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Abstract A new approach for routing protocols operating
in MANETs is presented in which flooding is not required

to establish paths from sources to destinations on demand

in MANETs of moderate size. The concept of ordered walk
is introduced as a depth-first search (DFS) that does not

rely on geographical or virtual coordinate information and

is much more efficient than mere random walks. The
benefits of using DFS as the building block of the signaling

in MANET routing protocols are exemplified by the

introduction of the Ordered Walk Search Algorithm
(OSA), which is used as part of the proposed Ordered Walk

with Learning (OWL) protocol. OWL integrates OSA with

the learning of paths from prior successful and failed
attempts, and performs one or multiple concurrent ordered

walks to search for destinations. Simulation experiments

are used to compare the performance of OWL against that
of well-known MANET routing protocols based on BFS

(e.g., OLSR and AODV). The results show that OWL can

achieve a performance comparable to traditional protocols
that rely on some form of flooding of link states or net-

work-wide dissemination of distance information in terms
of packet delivery ratios and average end-to-end delays,

while incurring up to ten times less overhead than AODV.

Keywords Routing ! MANET ! Depth first search !
Search algorithm

1 Introduction

Over the past decades, many routing protocols have been

proposed using various mechanisms to build, maintain and
repair paths between nodes in a network. As varied as the

routing proposals for MANETs are, none of the common

proactive or on-demand schemes are very efficient under
all traffic-load scenarios. We argue that, at least in part, this

is due to the way in which signaling packets are dissemi-

nated in these protocols. In both proactive and on-demand
solutions, overhead packets can be propagated to regions

where they have no significance but nonetheless consume

scarce network resources. In particular, on-demand routing
protocols can initiate a BFS by flooding the entire network

to discover a node that may only be a few hops away. Such

an inefficient use of network resources cannot be part of an
efficient solution to routing in MANETs.

Section 2 summarizes prior work aimed at reducing the

signaling overhead incurred in routing protocols for MA-
NETs. As this brief survey indicates, the prior work has

been aimed at reducing the number of nodes engaged in the
signaling of routing algorithms based on breadth-first

search (BFS), reducing the amount of BFS signaling

information that must be disseminated, or establishing
virtual topologies that may be maintained more efficiently.

The motivation for these approaches is that BFS schemes

flood the network, or at least a very large number of nodes
to find a destination that is far away. If too many nodes are

performing BFS simultaneously, the routing overhead can

saturate the network making it impossible to deliver data
packets.

Depth-first search (DFS) has been studied extensively in

the past as an alternative to BFS, and many distributed
algorithms for DFS have been reported [1–3]. However,

DFS has not been used much to support the signaling of
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routing protocols in MANETs. Apart from ordered walks,

to our knowledge, the only efforts that have addressed DFS
focus on random walks [4, 5], routing using location

information (e.g., GPSR [6], WSR [7]) and protocols that

establish and maintain virtual topologies using DFS, such
as Virtual Ring Routing (VRR) [8]. Intuitively, route

computations based on DFS should involve a much smaller

number of nodes and consequently would incur signifi-
cantly lower overhead when compared to BFS. However, a

raw DFS scheme may incur much longer delays in finding
the desired routes to the destination; furthermore, in the

worse case, all nodes in the network may have to be

involved in the routing computation. With ordered walks
[9], a variety of mechanisms are added to improve the

performance of the depth-first search so that the delay is

comparable to BFS approaches but without incurring the
extensive overhead associated with BFS.

The question regarding the existence of some optimal

middle-ground between the speed of discovery in BFS and
the low overhead of DFS is of great interest, because it can

lead to the most efficient solution yet. In theory, the use of

multiple DFS can lead to a quicker route discovery; how-
ever, each additional search necessarily increases the

overhead, and as the number of searches increase, the end

result becomes closer to a BFS scheme. Ordered walks [9]
have been shown to be remarkably efficient and in this

paper we further develop the concept and explore the

consequences of using multiple ordered walks to further
improve performance.

Section 4 presents the ordered walk search algorithm
(OSA) and analyzes its potential in terms of its time
complexity and the signaling involved. Instead of per-

forming a search in a completely random manner, or

assuming knowledge of the relative positions of destina-
tions, OSA distributively constructs an approximated

minimum-depth spanning tree. Then OSA searches this

tree attempting to minimize the number of search mes-
sages, such that the resulting path is of reasonable length.

The only requirement for this type of search is two-hop

neighborhood information. We demonstrate that, given
some neighborhood information, a minimum-depth span-

ning tree can be approximated, and that this approximation

converges to the actual minimum-depth spanning tree as
the size of the known neighborhood increases.

Section 5 presents the Ordered Walk with Learning
protocol (OWL), an example of efficient routing in MA-
NETs based on DFS without the need for location infor-

mation. OWL uses OSA to establish routes on demand

based on DFS. OWL can search one or multiple paths
simultaneously using ordered walks. At least one of these

paths is based on past location information (when avail-

able) and the others may be independent of the past loca-
tions of the destination.

In Sect. 6 we present extensive results of simulation

experiments illustrating that, in terms of, end-to-end delay
of data packets and the signaling overhead incurred, OWL

attains better performance than popular on-demand and

proactive routing protocols based on BFS. The results also
show that the use of two simultaneous ordered walks

increased the overhead by far more than it decreased the

duration of the route discovery phase. Section 7 presents
our concluding remarks.

2 Related work

Reactive routing schemes were developed to reduce routing

overhead inmobile ad-hoc networks. Today, reactive (or on-

demand) routing protocols have become synonymous with
the flooding of route requests (RREQs) when a path needs to

be established. While this approach may be the fastest

solution in a network that is not bandwidth-limited, it leads
to the broadcast storm problem as identified by Ni et. al.

[10], especially in volatile routing environments. This

inefficiency has been identified by many in the past, and
several optimizations over this blind flooding have been

proposed. These approaches include the use of an expanding

ring search [11], the use of heuristics based on connected
dominating sets to reduce the number of nodes retransmit-

ting packets [12], the use of geographical information to

direct the flooding [6] and probabilistically reducing the
number of retransmissions [10]. While these schemes alle-

viate the broadcast-storm problem, they do not address the

need for flooding which is inherent in any BFS approach.
The most common strategy to reducing the overhead of

route signaling in the past has been hierarchical routing,

which dates back to the design of the DARPA packet radio
network (PRNET), starting with the scheme proposed by

Kleinrock and Kamoun [13]. Since then, there have been

many other hierarchical routing schemes [14, 15]. The
limitations of hierarchical and hybrid routing schemes is

that they do not address the inherent need for flooding in

addition to the need to update the affiliation of nodes to
clusters or zones when nodes move away from their home

clusters or clusters are partitioned into two or more com-

ponents due to mobility.
Broadcast backbone networks [16, 17] have been used to

mitigate the cost of flooding in the network. Instead of

having every node flood the network, a connected subset of
nodes, which together dominate all the nodes in the net-

work, are responsible for forwarding overhead packets.

Once such an infrastructure is in place, searching the net-
work can potentially be more efficient than having all nodes

flood the search packets. The problem with this approach

lies in establishing and maintaining the infrastructure,
especially in the face of mobility, where the cost can be
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comparable to flooding. Connected dominating sets make

most sense in dense networks where there would otherwise
be too much redundant broadcast of control packets but

sparse networks would see little benefit from such

infrastructure.
Apart from ordered walks, there have been only a few

attempts to solve the problems incurred with flooding by

using DFS instead of BFS. These approaches have focused
on the use of random walks [4, 5] in which a route request

starts at the source and travels along a single path, com-
posed of consecutive random next-hop choices in the

search for the destination. The limitation of such a brute-

force application of DFS, as we discuss below, is that the
communication complexity incurred in reaching destina-

tions may be comparable to that of flooding, but with much

longer delays. The successful application of DFS to route
discovery requires more creative solutions.

Approaches that have improved on random walks in the

past use location information for the routing of packets. (e.g.,
GPSR [6], WSR [7]). The many proposed schemes have

made strong cases on performance benefits that can be

attained but their limitations are that each node must know
its location by some external means (e.g., GPS [6]), and that

the sources need to know the locations of their target desti-

nations. The hint-based approach [18] does not use distances
to route, but instead uses a hint value which is based on the

time of last contact with the destination of interest and the

distance of propagation of this hint. In this scheme the
ordering resembles the topology but there is no need to

maintain strictly accurate ordering information as in distance

based protocols. The hints merely reflect the probability of
the node being in the right direction of the destination. A

disadvantage of this approach is the need for data packets to

carry the path traveled to ensure loop freedom.
A different approach to routing is through the estab-

lishment of a virtual topology as in the Virtual Ring

Routing (VRR) protocol [8]. In this protocol each node is
assigned an identifier independent of its location in the

network and maintains paths to a subset of nodes in the

network closest to its identifier, creating a virtual ring in
which nodes maintain paths to their virtual neighbors

proactively regardless of path lengths. The advantage of

this approach is that nodes do not need to maintain, or even
discover on-demand, paths to every other node in the

network but only to a subset of nodes (i.e. their virtual

neighbors). The virtual topology may have no semblance to
the physical topology and routing based on the virtual

topology can result in a logarithmic stretch [19] with the

use of short-cuts. Although these protocols do not gather
complete topology information, establishing and proac-

tively maintaining the virtual ring in a highly mobile

environment can incur unnecessary overhead, as we shall
discuss in the Sect. 5.9.

In previous work [9], we have presented the use of a

single ordered walk to search for destination nodes. As
long as the network is not too large, ordered walks can be

an efficient alternative to flooding. However, the delay in

route discovery using this approach can be intolerable in
very large networks. Searching a single path at a time can

be a slow process, especially if the path searched is based

on past location information that is no longer valid due to
network changes or mobility. The use of multiple simul-

taneous ordered walks, including some walks that do not
depend on past location information, can lead to faster

route discovery without the need to flood or incur nearly as

much overhead as flooding. Furthermore, the use of mul-
tiple search paths leads to an increased rate of learning in

the network.

3 Motivation for using DFS in route signaling

BFS has remained the most popular choice for on-demand

route discovery in MANETs because, at least in principle, a

well designed scheme based on BFS is the fastest approach
to establishing the desired routes requiring on average

O(logk N) time, where k is the average network connec-

tivity. However, the price paid for this search speed is the
signaling overhead incurred, which is O(N) in a network

with broadcast links. In practice, given that MANETs are

bandwidth limited, this large communication complexity
means that BFS may not succeed at establishing routes

quickly, because signaling packets may suffer long queuing

delays or even losses due to multiple access interference. In
proactive routing protocols, the time complexity for

establishing routes is O(1) as routes are readily available,

but this comes at the signaling complexity O(N3) as every
node broadcasts its topology table (of size O(N2)) in the

worst case. We discuss this further in the next section.

DFS may be a viable option to avoid the problems
introduced by the broadcast storm associated with flooding.

However, applying a DFS strategy to on-demand routing

means that route requests are propagated from one node to a
single neighbor and thus travel a single path from the source

to the destination. Accordingly, using DFS in a graph in

which each step is completely random means that the time
required to find a path to a given destination is O(N), which
is the case of the destination being the last node searched,

and the average complexity would be O(N/2) for both time
and number of messages. Hence, compared to BFS, DFS

offers only a constant factor improvement but with a very

large penalty in the time complexity it incurs. Clearly, DFS
schemes based on random walks make sense only in net-

works where bandwidth is at a premium and delays in

finding paths are not important, which may be the case in
some sensor networks with static topologies.
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We advocate a new approach to DFS applied to on-

demand routing in MANETs that takes advantage of two
important characteristics of MANETs. Firstly, some local

topology information is readily available to nodes due to the

broadcast nature of radio links. In particular, a node can
hear over time about the presence of neighboring nodes, and

even the presence of its neighbors’ neighbors. Secondly,

MANETs are not completely random and, more impor-
tantly, source-destination dialogues follow patterns of

interest, which means that sources will be able to find
destinations more effectively , over time, than by random

walking if their searches choose ‘‘children’’ in the DFS tree

based on this prior knowledge that incorporates information
gathered from past searches, some of which may have even

failed. Accordingly, our approach to using DFS in on-

demand routing is based on the concept of ‘‘ordered walks,’’
which we describe in the next section, and complement this

DFS approach with learning gained from prior walks.

4 Ordered walk: a hybrid distributed search algorithm

With the ordered-walk search algorithm (OSA), we aim to

take advantage of the smaller time complexity of BFS and

combine it with the low communication complexity of DFS
to further improve the efficiency of the search through the

use of known topology (i.e., path) information. The basic

idea is to approximate the construction of a minimum-
depth spanning tree rooted at the source (as in BFS) and

then perform DFS on this tree. If there is information about

the past location of the destination, then this can be used to
guide the search. We call this an informed search, and
while such information can help the search, it is not nec-

essary for the OSA.

4.1 Efficient uninformed searches

It is often the case in the establishment of new paths that no

information about the destination is available at the node

making a search decision. To make the search efficient,
nodes can take advantage of topology information they

have about their neighborhood. In particular, the number of

nodes covered (in the known neighborhood) needs to be
maximized while the number of nodes relaying the query

needs to be minimized by the choice of next hop in the

search. To achieve this, successive nodes in the search
should have as few neighbors in common as possible. This

is possible if two-hop neighborhood topology information

is known by performing set comparisons between the
current search node and its neighbors. This would usually

favor choosing nodes physically far apart, rather than close

together, and consequently results in shorter paths than a
random walk, where a near node and a far node have the

same probability of being the successor in the search.

While set comparisons can be computationally intensive, it
should not be an issue with modern technology.

At times it would be desirable to direct the search in a

physical direction without knowing the relative positions of
the nodes. A notion of direction can also be attained using

two-hop neighborhood information. To guide the search

away from a node, the neighbors of that node should not be
allowed to be a successor in the search tree. To guide the

search along the current trajectory, the neighbors of all
previously searched nodes should be pruned from the

search tree. This can be seen in Fig. 1. Once a node

eliminates the one hop neighbors of the previous nodes in
the search, its remaining neighbors will follow a trajectory

away from the origin of the search.

4.2 Approximating a minimum-depth spanning tree

Given complete topology information, any node can con-
struct a minimum-depth spanning tree in a connected net-

work. The source becomes the root (depth 0) for the search.

Nodes connected to the source are then at depth 1, their
neighbors not yet included are at depth 2, and this process

continues until all nodes n hops away from the source are at

depth n in the tree. Performing the search on a minimum-
depth spanning tree results in paths with a shorter expected

length than those obtained with a random walk search.

Maintaining complete topology information amounts to
proactive routing and is especially difficult in mobile net-

works. Fortunately, such a tree can be approximated and

constructed distributively requiring as little as 2-hop
neighborhood information with the approximation becom-

ing closer to the actual minimum depth spanning tree as the

width of the neighborhood increases.
The first step is establishing the n-hop neighborhood.

This is be done by having nodes advertise distances to all

other nodes within (n - 1) hops. A node receiving such an
advertisement would store the distance to every node in its

n-hop neighborhood from each of its neighbors in a routing

table. If n is equal to the diameter of the network, then each
node maintains distances from each of its neighbors to

every other node in the network which is proactive routing.

By maintaining only the n-hop topology we reduce the
complexity of the signaling.

At each step in the search, say at depth x, a node must

choose children that are at a greater depth (x ? 1) in the
search tree than the node itself. If the current depth is less

than n (the radius of the known neighborhood) then the

children can be chosen so as to guarantee that they are at a
greater depth in the actual minimum depth spanning tree. If

the current depth of the search tree is greater than n, then
the exact depth of the neighbors with respect to the root
cannot be ascertained and an approximation must be made.
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We make the approximations based on the node closest to
the root of the tree within the known neighborhood. Let

p be the node exactly (n - 1) hops before x in the search

path. Then, if y is a child of x in the search tree then y must
be exactly n hops from p. If y is less than n hops from

p then y is not at a greater depth than x in the actual

minimum depth tree and we can prune all such nodes.
Node y is at most 1 hop further from p than x, therefore
y must be exactly n hops from p. The larger the value of n,
the more accurate the tree becomes. If n = 2, the reference
point will be the previous hop in the search path and can

prune all the 1 hop neighbors of this node. If n = 3, the

reference point is the node 2 hops before in the search path
and we can preclude all nodes that are either 1 or 2 hops

from this node from being at depth (x ? 1). If n = 4, then
the reference point is 3 hops up the path of the search and

we can preclude all neighbors which are 1,2 or 3 hops from

this node. In this process of eliminating nodes from the
search tree we need the distance from each 1-hop neighbor

to the reference point which was designed to be in the

known neighborhood.
Figure 1 shows four executions of OSA. In the first case,

complete topology information is known and in the

subsequent cases, only 2-hop, 3-hop or 4-hop information is
known. With 2-hop neighborhood information, we only

prune the 1-hop neighbors of the previous node in the search

as seen in Fig. 1(b). As we increase the size of the known
neighborhood more nodes are pruned from the search tree

and in this case, n = 4 results in the same path as the case

where global topology is known, but this will not hold for
larger networks. With known global topology, we are

guaranteed the shortest path as can be seen in Fig. 1(a).

With an approximated tree the path can be longer than the
shortest path as evident in Fig. 1(b, c). Consider

Fig. 1(d) where the search starts at A and the 4-hop

neighborhood is known. A is the root (at depth 0) and must
add nodes at depth 1 (1 hop from A) to the search queue and
this corresponds to all of A0s neighbors. Of its neighbors if
B is determined to be the best, B must now find nodes at

depth 2. Since n[2, B simply checks which of its neighbors

are 2 hops from A and adds those nodes to the search queue.
There are 3 such nodes and suppose C is the best node. Now

C is at depth 2 and must determine which of its neighbors

are at depth 3. Once again n[3, and C can add its neighbors
which are exactly 3 hops from A to the search queue. Once

the search reaches E, which is at depth 4, we must start

Fig. 1 DFS pruning in OSA
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making approximations. E has neighbors which do not have

A in their 4 hop neighborhood so it cannot use A as a point of
reference. Instead it will use B. E will add only its neighbors
which are 4 hops from B to its search queue. Only 3 of its

neighbors satisfy this criteria. F will then examine its
neighbors and add those which are 4 hops from C to the

search queue. There are no such nodes so F will be pruned

from the tree and E will choose a different neighbor. If
neither G nor H are the destination, the search will return to

node D which will chose its next best neighbor, which has
new neighbors to explore and the depth first search will

proceed in this manner.

4.3 The ordered walk search algorithm

The pseudocode for the ordered-walk search algorithm
(OSA) is provided in Algorithm 1. It takes as input a graph

G, a source node s, and the destination node d that is being

searched, and returns a path from s to d, should one exist. It
also assumes that any node knows its n-hop neighborhood

in the network, where n C 1. The larger the value of n, the
more effective the algorithm would be as the search will
terminate once it arrives in the n-hop neighborhood of the

destination. However, maintaining accurate topology

information beyond one-hop becomes increasingly difficult
and there is a trade-off between the complexity and the

precision of the algorithm.

OSA proceeds as DFS, using the approximated mini-
mum-depth spanning tree. At each step in the ordered walk,

a node must choose its successor in the search tree. An

informed search would be prioritized if the relevant
topology information were available, but if this is not the

case, an uninformed choice is made along the current tra-

jectory of the search.
OSA uses a function N1(x) that returns the set of 1-hop

neighbors of x, and therefore possible children in the tree.

If we are at a depth less than n in the search tree then we
can use the root as a point of reference (line 15) to deter-

mine which of x0s neighbors are actually at a greater depth

and prune those which are not (lines 20, 21). If, however,
we are at a depth greater than n, we do not know the

distance from the neighboring nodes to the root of the tree

and we must use a heuristic and the point of reference
becomes the node (n - 1) hops higher in the search tree

(line17) and use this to prune some, but not necessarily all,

of the nodes which are not at a greater depth. If n = 2 then
our point of reference is always the previous hop in the

search path and we prune only its one hop neighbors.

OSA also uses the SORT() function, which takes as
input a set of nodes and places them in ascending order of

distance to d, such that the nodes closest to d are searched

first. The notion of proximity to the destination is based on
past known locations of the destination or if the destination

lies in the known neighborhood. If neither of these are

applicable, the neighbor with the least common neighbor-

hood is use to sort the nodes. Nodes that are viewed as
equidistant are placed in random order.

4.4 OSA correctness

The following theorems show that OSA obtains finite paths

from sources to destinations, if they exist, using only local
information regarding a node’s neighborhood and path

information accumulated over time.

Theorem 1 OSA terminates for any finite connected
graph with N nodes.

Proof Once a node is visited in the search, it is added to
P. For any node, N0(x) = x, and thus any node in the path

is never added to the queue Q, because it is never added to

T in line 18 of Algorithm 1. Given that the number of nodes
is finite and each node can only be searched at most once,

the algorithm terminates when d is found or when there are

no more nodes in the queue Q, which happens in at most
N steps.

Algorithm 1 OSA(G, s, d)

1: P0  s

2: depth 0

3: T  N1ðsÞ
4: Q SORTðTÞ
5: n number of hops in known neighborhood

6: while Q = / do

7: x first member of Q

8: depth ðdepthþ 1Þ
9: Pdepth  x

10: if x = d then

11: return (Pdepth, Pdepth-1… P0)

12: end if

13: T  N1ðxÞ
14: if (depth\ n) then

15: p P0

16: else

17: p Pðdepth%nÞ

18: end if

19: for all xi [ T do

20: if distance (x, p) C distance (xi, p) then

21: T  T % xi

22: end if

23: end for

24: SORT(T)

25: Add T to front of Q in order

26: end while

27: return /
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Theorem 2 OSA terminates for any finite disconnected
graph with N nodes.

Proof The search is be confined to the component of the
graph from which it originated. The search does not leave

this component of the graph, else the component would

have to be connected to another component. All nodes
within this component are connected and this component

can be treated as a finite connected graph. Hence, by

Theorem 1, it follows that the search terminates on this
subgraph.

Theorem 3 For a finite graph G, OSA returns a path
from the source s to destination d, if one exists.

Proof It can be seen from Algorithm 1 that a node is not

added to the search tree T at a particular instant if and only
if it is either already in the search tree or in the known

neighborhood Nk (x) of a node already in the search tree.

If s and d are in different components of the graph, the

theorem follows. Assume for contradiction that s and d are

in the same connected component of the graph G and OSA
terminates without returning a path from s to d. Then it must

be the case that d was never added to the search tree T. If
there was a path, it would have been found when d was
searched. If d was never added to the search tree, then none

of its neighbors could have been added to T, because then

d would have been added when its first neighbor was sear-
ched. This same argument can be applied to the neighbors of

d and can be repeated until s is reached which must be the

case because they are in the same connected component.
Accordingly, it must be true that the connected component

containing d cannot contain any member of the search tree

T and therefore cannot contain s, which contradicts the
initial hypothesis. Therefore, the theorem is true.

4.5 OSA complexity

For the sake of discussion, consider a network G with node

degree k. If a path from a source s to the destination d is
known, then the complexity of OSA is O(logk (N)). This
corresponds to the depth of a k-ary tree, and is in fact the

best upper bound on the run time of any search algorithm;
however, it is not really a search if a path is already known.

It is well-known that the complexity of a centralized DFS

algorithm is O(V ? E), which in this case is reduced to
O(N ? k*N), which is O(N). If the n-hop neighborhood is

known, then the search will terminate in at least n fewer

steps. Therefore, the time complexity will be reduced to
O((N - n) ? k*(N - n)). For a small n, such as n = 2 the

time complexity is still O(N) if there is no information to
guide the search. If however, n is large, the time com-

plexity is reduced and becomes O(1) when n = N, which
corresponds to proactive routing.

OSA has a proactive and an on-demand component and

the total overhead in the network would be a consequence
of the searches plus the overhead to maintain n-hop

neighborhood information. To maintain the topology

information of the n-hop neighborhood, each node must
advertise all nodes within (n - 1) hops. The size of such a

packet in a network with average degree k is O(kn-1).
Therefore, the total message complexity of OSA is
O((N - n) ? k*(N - n) ? kn-1). As n approaches N the

protocol becomes a proactive routing protocol and no
search is required but the overhead increases exponentially.

Unlike proactive protocols, if only two-hop neighborhood

information is maintained, hello messages are kept small
because only immediate neighbors are advertised, as

opposed to complete topology information. With small n,
the time and message complexity of DFS are maintained.
The accuracy of the ordering determines how far the actual

search deviates from this worst-case value and how close it

approaches the optimal value of O(logk(N)). The message
complexity of un-optimized link state is O(N3) [20] while

that of link state using multipoint relays (such as OLSR) is

O(N(Log(N)2)) [20]. There have been other optimizations
to reduce the overhead such as fish-eye [14] routing and

hazy-sighted link state [15] but the complexity will be

worse than O(n) as long as each node must broadcast more
than its 1-hop neighborhood.

We note that the search space in OSA is reduced by a

factor of k for every step that is known to be correct. This is
illustrated in Fig. 2, which shows OSA being executed on a

binary tree. The direction of the arrows shows known

paths. It is clear that, with every step taken towards the
destination, the number of nodes in the search tree is

halved. For pure DFS or pure BFS only one node is

removed from the search tree in any give step. In real
MANETs, the situation is not as simple as in Fig. 2,

because nodes would form a mesh instead of a tree and the

nodal degree is likely to be variable and greater than two.
However, the reduction in the search space at each step is

still significant. The experimental results we obtained show

that OWL incurs significantly less overhead, which indi-
cates that far fewer nodes needed to be searched before the

destination was discovered.

Fig. 2 An ordered walk example
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5 OWL: DFS with learning

OSA relies on topology information to enhance the per-

formance of the depth-first search. To demonstrate the

effectiveness of OSA, we present the ordered walk with
learning (OWL) routing protocol, which uses DFS to

establish and repair paths from the source to the destination

with minimal signaling overhead and fast convergence.
OWL is an on-demand routing protocol, which means that

paths are established only when needed. However, it uses a

proactive component to maintain up-to-date 2-hop neigh-
borhood information i.e. value of n in OSA is set to 2 in

OWL.

Larger values of n will increase efficiency of the algo-
rithm as the approximation to the minimum depth spanning

tree will be more accurate and once the search enters the

n-hop neighbor, a path to the destination will be found.
When n is greater than or equal to the diameter of the

network, the protocol becomes completely proactive and

inherits the advantages and limitations of this approach.
The size of the overhead packets to maintain n-hop

topology information grows exponentially with n as each

node will periodically broadcast packets with all nodes
within (n-1) hops and their corresponding distances. Fur-

thermore, we use set comparisons to determine the best

next hop and this too becomes costly as the set of known
nodes increases. The heuristics developed for proactive

routing such as multipoint relays or hazy-sightedness can
be applied to reduce the overhead. Nonetheless there is a

tradeoff between the total overhead and the degree of

accuracy in the approximation of the minimum depth
spanning tree. Our main motivation for using a value of

n=2 is for simplicity. Nodes only send their 1-hop neigh-

bors in the hello and comparisons involve a few nodes. We
aim to show that although the use of such limited infor-

mation will not result in a very good approximation, the

benefit is still enough to yield good results. In static net-
works, or networks with few topology changes a large

value of n would have most benefit since little overhead is

needed to maintain the ordering. In more mobile networks,
the topology will change often and this incurs overhead

which increases exponentially with n and therefore a

smaller value of n is desired.

5.1 Routing information

OWL relies on two-hop neighborhood information gath-

ered using periodic Hello packets. Hello packets contain

the one-hop neighbors of a node and are sent periodically
with a frequency depending on the mobility of the nodes.

The default hello packet interval in OWL is initially set to

30 seconds and is then additively increased and decreased
based on the number of changes in the neighborhood.

When a node needs to send a hello, it first determines the

number of new neighbors and the number of nodes that are
no longer neighbors. The sum of these two is then sub-

tracted from the current hello interval with a minimum

value being restricted to ten seconds. If there is no change
in the neighborhood, the hello interval is incremented by

five seconds, with the maximum interval being restricted to

one minute. We do not allow the hello interval to become
too large because it would be difficult and slow to detect

changes in the neighborhood if they did occur.
In the hello packets, each neighbor is paired with a one

bit flag indicating bi-directional connectivity. If a node

receives a hello from its neighbor and it is not listed as a
neighbor despite having broadcasted hello packets, then

this may be an indication of a unidirectional link. This bit is

set to 1 only if the neighbor has advertised the node in its
hello packets.

OWL uses two structures to store the information nec-

essary for route discovery and routing of data packets. The
first is a neighbor table that stores each of the node’s

neighbors and keeps a list of each of their one-hop

neighbors (as advertised in Hellos). This allows nodes to
have two-hop neighborhood information for use when

performing ordered walks.

The second structure is a destination table. It stores the
latest sequence number and corresponding distance to each

known destination. The information in the destination table

is updated using path information carried in route requests
and route replies. Each node also maintains a preferred
neighbor to each active destination it knows. This preferred
neighbor is the first neighbor from which the node receives
the latest route reply for the given destination, and there-

fore the perceived closest neighbor to that destination.

Associated with each preferred neighbor is the number of
times that neighbor has been used as the preferred neighbor

in a DFS since the last successful search (we call this

variable PNUse).

5.2 Route establishment and maintenance

Route requests (RREQs), route replies (RREPs), route

errors (RERRs) and hello messages are the basic building

blocks of OWL. These packets are used in the same way as
many on-demand routing protocols.

5.2.1 Route requests

When a source needs to discover a path to the destination,

the source node initiates a RREQ with a new sequence
number that serves as a time-stamp. The time-to-live (TTL)

for the request is initially set to a value of ten whenever the

source node has no idea of the distance to the destination.
Once the source discovers the destination, it acquires a

1102 Wireless Netw (2011) 17:1095–1112

123



distance to it. On successive searches, the source sets the

TTL to the last known distance plus two. This restricts the
maximum length of the path discovered. This past infor-

mation is used to set the TTL for at most two unsuccessful

searches. After which the sources uses the default value of
ten as the TTL. For networks with larger diameters an

appropriate TTL value should be used.

Upon sending a RREQ, the source node sets a timer
proportional to the TTL of the route request. If no route

reply is received by the time this timer expires, another
ordered walk is initiated to search for the destination.

Upon receiving a RREQ, a node updates its routing table

using the path information carried in the RREQ. Then the
node must either respond with a RREP or forward the

RREQ to a neighbor as determined by OSA. The precise

manner in which RREQs are handled is stated in Algorithm
2. According to the algorithm, any known path to the

destination would be used to forward the RREQ. If the

selected neighbor is no longer valid (detected by failed
transmissions of the RREQ), the neighbor table is updated

and a different neighbor is selected. If there is no valid

neighbor, a route error (RERR) is sent to the source of the
RREQ.

5.2.2 Route replies

RREPs can only be issued by the destination and this is

done upon receipt of a RREQ with a new sequence number.
In a mobile environment, the topology information avail-

able to any node has limited lifetime. With this in mind,

OWL verifies the existence of known paths through the

propagation of RREQs all the way to the destination rather

than allowing intermediate nodes to respond with RREPs,
which may be based on topology information that is no

longer valid.

Nodes listen in promiscuous mode for RREPs from their
neighbors. Upon overhearing a RREP for which the node is

not designated as the next hop, nodes simply record the

next hop in the path and do not retransmit the packet.
Nodes store the distance and sequence number carried in

the RREQs and RREPs in their routing table. This distance
information is useful in ordering the nodes for future

searches in the event of link failures.

This ordering information can be used for up to two
future searches (as determined by the previously defined

variable PNUse), after which it expires and is removed

from the routing table. This value can be changed
depending on the mobility of the network. Whenever a

node receives a RREP with a higher sequence number, it

refreshes PNUse, so the preferred neighbor can be used two
more times, regardless of prior use.

An ordered walk fails if the TTL expires or a leaf node

is reached. A RERR is sent back to the source in both
cases, and the source then initiates an ordered walk in a

different direction, with the notion of relative direction

being derived from two-hop neighborhood information as
perviously discussed. This would result in a different

branch of the approximated minimum-depth spanning tree

being searched in a DFS manner and increases the proba-
bility of discovering the destination because it maximizes

the number of new nodes being searched.

In a mobile environment, link failures are inevitable and
if the path being used no longer exists, the last node before

the point of path failure makes up to two attempts to repair

the path using neighbors with a known route to the desti-
nation. If no such neighbor exists, or the path using the

selected neighbor(s) fail, a RERR is sent to the source,

which then starts a new ordered walk. This time, there will
be some ordering of the nodes with respect to the desti-

nation from the previous search and this information is

used in the OSA algorithm to make the DFS more efficient.
The farther from the source the failure occurs, the easier it

will be repaired, because the search tree is significantly

pruned with each successful step.

5.3 Multi-walk OWL

DFS can be a slower form of route discovery than BFS

because fewer nodes are being searched at any given time.

To speed up route discovery in OWL, a pair of ordered
walks can be used instead of just a single walk. If the walks

do not overlap, then the search should be twice as fast.

When a node needs to find a destination, it initiates a
pair of RREQs. One of these requests is independent of

Algorithm 2 HandleRREQ(RREQ)

1: P RREQðPathÞ
2: PN  Preferred Neighbor

3: ProcessPath(P)

4: if (Node = Destination) then

5: Initiate RREP()

6: return

7: end if

8: if (TTL = 0 or has No New Neighbors) then

9: Initiate RERR()

10: return

11: end if

12: if PN and PNUse[ 0 and PN 62 P) then

13: PNUse = PNUse - 1

14: Relay RREQ(PN)

15: end if

16: O BestOrderedHopðPÞ
17: RelayRREQ(O)

18: return
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past information about the destination and the other uses

this past information when available. The use of two paths
speeds up the route discovery process and overcomes the

possible problem of relying on invalid past information.

While past information can often guide the search in the
correct direction, it is not always the case that the desti-

nation remains in the same vicinity. This problem is miti-

gated by allowing one of the ordered walks to be
independent of past information. RREQs that are issued

simultaneously from a source use the same source
sequence number. It is possible that a node receives both

route request packets and in this case it forwards both of

them. This does not result in routing loops, because each
route request carries the path information and this is used to

ensure that each path is loop-free even if multiple paths

intersect. If a node receives multiple RREQs with the same
sequence number it must be that there were different

ordered walks initiated at the same time.

Intuitively, the advantage of multiple simultaneous
walks becomes more pronounced in a network where each

node has many neighbors and the nodes are highly mobile.

As mobility increases, past location information becomes
less useful and searches can take longer to terminate. When

there is no past information (e.g. for the first search) or past

information is irrelevant to the current search, multiple
searches can reduce the search time. However, if there is

low mobility, once the destination is discovered subsequent

searches within the same neighborhood are more likely to
be successful than searches in other areas of the network. In

such cases, additional searches will only add to the network

overhead with little benefit. As the number of simultaneous
walks increases, the search will look more like a BFS and

the goal of this paper is to demonstrate that DFS, which is

one walk in its strictest sense, can be effective for route
discovery.

The source initiates two RREQs, and should both arrive

at the destination, two RREPs will be sent, one along each
path. This redundancy will allow more options for route

repair in the future. However, a source only needs to

receive one route reply for the search to be considered
successful.

5.4 Path reinforcement

Hello packets are also used to advertise ordering to desti-

nations for which the sending node or one of its immediate
neighbors is on the path to the destination. When a path to

the destination is set up, the nodes along that path and their

neighbors that overhear the RREP designate themselves as
active for that path for up to two hello intervals after first

overhearing the RREP. This reinforces the ordering to the

destination and provides alternate routes for routing data
and future searches.

5.5 Learning

We have discussed how to make efficient uninformed DFS
decisions, but it is even better to make informed search

decisions when possible. To accomplish this, nodes need to

learn about the topology, but thismust be donewith little cost.
OWL uses two mechanisms to gain topology informa-

tion. Periodic ‘‘Hello‘‘ packets, which contain a list of one-

hop neighbors and destinations for which the sending node
is active are broadcasted by each node in the network and

this is used to provide two-hop neighborhood information.

Also, once a node finds the destination, it uses the past path
information to guide future searches.

In a mobile environment, past relative position of the

destination becomes outdated (more so as the search
approaches the destination). Nonetheless, some of the

information may be useful.

At the start, most nodes may have no ordering for an
intended destination. After each search, some nodes are

ordered with respect to other nodes, be they the desired

destinations or not. This ordering is important to the suc-
cess of OWL. Promiscuous listening allows for ordering of

nodes near the paths being set up. To cope with mobility,

distance information is assumed to be valid for up to two
searches per sequence number.

Over time, the ordering in the network can become

robust, thus reducing the search time. This claim is sub-
stantiated by the simulation results presented in Sect. 6.

5.6 Learning and mobility

With ordered walks, the search is directed towards the last

known position of the destination. This is beneficial, as
long as the destination remains in the same position or at

least very close to that position. In a mobile environment,

this is not always the case and, for this reason, a known
ordering with respect to the destination is valid only for a

few (set to two in OWL), searches. Such an event indicates

substantial movement of the destination and an ordered
walk is initiated and performed using uninformed routing

decisions.

However, nodes do not move very quickly and are likely
to gradually move from one neighborhood to another in

many MANETs. Once the known path is broken, it is likely

that an alternate route can be found that contains most of
the nodes as the original route as well as additional nodes

to route around the link failure. The results indicate that

OWL performs well in the face of mobility.

5.7 OWL versus random walk

We argue that ordered walks are better than random walks

in the context of MANETs.
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The expected path that results from an ordered walk

should be shorter than that of a random walk. The TTL
used in OSA forces an upper bound on the resulting path

length. The fact that the OSA is performed on an approx-

imated minimum-depth spanning tree ensures that the TTL
is sufficiently large to find a path without allowing the path

to be excessively long. Furthermore, successive nodes in

the ordered walk would be, on average, physically farther
apart than those of random walks. In a random walk all

neighbors have an equal probability of being the successor
in the search, but ordered walks favor successors that are

farther apart because these nodes would have fewer

neighbors in common. Because the average distance
between successive nodes is larger, the average number of

hops will be smaller for ordered walks than for random

walks.
The expected number of search messages in ordered

walks should be smaller than that of random walks. Each

successive node in an ordered walk is chosen so as to
maximize the number of nodes not yet covered by the

search. For any given number of search messages, a ran-

dom walk would cover at most as many nodes as those
covered by an ordered walk. If the destination is randomly

chosen, then each node is equally likely to be the desti-

nation. Therefore, the more nodes covered by a search, the
greater the probability of finding the destination. Hence, for

the same number of search messages, an ordered walk

would have a probability of discovering the destination that
is greater than or equal to that of a random walk.

Furthermore, because the OSA operates on a minimum-

depth spanning tree, the search is guaranteed to venture
into new neighborhoods, because it is forced to move away

from the source with each step. In a random walk, however,

there is no such restriction and the search can move
through all the nodes in the same neighborhood, and

therefore proceed much slower.

5.8 A simple example

Consider the simple network in Fig. 3, where node S needs
to send data to node D and there is no previous routing

information about D in the neighborhood of S. Node S

chooses a neighbor with the fewest neighbors in common
with itself. In this example, it first chooses A, which in turn

selects B as its successor because they have they fewest

neighbors in common. Node B does not have any neighbor
that is not a child of a node already in the search path

because nodes X and Y are neighbors of node A. Node B

cannot proceed to a greater depth of the search tree so it
must send a route error to node S.

Upon receiving this route error, node S must choose a

new successor with as few neighbors in common with both
itself and node A (in an attempt to guide the search in a

different direction). In this example, node S chooses node

C which then chooses node E. Once the RREQ arrives at

node E, a path to the destination is found because the
destination, node D, is in node E’s two-hop neighborhood.

Node E forwards the RREQ along the known path to verify

that it still exists. Node D then initiates a RREP in response
to the RREQ and this route reply travels along the same

path as the route request. Nodes close to this path, such as

nodes G and H, overhear the route replies and become
active for destination D. Accordingly, they record their

preferred neighbor (which is E for the case of node G) and

set the number of future searches for which the information
is usable to 2. Node H becomes active for destination D

and therefore includes the current distance and sequence

number for D in its Hello Messages which will provide
node C with an alternate (and in this case a shorter) route to

node D though node H.

If we increased the size of the known neighborhood, to
say 4 hops, the protocol behaves in a similar manner with

few changes. Instead of referencing the previous hop in the

path it will reference the node 3 hops before in the path.
Since the 4-hop neighborhood information is maintained, a

node will know the distance from each of its neighbors to

this node and if a neighbor’s distance is less than or equal
to the node’s own distance, then that neighbor is pruned

from the search tree.

5.9 OWL versus VRR

The Virtual Ring Routing protocol [8] does not use
flooding (BFS) and thus implicitly employs depth-first

search in the initialization and maintenance of the virtual
ring. Accordingly, it is worth discussing the inherent dif-

ferences between VRR and OWL.

At network initialization in VRR, a node may know
neither the identifiers of its actual virtual neighbors nor

their locations. Each node is initially a single-node virtual

Fig. 3 An OWL example
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ring and needs to merge with others in order to grow the

virtual ring until all nodes in each connected component of
the network form a single ring. The protocol does not use

any network-wide flooding, and therefore the ring is grown

incrementally at each node. The DFS that occurs during the
initialization of VRR resembles repeated random walks,

because a node’s view of the network increases with each

step and this may cause a change in the virtual neighbors
stored at the node which then results in a longer walk. A

node constantly replaces its virtual neighbors (members of
its vset) as it discovers better virtual neighbors (i.e., nodes
with identifiers closer to itself than its current virtual

neighbours) until the virtual ring is complete.
Nodes discover their physical neighbors (pset) from

listening to periodic heartbeat messages and initially a

subset of these physical neighbors forms the virtual
neighbors (vset). A node joining the ring, as described in

[8], discovers its virtual neighbors by routing a request to

itself through a proxy (which is one of its physical neigh-
bors that is already a part of the virtual ring). Let us con-

sider a node X wanting to join the virtual ring. At network

initialization, nodes are only aware of their one-hop
neighborhoods, so X’s proxy forwards the request to its

virtual neighbor, call it Y, with the closest identifier to the

origin of the request, X. Y sends its vset to X and X then
substitutes some of its virtual neighbors with those of Y

which have closer identifiers to its own. When X adds a

node to its vset, it sends this node a setup message to that
node which then replies with a setup message of its own,

containing its own vset which may cause further substitu-

tions in X’s vset.
This process continues incrementally along r walks,

where r is the size of the vset maintained at each node. In

the worst case, each of these walks is of increasing length
(first X to Y, then Y to X then X to Y to Z and back, etc)

until there is convergence to the actual virtual neighbors.

As nodes are substituted in X’s vset, messasges (setup_req,
setup, setup_fail and tear_down) are being sent back and

forth at every step. The cumulative number of steps of one

such walk will be Oð1þ 2þ 3þ . . .þ NÞ in the worse
case, which is O(N2), because each walk is repeated, with

each repetition being of increasing length. There are r of

these walks at each node to find the final r members of the
vset, and this is done at all N nodes in the network.

Therefore, the complexity of initialization in VRR is

O(rN3) which, interestingly, is worse than flooding.
There may be significantly less signaling after ring

initialization depending on the stability of links in the

network. If a node joins the network or restarts with no
routing state, it uses a proxy to route a request to itself via

its virtual neighbor. In the worse case, this virtual

neighbor can be up to half-way across the ring and
therefore adding a node to the ring is O(N). The existence

of shortcuts in the greedy forwarding of messages can

reduce the number of steps required, but such shortcuts
are not guaranteed to exist. Upon node failure, a node’s

virtual neighbors must update their vsets. This process is

O(N) as with a node joining the established ring. To
handle link failures, nodes may need to send multiple

tear-down and setup_req messages to remove any path

which uses this link and to establish alternate paths. In the
worst case, these messages may need to travel half the

virtual ring and is also O(N).
The signaling and time complexity of OWL with two-

hop neighborhood information are O(N) as we have pre-

viously discussed. The key difference in the DFS schemes
between OWL and VRR stems from when the searches

occur. In VRR, most of the searching happens at initiali-

zation in the form of random walks to establish the ring and
subsequent searches to maintain the ring are guided based

on the established virtual ring. These searches are not

based on any notion of distances and are not meant to
render shortest paths. They can be efficient based on the

availability of shortcuts along the virtual ring, but there is

no guarantee of this. In OWL, the DFS only happens on-
demand when there is data to route between a source-

destination pair. Although distances are not used, with the

approximation of a minimum-depth spanning tree together
with past location information, the search can be efficient.

6 Experimental results

We compared the performance of OWL with that of rep-
resentative protocols for on-demand and proactive routing

based on BFS in MANETs in the Qualnet 3.9.5 simulator.

OLSR [21] was used as an example of proactive routing,
and AODV [22] was used as an example of on-demand

routing. Our comparison highlights the ability to attain on-

demand routing using a DFS approach without relying on
location information, and illustrates the fact that such an

approach can render comparable results to those attained

with the traditional BFS scheme used in OLSR and AODV,
but with only a fraction of the signaling overhead. We also

compare the performance of single-path searching (which

we call OWL1 in the experiments) with dual-path search-
ing as described in the previous section (denoted OWL2 in

the results).

6.1 Simulation environment

Two scenarios were used in the simulations. Scenario A
was designed to rigorously test the performance of the

protocols in a dynamic environment with volatile links.

Scenario B, uses a greater radio range to add more stability
to the links and create more multi-path opportunities.

1106 Wireless Netw (2011) 17:1095–1112

123



Scenario A consists of 100 nodes uniformly distributed
in a grid of size 1,000 m 9 1,000 m with the transmission

range of the radios set to 150 m. This choice of parameters

satisfies the minimum standards for rigorous MANET
protocol evaluation as prescribed by Kurkowski et al. [23]

as it results in an average shortest path hop count [23] of
4.03 and average network partitioning [23] of 3.9%. Other
relevant simulation parameters are summarized in Table 1.

This scenario ensures that packets travel several hops from

source to the destination and thus tests the robustness of the
protocols. The mobility model chosen was random way-

point with minimum speed of 1m/s and maximum speed of

10 m/s with a pause time of 30s.
In one set of experiments, we varied the number of flows

thus testing the performance of the protocols under varied

loads. In the second set of experiments we varied the pause
time to test the performance under varying degrees of

mobility. In experiments with node mobility we used the

random waypoint model to exercise the signaling in the
worst case scenario. We sampled the stationary distribution

of node speed, remaining pause time and node placement

according to the method outlined in [24] and used it as the
initial conditions in the simulation. This ensured that the

experiments started in steady state and provided consistent

results. The parameters for OLSR were set to those spec-
ified in [21] (i.e. a hello interval of 2 seconds, TC interval

of 5 seconds and neighbor hold time of 6 seconds).

Nodes were randomly selected to be the sources and
destinations of CBR flows and care was taken to ensure

that there was no node that was the destination of its own

flow. There were no restrictions on nodes being multiple
sources, multiple destinations or a source of one flow and a

destination of another. Each source would send a maximum

of 400 packets of size 512 bytes at a rate of 4 packets per
second. The start time of each flow was randomly deter-

mined using a uniform distribution and was within the
duration of the experiment.

Using a time-based seed, 20 random scenarios were
generated with the above specifications and the results

were used to compare the performance of the protocols.
The large number of randomly generated scenarios was

used to avoid bias in the results. Each series of random

numbers was generated using the lrand48 command in C
and using the current time as a seed for the random number

generator.

Scenario B is similar to Scenario A, except that the
transmission range is increased to 200 m. The purpose of

this was to increase the average neighbor count from 7.06

to 12.6 nodes. The increased range makes some of the links
more stable as nodes take longer to move out of range of

each other. The value of the average shortest path would

certainly be less than 4 nodes while the average network
partition would be less than 5%.

Five metrics were used to evaluate and compare the

performance of the protocols and they are discussed below.
The hello interval in OWL was set to 15 s

The mean and a 95% confidence interval were obtained.

The simulation results for the four routing protocols in
scenario A are summarized in the following graphs. In

Scenario A, we vary the number of flows and the pause

time and observe the results. In Scenario B, we use
20 CBR flows and the nodes have a pause time of 30s; the

results are shown in Table 2.

6.2 Delivery ratio

Delivery ratio is the fraction of packets that arrive at the
corresponding destination by the end of the simulation. The

reasons packets are not delivered to the destination are

dependent on the specific protocol. Data packets can be
dropped at the source if they cannot find a route to the

destination. Data packets in transit can be dropped upon

link failure, especially if the protocol does not perform
local route repair. In OWL, when a link fails, a node can try

Table 1 Constant simulation parameters

Parameter Value

Simulation time 900s

Node placement Stationary distribution

Mobility model Random waypoint

Min-max speed 1–10 m/s

Propagation model Two-ray

Physical Layer 802.11

Antenna model Omnidirectional

MAC protocol 802.11 DCF

Data source constant bit rate (CBR)

Number of packets per flow 400

Packet rate 4 packets per second

Table 2 Simulation results for Scenario B

Delivery
ratio

Latency Net Load R/R Avg. Path
Length

Scenario A

AODV 0.63 ± 0.08 0.07 ± 0.02 13.2 ± 4.0 47 3.7

OLSR 0.36 ± 0.04 0.02 ± 0.01 21.1 ± 0.7 – 2.7

OWL1 0.74 ± 0.04 0.07 ± 0.01 5.2 ± 1.3 8.4 4.4

OWL2 0.76 ± 0.02 0.06 ± 0.01 5.4 ± 1.4 24.6 4.4

Scenario B

AODV 0.84 ± 0.05 0.05 ± 0.01 6.1 ± 1.2 38.3 2.7

OLSR 0.44 ± 0.06 0.03 ± 0.01 16.1 ± 0.5 – 2.3

OWL1 0.93 ± 0.05 0.03 ± 0.02 1.4 ± 0.5 7.5 3.0

OWL2 0.95 ± 0.03 0.04 ± 0.01 1.9 ± 0.4 10.4 3.1
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up to two different paths to send the data packet if such

information is available. If no alternate routes are available
the packet is dropped.

For Scenario A, the performance in terms of delivery

ratio, as shown in Fig. 4, is poor for all protocols when
compared to Scenario B (Table 2). This is due to the

dynamic nature of the network, and the possibility of net-

work partitions. Both versions of OWL have approximately
the same delivery ratio (within the 95% confidence inter-

val) and they perform better than AODV and OLSR under

these conditions. As the number of flows is increased, the
proportion of packets delivered decreases for all protocols

as the network becomes more congested. The parameters

used in OLSR are the ones suggested by its authors [21]
and in fact OLSR, in these simulations, uses a much

smaller hello interval than OWL and should have more up-

to-date neighborhood information. However, under these
rigid parameters OLSR’s performance is noticeably worse

than OWL and is indicative of transient loops under these

conditions.
An important result is that under these conditions, as

evident in Fig. 4, the DFS approach discovers paths from

the source to the destination and delivers comparable, if not
more, packets than the BFS approaches. What is surprising

is that the single-path ordered walks perform marginally

better than the dual-path ordered walk version of OWL. As
the number of flows increases, the number of concurrent

walks for different source-destination pairs increases. In a

broadcast medium, increased overhead can degrade the
performance of the network because of collisions. Ordered-

walks, like any other broadcast packet, can disrupt data

flow and give the impression of link failures resulting in
new searches which can be associated with additional

delays and dropped packets. As the results show, in these

scenarios, a single walk is sufficient to discover a path in a

timely manner and having multiple walks adds to the traffic
of the network and this additional overhead is not justified

when considering performance of networks that are at most

a few hundreds nodes. However, as the size of the network
and the number of neighbors increase, the search tree

becomes deeper and wider, and multiple simultaneous

walks may become more important. Also, as mobility
increases, past location information can quickly become

outdated and the inclusion of a walk that is not guided by
past information can lead to faster route discovery. For

larger networks, a hierarchical approach may be more

suitable with each zone being restricted to a few hundred
nodes. Nonetheless, for smaller networks more walks does

not necessarily translate to better performance.

As the pause time is decreased, as shown in Fig. 5, the
performance of the protocols tested improves. We notice

that at low pause time, the performance of OLSR is much

worse than the others, even though its hello interval is
smaller than that of OWL. Once again, we see that both

versions of OWL deliver almost the same fraction of

packets.
By increasing the radio range (Scenario B), the nodes

have more neighbors and the links are less volatile. Con-

sequently, all protocols attain better delivery ratio than in
Scenario A, but their relative performance remains the

same as seen in Table 2.
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6.3 Latency

Latency is the average time taken for a data packet to the
destination node from the source node. Two main factors

affect the latency: the time taken to discover a route and the

frequency at which the protocol needs to rediscover a route
to the destination.

For a proactive protocol like OLSR, this time is

expected to be very small, because there is no delay
involved in setting up a path when a data packet arrives at a

node, given that one is already known. The time it takes to

repair links also affects latency. In mobile networks, link
failures are inevitable. Protocols should be able to repair

links with minimal delay to ensure the timely delivery of

data packets. This is usually done with local route repair,
but local route repairs may not always succeed in obtaining

new routes, and a failed local route repair incurs a greater

delay penalty compared to sending an immediate route
error (RERR) to the source upon link failure.

BFS would, at least according to intuition, lead to faster

route discovery and faster route repair than DFS. However, in
networks with multiple flows, the flooding of search packets

can result in the broadcast storm problem and this results in

lost packets which can lead to failed route discoveries. Fur-
thermore, the broadcast-storm problem can disrupt flows in

the network, which leads to an increased frequency of route

discoveries and this increases the latency of packets.
With DFS, on the other hand, only a small fraction of

the network is involved in route computations at any given

time and the average time to discover a destination is
longer than that incurred in BFS. However, there is sig-

nificantly less overhead and consequently less disruptions

of flows, therefore there is less need to re-establish paths to
the destination and this results in reduced latency.

OWL makes up to two attempts at local route repair.

When a local repair is successful, a RERR is not sent to the
source. If the intermediate node does not already know

alternate paths, or the alternate paths are broken, it sends a

RERR to the source. Only nodes along the path of the
RERR and those within radio range learn of the link failure

encoded in the RERR. Therefore, the topology information

stored in nodes is not uniform in OWL. However, for the
purposes of routing RREQs, absolute accuracy is not nec-

essary. A node is still likely to be in the same vicinity of its

last known location, and this is sufficient for the purposes
of guiding RREQs.

The variation of latency with number of flows is shown

in Fig. 6. As the number of flows increases, there is more
disruption of paths which results in greater latencies

experienced by all protocols tested. For all the on-demand
protocols tested, the latency is almost the same and dual-

walk OWL does marginally better than single-walk OWL.

With two walks, route discovery is usually quicker, but

overall BFS does not result in superior latency, despite its

intuitively faster route discovery process.
The results for varied pause time are shown in Fig. 7. As

the network becomes less mobile, more packets are

delivered (Fig. 5) and there are more packets from which to
derive the average latency, hence the slight increase in

latency as the pause time is increased. For all pause times,

the latency for single-walk and dual-walk OWL is almost
the same and better than that of AODV, because the

reduced overhead results in less disruption of flows.

6.4 Network load

Network load is the number of overhead packets (RREQs,
RREPs, RERRs, Hellos, etc.) that were initiated or for-

warded by nodes, normalized by the number of unique data
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packets sent at each source node. This takes into account

data packets that were sent into the network and were
dropped or did not make it to the destination for any rea-

son. Network load gives an indication of the average

number of overhead packets needed to send a single new
data packet from the source to the destination. The number

of overhead packets needed would depend on the volatility

of the network. The more frequently links are broken, the
more control packets would be needed to establish new

paths.
For proactive protocols like OLSR, the total number of

overhead packets is constant regardless of the number of

flows. Thus such protocols becomemore efficient in terms of
overhead as the number of flows in the network increases.

For on-demand routing protocols, as the number of

flows increases, the total number of control packets
increases because each flow incurs overhead. The results in

Fig. 8 reflect this. It is interesting to see that the overhead

per data remains almost constant in OWL as the number of
flows increases, whereas this metric increases in AODV.

The flooding in AODV leads to more disruption of ongoing

flows; hence, as the number of flows increases the number
of overhead packets per data increases. In OWL, however,

this is clearly not the case. Given that this metric is almost

constant in OWL, it does not appear that the walks disrupt
each other as much as network-wide floods do. There is a

very small difference between both versions of OWL with

respect to this metric. In OWL, RREQ packets contribute
much less to the number of overhead packets than RREPs.

This is because multiple nodes retransmit RREPs, whereas

RREQs are propagated only by the node to which it was
sent. Consequently, the cost of two ordered walks is not

much more than that of one ordered walk (Fig. 9).

The advantage of ordered walks becomes quite clear
when this metric is considered. OWL requires significantly

fewer overhead packets than the other protocols in all

scenarios tested. OWL efficiently searches the network
without flooding, which allows sources to find their desti-

nations without having to search every node.

6.5 Requests per reply

This metric is the average ratio of RREQs initiated and
retransmitted per RREP initiated. It gives an idea of the

efficiency of the search in that it indicates the number of

nodes that must transmit a RREQ for it to be received by
the destination. The fewer nodes that need to retransmit a

RREQ the more efficient the search. This metric is not

applicable to proactive routing protocols, as they do not use
route requests or route replies.

Scenario A was designed such that the average shortest

path distance between any pair of nodes would be about
four hops [23]. This would mean that the minimum pos-

sible value should be four, the case in which the RREQ

travels the exact shortest path from the source to the
destination.

AODV uses an expanding ring search, and while it may

not search the entire network to find the destination, it
searches many more nodes than OWL does, as seen in

Fig. 10. A successful search helps determine the diameter

of the ring to be searched in subsequent flows. However, if
the radius is five hops, this would account for a ring that is

a significant fraction of the network.

In OWL, the first search is usually suboptimal; however,
its design is aimed at making the search as efficient as

possible with even no information about the destination.

Once the destination is discovered, subsequent flows can be
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very efficient as long as the destination is in the same

vicinity as its last location. From the results, single-walk

OWL implements a much more efficient search than dual-
walk OWL and AODV. The number of RREQ/RREP in

dual-walk OWL (OWL2) is more than double that of sin-

gle-walk OWL (OWL1) in Fig. 10. OWL2 uses an ordered
walk which is independent of past information but it is

possible that both walks intersect and their interaction can

be to the detriment of the protocol.
In OWL, fewer nodes are involved in a route computation

at any given time and this leads to less disruption of data

flows already in process and route computations from other
nodes and this attests to the scalability of the protocol.

Even in scenario B, AODV needs to flood half the

network on average before the destination is discovered. In
fact, dense networks where nodes have a large number of

neighbors are more susceptible to flooding than those with

fewer neighbors. The more neighbors a node has, the more
times it will receive any particular flood packet and the less

available bandwidth it has for data transmissions.

6.6 Towards scalability

OWL requires far fewer route requests and route replies to
deliver a comparable number of packets than routing pro-

tocols based on traditional BFS searches. While the route

discovery process may take marginally longer, the DFS
approach used in OWL avoids the broadcast storm problem

and causes fewer disruptions to other flows in the network.

This becomes particularly important in larger networks as
the number of flows increases. Considering all the results

together, it becomes clear that ordered walks can be used to

replace the flooding mechanism of reactive routing.

7 Conclusion

We argued that most routing schemes designed for MA-

NETs to date rely on some form of BFS, and presented the

ordered walk search algorithm (OSA) as a replacement for
flooding. An ordered walk is a distributed approximation of

DFS that is aided by known topology information to reduce

the search space. We introduced the OWL routing protocol
as an example of the great potential of using OSA in route

signaling for MANETs. We presented the results of sim-

ulation experiments illustrating that OWL provides com-
parable or better delivery and end-to-end delays than

AODV and OLSR, but with significantly less signaling

overhead. The use of ordered walks, as presented in this
paper, is a promising tool in achieving limited-signaling

routing in MANETs. An interesting result is that increasing

the number of simultaneous DFS does not significantly
improve performance of the routing protocol.
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