tell the kMAC layer to sleep for any

remaining time in the block.

At the receiver node, we first see a receive() with an

RTS packet. If the RTS packet is destined for the

receiving node it sends a CTS packet. Then, the receiver

waits for a DATA packet, sends an ACK packet and calls

sleepRemaining() in order to go to sleep for any

remaining left over processing time. Other nodes that are

not the destination for this Unicast sequence will go to

sleep by calling sleepRemaining() after receiving the

initial RTS packet.

This is a simplified description for an example Unicast

module, and our complete implementation includes retries

for lost/missed packets. However, it gives a flavour of how

Unicast can be implemented on top of the kMAC layer.

4 Integrating existing MAC types

Now that we have shown how we intend to split up existing

monolithic MAC protocols into a more generic and reus-

able stack (Sect. 2.3), and described how that stack works

(Sects. 2.4, 2.5 and 3), we need to go back and show that

all of this can work with existing MAC protocols.

We divide WSN MAC protocols into three groups;

dividing first into continual listening vs. scheduled, and

then further divide scheduled listening protocols into how

they decide when to send—carrier sense vs. scheduled (see

Fig. 2 for a diagrammatic view of this). We have imple-

mented a protocol for each of the groups to demonstrate the

flexibility of the kMAC framework. For the continual lis-

tening group we implemented B-MAC [15], the standard

TinyOS MAC protocol. For the scheduled listening with

carrier-sense based send timing group we implemented

both T-MAC [21] and Crankshaft [6]. In the scheduled

listening and sending group we implemented LMAC [22],

a TDMA protocol. We believe that by showing that these

protocols can be implemented with the kMAC framework,

and by providing data from experiments on our testbed

using these protocols, we adequately demonstrate that the

kMAC framework is suitably generic to serve as a base for

implementing a large portion of currently proposed WSN

MAC protocols.

In the remainder of this section we describe how we

implemented the distinguishing features of the four

implemented protocols. We will also show how the concept

of time allocation maps to the scheduling mechanisms in

the selected MAC protocols.

4.1 kB-MAC

B-MAC is a prominent example of the continual listening

group, which uses the Low Power Listening (LPL) tech-

nique to save energy. The LPL technique requires periodic

sampling of the medium, and long preambles on the first

message of a message sequence. The physical layer pro-

vides an interface to change the preamble length at run

time, such that the long preamble required by protocols

such as B-MAC can be generated. The periodic sampling

of the medium is not directly supported by the kMAC

framework, but can be easily implemented using a timer

and the carrier-sense primitive provided by the packet

layer. We have decided not to implement the periodic

sampling as part of the physical layer as it is too MAC-

protocol specific, and different preamble sampling MAC

protocols use different sampling strategies.

kB-MAC should also provide the same contention

resolution mechanism as B-MAC. This means it can start

sending at any time, provided it performs carrier-sense

and random back-off first. However, in the case of

kB-MAC, once a node determines that it has won the

contention it does not start sending itself, but instead

signals the requesting transmission module that its block

has started through the startBlock() call. kB-MAC will

then wait for the block to end. The transmission module

will in the mean while ask the kB-MAC protocol to send

a message for it. kB-MAC appends its own header, after

which it will pass the message on to the packet layer

immediately. When transmission modules are used that

mimic the packet sequences used by the B-MAC protocol

for broadcast and unicast, the behaviour of the MAC

stack with the kB-MAC protocol will be as described for

the B-MAC protocol.

A final feature of the B-MAC protocol is that it allows

on-line tuning of the sampling interval by higher layers in

the protocol stack. Although we have not implemented this

feature it could easily be added as an additional interface

implemented by the kB-MAC protocol itself. This is much

like the monolithic implementation which also has an

additional interface, next to the standard MAC protocol

interface, which allows such tuning.

Listen Timing

Continual

B−MAC Send Timing

Scheduled

ScheduledCarrier Sense

Crankshaft T−MAC LMAC

Fig. 2 WSN MAC protocol division
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4.2 kT-MAC

T-MAC is a CSMA-based MAC protocol, derived from

S-MAC [24], but with adaptive duty cycling. The adap-

tive duty cycling is based on the idea of going to sleep

shortly (TA milliseconds, defined by the length of the

contention window, the time needed to receive a minimal

packet, process it, and send another minimal packet) after

the last ‘‘interesting’’ event—which can be a message

going out, another message coming in or the periodic

firing of a frame timer every so often (see Fig. 3). The

frame timer length is a trade off between energy effi-

ciency (with longer sleep times between awake periods)

and latency (due to the length of sleep before the next

time we can send a packet).

We used the frame timers from the Network Time

layer to assume a lot of the complexity from T-MAC. A

significant part of the code of an existing T-MAC

implementation was dedicated to schedule synchronisa-

tion, including discovery of new schedules; a role now

subsumed by the Network Time layer. Another reduction

in complexity stems from the removal of the packet

exchange logic, which is now performed in the trans-

mission modules. Instead of passing a request to send a

packet to T-MAC, a requestBlock() call is made

requesting a block of time to perform a packet exchange.

kT-MAC will then go through all the steps a T-MAC

implementation would go through to determine when to

send the RTS message, at which point it will signal the

startBlock() event to the transmission module. The

transmission module will then handle the packet

exchange, leaving the kT-MAC with nothing to do except

passing send and receive calls between the transmission

module and the packet layer.

If kT-MAC gets a packetRequired event (a request from

the Network Time layer for a packet to be sent), kT-MAC

sends out a Sync packet—a packet with no actual data

payload, and only containing timing information in order to

maintain the inter-node time synchronisation.

4.3 kLMAC

LMAC [22] is a TDMA-based MAC protocol, aimed at

giving WSN nodes the opportunity to communicate colli-

sion-free, and at minimising the overhead of the physical

layer by reducing the number of transceiver state changes.

The LMAC protocol is self-organising in terms of time slot

assignment and synchronisation, starting from a sink node

(specified by the application). To allow distributed slot

assignment, each node participating in the frame schedule

advertises the slot occupancy of itself and its one-hop

neighbours. Upon start-up, the sink node sets a frame

schedule and chooses the first slot in the frame as its

sending slot. Next, one-hop neighbours receiving the sink’s

transmissions, choose their sending slots based on the

frame schedule of the sink node and the advertised slot

occupancy. This is then repeated for all next-hop neigh-

bours. Mobility is handled through collision detection by

neighbouring nodes, which will subsequently advertise the

detected collision, forcing the nodes involved in the colli-

sion to redo the slot selection. When an application wants

to send a message, LMAC delays the transmission until the

start of the node’s next sending slot.

We created a TinyOS implementation of kLMAC based

on the protocol description and the OMNeT?? code

available from the LMAC authors. For time synchronisa-

tion between the nodes, we used the Network Time layer,

and so were able to use a frame timer to determine the start

of each slot. This way, all nodes agree on the exact start

time of all slots. When using a frame timer to determine

only the start of each LMAC frame, intermediate clock

updates during the frame may lead to inaccurate start times

of slots near the end of an LMAC frame.

Although kMAC supports sending multiple packets in a

single slot, in LMAC it is only possible for a node to

transmit a single message per frame. The authors suggest

gluing together multiple messages to the same destination

to prevent high latency, but this suggestion is not imple-

mented in the available OMNeT?? program code. To

make our results comparable to the OMNeT?? imple-

mentation we had available, we did not implement this

feature.

On a requestBlock() call, kLMAC sets a flag indicating

that there is a packet waiting to be sent at the node’s next

time slot. During its time slot, a node will always transmit a

packet. If a node has no data to send, an empty Sync packet

is sent to keep the network synchronised and to keep a

claim on the slot. Otherwise kLMAC signals startBlock()

and waits until the end of the time slot to call endBlock().

Since a TDMA-based MAC-protocol does not need the

full Unicast RTS/CTS/DATA/ACK sequence to keep other

nodes from transmitting at the same time, we created a

Unicast module that only sends the DATA packet. As the

TA TATA

CSMA

Active time

Sleep time
T−MAC

Active time

Sleep time
S−MAC

Fig. 3 T-MAC
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TinyOS message header already contains information

about destination node and packet length, this information

was removed from the LMAC-specific header.

4.4 kCrankshaft

The Crankshaft protocol [6] uses the frame and slot

structure of TDMA protocols like LMAC, but instead of

scheduling the senders to eliminate contention all together,

it schedules receivers to limit contention. The advantage of

the receiver scheduling over the sender scheduling is that it

does not suffer from the over-provisioning that is associ-

ated with TDMA protocols for WSNs.

To achieve maximum energy efficiency, Crankshaft

combines techniques from several different protocols. For

example, the synchronised channel polling mechanism

from SCP-MAC [25] is used to allow receiving nodes to

sleep most of their slots when no message is sent to them.

This requires preamble sampling and long preambles, just

like kB-MAC, but also the network synchronisation. The

synchronisation is provided by the Network Time layer.

As far as implementation using the kMAC framework is

concerned the most distinguishing feature is that the correct

moment to contend and send depends on the destination

(owing to the receiver scheduling). This feature requires

that when a block is allocated, the destination is also made

available to the kCrankshaft implementation. Crankshaft

uses a simple DATA/ACK message sequence which is

readily implemented using our stock Unicast Transmission

module.

5 Testing

We performed a series of tests comparing the kMAC ver-

sions of B-MAC, T-MAC, LMAC and Crankshaft to other

implementations. In the case of kB-MAC we compare

against the standard TinyOS B-MAC implementation.

Although we have a TinyOS 1 implementation of T-MAC,

it does not perform to an acceptable level to allow proper

comparison. Therefore, for T-MAC, as well as for LMAC

and Crankshaft, we had to resort to comparing against

simulation results. Using simulations limits us to studying

whether the kMAC implementations show similar degra-

dation patterns under load, rather than allowing us to study

their exact behaviour. However, we are forced to use

simulations as no independent implementations are avail-

able for these protocols. This also illustrates one of the

problems we hope the kMAC framework will alleviate: the

lack of real-world implementations of MAC protocols.

To simulate the T-MAC, LMAC and Crankshaft pro-

tocols, we use an enhanced version of our OMNeT??

based MAC protocol simulator used in earlier work [11].

We do not compare against TOSSIM, as we only have our

own kMAC framework implementations for TOSSIM and

our goal is to check against a different implementation of

the same protocol, so as to verify the proper operation

of our kMAC implementations. The simulator we use

employs the same SNR model which has been shown to

give fairly accurate results [7] when simulating MAC

protocols for WSNs.

All real-world experiments are performed on our 24

node testbed [8]. The nodes in our testbed are mica2 class

nodes, with Atmel ATMega128 processors and CC1000

radios. Table 4 show the parameters used for the different

protocols for all our tests. The simulator has been set to

match both the hardware and software characteristics as

closely as possible. Both simulations and real-world

experiments are performed five times and experiments last

360 s.

5.1 Testbed results

We tested the implementations of kB-MAC, kT-MAC,

kLMAC and kCrankshaft on our full testbed. At the default

transmit power setting, our testbed is a single cell network

of 24 nodes. First of all we perform a benchmark test, in

which two nodes A and B communicate with each other

while the other nodes are sending broadcast packets. Nodes

A and B send at a fixed rate of one message per 2 s, while

the message rate of the broadcasting nodes is varied. We

measure the packet success rate as the success rate for

packets between A and B, ignoring all other packets. Fig-

ure 4 shows the result for the kB-MAC and kT-MAC, as

well as the results for the standard TinyOS B-MAC pro-

tocol on our testbed and simulation results for T-MAC. We

have omitted the graph with the results for kLMAC and

kCrankshaft because, as expected, they show (almost)

100% reception for all broadcast-node message-rates.

As can be seen in the figure, the standard B-MAC

implementation outperforms the kB-MAC implementation

by a small margin for low contention. However, as the

contention increases, kB-MAC starts to outperform the

Table 4 Protocol parameters as used during the experiments. kMAC

and non-kMAC versions use the same parameter values. Time values

are in binary milliseconds

Protocol Parameter Value

B-MAC Sleep time 85 ms

LMAC Number of slots 32

Slot length 50 ms

Crankshaft Number of unicast slots 8

Number of broadcast slots 2

Slot length 48 ms
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standard B-MAC approximately 17% percentage points. In

our original test runs the delivery ratio of the standard

B-MAC implementation dropped to almost zero due to a

bug in the dynamic noise-floor algorithm, which caused

B-MAC to consider all transmissions as background noise

when channel utilisation was high. The results shown in

this paper are the results with the bug fixed. The remaining

performance gap is likely due to a bug in the implemen-

tation of the clear channel assessment that shows up under

high load (see [8]), which causes B-MAC to think the

channel is clear when it is not. This causes extra collisions

that the clear channel assessment in the kMAC packet layer

(and therefore kB-MAC) avoids.

The results for the T-MAC protocol show that the

kT-MAC implementation shows a similar curve as the

simulation-based T-MAC implementation. As the simula-

tor uses a simple SNR based radio model with free-space

propagation, it is expected that the simulation results are

better than the real-world results. However, we do expect

that both curves show similar decay in delivery ratio, as we

see in the figure.

As a second test, we let all the nodes in the testbed send

to a single node. The results are plotted in Fig. 5. The top

graph shows the same protocols as before. Again the sim-

ulated T-MAC implementation outperforms the kT-MAC

implementation, but shows a similar drop in delivery ratio.

The kB-MAC implementation and the standard B-MAC

implementation show almost identical delivery ratios. Even

though the clear channel assessment in the standard

B-MAC implementation is not optimal, in this scenario it is

not so much of a problem. If two messages partially

overlap, the second message will still be received (cf.

Fig. 6). For the unicast test this counts as one successfully

received message. In the previous test such collisions cause

problems if the first message is a unicast message and the

second message is a broadcast message, as only the unicast

messages count for the delivery ratio. This explains why

for the unicast test the standard B-MAC implementation

does not suffer a large performance hit at high contention.

The bottom graph in Fig. 5 shows the results for

kLMAC and kCrankshaft. For the LMAC protocol the

graphs for the simulated LMAC and kLMAC are virtually

the same. As the LMAC protocol does not use a contention

resolution algorithm, the only impact the channel model

has is in message detection and correct transmission.

Because our testbed is a single cell network in the default

configuration, the chance of incorrect transmission is

minimal. The only factor determining the delivery ratio of

the LMAC protocol is therefore the maximum throughput.
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As the simulator was set to match the the real nodes as

closely as possible, it is no surprise that there is hardly any

difference in delivery ratio between simulation and real

life.

In the Crankshaft protocol results we see a similar

sudden drop in performance as we see in the LMAC pro-

tocol result. Again this is caused by bandwidth limitations

inherent in the protocol. The Crankshaft protocol does use

a contention resolution algorithm which relies on a correct

clear channel assessment and low contention to get a 100%

delivery ratio. Because the test is set up in such a way that

all nodes generate their messages at the same time, there is

always a limited contention. The simulated version has a

perfect clear channel assessment, which explains the

slightly better performance compared to the kCrankshaft

protocol.

Finally we performed a small hidden-terminal test with

five nodes. The setup is shown in Fig. 7. The four

unmarked nodes all send unicast messages to the sink node

(S). Nodes on opposite ends of the sink node cannot

directly communicate. For carrier-sense based protocols,

this situation presents problems because the ‘‘hidden

nodes’’ are not aware of each others transmissions and

thereby cause collisions. We chose this simple setup

because it can be replicated in our simulator. Figure 8

shows the delivery ratio for the different protocols.

The figure shows that the carrier-sense based protocols

kT-MAC and kCrankshaft perform better than their simu-

lated counterparts. This is most likely due to the fact that

even though the ‘‘hidden nodes’’ in the testbed cannot

successfully receive messages, they can in some cases

detect the ongoing transmission through signal strength

measurements. As in the first experiment, kB-MAC out-

performs the standard B-MAC due to better clear-channel

assessment. Because the LMAC protocol does not depend

on carrier sensing, the kLMAC protocol and the simulated

LMAC protocol again show very similar performance.

From these experiments we conclude that the kMAC

implementations of the tested protocols properly imple-

ment the protocols.

5.2 Power test

To further demonstrate the correct working of the protocols,

we used the power tracing capability of our testbed. As an

example, we include a trace of a kT-MAC packet exchange

in Fig. 9. The only difference with power traces from pre-

vious implementations like for example in van Dam and

Langendoen [21] is that nodes briefly switch off the radio

after the exchange is complete. This is an artifact of our

unicast transmission module, which tells the MAC layer it

may go to sleep once it has sent/received an ACK message.

As other nodes should not be sending until the block is

complete this has no impact on further message exchanges.

After the message exchange we can see the wait for activity

before the radio is turned off, which is characteristic of the

T-MAC protocol. We do not show the traces for the other

protocols as they provide limited value over the kT-MAC

trace.

5.3 Code size

Next, we examine the lines of the code for the different

MAC layer implementations. For this evaluation we can

use the original TinyOS 1 implementation for T-MAC as a

comparison as bug-free operation of the protocol is not

required for this comparison. We have verified that the

S

Fig. 7 Hidden-terminal setup
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interfaces above and below the MAC protocol are similar

to those in TinyOS 2, to ensure that the comparison is fair.

However, the numbers for the TinyOS 1 implementation

should be seen as a careful estimate rather than an precise

measure.

First we look at the lines of code required to implement

the protocol. We use this measure, as it is a measure of the

effort required to implement the protocol. Table 5 shows the

number of lines of code as counted by the SLOCCount

utility [23] for the tested protocols. For the standard B-MAC

implementation we counted the lines for all the modules

above the packet layer interface (i.e., CC1000CsmaP.nc and

CC1000ActiveMessageP.nc). The same holds for the

TinyOS 1 T-MAC implementation. For the kMAC protocols

we only count the parts specifically implementing the

functionality of the protocol, and not the shared parts of the

kMAC framework. Again, this is because we are interested

in the implementation effort required for the protocol, not

the MAC stack as a whole. The lines of code of the kMAC

framework (excluding the packet layer) are listed in the

table as well. The time synchronisation is listed separately

because it is an optional component. The kB-MAC imple-

mentation for example does not use the time synchronisation

module.

The kMAC implementations are significantly smaller

than their monolithic counter parts. The kB-MAC imple-

mentation is 35% smaller and the kT-MAC implementation

is 70% smaller. Because the B-MAC protocol does not

include any form of time synchronisation, the code size

gain obtained by using the kMAC framework is smaller

than it is for the T-MAC protocol which does include time

synchronisation.

For the kCrankshaft and kLMAC implementations we

do not have monolithic implementations. However, what

the the table does show is that even a complex protocol like

Crankshaft can be implemented within the kMAC frame-

work with relatively little effort.

From the lines of code comparison in Table 5 we can

also see that the flexibility of the kMAC framework and the

reduced per-protocol complexity comes at the expense of a

larger total lines of code for the MAC stack as a whole.

However, lines of code only indirectly translate to RAM

and ROM size. Therefore we also compare the RAM and

ROM size of a minimal program that includes the MAC

layer (see Table 6). Note that contrary to the lines-of-code

comparison, the numbers in Table 6 include the size of the

kMAC stack.

What is immediately clear is that kB-MAC uses 52%

more RAM than the standard B-MAC implementation. The

actual kB-MAC module only uses 9 bytes of memory for

state variables. The overhead is therefore mainly due to the

kMAC framework modules. The most important source of

overhead is in the unicast module. The unicast module

incorporates a message buffer which is used to send control

messages. In the case of kB-MAC it is used as an ACK

message. The standard B-MAC implementation has a hard

coded ACK sequence which also does not include any

information about the message that the ACK was sent in

response to. Therefore it can store this sequence (5 bytes)

in ROM rather than keeping a 44 byte message buffer in

RAM. Other significant overheads introduced by the

kMAC framework are bitmaps and tables in the multi-

plexer (16 bytes), and state variables in the unicast module

(12 bytes). Analysis of the causes of the difference in ROM

size is thwarted by the inlining employed by the compiler.
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Table 5 Lines of code in the implementation of the tested protocols

Protocol SLOCCount

B-MAC 499

kB-MAC 324

T-MAC (TinyOS 1) 1,090

kT-MAC 330

kCrankshaft 523

kLMAC 426

kMAC transport & multiplexing 775

kMAC time synchronisation 431

Table 6 RAM and ROM sizes in bytes of the same empty applica-

tion for different MAC protocol implementations

Protocol RAM ROM

B-MAC 164 9,114

kB-MAC 249 11,664

T-MAC (TinyOS 1) 538 a 17,514

kT-MAC 381 16,320

kCrankshaft 409 17,158

kLMAC 611 16,120

a After correction for serial stack and packet-layer buffers
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The RAM size for the TinyOS 1 T-MAC implementa-

tion shown here is after correction. In TinyOS 1, the radio

stack and the serial stack cannot be enabled and disabled

separately. The serial stack uses approximately 130 bytes

of RAM. Furthermore, the packet layer used in the TinyOS

1 T-MAC implementation uses an extra 94 bytes in packet

buffers that the TinyOS 2 packet layers do not. Including

these extra overheads would distort the comparison. Of

course the different TinyOS versions already distort the

comparison somewhat, but that cannot be avoided. The

ROM size cannot be easily corrected for the inclusion of

the serial stack due to the inlining performed by the

compiler.

Closer inspection of why the TinyOS 1 T-MAC imple-

mentation uses more memory than the kT-MAC imple-

mentation revealed that the monolithic implementation

includes three packet buffers more than kT-MAC. These

packet buffers account for 134 bytes, which leaves a dif-

ference of only 23 bytes between the two implementations.

The remaining difference can be mostly attributed to the

different TinyOS versions used, but the exact variables are

hard pinpoint exactly.

The overall picture that arises from these RAM and

ROM size numbers is that the less complicated the proto-

col, the larger the overhead incurred by the kMAC

implementation. However, the overhead is not very large.

Even in the case of the relatively simple B-MAC protocol,

the overhead in RAM size is limited to only 85 bytes. For

the more complex T-MAC protocol, the overhead is neg-

ligible. Whether the small increase in ROM size is

acceptable depends on the hardware platform and the

application.

5.4 CPU-cycle overhead

Generally, the flexibility offered by using a framework

rather than creating a monolithic implementation comes at

a price. As we have seen in the previous section, using the

kMAC framework incurs an overhead in RAM and ROM

use. In the context of sensor networks another important

factor is energy consumption. The two main energy con-

suming parts of a sensor node are the CPU and the radio. In

this section and the next we therefore quantify the overhead

of the kMAC framework with respect to CPU and radio

use.

Because we have two TinyOS implementations of

B-MAC, we can perform detailed comparisons. First of all,

we compare the CPU overhead for the kB-MAC protocol

compared to the original B-MAC protocol implementation.

We use the Avrora emulator [20] to get accurate CPU cycle

counts. We have tested two situations: first, we compare

the cycles used when there is no communication taking

place. Second we look at the situation where a node is

sending. Both tests are the result of taking the cycle count

over a 20 s period. In the send test, the node was sending

one message per second. Unfortunately, Avrora does not

simulate the RSSI output of the CC1000 radio, which

means that the channel polling will always detect an idle

channel. As a result, we cannot provide CPU overhead

numbers for a receiving node. Table 7 summarises our

results.

The CPU cycle test results show a significant overhead

for kB-MAC in the idle test, and to a lesser extent in the

send test. Closer examination of the results showed that the

original B-MAC employed an optimisation in the radio

switching. Instead of switching the radio on completely for

channel polling, it only switches the radio on to the state

where RSSI measurements can be taken. Because the

timing during the radio switches is done through busy

waiting, only performing part of the radio state switch uses

fewer cycles. Integrating such an optimisation into the

kMAC framework in a generic way is possible, but would

require more complicated interfaces to the radio. The

benefits of this optimisation are limited to a single radio

chip, which does not justify the extra complexity in the

framework. However, we have implemented this optimi-

sation in a separate version of the kB-MAC protocol, such

that we can provide a better estimate of the overhead

induced by the kMAC framework. The results show that

kB-MAC could in principle be almost as CPU cycle effi-

cient as the original B-MAC, indicating that the kMAC

framework does not introduce a significant CPU-cycle

overhead.

5.5 kB-MAC micro benchmarks

Next we performed two micro benchmarks with the two

TinyOS B-MAC implementations. First of all we setup two

nodes, one receiver and one sender node. The sender

simply tried to send as many broadcast packets as it can in

50 s. Both the original B-MAC and the kB-MAC imple-

mentation approach the theoretical maximum of approxi-

mately 10 messages per second, and there is only a small

difference between the two implementations (cf. Table 8).

Second, we measured the average radio duty-cycle for

the same two nodes, sending unicast messages from one

Table 7 CPU cycle overhead for kB-MAC, with and without radio

switching optimisation

Experiment Overhead (%)

Idle 225.2

Idle (optimised) 5.2

Send 80.2

Send (optimised) 2.9
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node to the other at a rate of one message per second.

Table 9 shows the average radio duty-cycle over 590 s for

the sender, the receiver, and the average of both nodes.

Again, both the standard B-MAC and kB-MAC imple-

mentations perform very much the same.

6 Further transmission modules

The kMAC framework allows extension of the operations

provided by MAC protocols through the Transmission

modules. In this section we look at some Transmission

modules that can be implemented on top of the kMAC

layer that would not be considered part of a standard MAC

protocol, but would provide useful additional primitives for

other applications. Notably, these would be non-trivial to

add to most normal MAC protocols, as we would either

have to try and build them out of Broadcast and Unicast

operations, which would be significantly sub-optimal; or

we would need to rebuild the MAC entirely.

Our modular approach makes these additions not only

possible, but relatively easy because they are no longer

integrated with the other parts of the MAC protocol. The

implementation of one transmission module is completely

separate from all other transmission modules, while in most

MAC protocols all possible message exchanges are enco-

ded in a single state machine. Furthermore, we only need to

implement the functionality once as a transmission module,

rather than in each MAC protocol separately, significantly

reducing development effort.

6.1 ExOR

ExOR (Extremely Optimistic Routing) is a ‘‘one send,

many replies’’ approach to reliable multicast for routing

protocols. It was first explored by Biswas and Morris [1],

and an extended version was proposed in the Guesswork

routing protocol [14]. Both variants can be implemented on

top of the AllocateTime interface, but would require sig-

nificant effort to implement inside existing MAC protocols.

An ExOR sending node sends a packet that not only

contains the data for the packet, but also a list of other

nodes that should respond (in the order that they are meant

to respond in). Every node that is in the list that receives

the packet waits sufficient time for all of the earlier nodes

in the list to respond, and then sends an ACK to the sender

node (see Fig. 10). This can be used for a number of

things—for example, implementing Reliable Broadcast, as

the sending node knows that all nodes that it receives an

ACK from have received the packet; or making a best-

effort next-hop transfer in a routing algorithm (by using the

ACKs to implement an election mechanism to pick the

‘‘best’’ possible next-hop node that has correctly received

the original packet).

From the point of view of implementing ExOR as a

Transmission layer, it can be considered as a variant of

Unicast, with no RTS/CTS and a series of receiver nodes,

all of which need to pause a variable amount of time before

sending their ACK packets, and then call sleepRemaining()

to avoid overhearing the remaining ACKs.

6.2 Priority queueing

Another possibility that arises once the kMAC layer has

been implemented is an option that has been requested by

various applications, namely priority queueing [13, 19]—

allowing for messages to be sent out in an order different

from that which they were received (either from other

nodes in routing scenarios, or events from local sensors). In

standard MAC protocols, the ‘‘send’’ method is a fire-and-

forget concept i.e., once the ‘‘send’’ has been called, can-

celling the message (or even being aware of whether the

message is queued or actually being sent right now) is

impossible. The TinyOS AMSend and Send interfaces do

provide a cancel command, but the specification allows too

much freedom in implementation such that building pri-

ority queueing on it cannot be done reliably.

Using the kMAC layer, a priority queue can be imple-

mented. By using the cancelBlock() call, a previous request

to the kMAC layer can be revoked, after which a different

block can be requested. Priority queueing would change the

default MAC interface semantics in the sense that currently

a MAC protocol would not accept a new packet before the

Table 8 Average maximum broadcast rate for B-MAC and kB-MAC

Protocol Average rate (msg/s)

B-MAC 9.0

kB-MAC 8.8

Table 9 Average radio duty-cycle for one node sending unicast

messages to another node, using B-MAC and kB-MAC

Protocol Sender (%) Receiver (%) Average (%)

B-MAC 15.4 7.4 11.4

kB-MAC 13.6 8.0 10.8

3 2 14

Time

Data

Acknowledgements

Fig. 10 Example ExOR packet time-line
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last packet was completely handled. However, when using

priority queueing, the MAC stack would have to accept

more than one packet. Also, an interface should be pro-

vided for the priority queue to determine which packet to

send first.

7 Related work

At some levels, the core concepts of kMACs vs. traditional

MAC protocols can be viewed as similar to the micro vs.

macro-kernel debate in more conventional operating sys-

tems. In common with micro kernel design [4, 18], the

kMAC layer is able to separate out parts of a WSN

application that would normally be considered a very

complex part of the system (as both MAC layers and

operating system kernels in general tend to be regarded by

many programmers as ‘‘here be dragons’’ areas of code),

and these separated parts are then able to be altered with a

significantly lower chance of affecting the rest of the code

base.

Polastre et al. [16] proposed the Sensornet Protocol (SP)

that provided a greater level of control to applications

wishing to influence the choices made by lower level pro-

tocols. Their system created a much more horizontal design

for differing levels of an application stack, as opposed to the

more traditional vertical design in normal MAC protocols.

This design allowed a lot of control at application-level,

with the trade-off that an application was able to tweak core

parts of the MAC layer that could potentially introduce

significant instabilities in the MAC, unless the application

was fully aware of how the particular MAC would react to

those changes. In the kMAC design, applications have large

quantities of control—they can allocate arbitrary blocks of

time and do pretty much whatever they like during this

time—but in a way that preserves the integrity of the kMAC

layer, as it is able to delay AllocateTime requests until it is a

‘‘good’’ (for values of ‘‘good’’ defined by the individual

kMAC layer) time for the application to have control. The

kMAC separation of control, with most timing control out

of the hands of the application designer, allows for cleaner,

safer, and simpler design.

The MAC Layer Architecture (MLA) proposed by Klues

et al. [10] also provides a component-based architecture for

WSN MAC protocols. MLA provides a set of modules

implementing common MAC building blocks like channel

polling and TDMA slot handling. The common building

blocks identified by MLA are at the level of mechanisms

and orthogonal to the role separation proposed in our

kMAC framework. For example, different from our work

MLA still requires the MAC implementer to manually code

the packet exchanges into the MAC specific code, sacri-

ficing flexibility.

Ee et al. [3] attempted similar goals, but for routing pro-

tocols. Their approach looked at providing a generic toolkit

for building routing protocols, and for creating modules that

could be used to piece together protocols, including the

possibility of new hybrid protocols built from parts of earlier

protocols. Their wish to provide a toolkit as opposed to a

framework design such as we proposed is possibly indicative

of a wider variety of options in routing protocol design, as

opposed to the relatively small set (time management) that

we have identified here for MAC protocols.

8 Conclusions

We set out to redesign and rethink how MAC protocols are

designed for WSNs, to create a new and improved design

concept, and to modularise common functionality. We

have managed to do this, and along the way also provide

new capabilities and a refocused take on the role of a MAC

in the WSN network stack. The reduction in the roles of a

MAC protocol to its core feature of time management, by

separating out the Network Time layer to provide node-

wide time synchronisation, as well as the Transmission

layer modules to allow for clean separation of the logic

required for features like Unicast, has given a new look at

an old topic.

Through our testing we have managed to show that our

initial attempt at a reference kMAC layer (kB-MAC) was

able to achieve similar performance, both in terms of data

rates and power usage, to a traditionally designed MAC

protocol, but with a significant decrease in complexity.

Lines of code is not always a good indicator of system

complexity, but the reduction of duties required of

kB-MAC vs. monolithic B-MAC is. Implementations of

LMAC, T-MAC and Crankshaft within the kMAC frame-

work show the kMAC framework’s flexibility. As it turns

out, the TDMA-based LMAC protocol that we expected to

be the most difficult case, was not so hard to implement.

By implementing several significantly different MAC

protocols, we have shown that our framework is suffi-

ciently generic to be used by the wider community as a

general-purpose MAC creation framework. Especially for

experimental platforms, the importance of allowing people

to extend existing work without having to reinvent the

wheel cannot be overemphasised.

We hope that one of the side effects of our creation of

the kMAC framework will be the creation of more MAC

protocol implementations for real hardware, as many new

MAC protocols are currently only implemented in simu-

lation. We feel that this is important because simulation is a

poor guide to how something as low-level and radio

hardware dependent as a MAC protocol will behave on real

hardware.
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