Report on an Arctic Summer DTN Tral

Stephen Farrell, Alex McMahon, Eoin Meehan, Stefan Weber and Kerry Hartnett

Abstract—Delay- and Disruption-Tolerant Networking (DTN)
is an emerging area of networking research that will benefit from
real-world trials and testbeds. We describe a week long DTN trial
carried out during the summer of 2009 in the Laponia area of
Northern Sweden that involved the provision of basic email and
web services to users who were 57km distant from any power
or networking infrastructure. The trial validated our design
and successfully demonstrated the use of email via helicopter-
transported data-mules. With the aim of making it easier for
others to replicate this kind of trial, the hardware and software
used are described with references to full specifications, as are
the results of the inital 2009 trial. We also describe plans for an
extended trial in summer 2010 in the same area.

I. INTRODUCTION

Delay- and Disruption-Tolerant networking (DTN) [1] is
an area of networking research that has grown over the last
decade. [2], [3] The Internet Research Task Force’s DTN
Research Group' has developed an architecture [4] and a
number of protocols for use in networks that cannot make
use of standard ‘“chatty” Internet protocols. These include
the Licklider Transmission Protocol (LTP) [5] (not further
considered here), and the Bundle Protocol (BP), specified in
RFC 5050, and with a reference implementation called DTN22
which was the basis for the trials reported on here. [6]

One of the goals of the DTN research community is to
establish how well the BP, and to a lesser extent, DTN2,
perform in realistic trials. To that end, the “Networking for
communications challenged communities” (N4C) project® has
been funded to explore how the BP, and more generally, DTN,
can be used to meet the needs of real users in real testbeds,
with the overall goal of the project being to establish the
technology for a lasting DTN testbed that can outlive the
project funding. N4C started in 2008 and in this paper we
report on the summer 2009 trials carried out in the arctic in
conjunction with the first workshop on Extreme Networking®
at which we presented a brief description [7] of the work
reported on in detail here.

The N4C project’s arctic trials, including this one, are
designed for, and with the involvement of, the local Saami
reindeer herding population. The ultimate goal of the project
for these potential users is to use technology in order to better
support their traditional lifestyle and culture, which involves
spending some weeks in the mountains of Laponia in summer,
when the reindeer are gathered for calf-marking. [8] For the
Saami, there is a significant financial and social cost each time

Kerry Hartnett is with Intel Labs. All other authors are with Trinity College
Dublin, Ireland. Contact: stephen.farrell@cs.tcd.ie

Thttp://www.dtnrg.org/ All URLs accessed at 2010-09-23 unless otherwise
noted.

Zhttp://dtn.sourceforge.org/

3http://www.ndc.eu/

“http://www.extremecom.org/

they must take a helicopter trip to town simply in order to
make a phone call or send a text or email message. There
are no commercial communications providers operating in this
area, so the prospect that DTN might provide even very basic
messaging or web services such as news and weather has a
lot of appeal for these users.

So our trial has essentially two high-level goals: for us,
as network researchers, we would like to validate the DTN
architecture, protocols and their implementation and to make
real-world data and experience available to other researchers;
for the Saami, they would like to validate that DTN can
provide basic networking services that they can use whilst in
the mountains of Laponia.

It is important to note that the implementation described
here has mainly been designed for the extended trials in
summer 2010, and the 2009 trial was intended to, and did,
demonstrate that the basic equipement design, software and
networking could work in a short trial, prior to expending the
resources required for the longer trial.

Since the goal of this paper is to enable experimenters
to either replicate, or improve upon, our work, we provide
references and links to detailed materials (e.g. a full “bill of
materials” for the hardware used). All of those materials are
linked from our web site - see section VII for details.

A. Outline of the paper

In the next section we briefly consider related efforts, then
we describe the overall setup of the summer trial and the
hardware and software used. We then describe the results of
the trial and lessons-learnt. We finally draw some conclusions
from our work in the summer 2009 trial. Throughout the paper,
we will describe planned differences between the implemen-
tation for the 2009 and 2010 trials that result from the work
done in 2009.

II. RELATED WORK

In this section, we briefly describe other trials that resemble
ours in terms of trialling DTN with real users in the real world,
or that otherwise closely resemble our work.

The list of these real-world trials is limited, especially
in contrast to studies based on simulations - which is also
reflected in the available literature where novel architectures
are often selected with preference to reports of real world
evaluations. A survey carried out as part of the N4C project
[9] considered a much broader range of DTN related devel-
opments and evaluations.

The Saami Network Connectivity (SNC) project [10] was
a precursor to the N4C project, involving some of the same
partners, that established the initial interest in DTN amongst

the user community described here. SNC demonstrated lim-
ited small-scale connectivity in the same region of northern
Sweden beween 2006 and 2008, based on an earlier version
of the BP, using a more ‘“nomadic” approach to the type of
equipment used in the experiments, and without aiming to
support standard applications like email and web access as
was done here. Some of the tests done in the SNC project
were repeated as part of the initial work on N4C in 2008. The
main difference in approach between SNC and N4C could
be summarised by saying that providing any connectivity of
any form was a goal for SNC, while N4C aims to provide
a more capable network, that can interoperate with Internet
applications.

The Motopost DTN trial [11] implemented a DTN style
email service based on a modification of the SMTP protocol,
rather than using the bundle protocol. The Motopost system
involves kiosks and data-mules exchanging routing and other
configuration information prior to the SMTP exchanges and
has a particular naming/addressing scheme that is designed
specificially for their trial, so it is unclear how easily it could
be extended to support other applications. However, the data-
mule based architecture used is quite similar to that presented
here, and the authors report that end-users do consider privacy
(or perhaps confidentiality) a real requirement.

In contrast, Hyyrylinen, et al. [12] describe a way to handle
mail using the BP that has quite a different approach to ours
in that they require all mail client devices that need to operate
in a challenged region to be DTN enabled whereas we only
require a standard mail user agent, and our village DTN router
(described below) handles all the DTN aspects. While their
approach offers additional flexibility, for example, the ability
to use ad-hoc connections to route mail between two end-user
nodes, that comes at the cost of requiring that the DTN stack
be installed and configured on the end systems, which is at
least a barrier to adoption and sometimes makes it impossible
to use interesting classes of device such as WiFi enabled
phones that can talk SMTP and IMAP but which do not allow
installation of arbitrary network applications.

While the relatively short time available in the 2009 trial
meant that we could not achieve many “live” HTTP re-
quest/response roundtrips, we are not, of course, the first to
tackle the fairly obvious task of accessing web content via a
DTN.

As part of their “Drive-Thru Internet” project, Ott and
Kutscher [13] presented a classification of various methods
by which HTTP could be supported in a DTN context. Using
their terms, we are addressing the DTN gateway approach
here and do not assume that any web server supports DTN
or has provided a list of resource dependencies. As might be
expected, their method for encapsulating HTTP in bundles is
similar to our approach, though it is not clear whether their
system could handle the extended latencies involved in our
trials, where a user may emit a HTTP request but only expect
to see results a day or two later, after most components are
likely to have been rebooted for power management or other
reasons.

Balasubramanian et al. [14] developed a DTN-like caching
web service called Thedu, deployed on top of Dieselnet, that

is similar in many respects to our approach. Thedu does not
use the BP for encapsulating HTTP requests and responses,
but does address web search, which we have not yet tackled
and Thedu is more advanced when it comes to handling pre-
fetching of web resources compared to our 2009 web access
service, which encapsulates HTTP requests in bundles and has
a simple server-based pre-fetching model.

Neither of the above web access schemes appear to specifi-
cally address user privacy concerns as described below, which
may arguably be more important in the extremely high latency
shared context in which we operate.

Another aspect in which our approach may differ from the
related work, but which was not fully explored in 2009 relates
to user mobility between villages. In our planned 2010 trial, we
will have multiple village DTN routers and so will face some
issues related to multicast-like operation. The design presented
below is intended to handle these issues, for example, we
intend to replicate message store content on all relevant DTN
routers, so that regardless of which router is near a user, they
can send and receive using the same account.

TierStore [15] is a DTN2 based file system that has been
used in a number of TIER® deployments. TierStore takes
a different approach to that taken here in that it provides
a distributed file system that uses the BP for file system
synchronisation actions. TierStore aims to allow application
developers to develop or run their applications on the local
filesystem with the DTN aspects taken care of mostly below
the filesystem API, so TierStore aims for portability of appli-
cations onto DTN.

In contrast, we aim to provide DTN services via proto-
col interoperability, e.g. encapsulating SMTP messages into
bundles, which is more of an application layer gatewaying
approach. TierStore has been used to provide both web and
mail services by running local web and mail applications on
top of the TierStore filesystem (though so far, we have not
seen detailed reports of its deployment in the field). We feel
our design is more likely to work with existing applications
and user agents overall since we would argue that the way
in which application servers use protocols are generally better
specified than the way in which they use file systems, which
(if true) would mean that it is easier to develop a robust system
based on application layer gateways rather than programmatic
APIs. The clear benefit of the TierStore approach of course is
that it works immediately for an application that only makes
simple use of the file system and that can deal with possible
inconsistencies in the state of the file system.

Given that the above argument is essentially subjective, it
would be very interesting to see a comparison of how the two
approaches compare in the same or a commensurate real-world
trial.

III. BACKGROUND TO THE TRIAL

The area for the 2009 and 2010 trials (shown in Figure 1)
is part of the Padjelanta national park (67°22°N,16°48’E) and

Shttp://tier.cs.berkeley.edu/

therefore has almost no road, power or networking infrastruc-
ture. As a national park, there are many restrictions on the
development of such infrastructure, even temporarily.

As there are no roads, the area is serviced by a small
number of helicopter companies, that have semi-regular flights,
between for example Ritsem and Staloluotka, for which the
flight duration is about 20 minutes. Since our remote site
for the 2009 trial was in Staloluotka, the Ritsem-Staloluotka
helicopter link was our only data-mule route. In 2010 we
may make use of other flights in addition as we plan to have
addtional remote sites.

The helicopter companies also charter their aircraft for ad-
hoc flights, and even with their regular service may make
detours to pick up, or drop off, people and goods, mainly on
behalf of the local population. (The rules of the national park
constrain the locations where the helicopters are allowed land,
except when they are carrying some of the local population.)
The helicopters thus provide a roughly scheduled service.

X
{

N
oRitsem @ Kiruna

- ® Saltoluokta
Staloluokta
5,/

) \
® Jokkmokk

L

Fig. 1. Map of Test Area (c) OpenStreetMap and Contributors. The Internet
gateway with GSM connectivity was in Ritsem, the village DTN router was
installed in Staloluotka, approx. 50km distant.

One of the helicopter companies (Fiskflyg®) co-operated
with our trial, allowing the installation of data-mules on two
of the helicopters they operate in the area. When there were
some issues with those (described below), the pilots also
carried netbook computers handed to them by our personnel in
Staloluotka. In Ritsem, the pilots only needed to briefly bring
the netbook into their cabin for the few minutes between flights
for the necessary exchanges to occur. Local co-operation like
this was critical to the success of the trial as will be seen
below.

In the winter, this area is essentially deserted. In the summer,
between late June and the end of August, there are two
different types of user with which we are concerned, the first
being the local population of Saami reindeer herders who have
summer camps (or villages) that they use in this area for,
roughly, six weeks around July of each year. The second are
tourists (hikers) who mainly use paths that are maintained by
the local tourist agency and who stay in tourist cabins along
the paths. (The Saami summer camps and the tourist cabins
are generally not co-located, nor are the Saami camps directly
on the tourist trails.) The N4C project aims to provide these
user communities with some level of network access, even
whilst within the national park. There are of course some other

Shttp://www.fiskflyg.se/

classes of potential user, e.g. the tourist cabin attendants and
the helicopter pilots, but we do not specifically target these so
far, although we do hope that they may themselves make use
of the 2010 trial services.

For the Saami population, the aimed-for benefit is to allow
them to spend more time in the summer camps - at present,
they have to return, via expensive helicopter trips, for even
the most trivial communications. (Though reportedly, people
sometimes hand their mobile phones to the helicopter pilots
with an already-written text message ready for sending once
the helicopter reaches an area with mobile coverage.) For
these people, any form of communication, however limited,
has the potential to save significant time and cost and could
therefore really enhance their ability to stay in the mountains
and continue their chosen lifestyle, which is their main goal
for the summer.

For the tourists, and perhaps the cabin-keepers, (employed
by the tourist agency), the benefits of our applications are less
clear. However, since the helicopter flights generally are to
and from the tourist cabins, these are good locations in which
to locate the temporary infrastructure described below. In fact,
we also saw quite an amount of interest amongst tourists in the
cabins - perhaps this reflects a desire for communications even
whilst hiking in the wilderness, or perhaps it merely reflects
boredom.

As stated above the 2009 trial was only a week-long test
to demonstrate that the equipment and overall design can
work, so we took advantage of another type of user: the
participants in the ExtremeCom 2009 workshop, who took
part in an approximately 50km hike setting out from Ritsem
and arriving three days later in Staloluotka. These were IT
and even DTN-literate users and were a useful group to test
the initial deployment of the hardware and software described
here.

However, it is worth noting that the system described below
is really designed for the first two types of user, and our goal
in 2010 will be to provide email and web services for the
Saami population and, to the extent to which they wish to use
the system, the tourists.

The N4C project benefits from the direct participation of
some of the Saami people. Such local co-operation is essential.
We cannot overemphasise the importance of this - without the
assistance and goodwill of local people, there is no possibility
of a successful trial. Experimenters wishing to carry out trials
in locations such as this really must ensure that they first
establish, and then maintain, such contacts. During 2009 this
co-operation included interacting with the helicopter company
and tourist-cabin attendants where otherwise language issues
would have posed difficulties. However, local advice and
sensitivity were also significant when it came to siting the tem-
porary infrastructure equipment, for example, moving rocks
to anchor the stand was prohibited for non-locals (who might
accidentally disturb local flora), and locating the equipment
near the church in Staloluotka would have shown disrespect.

Aside from the more (and less) obvious logistical and
organisational challenges inherent in any field trial, at this
stage in the development of DTN, the main challenge in
carrying out a DTN field trial in an area such as this is

transtioning technology designed for laboratory use to use
in the real world. For example, while the DTN stack used
has been in laboratory use for a number of years and has
seen some limited field use, there were a number of issues
(detailed below) with logging that required significant work
before, during and after the field trial. As a result of trials such
as this the DTN technology should be much better suited for
future field trials.

In addition, trials such as this validate the DTN architec-
ture, for example, the ability to really use a data mule is
demonstrated here, which involves more than just deploying
the technology, but also requires that the technology is suitable
for operation by the untrained (in DTN) personnel involved.
(In our case helicopter pilots.)

This trial also required an innovative integration of the DTN
stack with off-the-shelf hardware products and open-source
software to produce a sufficiently robust DTN node, and also
development of a router stand suited for use in this trial, and
in future, a range of other field trials.

Lastly, this trial involved integration of the DTN stack
with standard web and mail services, so that the end-user
devices did not have to have any DTN stack installed. While
that represents a fairly obvious variant, it has not, to our
knowledge, been done before in this way. These application
integration aspects of the trial should prove useful to the DTN
community once we have merged that source code with the
existing DTN open source reference implementation.

IV. EXPERIMENTAL SETUP

The system described here has been designed to allow end-
users to use familiar applications and interfaces and to hide
the DTN. End-users do not have to install any special software
and are able to use a standard laptop with wireless access, or
indeed any device that can support IEEE 802.11 (b or g, at
2.4GHz) such as various types of mobile phones, or PDAs.

The logic behind these design constraints is that the user
populations concerned should only need the most basic con-
ception of DTN, essentially being able to view it as sending
their email via helicopter with no DTN specific knowledge
being required to use the service and with no requirement to
install DTN software on the end-users’ devices.

Our overall system for the 2009 trial is shown in Figure
2 and consisted of two computers in Ritsem, one of which
had basic Internet connectivity via a 2G GSM modem and the
other of which acted as a BP relay; a unit which we call a
“Village DTN Router” in Staloluotka and data-mules carried
by the helicopters. In addition, users could make use of their
own (or the experimenter’s) laptop or other wireless device. In
addition to laptops, both Nokia 810 PDAs and iPhones were
used during the trial by other participants in the ExtremeCom
2009 event, and from the N4C project.

The village DTN router essentially acts as a traditional WiFi
hotspot, but instead of connecting directly to the Internet uses
the BP to send and receive bundles encapsulating application
traffic.

The unit in Ritsem was connected, via a Virtual Private Net-
work (VPN), back to servers in Trinity College Dublin (TCD)

TCD RITSEM < 50kms > Staloluokta
Basil - VM: Gateway Data Mule Village Router
192.168.1.102 User access to Wireless

‘ SSID “ndcvillage”
10.125.14.xxx
. v ™
.
v L] ™
+, VPN -~ >
s N B
‘. N4C-DTN 3
[192.168.2.200 .+ Data Mule - H
°, 192.168.2.10 R
D/ Ad- hoc wireless network .. € v
A N4C-DTN
= {(cam)
DTN Gateway
with VPN to basil
Ethernet IP DHCP from ISP
ey =
y (
| Yoraebzto W\
Internet Gateway : : \M

Windows 7 PC
with 2G connection

Village DTN Router
| DHCP IP from ISP

Router Board: 10.125.11.10
(DTN2, Apache, postfix, dovecot)
AP: 10.125.14.1

DHCP 10.125.14.xxx for clients

Fig. 2. Network design. From left to right: TCD is connected to the gateway
at Ritsem via a VPN running over a GSM 2G link; the gateway connects
via ad-hoc WiFi to the data-mule carried by the helicopter; the data-mule
connects via ad-hoc WiFi to the village DTN router when the helicopter is
present; end-user devices connect via infrastructure-mode WiFi to the village
DTN router; DTN protocols are not used on this last link.

that de-capsulated and processed the relevant application traffic
as described below.

A. Email Transaction Walkthrough

Before describing each of the hardware and software com-
ponents we first present a brief walkthrough of how an inbound
email message is handled at the various nodes using the
bundle protocol. This should give the reader useful context
in understanding the detailed descriptions.

An email is sent to user001@village.n4c.eu from some-
where on the Internet and eventiually arrives, as normal, with
no DTN protocols used, at the destination mail server, which
is hosted in TCD. There the email is received and stored in
the user0O1’s message store, which in our case, consists of
a set of files, one for each mail message. Periodically, (each
morning), a process checks for changes in the overall message
store and constructs a compressed tar file containing all the
changed files, one of which is our mail message for user0O1.
That tar file will be sent via the DTN using the BP, which is
a store-and-forward delay-tolerant protocol.

The tar file is sent as a bundle payload, to the DTN2 daemon
(dtnd) running on basil, (our mail server in Dublin for this
experiment) which accepts custody of the bundle. If the link
between basil and the DTN gateway node in Ritsem is up,
then the bundle will be forwarded immediately, and the DTN
gateway node will return a new administrative bundle to basil,
accepting custody of the bundle containing the tar file. At this
point, basil can remove the bundle from its persistent store. If
the link from basil to the gateway is down, then the bundle
will be stored (on disk) at basil until the link comes up again
and the above exchanges have succeeded. The same store-and-
forward step and custody handling is repeated at each DTN
node in our configuration.

The link between basil and the DTN gateway node runs
over a VPN established between these hosts. This is because

the Internet gateway node’s public IP address is dynamically
assigned by the 2G GSM proivder in Ritsem, and the VPN
allows basil to use a static address for the DTN gateway node.
So, the 2G network provides a public IP address to the Internet
gateway node in Ritsem, which in turn provides a private IP
address to the DTN gateway node. But the DTN gateway
(as necessary) establishes the VPN connection to basil, and
uses a known private IP address on that VPN interface. This
allows basil’s DTN daemon to establish connections to the
DTN gateway as required, and vice versa.

When the bundle has reached the DTN gateway, it is stored,
awaiting a connection to be setup between the DTN gateway
node and a data mule. When that connection is established,
then the bundle is forwarded to the data mule and custody is
passed to the mule.

Once the data mule moves to Staloluotka (via helicopter),
then the same exchange occurs between the data mule and the
village DTN router, which is the destination for the bundle in
question. At that point, the bundle is delivered to a process
that extracts the mail files and places them into the copy of
the message store on the village DTN router. Once this has
happened, then when userOO1 next connects to the village DTN
router’s message store (IMAP) service, then the mail can be
read.

So, essentially, our mail message that arrived at the top left
of Figure 2 has flowed from left to right in the picture, until
(some hours later) is has arrived at the village DTN router at
the bottom right of Figure 2, at which point it can be read by
user001, using a laptop or PDA as shown at the top-right of
the figure.

B. Village DTN Router Hardware

In this section we describe the village DTN router hardware
used in 2009, with an emphasis on the reasons for our design
choices. Almost identical hardware will be used in 2010.

The primary requirements faced were robustness and use
of off-the-shelf components - the hardware chosen had to be
able to withstand field use, and given that one of our goals
is that other experimenters should be able to construct similar
devices, basic engineering skills and a minimal toolkit must
be all that is required to build devices.

The full bill of materials and detailed wiring, layout and
build instructions for making such a node are available from
our web site.

A Village DTN Router is made up of a single board
computer, a WiFi access point, batteries for main power and
solar panels for charging. Everything except the solar panels is
mounted in a single weather proof enclosure. Figure 3 shows
a router operating in Staloluotka during the trial - all of the
the electronics are in the box at the base of the stand. (For
scale, the solar panels are roughly A3 sized, and the base of
the stand is 92cm on each side.)

1) Printed Circuit Boards: The single board computer used
is the Proteus’ single board computer from Eurotech. This is
an Intel Atom Z530% based board which in a single package

http://www.eurotech-Itd.co.uk/en/products.aspx 2pg=PROTEUS &pid=10120
8http://ark.intel.com/Product.aspx ?id=35463

Fig. 3. Deployed Village DTN Router. This is the router shown at Staloluotka
during the trial in summer 2009. One can see the stand, 3 x 20W solar panels,
infrastructure-mode WiFi antenna and the enclosure (at bottom) containing the
electronics. (See Figure 4 for an internal view.)

has 2GB flash, SDIO slot, 2 x PCle slots, GPS, SIM-card
reader, serial ports and USB ports. Overall, the Proteus board
used 7.2W, which closely matches the stated usage of 2W for
the Atom CPU and 4.3W for its accompanying US15W Chip
set.

While the Proteus board may be considered somewhat
high-spec for a device that is intended to be deployed in a
challenged network environment, (and is also currently quite
costly), the flexibility afforded by so many interfaces and
capabilities has allowed us to handle what could otherwise
have been a number of setbacks during development. (For
example, a late-breaking requirement for a second ad-hoc
mode WiFi radio.) Basing our development on an arguably
“over-specifed” board is therefore yet another aspect of overall
system robustness. Our expectation is that in the relatively
near future, either the pricing of the Proteus will be reduced,
or, once we are more confident of the actual operational
requirements we may be able to replace the Proteus with a
board that is a more exact fit to those requirements, and is
less costly, since there is nothing particularly special about,
for example, the fact that the Proteus uses the Intel Atom
chip.

As stated, the Proteus is today somewhat expensive and is
by far the single most expensive component, costing about
twice as much as the second most expensive component (the
mounting). However, while we re-evaluated our use of the
Proteus in late 2009, we have not so far found that any of the
cheaper boards on the market actually save much, if anything,
when one takes into account the fact that in all cases so

far, some additional components are required to get cheaper
alternatives to work. Given that the Proteus was one of the
first Atom-based single board computers on the market when
we started our design process, and given that we are still (18
months after reeceiving our first Proteus) receiving significant
BIOS updates, there is probably a good general argument to be
made that selecting a high-end device is better when dealing
with newer technology, whereas with more mature technology
there are more tailored, tested and cheaper options usually
available.

The WiFi Access Point is a Mikrotik RB411° single-port
router board with an Engenius EMP-8603!°miniPCI wireless
card. For our 2010 trials, we are investigating replacing both
of these with a single WiFi PCI card mounted directly on the
Proteus. In 2009 however, the use of the Microtik reduced the
number of software components that had to be configured and
tested, which was deemed worthwhile at the time.

One of the benefits of all of these boards is they each
have on-board voltage regulators which is important in systems
powered by type of battery used. These batteries do not give
a constant voltage, but range from approx 13V when fully
charged to approx 10V when depleted. The onboard voltage
regulators meant we could connect all these devices directly
to the input power, without having to install a separate voltage
regulator.

The Proteus also has diode protection - an additional board
safety feature that was particularly useful when wiring-up or
debugging during trials. We have seen other boards (data-
mules) damaged due to accidentally reversed polarity, which
can easily happen during configuration or testing in the field.

| : T oS T
Main Aerial - BN B Y <

On/Off Switch

MikroTik

Batteries
".

Fig. 4. Village DTN Router interior. For scale, the Proteus is 155x110 mm.
The ad-hoc WiFi antenna can be seen on the left. Other components are
described in the text.

http://www.routerboard.com/pricelist.php?showProduct=38
10http://www.engeniustech.com/datacom/products/details.aspx ?id=250

The relatively small form-factor of the above boards was
also a factor, although not really in terms of reducing the
overall size of the equipment as one might expect, but rather
in allowing for flexibility in how components are set out,
and secured for transport within the enclosure. The overall
enclosure sizing is essentially determined by the batteries.
(In fact, for our 2010 trial, we have made some substantial
simplifications in component layout within the enclosure and
in the wiring harness as a result of lessons learned during
2009.)

Figure 4 shows the internals of a village DTN router.

2) Power: Power for the system is provided by three
12V 7.5AH valve-regulated lead-acid (VRLA) batteries. Using
three batteries rather than one allowed us to experiment with
mounting and positioning options within the enclosure, but at
the expense of having more connecting wire. Lead-acid chem-
istry batteries are better suited to solar charging, and VRLA
batteries do not have to be kept upright as the electrolyte
is sealed in. This is important as it means the Village DTN
Router can be transported safely and also reduces restrictions
on its final mounting position. (Vertical or horizontal.)

For development purposes, we used a Studer SBM-02 power
monitor'! that allowed us to log battery voltage levels, power
consumed and charging levels. This device was not required
for operation, but was essential during development in order
to assess the actual power consumption and hence the useful
battery life.

We also included a volt meter'? with an LED display
mounted on the inside of the window to give feedback as to
the state of the batteries in field. For 2010, we are considering
a more sophisticated digital monitoring system, in conjunction
with more sophisticated power management, that is enabled by
the latest revision of the Proteus BIOS.

Power to charge the batteries is provided by three 20W
12V “fastFIX Mono” solar panels.'> One of the reasons for
choosing 3 separate panels rather than a single larger panel
is that the entire system (in fact two systems, plus spares)
had to be shipped from Dublin to Lulea in northern Sweden.
The equipment then had to be assembled and taken by car
to the helicopter base at Ritsem, then flown by helicopter to
Staloluokta. The system therefore had to be man-portable, and
“fold down” into a suitable form-factor. Three smaller solar
panels are easier to manage than a single larger panel. The
three panels were connected in parallel to give a theoretical
maximum 60W of power and connected to the charge con-
troller in the main system enclosure.

In 2009, we had an “arm” assembly that allowed us to
change the elevation angle of the solar panels to face the sun
directly, but we noted that most other solar panels in the area
were simply mounted vertically to the ground. At the latitude
concerned, vertical mounting seems to be just as effective so
we eliminated these arms for our 2010 trial. A side-effect of
the 2010 mounting was that we could easily swivel the solar
panels to face the sun, which ancedotally seemed effective.

http://www.studer-inno.com/?cat=battery_monitoring
2http://ie.farnell.com/1339314
Bhttp://www.sunshinesolar.co.uk/khxc/gbu0-prodshow/SS20WP.html

We expect to be able to measure the effectiveness of this from
2010 data.

The final power related item in the enclosure is the solar-
charging regulator.'* VRLA batteries must be prevented from
discharging completely as this reduces their lifespan and
ability to hold charge. Conversely batteries must also be
prevented from overcharging as this will cause generation of
excess hydrogen and deplete the electrolyte. A solar-charging
regulator is designed to be connected to the solar panels, the
battery and the load. It monitors the current flowing in and
out, disconnects the load if the battery voltage drops too low,
(below 11.1V in this case), and disconnects the solar panels
if the battery voltage goes too high (14.5V). For 2010, we
plan to use a more capable solar charge controller,' that
offers a number of advantages, for example using pulse width
modultation (PWM) which allows the battery to be more
completely charged.

For the 2009 version of the village DTN router, the boards
consume 0.9 amps at 12V and the batteries store 21 AH, giving
an approximate lifetime running at full power of roughly
22 hours. In reasonable sunlight the solar panels produce
approximately 36W of power (not, of course the full 60W) and
in the Arctic in summer we get about 19.5 hours of daylight,
though with fixed mounting of the solar panels good charging
conditions are only experienced for a fraction of that time.
Simple calculation therefore shows that we need 7 good hours
of sunlight in order to fully charge batteries from empty while
drawing no load.

From this one can (correctly) conclude that our 2009 village
DTN router required quite an amount of good sunlight in order
to keep operating. In order to do better, one has to make use
of lower power standby states which, unfortunately, were not
available with the version of the Proteus BIOS used then.
However, since we only required the system to operate for
a short period, there was almost always enough power.

Since then, a BIOS update has resolved this issue, so that
the 2010 village DTN router will be able to put itself to sleep
when power levels are reduced and wake on a real-time clock
alarm when power levels are improved. Testing of these power
management features is ongoing at the time of writing but will
be crucial for the longer trial planned for 2010.

In addition, this BIOS update has activated some power
saving features of the Intel Atom processor that were unavail-
able in 2009. For example, the CPU can automatically change
from running at 1.60GHz to 800MHz when idle, and move
to a C6 state, saving power on the system. For example, with
high activity (CO state) the CPU draws 750mA, whilst in C6
state power consumption drops to 620mA, a saving of about
20%, which in a power sensitive system extends battery life
considerably.'®

3) Enclosure and Mounting: All of this equipment is inside
a metal, IP66 compliant enclosure with a toughened glass
window. We preferred a metal enclosure over plastic due to
previous experience of the project members, and the option

“http://www.sunshinesolar.co.uk/khxc/gbu0-prodshow/REG7.html
Shttp://www.sunshinesolar.co.uk/khxc/gbu0-prodshow/E-REG10A .htm]
16http://www.hardwaresecrets.com/article/611/6

of a toughened glass window meant the status of the Proteus
and other LEDs and our voltage meter could be read without
having to drill additional holes in the enclosure, potentially
compromising its ingress protection.

The enclosure chosen was the Eurobox mild-steel model
83502 cabinet'” which has a removable plate in one wall to
allow for holes to be drilled for cables and switches. Initially
three holes were planned, one for the power cable from the
solar array, one for the antenna cable, and one for an on/off
switch. One additional hole was required for a second, ad-hoc
mode, WiFi antenna as described below.

When designing a device to operate outdoors, it is of course
important to minimise the number of holes and all switches
and glands must provide the same or, if at all possible, a higher
level of ingress protection than the enclosure itself. Details of
the specific components chosen may be found in the bill of
materials on our web site.

All apertures were further sealed with waterproof bitumi-
nous tape, which should be included in field kits, since ingress
protection is otherwise put at risk if for example, an antenna
must be temporarily removed.

One of our goals in the N4C project is to ensure that other
experimenters can make use of our village DTN router in
future trials. One of the less obvious aspects of that is that solar
panels and radio antennae need to be securely mounted, and
suitable mountings are frequently not available, in particular
easily transportable mountings.

We therefore designed a foldable aluminium stand, sturdy
enough (with some ballast) to hold the three solar panels and
the mounting brackets, and the system box, but light enough to
be carried by one person, and fit in the passenger compartment
of a helicopter. There are also weight limits that apply when
transporting equipment on the helicopters we used in 2009,
hence the use of Aluminium. CAD drawings for this design
are available from our web site.

C. Data-Mules

Data-mules are nodes that physically move and carry bun-
dles so as to connect otherwise disconnected parts of the DTN.
In our trials, data-mules do not run any application layer code,
but only act as BP nodes.

Two types of data-mule were deployed for the 2009 trials.
One was a single board computer (SBC) mounted in an
enclosure in the helicopters, the other, initially intended as
a backup in case the helicopter mounted unit failed, (which
occurred), was an Asus EEE PC 901 that was handed to the
pilot. Before getting to the failure and how we handled that,
we first describe what we planned that ultimately failed, since
such hard-learned lessons are worth preserving.

The SBC helicopter-mounted data-mules ("Wireless Router
Application Platforms,” referred to as “WRAPs”) were se-
lected by other partners in the N4C project, and were pre-
viously used in the SNC project. These are essentially end-of-
life off-the-shelf products, so we only provide a brief overview
of the hardware here. The board used was the PC engines

Thttp://www.euroboxenclosures.co.uk/mild-steel-cabinets.php

WRAP 2.E'"® running the OpenWRT operating system and
with a Tonze PC686X'® mini PCI wireless card. These units
were enclosed in a “mini-box” outdoor enclosure also from
PC engines?.

As part of a separate deployment that overlapped with
our trial, the WRAPs had been deployed in the helicopters
to support other DTN tests that made use of ad-hoc WiFi
networking. Since the WRAPs were already deployed we
attempted to interface with them via the second radio on
the village DTN routers. This was a late surprise in that we
only learned of it a few weeks before the start of the trial,
(we had previously assumed that all nodes would be using
infrastructure mode WiFi). As described above, once we found
out that ad-hoc WiFi was required we added the second radio
to the Proteus board and proceeded with our integration and
testing. At this point we also developed a backup (described
below) in case the late surprise caused problems.

However, once in the field during testing in Lulea and
Ritsem, we experienced many problems with ad-hoc WiFi
interoperability and so had to deploy our backup data-mule
solution. We never reached a satisfactory conclusion as to ex-
actly why this was the case, but while two ad-hoc radios based
on the same chipset seemed to be able to associate consistently
and reliably, we found that combinations of different chipsets
gave highly variable results, in a lot of cases with no WiFi
association forming at all.

So during the actual trial, none of the data reported on here
was transported via the WRAPs but all used our backup data
mule solution.

Our backup data-mule solution was an Asus EEE PC 901
netbook, running the Ubuntu 8.04 operating system, using ad-
hoc mode WiFi, with the DTN2 implementation of the BP (as
had the WRAPs:).

We had been able to test the ad-hoc WiFi for these during
development, and knew that they would work. In principle, we
could have had the EEE PC data mules use infrastructure mode
WiFi, however we did not, because we only finally decided to
use these data mules after we were in the field and it was too
risky to change the configurations of all other nodes at that
point.

The modus-operandi for these mules was to keep them
powered up whilst at the helicopter base in Ritsem, and in
WiFi contact with the DTN gateway node described below. A
pilot making a trip to Staloluotka simply carried the mule (still
powered up) in the helicopter and handed it to our personnel
on arrival in Staloluotka. Our personnel in turn brought the
data-mule into range of the village DTN router (and checked
it was operating correctly) so that the bundles were transferred,
and then handed the data-mule back to the pilot. On arrival
back in Ritsem, the pilot simply plugged the data-mule back
into its power supply which was in range of the DTN gateway
device described below. All of the traffic reported on below
was carried by the EEE PC data-mule.

Having said all of the above, the helicopter mounted data
mule remains a better solution (if it works), and so we plan to

8http://www.pcengines.ch/wrap2e1.htm
http://www.cyberbajt.pl/produkt/1444/
2Ohttp://www.pcengines.ch/case2c.htm

attempt this again for our 2010 trial, since we won’t always
be present to swap the EEE PC with the pilot in 2010. For
the 2009 trial, the WRAPs were powered directly from the
helicopter 12V power supply and were mounted below the
front passenger seat. For our 2010 trial, we plan to re-use these
devices mounted in the same locations, but this time running
infrastructure mode WiFi and with a battery backup since
testing in 2009 showed that there were a number of potential
communications opportunities lost due to the pilot turning off
the helicopter ignition switch immediately on landing, before
the WRAP had succeeded in establishing contact with another
node.

D. Internet/DTN Gateway

The Internet/DTN gateway was composed of two devices
- a tablet PC with a 2G/3G USB dongle to provide basic
Internet connectivity and DHCP address service, and another
Asus EEE PC 901 which acted as a DTN gateway. The tablet
PC was also used for other experiments using the WRAPs and
so was essentially a piece of “legacy” equipment.

Since the tablet PC ran Microsoft Windows, and the DTN2
stack has not been ported to that operating system we needed
the EEE PC to receive bundles from the data-mule and to
forward them via the Internet to a server (basil) back in
Dublin which was the source or destination endpoint for DTN
services.

Interestingly, the 2G connection from the tablet PC often
experienced outages, and so the EEE PC relay was in fact quite
useful since those outages often co-incided with the arrival
or departure of helicopters. (We hypothesised that people
frequently used their GSM phones around the time they took
a helicopter ride, which may have affected the 2G bandwidth
in the otherwise sparsely populated cell.)

We secured the connection back to basil using a virtual
private network (VPN), which was installed on the DTN
gateway EEE PC using OpenVPN?!' which connected to the
our server, basil, in Dublin. Basil then routed email and
executed web requests. The VPN was necessary as we were
using static routing for DTN and such routes need fixed IP
addresses or DNS entries. The VPN eliminated any issues that
might have arisen since the tablet PC could get different IP
addresses when it received its own Internet-facing IP address
from the 2G/3G network - essentially it meant we controlled
all the IP addresses of all of the DTN nodes.

E. Radio Links

Our initial design was for all clients (including data-mules)
to operate in WiFi infrastructure mode. The main antenna
for the village DTN router was mounted on the top of the
aluminium stand over the solar panels. We chose a weather-
proof, 12dBi high-gain, vertical polarisation, omni directional
antenna®?> and an n-type connector to a large diameter co-axial
cable. Large diameter co-axial cables are less flexible but result
in far less signal attenuation (of the order of 0.5dB per meter).

2lhttp://www.openvpn.net/
22http://www.itelite.net/products-desc.php?id=274

However, the WRAP data-mules installed on the helicopters
(by another partner in the N4C project) had been configured
to operate in ad-hoc WiFi mode in order to support other
experiments by other partners in the N4C project. This is
an example of the kind of “late-surprise” that is very likely
to occur in multi-partner field trials. Luckily, the additional
capabilities of the Proteus board allowed us to to install an
additional PCle wireless card on the Proteus board, which we
configured to operate in ad-hoc WiFi mode, thus allowing us to
interoperate with the deployed WRAPs (in principle, if not in
practice). The second radio also of course required a second
antenna, which was an EnGenius 7dbi vertical polarisation
omni-directional antenna.

In the field, these ad-hoc WiFi connections proved very
troublesome, with many associations not being established.
The main pattern was that two identical devices would work
reliably but that mixed devices would not. For this reason we
plan to move to an all-infrastructure mode or 2010 testing.

The main lesson we learned here is to be very cautious of
ad-hoc WiFi with heterogeneous devices. In any future trials
where ad-hoc WiFi is to be used, we will not assume inter-
operability, (we would make that asumption for infrastructure
mode), but will only use combinations of devices that we have
recently tested, with a strong preference for just one device

type.

FE. Software

Village DTN routers, the Internet and DTN gateways and
the EEE PC data-mules all ran Ubuntu Linux LPIA version
2.6.24-16-Ipia.

The village DTN router provided a wireless hotspot service
to the end-users. The wireless access was provided by the
Mikrotik/Engenius board running RouterOS Level 4. The
Proteus provided DHCP services, a DNS server, NTP server,
Apache Web-server (with mod_auth_forms, PHPS) and Squid
proxy server, MySQL server, Dovecot IMAP server and a
Postfix SMTP server.

Delay tolerant networking support was provided via the
open-source DTN2%3 stack, version 2.6.0 (changeset 3450). All
convergence layers were TCP, with node-discovery?* enabled.
Other that this discovery aspect, all DTN routes were static,
with the various node’s IP addresses configured on each node.

Data-mules provided no end-user services and therefore
simply ran the DTN2 stack. The DTN gateway also provided
no end-user services and therefore ran the DTN2 stack and
OpenVPN to connect to the support system basil at TCD.

1) Naming: The overall approach followed with naming
was to configure DNS names for nodes with IPv4 addressing
and to derive DTN Endpoint Identifiers (EIDs) from those
names. This was a purely pragmatic approach since our aim
was to investigate how well existing DTN protocols actually
worked in the field, rather than to test new experimental DTN
naming features.

As we have seen, our DTN nodes were defined as gateways,
routers or data-mules plus the special case of basil, which was
well-connected to the Internet at all times.

2http://dtn.sourceforge.net/
24http://dtn.sourceforge.net/DTN2/doc/manual/configuration.html#discovery

Routers and gateways were multi-homed. Each had an ad-
hoc interface and a managed mode interface and separate
IPv4 private network address spaces were assigned for each.
The 10.125/16 address space was assigned to managed mode
interfaces and 192.168.2.0/24 address space was assigned
to ad-hoc mode interfaces. A range from the 10.125.14/24
address space was assigned for the DHCP servers on each
router, to provide IP addresses to end-users.

Routers and basil each had a DNS server configured with
A, PTR, CNAME, TXT and MX records for the set of all
relevant DTN nodes.

The DNS domain used for the all field nodes in our tests was
“village.n4c.eu”. In this trial there were only a small number
of nodes, each manually configured.

DTN?2 requires one to configure interfaces for routing, so
most interfaces were named using the DNS domain and a
hostname indicating the type of node (dtnrouter, dtnmule or
dtngateway), and a unique string (the last two octets of the
interface’s IPv4 address.) Figure 5 gives an example.

dtngateway-11-10.village.ndc.eu

Fig. 5. Example Node Name - the Village Router in Staloluotka

The Delay-Tolerant Network architecture [4] requires each
node to have at least one EID that uniquely identifies that node.
In our case, we used a Convergence Layer Adapter (CLA)
identified by prepending ’dtn://’ and appending ’.dtn’ to the
interface identifier. See Figure 6 for an example. This form of
naming is a convention used by many DTN2 deployments.

’ dtn : //dtngateway-2-200.village.ndc.eu.dtn

Fig. 6. Endpoint Identifier of a CLA (CLAID)

A registration is a named inter-process connection (IPC)
that an application uses with the DTN2 daemon in order to
send or receive bundles. This is how the DTN2 daemon (dind)
knows to deliver, rather than forward, bundles and is also how
the DTN2 daemon listens for bundles from applications.

The DTN web and email application’s EID registrations
were a concatenation of the EID of a CLA, a delimiter ’/’ and
a unique service descriptor. The service descriptors used were:
HTMLgateway, HTMLrouter, mailtogw, and, mailsyncin. Fig-
ure 7 provides and example of a registration EID.

’ din : //dtnrouter-11-10.village.ndc.eu.dtn/HT M Lgateway

Fig. 7. EID for HTMLgateway service

The dmN4Crecv middleware provided the web gateway
service with service descriptor HTMLgateway. This could be
configured to register as a web gateway on basil, (See Figure
7), or on a router. The same dtnN4Crecv middleware also pro-
vided two email gateway services, with descriptors mailsyncin
and mailtogw. While we do not claim any significant benefit
for this setup, (though it did allow for some code re-use), it

is necessary need to know this in order to re-use our code or
to fully understand the supplementary data.

The main Internet-connected support DTN node
was basil, located in Dublin, and its CLAID was
din://basil.dsg.cs.tcd.ie.dtn.

2) Routing: We designed our routing scheme, based on
static routes, well in advance of the actual field trial. As a
result, at design time, we faced a number of uncertainties,
in terms of potential node placement and even in terms of
how well our nodes would perform. For these reasons, the
routing scheme included routes that, as it turned out, were
not required. However, as designed, this scheme allowed us
to replace one village DTN router with another without re-
configuring in case a node failed.

In the event, one router (“11-10,” in the supplementary data)
was deployed in Staloluotka and then transported to Saltolu-
okta (where the workshop component of the ExtremeCom
event was held). The second, backup, router (“11-20”) was
not required, other than for testing, which mainly happened in
Ritsem. However, in this section, we describe the full routing
setup, including the backup router.

Bundles from the field test, with email or web request
payloads were received by basil, which then routed email and
executed web requests. Response bundles were routed back to
the revelant field nodes.

Bundles transmitted between router nodes and gateway
nodes always traversed a mule node (See figure 8).

3

dtn://dtngateway-2-200.village.n4c.eu.dtn _[,‘—

(OpenVPN)
dtn://basil.dsg.cs.tcd.ie.dtn

dtn://dtnmule-2-33.village.n4c.eu.dtn

dtn://dtnmule-2-10.village.n4c.eu.dtn

7

dtn://dtnrouter-11-10.village.n4c.eu.dtn dtn://dtnrouter-11-20.village.n4c.eu.dtn

(backup)

Route from router to basil <> Route from router to router

Fig. 8. Static routes. Redundant routes were configured to allow for use of
a backup router and mule in case of failure in the field. See Figure 2 for the
physcial topology. Bundles from basil were always routed to both the main
and backup routers.

Two routers, one Internet and DTN gateway and three mules
were deployed. The DTN gateway in Ritsem relayed bundles
to the basil in Dublin and vice versa.

The three data mules consisted of two WRAP units, each
mounted in a helicopter serving the Ritsem/Staloluotka link,
and one Asus EEE PC that was handed to helicopter pilots as
described previously.

Two examples of the paths bundles follow when transmitted

from a router to a gateway via a data-mule are shown in Figure
9. These traces show the situation during testing in Ritsem,
before the router was deployed at Staloluotka, hence the low
latencies.

(T: dtnrouter-11-20)dtnuser@dtnrouter-11-20:~$ dtntraceroute dtn://basil.dsg.cs.tcd.ie.dtn/ping
source_eid [dtn://dtnrouter-11-20.village.n4c. eu.dtn/traceroute.6313]

using default replyto

dtn_register succeeded, regid 14

dtn://dtnrouter-11-20.village.ndc.eu.dtn/traceroute.6313: sent at Wed Aug 5 18:13:57 2009 UTC
dtn://dtnrouter-11-20.village.ndc.eu.dtn: forwarded at Wed Aug 5 18:13:57 2009 UTC (174 ms rtt)
dtn://dtnmule-2-10.village.n4c.eu.dtn: received at Wed Aug 5 18:13:57 2009 UTC (205 ms rtt)
dtn://dtnmule-2-10.village.n4c.eu.dtn: forwarded at Wed Aug 5 18:13:57 2009 UTC (1423 ms rtt)
dtn://dtngateway-2-200.village.ndc.eu.dtn: received at Wed Aug 5 18:13:57 2009 UTC (1437 ms rtt)
dtn://dtngateway-2-200.village.ndc.eu.dtn: forwarded at Wed Aug 5 18:13:57 2009 UTC (1450 ms rtt)
dtn://basil.dsg.cs.tcd.ie.dtn: received at Wed Aug 5 18:13:57 2009 UTC (1466 ms rtt)
dtn://basil.dsg.cs.tcd.ie.dtn/ping: echo reply at Wed Aug 5 18:13:57 2009 UTC (1486 ms rtt)

(T: dtnrouter-11-20)dtnuser@dtnrouter-11-20:~$ dtntraceroute dtn://basil.dsg.cs.tcd.ie.dtn/ping
source_eid [dtn://dtnrouter-11-20.village.n4c. eu.dtn/traceroute.6331]

using default replyto

dtn_register succeeded, regid 15

dtn://dtnrouter-11-20.village.n4c.eu.dtn/traceroute.6331: sent at Wed Aug 5 18:14:14 2009 UTC
dtn://dtnrouter-11-20.village.n4c.eu.dtn: forwarded at Wed Aug 5 18:14:14 2009 UTC (151 ms rtt)
dtn://dtnmule-2-33.village.n4c.eu.dtn: received at Wed Aug 5 18:14:19 2009 UTC (4483 ms rtt)
dtn://dtnmule-2-33.village.n4c.eu.dtn: forwarded at Wed Aug 5 18:14:23 2009 UTC (6037 ms rtt)
dtn://dtngateway-2-200.village.n4c.eu.dtn: received at Wed Aug 5 18:14:18 2009 UTC (6812 ms rtt)
dtn://dtngateway-2-200.village.n4c.eu.dtn: forwarded at Wed Aug 5 18:14:21 2009 UTC (9223 ms rtt)
dtn://basil.dsg.cs.tcd.ie.dtn: received at Wed Aug 5 18:14:19 2009 UTC (19316 ms rtt)
dtn://basil.dsg.cs.tcd.ie.dtn/ping: echo reply at Wed Aug 5 18:14:19 2009 UTC (22095 ms rtt)

Fig. 9. Example routes as shown via the DTN2 dtntraceroute command.
Each traceroute bundle is shown arriving and departing at each node, in the
first case from router to the mule, then gateway and finally basil. The second
case is the same except the route is via a different mule (72-33”).

Each node was configured with static routes to the EIDs
of all the available applications and the CLAs of every other
node in the topology (Please see Figure 8).

Static routes were configured on:

o Each router for every EID not contained on that router
via the EID of each CLA of each mule in the topology.

e The gateway in Ritsem for every EID registered on a
router via the EID of each CLA of each mule in the
topology and directly to the EID of the CLAs of basil
for EIDs that did not contain village.n4c.eu.

« Basil, for every EID that contained village.n4c.eu via the
EID of each CLA of the Ritsem gateway.

o Each mule to every EID of each CLA of each router and
gateway in the topology.

All of the static routes were cofigured as TCP “ONDE-
MAND” links. When such links are dropped (e.g. after a
data-mule travels out of the coverage area of a village DTN
router), then the DTN2 daemon will periodically attempt to re-
establish the TCP connection. In our configuration, this was
attempted after a random delay of between 1 and 10 seconds.

In addition to static routes, we also used the link discovery
features of the DTN2 stack. The main reason to turn on
link discovery was due to uncertainty in planning - until
very late in the day, we could not be sure which type of
mule (WRAP or EEE PC) would be used, and we were
uncertain as to which precise mule instances would be used
right up until after testing in Ritsem had begun. Since the link
discovery mechanism allows for bundle forwarding even in
the absence of specific routing information, and we essentially
only provided a single real route (via helicopter) this was a
useful backup.

As it turned out, link discovery was also useful in order to
support other N4C experimeters who were at the ExtremeCom
event and who were experimenting with a different “nomadic”
email solution.

Link discovery works by having each DTN2 daemon emit
a UDP broadcast message periodically (every 10s) containing
contact information for that node. A node receiving such a
message (i.e., a data-mule coming into range of a village
DTN router) would establish a TCP connection to the relevant
address and port. That TCP connection was then treated as a
potential route for any bundle.

However this mix of “ONDEMAND” and discovered routes
can lead to cases where a bundle will be transmitted both over
the just-reestablished pre-configured static link and over the
discovered link.?> Nonetheless, we felt this was worthwhile
since our overriding concern was to get bundles back from
the field and optiminsing usage of link capacity is a secondary
issue.

Each node accepted custody for each bundle it received and
requested custody for each bundle it transmitted. That meant
that each node was capable of re-transmitting any bundles as
required.

3) Time: The BP requires that nodes have rougly synchro-
nised clocks in order to mark bundles with a creation time,
and so that those bundles can be dropped after a configured
expiry period.?

Since transit times were of the order of one day, bundles
had to have an adequate lifetime in order not to be expired
whilst in transit.

NTP was therefore configured on all nodes. The village
DTN router had an NTP server and provided time to end-
user hosts in the WiFi hotspot if requested. Routers in turn
requested time from data-mules which requested time from
gateways. The DTN gateway at Ritsem took time from an NTP
server on basil which was well-connected to the Internet. As
we’ll see later, NTP did in fact correct the clocks on the nodes
during the trial.

4) N4C Middleware: Before explaining the web and mail
applications, it is first useful to understand how we handled
encapsulation of mail and web traffic in the BP. The ap-
plications dmN4Cmiddleware and dtnN4Crecv handled this
encapsulation.

dinN4Cmiddleware was designed to receive a user-typed
Uniform Resource Locator (URL) from an HTTP request on
a local TCP socket, to generate a bundle with that URL
plus a transaction identifier (see below) as payload with a
destination EID of the application (on basil) that would process
the request. The bundle was transmitted with a source EID of
the router that made the request (See Figure 10).

The dtnN4Crecv application was used for both N4C web
and email applications on both the routers and basil.

On basil, dinN4Crecv was used to receive these bundles,
parse the “Transaction ID” and *URL request’ from the bundle
payload, or application data unit (ADU). In this context,

250ne could argue that DTN2 should not do this where the destination
CLA, host and port are the same, but that is the current behaviour.

26 At the time of writing, the DTNRG are investigating ways of relaxing
this “rough real-time” requirment.

User Village DTN Router DTN Basil -TCD

2. Apache
168 »| HTML

Browser ‘
=]

(PHP)

4. dtnN4Cmiddleware
Socket listener gets request;
Sends bundle with URL
And Trans_id

5. dtnN4Crecv
| Parse payload;
Woet level-1

St
%

6. dtnN4crecv
Content

and Trans_id
(zipped);

Send to village

7. dtnN4Crecv
Parse payload;
Extract to dir
Update DB

Fig. 10. URL request application. (1) The user sends a request for a URL
to the village DTN router from her browser. (2) On the village DTN router,
Apache receives the request which is handled by the HTMLRequestor PHP
application. This writes state information to the (3) database and passes the
request data via a local socket to the the (4) dtnN4Cmiddleware application
which encapsulate the request. When the bundle arrives at TCD, (5) the
dtnN4Crecv application decapsulates the bundle content and fetches the web
content which is then encapsulated (6) by another instance of the same
middleware and sent back to the router, (7) where dtnN4Crecv decapsulates
the web content and updates the database; when the user re-connects, (8)
the web content can be displayed. All encapsulated requests and responses
include a unique transaction ID.

dinN4Crecv received the ADU on its HTMLgateway registra-
tion. On reception of the HTML request dtnN4Crecv obtained
a predetermined set of the requested data using a web crawler,
generated a new bundle in which that data was the payload
and transmitted that bundle to the EID that was the source
EID of the bundle it had received. The payload of the response
bundle was the compressed file containing the results of web
crawling, with a filename based on the *Transaction ID’ from
request bundle.

On reception of a response bundle, dmN4Crecv uncom-
pressed the payload and created a directory with a name that
was the ’transaction ID’ indicated by the payload. Access
to the newly created directory was controlled by the web
application described below.

In the context of email application dmmN4Crecv was used
to receive an email, parse the status report and output the
original bundle creation timestamp and sequence number
"creation.seq’. When used in the context of email applications,
dinN4Crecv used the two email registrations.

G. Web Request Manager

The HTTP request service allowed users in a village to
submit requests for URLs and to track those requests. The
overall intent was to provide some level of offline browsing,
so that the parts of web sites that were suited for such browsing
could be viewed even from remote areas.

In order to submit requests, users only needed to point a web
browser (on their phone, PDA or other computer) at the site
in question and they would be re-directed into the transaction
handling workflow. Transaction tracking was required since

the typical latency involved in web requests was of the order
of a day.

Web transactions could be flagged as either private or public.
A public transaction was one where the original requestor did
not mind that everyone else in the field trial could access the
results from the cache. A private transaction was one where
only the original requestor could access the results. (Where
“only” here reflects a relatively trusting environment, certainly
less threatening than the public Internet.)

The point of private transactions is that a cache-hit for a
public transaction reveals that someone else has also asked
for the relevant URL. In a context like ours, with very few
people involved, it can be trivial to know who it was that
requested that URL, and that could have privacy implications.
For example, if the URL related to some medical condition.

When designing this web service, we did not want to force
users to create any new web accounts to make use of private
transactions. This was mainly for usability reasons and so
that we would not be in a position where we had to manage
anything more sensitive (such as a password possibly re-used
from a more sensitive application context) than the private
transaction itself. Given that the village DTN router boxes
were not in a secure location and that users have a tendency
to re-use passwords, we felt that this was a better option.

Private transactions were therefore protected via simple
possession of a cookie. If the web client (browser) permited
cookies to be set then a transaction could be private. If not,
only public transactions could be supported.

The web portal was implemented using an Apache module,
mod_auth_form?’, PHP and a MySQL database (please see
Figure 10).

Any HTTP request to TCP port 80 or 443 was intercepted
and redirected to this portal (please see Figure 11) which used
PHP to query whether the browser would accept cookies and
then redirected the browser to either a restricted page/directory
or to a public directory, depending on the browser configura-
tion.

HTML Requester v. 1.00
=N4C =

http:ﬁlwww‘ycurwebswt:‘c(AllURLs | Newest > Oldest [[Updateview
ol

Public [Fet
1| URL http:/Awunw. slashdot. org Status:
2 | URL: http://www.yr.no Status:
3| uRL: ttp://ww.ibm.com Status:
4 | URL: http://www. eircom. ie Status:
5 | URL: hitp:/www. dtnirg. org Status:
6 | URL: hitp:/fwwav.ted.je Status:
7 | URL http:/fwww.nsd. se Status:
Fig. 11. Portal with web requests. The URL entry dialog is on the top left,

the top of the right pane shows the number of requests, the bottom of the
pane has an entry for each request - green if a response has been received,
or red (e.g. items 1 and 2 in the figure), if no response has arrived so far.
Clicking on a green box re-directs the user to the the received web content.

If the browser prohibited cookies, a default cookie value

2Thttp://comp.uark.edu/ ajarthu/mod_auth_form

was used by the server side indicating that the transaction was
anonymous. If the browser permitted cookies, a random 32-
character cookie called 'uid’ (“User ID”) was set if necessary,
and added to a MySQL database table. This cookie was long
lived and scoped for the village.n4c.eu domain.

The mod_auth_module was however designed assuming
that users would enter usernames and passwords and then be
assigned short-lived session cookies. In our case, we needed
to map the long-lived uid cookie to these short-lived session
cookies, which were used to manage the user’s session on the
portal.

On the portal page (whether public or private), the user
then had to enter (or possibly re-enter) the desired URL, at
which point the bundle based HTTP request processs flow
started. Once the HTTP responses for that transaction had been
received those were associated with the uid cookie value and
the session cookies, and a page refresh would then indicate
that the transaction had completed and offer a link to the
transaction results.

When the user clicked that link the URL fetched was below
the village.n4c.eu domain and the local part of the URL
specified the site from which the content had been fetched.

1) Web Application Components: We now descibe how the
web application handled requests using the bundle protocol.
See figure 10 for an overview of the data flow described here.

1) User submits URL via browser.
2) WEB based portal to accept web requests, part of the
application was written in PHP.

a) URL entered.

b) Request designated ’Private’ (own use) or "Public’ (open
to everyone)

¢) Tracked user cookie as *User ID’ and ’Session ID’

d) Assigned a ’Transaction ID’ to URL request

3) Database (MySQL) this part of the application tracked the
URL request

a) DB Members,
b) ’Transaction ID’, URL, session cookie (SID1), encrypted
cookie ID
4) Middleware on router

a) PHP to middleware SOCKET to DTN API used send
only URL and ’Transaction ID’ in first 32 bytes of bundle
payload. The Bundle moves through the DTN on the
mule.

b) The data mule accepts bundle custody

¢) Forward bundle to next hop

d) Give up bundle custody

e) Gateway at the permanent connection point in Ritsim

f) Accept bundle custody

g) Establish OpenVPN tunnel

h) Forward bundle to next hop at OpenVPN termination (BP
over OpenVPN)

i) Give up bundle custody

5) Bastion Server Basil in TCD

a) Middleware accept custody of bundle

b) It parses payload

c) Wget - (perform heuristics) partially mirror site to direc-
tory named after *Transaction ID’

6) Middleware on Basil in TCD

a) Compress as transaction_ID.tgz

b) Create bundle with transaction_ID.tgz as payload and
Destination EID of village.

¢) Forward bundle to next hop at OpenVPN termination (BP
over OpenVPN)

d) Gateway on the return journey

e) Accept bundle custody

f) Forward bundle to next hop

g) Give up bundle custody

h) Mule

i) Accept bundle custody

j) Forward bundle to next hop

k) Give up bundle custody

7) Village Middleware (village)

a) Accept custody of bundle

b) Parse payload

c) Extract to dir in session cookie/id and user cookie
protected area.

d) If content not marked private use Wget mirror site
directory through the guest squid cache ’Transaction ID’.

e) Update portal and database

8) User logs in to check request status

H. Email Service

The email service was configured to allow a user connected
to a village DTN router to send and receive email to and from
the Internet. Mail account provisioning was not provided, so
mail users had to make use of pre-provisioned accounts, for
example user001 @village.n4c.eu, to which they could forward
mail from the Internet, or from which they could send mail
to the Internet. The logic here was to allow users to use
standard email user agents (MUAs) in the hotspot-coverage
of the village DTN router, without having to require those
users to be at all aware of the DTN.

For the 2009 trial, we did not attempt to provide mail
account provisioning, since the day-long roundtrips, and the
limited duration field trial, would not have resulted in sig-
nificant traffic. Instead, we pre-advertised the mail facility to
ExtremeCom participants and encouraged them to setup for-
warding. Note however, that the pre-provisioned mail accounts
put no limits on the “From:” mail header field, so that mail
from the remote parts of the field trial could appear to the
recipient(s) as being from the user’s standard mail account. In
other words, our email service did not insist that the “From:”
field in the mail message was the same as the user’s pre-
provisioned mail account address, which is an anti-spam check
many mail services enforce at mail submission time.

For the 2010 trial, we do plan to provide mail account
provisioning so that users who chance upon the trial can setup
new accounts, even from the remote locations. The 2009 trial
was designed with this in mind, (for example, our message
store replication scheme envisages multiple-village support),
even though such facilities were not exercised during the trial.

Postfix was configured as the mail Message Transfer Agent
(MTA) on each village DTN router which then took any
email destined for outside the “village” (mail-domain !=vil-
lage.n4c.eu) and transmitted those in a bundle (one mail
message per bundle) to the bastion mail transfer agent (MTA)
on basil). Upon reaching basil, email was extracted from the
bundle and forwarded via Postfix to the Internet via the N4C
mail email server at n4c.eu. This link from basil was via yet
another VPN to the main n4c.eu domain’s mail server. This last
aspect is important to consider since the n4c.eu domain’s mail
servers are set up so its mail is generally delivered by other
Internet mail servers. A naive set up could result in emitted

mail being treated as spam, if the mail server for example did
not publish Sender Policy Framework (SPF) or MX records
in the Domain Name System (DNS).

The village DTN router kept a record of which bundle ID
carried which message ID mail header field. Each mail-bundle
sent required an end-to-end bundle status report (“delivery
report”) from the bastion MTA. Such acknowledgements are
part of the BP, though the dtnN4Crecv had to extract the
original bundle-ID from the payload of the bundle status
report. When this acknowledgement was received, the email
was removed from the village DTN router’s outbound mail
queue. After 5 days, if a status report was not received for that
bundle ID, a “potential non-delivery notification” was sent to
the originator.

Any outbound “local” email (mail-domain = village.n4c.eu)
was simply delivered by Postfix to the local Dovecot IMAP
message store (MS) and no bundles were directly created for
these mails, though since such messages were delivered to the
MS, they were synchronized via the BP as described below.

Incoming email from the Internet was received by a Postfix
MTA on basil and delivered to the MS, another Dovecot IMAP
server, on basil. The MS on basil and the village DTN router(s)
were clones, with basil as the master and the MS instance(s)
on village DTN routers as replicas.

A daily synchronising job packaged up all new and modified
email files in the MS on basil into a tar file and transmitted
this file in a bundle to the village DTN router. This packaging
process made use of the fact that the MS file store is based on
the Maildir file format, allowing the synchronisation process
to easily handle cases when a mail is read, deleted etc. When
this bundle was received a corresponding sync process on the
village DTN router inserted these new emails into the local
replica of the MS, where they were then available for client
MUA:s.

In order to ensure any emails sent locally on the village
DTN router are available on basil, a similar sync process
happened in the opposite direction.

The synchronisation process worked in delivering emails
newly created on village DTN routers, but it did not track the
status of emails. This is planned to be fixed for 2010.

Emails created in an MS that uses Maildir format include
the name of the node creating the message, so it was easy to
identify only those messages created on “this” MS instance
for synchronising with “that” MS instance. Inserting such
message files into the relevant user directories caused Dovecot
to automatically update its internal state so no manipulation
was required.

Figures 12 and 13 show the mail setup in the village and
on the bastion mail host (basil).

L. Extensibility

The design documented here is, as stated, intended for use in
our larger 2010 trial. That trial will involve four village DTN
routers, parallel data mules (two helicopter mounted WRAPs
and two EEE PCs) and two gateway sites (Ritsem as here,
and one other) and will run for approximately six weeks.
While some minor changes and enhancements are planned for

Village MTA

Address not in village.n4c.eu

pipe

Postfix dtndrop

Bundle ID
per email

Address in
village.n4c.eu

w
\ Dovecot .
IMAP | IMAP MS |<<_,—| sweeper| | acklisten |<dtnrecv

out-sync

dtnsend

IN-SYNC [“dtnrecv

Fig. 12. Email configuration at Village. Standard mail servers (postfix
and dovecot) provide service to mail clients. New non-local messages (with
addresses not in the village.n4c.eu domain) are sent (by postfix) via the DTN
to basil requesting bundle delivery reports; local messages are delivered to
the message store (dovecot). The message store is periodically read (by the
out-sync process) and changes are sent via DTN to the primary message
store on basil. Similarly, periodic message store changes are received from
basil (by the in-sync process) and message store content is synchronised. The
“sweeper” process handles the case when no bundle delivery report is received
back for a message sent - it sends the user a ’possible non-delivery report”
email message.

Bastion MTA

dtnsend

out-sync
- S
; S
in-sync \

Iy
|

Address in IMAP__> \‘/
village.ndc.eu[Dovecot | ——
IMAP MS

dtnrecv

dtnrecv

listen
mail

Address not in
village.n4c.eu

Fig. 13. Email configuration at basil. This is the inverse of the setup in
Figure 12, where postfix and dovecot interface to standard Internet mail.

the 2010 trial, all of the core components described here are
designed and tested for use in that larger scale trial.

In fact, there are no hard limits inherent in this design that
would constrain its use to such trials involving ten’s of nodes.
The main feature missing were one to wish to carry out say a
trial with hundreds or thousands of nodes would be the lack
of a way to (securely) distribute configuration information to
DTN nodes, via the DTN. In other words, we do not yet have
a scalable solution for network management. DTN network
management is a subject that is only now starting to be studied
within the DTN research community and so is not yet ready
for the kind of real-world trial described here.

The system described here could also be used in other
kinds of DTN trial, for example, we have considered using
our village DTN router as a “master” node in a DTN sensor
network during the design process. Essentially, any DTN in-
volving “luggable” solar-powered DTN nodes could make use
of the hardware and software described here and we do plan
to re-use these sytems for other future trials. Since the core of
the village DTN router is a standard Linux environment, any
DTN-enabled application that can handle disruption (at the
application layer) and properly handles power cycles should
be able to be used with our device. As part of the 2009 trial,
we also acted as a plain DTN router for other (“nomadic,”
see below) applications running on handheld devices, so the
village DTN router has also been demonstrated to work for
other applications not developed by us, nor running on our
equipment.

Lastly, there appear to be a range of other use-cases that
mirror the requirements of the Saami herders, for example,
in developing regions, in (some) emergency situations and
in sensor networking as already mentioned. We believe that
our implementation of the design documented here could be
used in many such cases. Of course, were we or someone else
to develop another implementation in future, some details of
the selected hardware and software would be changed, but,
we believe, the general design would remain the same, and
many of the lessons learned documented here would remain
applicable.

V. RESULTS

In this section we present the results from our summer 2009
trial in Laponia. The main questions that we would like to
answer are:

1) How many users used the system?

2) How many messages or transactions were attempted?

3) What were the message delivery ratios and latencies?

4) How many bundles were transferred?

5) How were contacts between DTN nodes distributed?

6) How did the system perform as a whole?

First however, we describe the data that was collected, and
how that was processed. In each sub-section we present a
summary of our relevant conclusions and/or lessons-learned.

A. Test Timing

The results presented here reflect data gathered between our
arrival in Ritsem, (approx. 2009-08-07T17:00:00 UTC) and
the time when we turned off the systems in Saltoluotka (ap-
prox. 2009-08-14T00:30:00 UTC) which encompasses three
different setups, detailed in Table L.

In the first phase, equipment was assembled and tested in
Ritsem, which involved setting up the full test topology and
end-to-end testing, but with low latencies. In the second phase,
the village DTN router was moved to Staloluotka, set up and
re-tested by experimenters. Two days later the ExtremeCom
hikers arrived in Staloluotka and made use of the system. In
the third phase, the same village DTN router was moved to
Saltoluokta, where the workshop (presentations) portion of the
ExtremeCom event was held, and the system was restarted,

TABLE 1

TIMING OF 2009 TRIAL (UTC)

Location Start End Duration
1 | Ritsem 2009-08-07T17:00 | 2009-08-09T07:00 38h
2 | Staloluotka || 2009-08-09T16:00 | 2009-08-12T09:00 65h
3 | Saltoluotka || 2009-08-12T14:00 | 2009-08-14T00:30 34.5h

Overall 2009-08-07T17:00 | 2009-08-14T00:30 151.5h

TABLE 11
NODES AND ROLES IN 2009 LOGS

Short name Role Comment

dtnrouter-11-10 router The main router used

dtnrouter-11-20 router A backup/test router

dtnmule-2-10 data-mule The Asus EEE PC mule

dtngateway-2-200 | gateway The gateway at Ritsem

dtngateway-1-102 | basil The well-connected endpoint

mainly in order to “finish” in-progress transactions. (Since
the workshop location in Saltoluotka provided Internet access,
participants’ interest in DTN was understandably diminished.)

Summary: Field trials like this will involve uncertainty in
timing, for example, activities may be delayed by days for
logistical reasons, so the trial period will only be precisely
identified in retrospect. Experimenters should plan for this and
need to ensure that reliable correlation of logs from multiple
nodes is possible (e.g. by having sufficiently accurate clocks).

There will almost certainly be an extended setup period, as
was the case here, and especially in a first outing, one should
expect that to involve debugging and plan accordingly.

With a high-latency DTN, there will also be some outstand-
ing transactions at the end of the trial period. Experimenters
should be aware of this when generating results.

B. Data Collection and Preparation

All system, application and DTN logs generated during the
test were preserved, as was all configuration information (e.g.
the “/etc” directories) for all nodes. Various of these logs
include sensitive or personally identifying information and so
cannot be made public, however, we have prepared a number
of derived log files, based on these files, and those derived logs
are available on our web site - see Section VII for details.

Shorthand names for the nodes involved in data collection
were as shown in Table II. The backup router was only
powered on for a short test during the trial but routes were
in place to use it, should that have been required, so it shows
up in some logs since bundles were sent to both routers.
(This increased the resiliency of our overall system but also
generated more bundle traffic which was a secondary goal of
the trial.)

The syslog files from each of the nodes were used to derive
the number of DHCP clients attaching and the overall timing
of the trial.

All DTN2 daemons used recorded logs in info mode.
While these logs are less verbose than those produced using
debug mode they do still contain a lot of information that is
unnecessary for results-analysis, so scripts were developed to
filter and translate these logs into a more useful format. These
scripts used some simple “C” code, but mostly grep and awk

to parse and analyse DTN2 logs into a more easily processed
comma-separated value (CSV) format. Additional grep and
awk based scripts produced input suitable for gnuplot, which
was used to generate most of the graphs below. (Once again,
all those scripts are available - see section VII for details.)

For our summer 2010 trial we plan to add new info
logging calls to DTN2 to make this step easier and to also
include a global bundle identifier to enable tracing the same
bundle across many nodes - for the 2009 trial DTN2 logs
on intermediate nodes did not contain the bundle identifiers
(basically the creation time) which caused quite an amount of
work to properly correlate the log entries on the various nodes.
Luckily, timing and payload sizes proved sufficient to allow
us to correlate most log entries, but this was only possible due
to the limited scale of the 2009 trial.

Bundle duplication is an issue that became apparent during
analysis of the logs. Duplicates were received on all nodes
but subsequently recognised and deleted by the receiving
daemon. Most of these duplicates arose from the routing setup
which was designed to prioritise delivery at the expense of
bandwidth. In effect, a single bundle was likely to be sent twice
if both the opportunistic and on-demand contacts between the
nodes in question were active. Node reboots following sudden
power off events may also have caused resending of bundles
residing in that node’s data store where state stored in RAM
was lost.

Summary: Logging that has been developed for laboratory
testing and debugging during code development will probably
not contain the right data to allow correlation across nodes for
extended periods of time. Experimenters should examine logs
before starting and consider whether the information required
for later analysis is present, and how to extract that. Using a
file that is some months old will ensure that the experimenter
doesn’t already know what to expect when she opens the file.
Had we done this prior to our trial, we would have saved some
person-weeks of effort in log analysis.

Experimenters should be aware that logs will contain per-
sonally identifying information, so anonymisation of MAC and
email addresses, URLs fetched, etc. will be required.

The development of a de-facto standard for logging events in
a DTN would be beneficial, since it would allow experimenters
to develop tools that could take such trace files as input.

C. Power Cycles

While in Ritsem and Saltoluotka the router was operated
from mains power. In Staloluotka, the router successfully
operated from solar power, though it also experienced ovenight
power shortages from which it recovered once sufficient sun-
light had been captured.

Figure 14 shows the on/off power cycles for the nodes that
were not powered for the full duration of the trial. (“b/router”
represents our backup router.) Where the line is high, the
device was powered on, where low it had been shutdown, or
(when the line is slightly lower) been suddenly powered off.

The data for this figure was derived from the syslog files
on the various nodes. This information is also overlaid on
some later figures and helps clarify, for example, the pattern
of contacts seen.

Power Cycles

T

2, TR 4 [T T i m
% | . AT El.iﬂ”% A Lai [i
&
%,
%,
Al M7 L Iy
Ritsem Stalolutotka Saltoluotka
1 1 1 1 1 1 1
%, %, %, %, %, %, %,
0008 909 0pl0 o7 0p % o3 00’9
0.‘00 0.'00 0.‘00 0.'00 Q‘gg 0.'00 0.'00
Fig. 14. Power cycles. When the line is high, the device was on. When

low, it had shutdown. (And when slightly lower, it had experienced a hard-
power-off, e.g. in the case of the mule in the gap between the Staloluotka and
Saltoluotka phases of the trial). A sequence of power on/off events for the
router can be seen towards the end of the Stalolutoka phase - this was due
to insufficient battery power overnight. (And led us to plan improved power
management for our 2010 trial.) See Table III for additional detail. This, and
subsequent, figures also highlight the different trial-phases, and the horizontal
axis represents time.

TABLE III
POWER CYCLE STATISTICS (SECONDS)

Node Phase | Total On | Cycles | Average On | Percent On
backup Ritsem 4960 2 2480 3.63
router Stalo 0 0 0 0
Salto 0 0 0 0
Overall 4960 2 2480 0.85
gateway | Ritsem 62372 12 5197.67 45.59
Stalo 234000 0 234000 100
Salto 48713 2 24356.5 39.22
Overall | 379848 15 25323.2 64.73
mule Ritsem 50274 19 2646 36.75
Stalo 108177 16 6761.06 46.23
Salto 143760 0 143760 115.75
Overall | 313995 39 8051.15 53.51
router Ritsem 58471 10 5847.1 42.74
Stalo 105361 14 7525.79 45.03
Salto 93655 2 46827.5 75.41
Overall | 257487 26 9903.35 43.88

In total there were 82 power cycles seen and Table III gives
some basic statistics for each node, with the total and average
given in seconds. Note that the total number of cycles per
node include power cycles that happened during, or spanned,
the gaps between the three phases of the trial. Where a power
cycle extended beyond a period (e.g. in the case of the mule at
Saltoluokta), its percentage-on value can be greater than 100%
in Table III.

Of the 82 cycles, 22 ended with a sudden poweroff event,
one each for the backuprouter and gateway, two for the data-
mule and 18 for the router. The router poweroff events were
due to the lack of power management previously noted and is
being addressed for our planned 2010 trial. While such events
are undesirable (since they can result in corrupted filesystems),
one should plan for their occurrence, since they will happen
in any real world trial. Roughly 50% of these router shut-
downs happened overnight on August 11/12th due to battery

TABLE IV
“BOTH ON” DURATIONS (SECONDS)

Nodel Node2 Ritsem Stalo Salto Overall
mule backuprouter 979 0 0 979
mule gateway 46228 103129 | 27803 | 214715
mule router 46916 40810 88831 | 176557

TABLE V

MULE/CORRESPONDENT“BOTH ON” DURATIONS (SECONDS)

Correspondent | Location Time
router Staloloutka | 14334
gateway Ritsem 78321

depletion, whereas most of the rest were experimenters simply
turning off the power.

In addition to the basic power cycles of each node, we are
also interested in the durations for which pairs of nodes that
form DTN contacts are both turned on. The reason of course
is that unless both are on, no communication is possible.
Table IV gives these figures for the relevant nodes. These
figures are later used to calculate how efficiently we are using
this available time.

Finally, since the mule actually moved between Staloluotka
and Ritsem during the “Staloloutka” phase of the trial, we
need to separate out the overlapping durations further, so that
the times when the mule and the router or gateway were both
turned on and both in the same location can be used. Based
on the earliest and latest contacts seen, and discounting the
gaps representing helicopter rides, Table V shows the times
during which the mule and its corresponding nodes were both
powered on and in proximity.

1) Summary: Analysis of the power cycles seen in our trial
indicated a need for more active power management, which
we have addressed for our 2010 trial.

Experimenters should ensure they can detect power on/off
events from logs. Sudden losses of power can be problematic
to detect, and precisely time, but system logs generally contain
predictable (though not always identical) strings at the subse-
quent power-on, such that the time of the previous log entry
gives the best indicator of the time of the event.

D. Basic Activity Levels

The overall population of potential users during the trial was
approximately thirty-five, including nine N4C participants, of
whom three were involved in setting up and running these
tests.

Thirty-six unique MAC addressess were served with IP
addresses from the village DTN router via DHCP during
the trial. (Some participants had more than one WiFi-enabled
device.) Figure 15 shows how these were distributed over time
and over each of the phases of the trial.

The histogram in Figure 15 shows the count of unique
MACSs seen in each 4 hour period. This figure was generated
from the syslog on the village DTN router, searching for
lines matching “DHCPACK on” (when the router received
a DHCPACK from the client) and recording the time and
replacing the actual MAC address with an index value.

DHCPACKSs sent to MAC address

T T T
35 + 4+]
+ - - - +
+
-+
++
30 - E
+ o+ o+ i I+ +
H
+ +
v
25 i+ - - -
H A + + + - -
H ++ ++ <
+ 3
3 20 fE. J0
o Q
£ + FE— <
2 3 3
- 4 0
= e + by + 2
_ phe g
+ o
10 H- + + —
- -
. . + 3
5 =l - f | B
1. - ﬁx B = L |
W Mofhe i MELm
0 1 i | I H L [I n
Ritsem) Stalolutotka) |
%, %, %, %, %,
0% 0% op/0 544 00
00 A A 035 0%

Fig. 15. DHCPACKSs from router. Thirty-six unique MAC addresses received DHCP acknowledgements during the trial. The checkmarks in the figure show
the times of these events for each MAC, with the vertical scale being the unique MACs. The histogram shows the number of unique MAC addresses seen in
each four-hour period. For the histogram, the same vertical axis also shows the number seen, since the absolute numbers involved allow this.)

Mails sent (local and remote)

T T T
15 B
+
+ +
+ +
* €
10 * + 43
+ ha + a
3 & 3
= w & 2
] o =
= i] <§u
5F £ D + 19
b [B T 4 g
| |] e >
B - e -
| i | R [
B o N omm i r .o
0 it [[I Pl . Ll [B
Ritsem Stalolutotka Saltoluotka
Il Il Il Il Il Il Il
93, %, . %, %, %, %,
0% 0% /0 00’7 00 0p/3 ople
0 A 0 A oz, A 005

Fig. 16. Mails sent via router. Fourteen users used the pre-provisioned mail accounts. The checkmarks in the figure show the times at which mail messages
for each user (vertical axis) were submitted at the village DTN router. The histogram shows the number of distinct users who sent mail in each 4-hour period.
In this and subsequent figures, some of the checkmarks are slightly scattered for clarity.

Aside from the number of unique MAC addresses this figure
also gives a rough idea of the patterns of basic connectivity
in each phase of the trial.

Fourteen of the pre-provisioned mail accounts were used
to send mail during the test and in total 87 mail messages
were sent (some were purely local), of which 44 were sent
by personnel working on the N4C project, two were sent by
a tourist that was curious about the system and the remaining
41 were sent by other participants in the ExtremeCom event.
Figure 16 shows a view of this outound mail traffic (horizontal
lines correspond to each user, crosses have been slightly
scattered vertically).

Some 286 unique mail messages were received by 12
ExtremeCom participants as shown in Figure 17. Since mail
arrived sporadically, crosses in this figure are again scattered
slightly to avoid too many overlaps. Figure 17 also has a
slightly different timeline, since some ExtremeCom partipants
had already setup mail forwarding before the equipment ar-
rived at Ritsem. For the period shown, the equipment was
being integrated in Lulea Technology University who are the
co-ordinators of the N4C project.

Figure 18 shows how many messages each user sent and
received. From this we can conclude that users that had setup
forwarding did receive substantial numbers of real messages

Mails received via DTN

T T n T T T
] ; : i
15 | f N % g
+ - =
10 | + F % i + % 13
L + | o
+ | »
8 * P f ' i E
E + f b i} o)
5 Lo . | 3
= + 0oon o : =
Sr: N i 0 18
+ B Lo i | =
R | . b L >
Lo Lo | i
R oo i3 P ‘
g I 1 & : i ‘
0 [L \I\ L I L L .
Ritsem Stalolutotka Saltoluotka
Il Il Il Il Il Il Il Il Il
%, %, %, 9%, 9, %, %, 22 %,
% > 0% op% opl0 oplr o '3 o’
0 g, g %g N D, %5 g %4

Fig. 17. Mails received at router. Twelve users received mail messages during the trial. The checkmarks in the figure show the times at which mail messages
arrived for each user (vertical axis, scattered) at the village DTN router. The histogram shows the number of users who received messages in each 4-hour
period. Note that some users had set up mail forwarding prior to the trial starting, so this figure has a longer time-span than others.

60
50
o an4
o
3
30
s
20 -
0 J = [} I ‘. - m =
12 3 4 5 6 7 8 89 10 1 12 13 14 15 16
User
Win @ out
Fig. 18. Mails sent and received per user. The figure shows the number of

individual mail messages sent and received by each of the 16 users that either
sent or received a message.

during the trial. While the distribution of activity is interesting,
it is hard to know whether sound conclusions can be drawn
from such a small sample, especially since the ExtremeCom
users are not typical of those we expect to encounter in 2010.

Mail message sizes in the trial may be somewhat artificial
given that experimenters were testing the system and so re-
transmitted a number of messages at different times (only 62
of the 87 messages have different sizes). As usual, there are
also outliers, which we believe represent messages containing
images. Figure 19 shows the distribution of outbound and
inbound message sizes. Table VI shows message size statistics
and those reported in a study of email traffic by Shah and
Noble [16] and those from the Enron dataset. [17] As can
be seen our outbound distribution is not that dissimilar even
though our message corpus is orders of magnitude smaller
than the others shown. However, our inbound numbers are
quite different. At present, we have no explaination for this
discrepency.

Browsers from 20 different IP addresses connected to the

Email Message Sizes

! XX
xX x
X SR X X x
]
Ee)
£
S
5
[}
>3
©
2
]
=
it + + T+
]
0
51 I I I I
100 1000 10000 100000 1e+06 1e+07
Size (bytes)
outbound + inbound x

Fig. 19. Email message sizes. The figure shows the sizes of mail messages
sent and received during the trial. Both sets were simply sorted by size for
the figure and numbered. The distribution of outbound message sizes is as
expected, whereas the inbound messages appear larger than for other mail
corpuses. See Table VI and the text for details.

TABLE VI
OUTBOUND EMAIL MESSAGE SIZE STATISTICS

Statistic Outbound Inbound Shah & Noble Enron
Average 106.4 KB | 126.3 KB N/A N/A
Stdev 473.8 KB | 392.3 KB N/A N/A
25th Percentile 559 B 2718 B 758 B 919 B
Median 1194 B 4810 B 1901 B 1548 B
75th Percentile 2382 B 12.23 KB 5092 B 2719 B

web service as shown in Figure 20, which was derived from
the Apache access log on the router. Twenty-one separate
requests were encapsulated in bundles, with 20 responses
being returned. However, only 9 of these transactions were
started whilst the equipment was in Staloluotka and of those,

Web Accesses by IP address

40 T T T
+
35 + i ++ + k- + + B
+ + H+ -
. ++ o+
30 N ++ H o
+ +
+ + +
25 1 + +]
=
1 4+ + 8
n 10
g 20 +H e
= (o}
=]
15 |- + 12
+ >
Iy
Y
10 R
B B
5 [[[l T
i i ’1} 1 1»} T 1”‘”‘"7 i P i ril”\ ’4: i |
0 ‘l L Loa] I I I ! Lol oy m
Ritsem | Stalglutotka | | Saltoluotka |
%, % %, %, %, %, %,
0% 0028 0plo 0pl7 00’ 0023 0ple
00 A A A 0z, A 0.5

Fig. 20.

Web accesses on router. The figure shows the time of each HTTP request (from the Apache log) for each requesting IP address (vertical axis).

Twenty of the 36 IP addresses issued via DHCP made HTTP requests, however, the figure includes users checking if responses had been received so only
reflects web browser activity levels and not DTN activity. As before, the figure include a histogram of the number of requests seen in each 4 hour period.
The hosts here are the same as in Figure 15, though the ordering here is different.

Web requests and responses

90 T T T 1e+08
85 + % 4
"X 1" 1 tes07
* 1 * o
80 « N f
h 4 1e+06 @
o 75 *] B
'a |0 b
- B O o
8 70 4 100000 =
3 T
& sl o ¥ o * E o4
g % ol » +x 4 10000 §
o o
& e o o] ¢
= - F P ¥ i > - 1000 8’
55 — x + % * 7]
% + X + HH
50 + + 4 100
*
Ritsem Stalolutotka Saltoluotka
45 1 1 1 1 1 ’ 10
06‘/ 06‘/ %, (22 (22 06‘/ 0(9/
% 0599 0070 o7 o 0l ople
o0 s 05 0, 0% 005 0

Request generated +
Request arrived X

Fig. 21.

Response generated ~ *

Response arrived ©

DTN encapsulated web. The figure shows HTTP requests and responses that were sent via the DTN. Request-size versus generation time at the

router and arrival time at basil are shown (left-hand linear size scale). The much larger response sizes are plotted against generation time at basil and arrival
time at the router (logarithmic scale on right). The time between generation and arrival can be seen in the figure, since both generation and arrival times are

at the same height in the figure.

only 3 were initiated after the ExtremeCom hikers had arrived,

so there is no real data as to the useability of our web service
from the 2009 trial.

However, the web service components did operate correctly,
as can be seen from Figure 21 which plots the web transaction
bundle payload size against submission-time and arrival time
for requests and responses. In the figure, one can see that
requests made roughly correlate with responses and one gets
a feel for the latencies involved.

Summary: While all of the numbers are modest, each of
the capabilities of the system were exercised and behaved as

expected, processing some real traffic on behalf of Extreme-
Com workshop participants, as well as traffic generated by
N4C project staff.

In addition to system and DTN logs, experimenters should
ensure they also preserve application logs, e.g. from web and
mail servers. Numbers from those logs both help to understand
lower layer DTN logging and also act as a check that statistics
generated from DTN logs are accurate. This can sometimes
be non-trivial, if bundles are sent more than once, or are
fragmented, or if bundle endpoint identifiers do not map to
application layer identities in an ovbious manner.

Application logs also give a more accurate understanding
of user-level interactions, since DTN logs are liable to contain
many protocol artefacts (e.g. “ping” bundles or the equivalent).

E. Contacts

A “contact” is a DTN concept referring to the duration
during which two DTN nodes can communicate when a
connection-oriented convergence layer is in use. Since DTN
nodes can only actually send bundles during a contact, it is
interesting to see what contacts occurred during the trial.

From our log files, we extracted the details of contacts com-
ing up and going down over the duration of the trial. Figure 22
gives an overview of these. All of the DTN2 links used the
TCP convergence layer. The figure also shows the “On” and
“Off” power cycles of the relevant nodes from Figure 14, to
illustrate the boundaries within which the DTN daemon can
and cannot establish contacts. Each contact is represented as a
rectangle in the figure, with the width representing the duration
of the contact and with various vertical offsets (not really
visible in the printed figure, but visible with gnuplot based
on the supplementary materials) that represent the type of
contact (“ONDEMAND” or “OPPORTUNISTIC”) and which
node initiated the contact.

Figure 22 was automatically produced from the logs, with
one interesting exception, that would probably not have been
noticed without the visualisation. The data-mule’s NTP dae-
mon moved the time on that node backwards by 1346.44
seconds (roughly 22.5 minutes) at (real time) 2009-08-08
23:22:57 UTC resulting in our logs showing a number of
contacts with the router around that time ending before they
had started. To make matters more interesting the mule was
shutdown before its local clock had caught up with 2009-
08-08 23:22:57 UTC and as a result the visualisation scripts
interpreted those contacts as staying up until the data-mule had
next booted up which was at 2009-08-09 06:02:12 UTC. Those
contacts would therefore have been interpreted as lasting for
over 6 hours at a time when in fact both mule and router
were powered off and could thus skew later generation of
statistics. In order to avoid this, we manually “moved” the
mule shutdown time forward by 22.5 minutes, so that the
actual contact durations were used in later calculations.?

While Figure 22 is too coarse grained to be really useful
at this resolution, one can see the overall pattern of basil <>
gateway <+ mule < router contacts, and the lack of end-to-
end connectivity whilst the router was in Staloluotka, which
is of course the main motivator for the use of DTN protocols
in this situation.

Interestingly, there are more than 2500 contacts represented
in Figure 22, which indicates some ineffiency in how DTN2
manages TCP convergencce layer connectivity.

Our configuration also called for both “ONDEMAND”
(opened as necessary) and “OPPORTUNISTIC” (probed for
whenever non-available) contacts between each pair of relevant

28The file ’gnuplots/contacts/cont.num.moved’ contains the manually mod-
ified lines with identifying comments. See Section VII for details on how to
access this file.

20

TABLE VII
OVERALL CONTACT UTILISATION (SECONDS)

Node 1 Node 2 Possible | Actual | Percentage

basil gateway 379848 | 313204 82.45

gateway | mule 189907 | 155353 82.80

mule router 150081 | 105186 70.08

mule backuprouter 4960 2850 57.45
TABLE VIII

RITSEM CONTACT UTILISATION (SECONDS)

Node 1 Node 2 Possible | Actual | Percentage
basil gateway 62372 44627 71.54
gateway | mule 46228 22036 47.66
mule router 46916 30110 64.17
mule backuprouter 4960 2850 57.45

nodes. This was mainly a conservative design approach, jus-
tified because there was an extended period during which the
main designer of the DTN2 setup would not be able to control
the node configurations. The “double” approach to using the
TCP CL meant that even if others broke the static routing con-
figuration of the ONDEMAND links, the OPPORTUNISTIC
links had a good chance of allowing bundles to flow.

Figure 22 also shows a few contacts from the village DTN
router to other DTN nodes that were used by N4C partners
during our trial, in all phases of the trial. Those are the contact
lines extending upwards from the “router” line. Second from
the bottom of the figure one can also see contacts to “Folly”
which were the other ends of these same DTN paths. At
the bottom of the figure one can also see contacts between
“basil” and “BBN” which represent contacts between our
main Internet-connected gateway and other nodes on the DTN-
Bone?.

We now consider how our contacts map to the possible time
during which pairs of relevant nodes could have potentially
been in contact. For this purpose we will ignore the “outlier”
nodes, that is, the DTN aware users and the connections
between “basil” and “Folly” and “BBN.” Tables VII to X show
the duration of actual contacts versus the time available for
each of the phases of our trial. The possible times are derived
from the power figures given in Section V-C. For example, the

Dhttp://www.dtnrg.org/wiki/DtnBone

TABLE IX
STALOLUOTKA CONTACT UTILISATION (SECONDS)

Node 1 Node 2 Possible | Actual | Percentage
basil gateway 234000 | 186196 79.57
gateway | mule 78321 72998 93.20
mule router 14334 12152 84.77
mule backuprouter 0 0 0.00
TABLE X
SALTOLUOKTA CONTACT UTILISATION (SECONDS)

Node 1 Node 2 Possible | Actual | Percentage
basil gateway 48713 27353 56.15
gateway | mule 27803 27773 99.89
mule router 88831 63699 71.70
mule backuprouter 0 0 0.00

21

Contacts

— 71 + - - T - - - 1 - - 1 - r T T r v r* 1 T T T T
DTN users - ‘ HH‘ ‘ =
router 1) _‘ -
b/router - i
mule - 1y -
gateway - i N
basil : L. “ M mﬂ i
Folly _
BBN -
Ritsem Stalolutotka Saltoluotka
N | N N N | N N N | N N N | N N N | N N N | N N N | N
03/ 0‘9/ 0(9/ 0(9/ 0(9/ 0(9/ 0(9/
0,98 0,% op’0 o7 on’. 0’3 o4
0.'00 0.'00 0.'00 0.'00 0.'03 0.'00 0.'00

Fig. 22. Contacts during the trial. There were more than 2500 contacts seen during the trial. The figure plots each contact as a rectangle with the horizontal
line matching the start and end of the contact and the vertial line matching the two peers involved. Contact peers are named on the vertical axis. At the
top, there were three different “DTN user” devices that contacted the village router. At the bottom, there were contacts between basil and Folly, for the
“nomadic” mail experiment, and there were regular DTNbone contacts with BBN. Most contacts are too short to be individually visible at this scale, however
the supplementary materials include a gnuplot version of this figure that can be explored in detail. The on/off power states of the various nodes are overlaid
on the contact rectangles. One can see from the figure that contacts fall within periods when the relevant nodes are powered on and in proximity so this figure
gives a good overview of the potential for, and relative complexity of, end-to-end communication in this particular DTN.

gateway <> mule possible time shown in Table VII consists
of the times both were powered up, and in proximity.

Summary: The main thing to note here is that the utilisation
of potential contact durations was quite efficient, over 93% for
mule-gateway contacts and over 84% for mule-router contacts
whilst the router was in Staloluotka.

Comparison of the contact information with the power
cycles of the various nodes was also a very useful check - with
so much data, the more such independent checks one has the
better, and the visualisation of contacts shown in Figure 22
was essential in detecting some inconsistancies that would
otherwise have affected our results.

However, the number of contacts (more than 2500) was
excessive - the TCP convergence layer, as configured, was
making and breaking TCP sessions far too often. This both
complicated analysis and must represent an inefficiency in
terms of reducing overall goodput, and warrants futher ex-
amination.

The gateway to basil link (via GSM/EDGE) proved to be
much more highly disrupted than we had envisaged. The main

reason for this (we suspect) was simple network capacity in
the GSM cell at Ritsem - the connection would often break
around the time a helicopter landed and our guess is that the
embarking and disembarking passengers made phone calls that
got higher priority than our GSM data traffic. As this was
our “backhaul” to the Internet from the field trial, we were
initially quite concerned about this. However, the use of the
BP on this link essentially saved the day - had we put the
application layer services (e.g. mail relay and web crawling)
in Ritsem, rather than in Dublin, then the trial would probably
have failed. Using the BP, we simply experienced additional
delay.

FE. Bundle Flows

As we have seen, a modest amount of application layer
traffic was successfully transferred during the trial. Each appli-
cation layer protocol data unit (in our case, an email message
or synchronisation tarball, or a web request or response) is sent
as the payload of a bundle. That bundle is forwarded between

TABLE XI
APPLICATION LAYER BUNDLES CREATED

Purpose From/To Bundles Total size
MS Sync basil/router 14 123064320 B
MS Sync router/basil 3 286720 B
SMTP encap router/basil 72 33018032 B
Nomadic router/basil 48 182749 B
Nomadic basil/router 5 6680 B
HTML request router/basil 21 1287 B
HTML response | basil/router 20 41581525 B

nodes, causing some additional administrative bundles to be
sent. In this section, we describe how the application traffic
maps to the bundle traffic seen. (For a full description of how
the bundle protocols works, see RFC 5050. [6])

One difficulty faced here is that DTN2 “info” level logging
does not log a unique identifier for bundles.*® The result is that
we cannot easily or deterministically trace all traffic through
the DTN. However, our trial was sufficiently small in terms of
possible paths and simple traffic numbers that we can make
some useful measurements nonetheless.

There were 72 outbound (from the “village”) email en-
capsulating bundles, each of which was contained one email
message. This totalled approximately 33MB of bundle payload
traffic. (Note that the mail sender process sent duplicate
bundles when a single message had multiple recipients, so
these bundles represent 62 different mail messages.)

Inbound (from the Internet) mails were received at basil and
message store synchronisation bundles were transmitted once
per day (at 10am UTC) to the router node and, in parallel,
to the backuprouter node. There were 14 such bundles sent
from basil, 7 to each of the routers, each of which contained
a compressed archive (a “tarball”) synchronising the message
stores. This totalled approximatedly 123MB of bundle payload
traffic.

Three such mail synchronisation bundles were sent from the
router node to basil representing changes seen on the router’s
message store clone, e.g. reading/deleting messages. While
these were also scheduled to be sent each day at noon UTC,
bundles were only actually sent on the 8th, 11th and 13th.
(When there were no changes in the router’s message store,
no bundles were sent.) These bundles carried approximately
286KB of application layer traffic.

In addition to our own web traffic there was a separate
“nomadic” mail experiment carried out that resulted in 48
more small bundles (totalling approx 182KB) being sent from
the router to basil, and 5 bundles (totalling 6KB) being sent
from basil to the village router.

Web requests contributed 21 bundles (totalling 1287 payload
bytes) sent from the village, and 20 response bundlles sent
from “basil” (totalling 41.5MB).

Table XI summarises the application layer bundles created.

In addition to our web and mail applications there were two
other sources for bundle traffic.

The first additional source of bundles consisted of diagnostic
bundles, that is, “pings” and “traceoutes” sent during the trial.
There were 125 unique source EIDs used in such bundles.

30A defect we plan to fix prior to the 2010 trial.

22

TABLE XII
BUNDLE TRAFFIC PER NODE
Node rxbytes rxbundles txbytes txbundles
basil 92504081 1580 228584826 993
gateway 303248030 1858 330954329 1233
mule 311971711 2748 238988113 1802
backuprouter 58404017 744 31460672 451
router 168329157 2730 146656587 1054
TABLE XIII
BUNDLE TRAFFIC PER LINK (MB)
From/To basil | gateway mule | b/router router
basil - 189.68 17.07 0.01 2.85
gateway 37.85 - | 256.54 0.01 12.32
mule 1.73 90.00 - 14.23 | 104.46
b/router 0.20 16.90 7.05 - 5.78
router 1.42 30.32 98.51 0.01 -

Each run of the dtnping utility generates a numbered EID
as its source (so that responses can be correlated) and then
periodically sends a bundle to the nominated destination. The
default period is 1 second, and the default bundle lifetime is
30 seconds, so in a scenario such as ours many such bundles
will expire before reaching their destination.

When a ping bundle reaches its destination it generates one
response bundle. In contrast, a traceroute bundle generates
multiple responses (one from each node on the path), and 120
unique destination EIDs were used for such bundles. Note that
the unique EIDs referred to here do not absolutely rule out
many bundles having been sent to or from those endpoints,
but this is considered unlikely given the circumstances of the
trial, so we treat each as if only one transmission had occurred.

Finally, each of the nodes on the path from the router to
basil was configured to accept custody. This means that for
each unique bundle transmission from one node to another
there will (nominally) be a corresponding bundle returned that
contains a custody acceptance administrative record. So, there
should be at least twice as many bundles on each link as there
are unique application layer PDUs.

Table XII shows the raw number of payload bytes sent and
received by each node during the trial and Tables XIII and
XIV show the traffic (and number of bundles) sent between
each pair of nodes.

Summary: The bundle forwarding and routing used worked
as planned and produced the expected behaviour. Examination
of the bundle flows showed up some application layer bugs
(e.g. the mail service sending unnecessary duplicate bundles).

The modest number of appliation layer interactions resulted
in the expected number of bundles being sent and received.
That application layer (payload) traffic totalled 189MB, sent

TABLE XIV
BUNDLE TRAFFIC PER LINK (BUNDLES)

From/To basil | gateway | mule | backuprouter | router
basil - 629 136 5 128
gateway 409 - 619 4 114
mule 34 378 - 55 1205
backuprouter 49 105 145 - 123
router 41 87 766 6 -

160000

140000 —
120000 —
100000 —

80000 — |

60000

40000

20000 I
PG |

FEARL L |
13 5 7 8 N

JATAIAIL

15 17 18 21 23 25 27 29 3

23

LT

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 SB B0 62 64 66 63 70
33 3 37 3w oH

43 45 47 49 51 53 55 57 59 61 63 683 67 68 T

W router @mule [Ogateway M basi

Fig. 23.

Bundle queuing latencies. For the 71 bundles that were delivered end-to-end during the trial, (ordered by creation time), the figure shows the

queueing time at each of the relevant nodes. In most case, queueing in the mule predominates, as expected for this setup (where the mule was powered on
in Ritsem between helicopter trips.) The average latency overall was 15.12 hours, but with a large standard deviation (6.87 hours).

TABLE XV
STALOLUOTKA DELIVERY

Class Number Total Min Max Average
All 79 104409127 45 14845799 | 1321634
Delivered 71 83109381 53 14845799 | 1170554
Non-Delivered 8 21299746 45 14632960 | 2662468

in 183 bundles. However, there were over 1000 bundles sent
between basil and the gateway, when administrative records,
bundle duplication and diagnostic traffic were included, so
there is possible scope for improvement here, e.g. if custody
records could be amortized over a number of bundles. In our
case however, since the actual traffic didn’t approach the link
capacity (see below), this inefficiency was not a problem.

Experimenters should carefully consider the utility of diag-
nostic traffic when in the field. In the lab, there is essentially
no cost to such traffic, however, in the field, especially where
latencies are high, or connections are highly disrupted, such
traffic can waste significant time (e.g., as experimenters await
ping responses which are in many cases not likely to arrive
if the ping request has expired). Such traffic also complicates
logs slightly, and we found that any such complication can be
a barrier to understanding what the network is doing, or has
done.

G. Delivery Ratio and Latency

To estimate the delivery ratio we consider web and mail
(i.e. no pings, traceroutes or nomadic) bundles sent while
experimenters were in Staloloutka and that consquently needed
to make use of the data-mule and experienced high latency.
There were 79 such bundles representing a total of 104MB,
with a minimum size of 45 bytes and a maximum size of
14MB.

Of the 79 bundles, 8 bundles were never delivered, of which
two were message store synchronisation bundles destined for
the backuprouter, which was powered off. These constituted
approximately 18MB of the 22MB of “lost” application layer
traffic. Of the others, one was a web request from the router
to basil and 5 were web responses from basil to the router.
All of these bundles expired at the data mule, and details of
their expiry are shown in Table XVI. Looking at the times in
Table XVI one sees that the web responses were all expired
at about the same time, following a long period during which
the mule was in Ritsem (see Figure 22 for the mule-movement
timing). This was basically a configuration error - we did not
allow sufficient time for the bundle lifetime for web bundles.

There were therefore 71 of 79 bundles successfully de-
livered, giving a bundle delivery ratio of 90%. Table XV
summaries these bundles delivery statistics.

In terms of application layer bytes delivered, and ignoring
the bundles destined for the backuprouter, we could claim
a delivery ratio of 97%, including those bundles brings the
delivery ratio down to 80%.

Bundle latencies for the 71 successfully delivered bundles
were, as might be expected, dominated by queuing time.
Figure 23 shows the queueing time for each of these bundles.
As can be seen queuing on the mule dominates in most cases,
with queuing on the router being the next most noticeable
facet. The average latency for these 71 bundles was 15.12
hours (with a standard deviation of 6.87).

In terms of direction, 28.77MB (66 bundles) of the 71
delivered bundles were sent from the router to basil, and
50.49MB (5 bundles) from basil to the router.

Note however, that there is a possibility for error here,
since our logs do not contain unique bundle identifiers we
have to use the (non-unique) combination of size, source and
destination as a proxy for a bundle identifier. As stated already,
a number of same-sized bundles were sent during the trial so

24

TABLE XVI
EXPIRED BUNDLE DETAILS

From | To App. | Sent Size Expired Time Time to Expiry
basil b/router | ms 2009-08-10 10:00:02 | 4116480 | 2009-08-13 10:00:02 259200
basil b/router | ms 2009-08-11 10:00:02 | 14632960 | 2009-08-18 14:57:43 622661
basil router hrep | 2009-08-10 12:16:38 1952338 2009-08-11 08:29:58 72800
basil router hrep | 2009-08-10 12:15:58 45 2009-08-11 08:29:18 72800
router | basil hreq | 2009-08-10 12:15:57 591033 2009-08-11 08:29:17 72799
basil router hrep | 2009-08-10 12:15:58 6199 2009-08-11 08:29:18 72800
basil router hrep | 2009-08-10 12:15:58 641 2009-08-11 08:29:18 72800
router | basil hreq | 2009-08-10 15:33:45 50 2009-08-11 15:51:10 87444

there are some duplicates which makes it impossible to be
sure about the queueing time for a particular bundle. The
redundant routing strategy used also accentuates this issue
- while that strategy was sound from the point of view of
delivery ratio, it can result in additional copies of a bundle
being forwarded thus further complicating data analysis. (Of
course, data analysis is quite properly a lower-priority than
delivery.)

45 T T T T T T
+

40 - p

35 B

30 + <
B +
3 25 |
£
[+ x * x
§ 20 o * J
5 Sy

4% Rt x % ¥ %
15 B
N
10 g
% %
L *]
s * £ % % %
o X X % L L L L
10 100 1000 10000 100000 16406 16407 16408

Bundle size (log bytes)
overall + mule %

Fig. 24. Bundle size vs. latency. This figure plots bundle size against overall
latency for the 71 bundles delivered end-to-end, and also bundle size versus
queuing time at the data mule. One can see most overall and mule-queueing
time points co-incide showing again that queueing in the mule dominated
overall latency. One can also see that there is no obvious relationship between
bundle size and latency.

Figure 24 compares bundle size vs. latency for our 71
bundles for both the overall latency and the date mule latency.
There are two things to note: first, there is no overall depen-
dency of latency on size, and secondly that the datapoints for
the mule are almost identical with those for the overall latency.

Lastly, it is interesting to consider how much of the available
bandwidth was actualy consumed, to help with further deploy-
ments. Unfortunately, however, we do not have information as
to the actual bandwidth figures for the links that were used
in 2009 (a defect we plan to rectify in 2010) but we can still
make some estimates.

If the VPN connection from the gateway at Ritsem back
to basil carried 64000 bits per second at the application layer,
and the WiFi connections between the data-mule and the router
and gateway carried 1 Mbps, then the traffic sent during the
Staloluotka phase (50MB up and 28 MB back) would have used
at most less than 3% of the network capacity. Put another way,

with the offered load of application traffic, the VPN link was
only required to carry 1811 bits per second and the WiFi links
only needed to carry 29950 bits per second, both of which are
quite modest. (These figures are based on the connectivity
durations given earlier.)

Summary: Essentially all application layer bundles sent
were accounted for, and their handling was fully consistent
with the trial design. However, due to some misconfiguration
of bundle expiry we only achieved a bundle delivery ratio of
97%, even though the DTN in question was very simple and
only made use of static routing.

Bundle latencies averaged 15.1 hours and were dominated
by queuing time in the data mule. This was because the
EEE PC mule spent significant time static in either Ritsem
or Staloloutka. Had the helicopter-mounted WRAPs carried
our traffic, the queueing latency would mostly have been in
the DTN gateway at Ritsem or the village DTN router. Again
this was exactly as expected.

The traffic levels from our 2009 trial were well below the
capacity of the network, even considering all the disruptions.
This suggests that our design should be able to scale suffi-
ciently for the 2010 trial and quite some distance beyond.

VI. CONCLUSIONS

In conclusion, we have presented the design of our “village”
DTN router and presented results from our trial in 2009 and
outlined our plans for an extended trial in 2010.

Overall, we consider that the device and the software infras-
truture worked well, to the extent that the 2009 trial exercised
the components, and has allowed us to identify a number of
improvements to the hardware platform, applications and the
DTN stack that should help both us and other experimenters
to carry our similar DTN field trials.

More broadly, the conclusions we reach that should be of
interest to other experimenters are as follows:

The DTN arcitecture, the bundle protocol and the DTN2 im-
plementation basically worked as advertised, and were rather
efficient in terms of using the available contacts. However,
there was so little traffic, that this conclusion is rather weak
for now. We expect to strengthen this from the results of
our 2010 trial. There are also areas of potential improvement
highlighted earlier that should be addressed, mainly relating to
the DTN2 implementation. The only bundle protocol change
suggested from this trial is to consider amortizing custody
acknowledgements for multiple bundles into one bundle con-
taining a number of administrative records. However, this

trial only made use of static routing, and even so, we had
a number of issues with forwarding (duplication) and expiry
(miscofiguration).

We believe that successful field-trials require more than one
run. In our case, since the area is so seasonally constrained,
that means doing trials over multiple years. In other areas,
successive trials could be done over a shorter period. The
reasoning here is that since real field trials involve so much
logistics and experimenters only really learn about the real
problems in the field, it is unlikely that results from a first
outing will be that significant and additional trials will be
required to get best value from the effort expended. In our
case, the 2009 trial reported on here is essentially a precursor
to the 2010 trial, however, it is a necessary precursor, and we
feel that other experimenters would be wise to plan similarly.
Having said that, the 2009 trial did produce real results that
are of interest in themselves and other experimenters can use
our logs in order to help them further develop other aspects
of DTN.

Trials like this one can be repeated elsewhere, using this
or similar technology, and we hope that other experimenters
will take the opportunity to attempt more such trials and that
funding agencies can see this particular trial as evidence that
such efforts are a worthwhile way to develop DTN and to
make progress in meeting the real requirements of real users.

VII. RESOURCES

Supplementary information, including source data and
generation scripts for all the figures and tables shown
here may be found on our web site.’! The main log
file from which almost all other data is extracted is
called “N4C_Summertrial_dataset.csv”. Subdirectories contain
scripts to extract and process the data, for example the “con-
tacts” directory contains the scripts and other code required
to generate Figure 22 which extracts the contact information
from the main log file.

Initial (informal) information about our 2010 trial is now
available on another web site’?. Once the 2010 trial data has
been safely recovered and analysed we plan a companion paper
to this one reflecting the results of that larger trial, which
involved 5 village DTN routers, 4 mules, two gateways and
ran for 6 weeks, all based on the designs documented here.

ACKNOWLEDGEMENT

This paper reflects the work of many people involved in
the N4C project, the DTN community and the DTNRG. The
authors are especially indebted to N4C partners, in particular
Fritz-Ake Kuoljok (Fritte) and Samo Grasic from LTU and
Elwyn Davies from Folly Consulting who gave invaluable
assistance for the 2009 trial. Darragh O’Keefe carried out
significant work on data analysis whilst a student with TCD.
We thank the anonymous reviewers for their very helpful
comments.

This work was carried out as part of the FP7 N4C project
funded by the EU under contract No. 223994.

31http://dtn.dsg.cs.tcd.ie/n4c-summer09/
http://down.dsg.cs.tcd.ie/s10inf/

25

AUTHOR CONTRIBUTIONS

EM and KH were primarily responsible for developing the
village router hardware and for the 2009 trial deployment.
AMCcM was primarily responsible for building and packaging
the software for all nodes and developed the web service. EM
developed the email service. SF and SW gave overall guidance
and participated in design. SF participated in the ExtremeCom
hike. All authors contributed text for this paper and contributed
to data analysis; SF did the overall editing.

REFERENCES

[1] S. Farrell and V. Cahill, Delay and Disruption Tolerant Networking.
Norwood, MA: Artech House, 2006.

[2] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in Proc. ACM SIGCOMM ’03. New York, NY, USA: ACM Press,
2003, pp. 27-34.

[3] K. Fall and S. Farrell, “DTN: an Architectural Retrospective,” Selected
Areas in Communications, IEEE Journal on, vol. 26, no. 5, pp. 828-836,
June 2008.

[4] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss, “Delay—Tolerant Networking Architecture,” Internet RFC
4838, April 2007.

[5] M. Ramadas, S. Burleigh, and S. Farrell, “The Licklider Transmission
Protocol - Specification,” IETF, RFC 5326, 2008.

[6] K. Scott and S. Burleigh, “Bundle Protocol Specification,” Internet RFC
5050, Nov 2007.

[7]1 S. Farrell, S. Weber, A. McMahon, E. Meehan, and K. Hartnett, “An ndc
router design,” ExtremeCom 2009, 2009, http://www.extremecom.org/.

[8] H. Beach, A year in Lapland : guest of the reindeer herders / Hugh
Beach. Smithsonian Institution Press, Washington :, 1993.

[9] E. Davies, “DTN - The State of the Art)”
http://www.n4c.eu/Download/n4c-wp2-012-state-of-the-art-101.pdf,
2009.

[10] A. Lindgren, A. Doria, J. Lindblom, and M. Ek, “Networking in the
land of northern lights: two years of experiences from dtn system
deployments,” in WiNS-DR ’08: Proceedings of the 2008 ACM workshop
on Wireless networks and systems for developing regions. New York,
NY, USA: ACM, 2008, pp. 1-8.

[11] S. Naidu, S. Chintada, M. Sen, and S. Raghavan, “Challenges in
deploying a delay tolerant network,” in CHANTS ’08: Proceedings of
the third ACM workshop on Challenged networks. New York, NY,
USA: ACM, 2008, pp. 65-72.

[12] T. Hyyryldinen, T. Kédrkkéinen, C. Luo, V. Jaspertas, J. Karvo, and J. Ott,
“Opportunistic email distribution and access in challenged heteroge-
neous environments,” in CHANTS ’07: Proceedings of the second ACM
workshop on Challenged networks. New York, NY, USA: ACM, 2007,
pp- 97-100.

[13] J. Ott and D. Kutscher, “Bundling the web, http over dtn,” in Proc.
WNEPT 2006, 2006.

[14] A. Balasubramanian, Y. Zhou, W. B. Croft, B. N. Levine, and
A. Venkataramani, “Web search from a bus,” in CHANTS ’07: Pro-
ceedings of the second ACM workshop on Challenged networks. New
York, NY, USA: ACM, 2007, pp. 59-66.

[15] M. Demmer, B. Du, and E. Brewer, “Tierstore: a distributed storage
system for challenged networks,” in FAST ’08: 6th USENIX Conference
on File and Storage Technologies, 2008.

[16] S. Shah and B. D. Noble, “A study of e-mail patterns,” Softw. Pract.
Exper., vol. 37, no. 14, pp. 1515-1538, 2007.

[17] B. Klimt and Y. Yang, “Introducing the enron corpus,” in CEAS, 2004.

