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Abstract 

We propose a decentralized stochastic control solution for the broadcast message dissemination problem in 

wireless ad-hoc networks (WANETs) with slow fading channels. We formulate the control problem as a dynamic 

robust game which is well-justified by two key observations: first, the shared nature of the wireless medium which 

inevitably cross-couples the nodes’ forwarding decisions, thus binding them together as strategic players; second, the 

stochastic dynamics associated with the link qualities which renders the transmission costs noisy, thus motivating a 

robust formulation. Given the non-stationarity induced by the fading process, an online solution for the formulated 

game would then require an adaptive procedure capable of both convergence to and tracking strategic equilibria as the 

environment changes. To this end, we deploy the strategic and non-stationary learning algorithm of regret-tracking, 

the temporally-adaptive variant of the celebrated regret-matching algorithm, to guarantee the emergence and active 

tracking of the correlated equilibria (CE) in the dynamic robust forwarding game. We also make provision for 

exploiting the channel state information (CSI), when available, to enhance the convergence speed of the learning 

algorithm by conducting an accurate (transmission) cost estimation. This cost estimate can basically serve as a model 

which spares the algorithm from extra action exploration, thus rendering the learning process more sample-efficient. 

Simulation results reveal that our proposed solution excels in terms of both the number of transmissions and load 

distribution while also maintaining near perfect delivery ratio, especially in dense crowded environments. 
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1. Introduction 

Network-wide broadcast is a fundamental primitive in wireless ad hoc networks (WANETs) as well as an enabling 

mechanism for the route discovery phase of almost all on-demand routing protocols (e.g., AODV[1]). It has been 

shown that naive broadcast solutions such as basic flooding will give rise to the notorious broadcast storm problem 

[2] as a result of which the network’s normal operation will be paralyzed with a huge volume of redundant messages 

in transit. This observation has spawned a large wave of publications on efficient forwarding whose origins almost 

date back to the advent of the ad hoc networks themselves [3-5]. The bulk of the literature in this area still consists of 

methods which work under the assumption that the links are perfectly reliable at all times. Within this mindset and 
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assuming centralized knowledge of the topology, broadcasting can essentially be formulated as a classical constrained 

optimization problem with the objective of minimizing the number of transmissions while at the same time 

guaranteeing 100% delivery ratio [6]. Under the link reliability assumption, there also exist many graph-theoretic 

approaches for constructing efficient communication substrates over which broadcast messages can be thoroughly 

disseminated. Spanning tree and connected dominating set constructs have been at the forefront in this direction for 

which many approximation algorithmic techniques have been proposed to work around the issue of computational 

complexity [7-10]. Prior art is also ripe with a wide variety of distributed sub-optimal heuristic algorithms which draw 

on one (or two) hop topological knowledge for making on-the fly forwarding decisions [11-13]. Finally, when 

managing many-to-all broadcasts, i.e., when multiple sources tend to broadcast messages in the network, a recent 

trend has been to use network coding [14-17]. Instead of relaying received packets separately, network coding enables 

nodes to combine several packets and send out fewer combined/coded packets. 

However, forwarding control in a real networking context may largely deviate from ideal abstract models given 

the influence of noise, fading and interference on wireless links which can give rise to unmanageable outbursts of re-

transmissions. Research on supporting broadcast in the presence of unreliable links has mainly revolved around 

devising efficient acknowledgement (ACK) schemes [18] or alternatively, introducing redundancy into the set of 

forwarders [19]. There have also been a few attempts which incorporate the expected costs associated with fixed error 

probabilities of the outgoing links into the broadcast substrate construction [6,20]. Though applicable to the lossy link 

model scenarios, the existing methods are either centralized [21] or lack a principled basis to explicitly factor the 

stochastic dynamics associated with variable link qualities into the problem formulation. In essence, to capture the 

realistic effect posed by channel dynamics on message propagation gives rise to a decentralized stochastic control 

problem which has not been methodically investigated before.   

In a departure from the prior art, this paper addresses broadcasting in multi-hop wireless networks with a realistic 

physical layer. We explicitly account for the variable quality of the links by assuming fading channels with slowly 

evolving SNR values. Hence, one can assume that the typical stochastic dynamics dealt with in this paper manifest 

themselves as a result of distance-related attenuation or scattering due to obstacles and terrain conditions, and evolve 

over moderately long time scale compared to the baseband signal variations and are associated with low Doppler 

spread [22].  
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Under slow fading, the cost incurred by a forwarding node is associated with the number of (re)transmissions it 

takes to deliver a given message to its neighbors. As the link reliability is changing dynamically, the forwarding costs 

are generally random and depend on instantaneous channel conditions. Hence, an integral facet of the broadcast control 

solution would be to explicitly provide for robustness against such uncertainty. On the other hand, over the course of 

a broadcast, the wireless medium is shared via many potential forwarders with possibly overlapping neighbor sets that 

incur different transmission costs for their forwarding attempts. An uncoordinated broadcast effort may not only 

trigger superfluous forwarding but it can also fail to proactively utilize links with high quality and avoid those in poor 

conditions. Therefore, forwarding control in a WANET gives rise to an inherently strategic setting, given the spatial 

dependency between a node and its neighbors and the resultant cross-impact of their decisions on their mutual 

performance. 

With these understandings, in this paper, we address the channel-adaptive broadcast coordination problem in 

WANETs by making the following contributions: 

 We come up with a game-theoretic-formulation of the forwarding control problem using the framework of dynamic 

robust games [23]. Dynamic robust games formalize repeated interactions of a set of strategic players in uncertain 

(noisy) environments. The robust game specification features a state variable which is of random nature and 

evolves over the stages of the play. Hence, by incorporating the wireless channel states into the game definition, 

we can explicitly cater for the noisy transmission costs incurred by the forwarding nodes. Furthermore, dynamic 

robust games are of incomplete information, and thus impose minimal informational assumptions on the part of 

the players. This would prove a desirable property as it directly translates into minimal control message overhead 

for distributed node coordination. In effect, we demonstrate that only one-hop ACK messages will suffice to build 

and maintain the nodes’ forwarding strategies.  

 In our forwarding game, at every broadcast interval, each node’s decision is a choice between whether or not to 

forward the current message in transit. Given the coupling between the nodes’ forwarding decisions, a real-time 

coordination mechanism is needed to form a global consensus (equilibrium) across the network. Furthermore, the 

nodes’ collective forwarding behavior should be agile in tracking this consensus as the forwarding utilities change 

due to slow fading. To this end, we deploy the game-theoretic learning algorithm of regret-tracking [24,25], the 

temporally-adaptive variant of the celebrated regret-matching algorithm [26,27], to guarantee the emergence and 

active tracking of correlated equilibria (CE) [28] between the forwarding strategies of the network participants.  
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 Our solution, henceforth referred to as “regret-tracking broadcast” (RTB), is particularly suited for scenarios where 

no prior knowledge of the fading process and network topology is available. More specifically, in learning-

theoretic parlance, RTB works in the pure bandit feedback setting [29] in which only the noisy numerical value of 

the utility for the actually implemented forwarding decision is perceived at each decision period. However, when 

channel state information (CSI) exists, an important aspect in our design is to present a model-based variant of 

RTB which can exploit CSI for obtaining an accurate estimate of the forwarding costs. This cost estimate 

essentially makes the nodes’ utility functions partly known, and as shown empirically through experiments, the 

learning process can be expedited using this semi-bandit feedback.  

 Experimental and comparative results demonstrate RTB’s superior performance in terms of both the number of 

transmissions and load distribution while also maintaining near perfect delivery ratio in the presence of time-

varying link qualities.  

The rest of the paper is organized as follows: Section 2 reviews the prior art in game-theoretic and learning-based 

forwarding for WANETs. In section 3, we present our game-theoretic formulation of the channel-adaptive broadcast 

coordination problem. In 4, we first provide a brief background on the regret-based machinery for strategic learning, 

and will subsequently motivate our regret-tracking-based solution of the formulated game. This section continues with 

outlining the basic form of the RTB algorithm which is then followed by the exposition of its model-free and model-

based variants in two accompanying subsections. Section 5 is dedicated to the comparative numerical evaluation of 

the RTB algorithm. The paper ends with a concluding epilogue.  

2. Game-Theoretic and Learning-Based Forwarding: A Review of the Prior Art 

In this section, we review related work on forwarding in WANETs. Forwarding (both unicast and broadcast) has 

been approached with a variety of techniques and toolboxes in the literature. We deliberately avoid giving an 

exhaustive overview of the many well-known and long-established solution techniques for broadcasting. Such reviews 

are routinely included in nearly every paper that addresses this problem (e.g., see [6]). With this in mind, we primarily 

devote this section to the review of game-theoretic and learning-based forwarding schemes. We believe this makes 

our review less stereotypical and more specialized for an interested reader. 

Major prior art game-theoretic and (or) learning-based forwarding schemes belong to the realm of unicast 

transmissions. The main rationale for resorting to game-theoretic or socioeconomic models in devising unicast 

forwarding solutions is to induce cooperative behavior in scenarios where nodes (or device holders) are not operating 
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under the control of the same authority, and may thus exhibit selfish behavior to save their limited resources. In fact, 

this is the direct ramification of granting autonomy to network nodes for the merits of decentralization or self-

configuration. In such autonomic settings, the prevalent trend in incentivizing cooperation has been to deploy 

reputation- or credential-based schemes [30], or alternatively to pre-configure the forwarding task based on some 

static or offline computational mechanism design [31]. For instance, the study in [32] reviews a number of repeated-

game-theoretic strategies (e.g., “tit-for-tat” or “grim-trigger”) which organize for the network’s forwarding operation 

to proceed on the basis of a pre-conceived Nash equilibrium (NE). The more recent trend in this direction is the study 

of cooperation development in ad-hoc networks by leveraging on ideas from evolutionary game theory (EGT) [33]. 

An interesting case is reported in [34] where the authors conduct an EGT-based analysis to determine the impact of 

the network size as well as the types of participating nodes on the development of cooperation. Also, the authors in 

[35] adopt asymmetric multi-community EGT to formulate competition among nodes in sparse VANETs. Our game-

theoretic formulation, however, targets broadcast transmission scenarios. Accordingly, the application of games (or 

more specifically, dynamic games) in this paper is mainly of control-theoretic interest, i.e., to use games as an efficient 

toolbox for exerting decentralized control [36] and coordination over the network rather than as a means of cooperation 

stimulation. 

In the context of broadcast-type forwarding, a number of studies (e.g., [37], [38], [39], and [40]) exploit some 

classical game settings such as Diekman’s “volunteer’s dilemma” [41] or Arthur’s “Santa Fe bar problem (SFBP)” 

[42] to strike coordination between the nodes’ rebroadcasting decisions. The “volunteer’s dilemma” models a situation 

in public economics where each player faces the decision of either making a small sacrifice from which all will benefit, 

or freeriding. The “forwarding dilemma game (FDG)” in [37] is an adoption of Diekman's voluntary contribution 

problem to the game of forwarding or not forwarding a flooding packet in MANETs. The game analysis in [37] is 

offline, and the nodes set their forwarding probability according to a parameterized symmetric mixed NE of the game. 

The NE’s parameters, however, are assumed to be either a priori-known or be derived from simulation experiments, 

which limits its practicability. Similar FDG-like systems have been introduced in [38] and [39] for VANETs and 

wireless sensor networks (WSNs), respectively. The SFBP, on the other hand, typifies scenarios where a congested 

resource, a bar in the seminal article [42], is shared by a set of agents, i.e., the bar customers. The customers enjoy 

their night at the bar only if it is not overcrowded. The authors in [40] propose an SFBP-based forwarding model for 

WSNs in which the nodes should make their forwarding decisions based on both the congestion level of their channels 
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(i.e., the number of concurrent accesses on the channel) and their remaining energy; however, they skip derivation of 

the game equilibrium, and propose instead a heuristic algorithm where the nodes adjust the parameters of their own 

utility functions depending on their current energy level and a simple threshold-based estimation of the channel 

congestion.  

The two more closely related studies to our work are [6, 43]. In [43], a normal-form game with known utilities has 

been used to model the problem in which the nodes will set their forwarding probability according to their part in the 

mixed NE of the game. However, given the anti-coordination nature of the game conceived in [43], the authors could 

have guaranteed a higher social welfare by solving the game for a (private) CE instead, while still preserving the 

fairness property of the mixed NE. Also, one-shot games are hardly a realistic model to capture the important aspects 

of the problems in dynamic settings (such as ad-hoc networks) with random and time-varying system parameters. The 

work in [6] presents a distributed scheme for constructing a broadcast tree over unreliable links using the notion of 

exact potential games [44]. The game is played by the descendants of the internal nodes and is of a cost sharing type; 

i.e., the cost of an edge is shared evenly by all players whose paths contain that edge, effectively directing the 

construction towards a spanning tree with minimum number of internal nodes who also suffer the least for their 

forwarding endeavor. Given the potential structure of the game in [6] and using one-hop topological knowledge, the 

iterative best response algorithm has been used for convergence to an NE. The broadcast tree construction in [6] 

depends on a precise probabilistic model of the wireless connections and the local topology of the network. In a 

practical setting, however, these probabilistic models have to be “learned” and “maintained.” Moreover, the 

forwarders set in [6] is not maintained in response to variations in link qualities and hence it cannot opportunistically 

exploit the spatial and temporal diversity of the wireless channels across the network. 

Unlike [6], in this paper, we present a structure-less broadcasting scheme which is based on a dynamic robust 

game played by the forwarding nodes, themselves. Dynamic robust games are just the right specification for scenarios 

where it is needed to capture the uncertainty associated with both the random activity of the nodes and the variability 

of the state of the system. We also introduce cognition to the nodes’ forwarding decisions to enable proactive 

adaptation even when the game is of incomplete information and the environment dynamics (i.e., the channel fading 

process) is unknown; our solution is based on an adaptive regret-based procedure [24-27] and works within the 

confines of bounded rationality, a practical assumption consistent with the limited capabilities of the wireless nodes.  

3. Broadcasting in Slow Fading WANETs: A Game-Theoretic Formulation 
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In this section, we formalize the broadcast coordination problem by proposing a game-theoretic formulation which 

readily captures the coupling between the nodes’ forwarding decisions. In particular, each node’s decision is simply 

assumed to be a choice between forward or do not forward a message at a given time. Also, the individual gain obtained 

by each node in the game is defined to be its local coverage ratio. Given the overlap between the transmission ranges, 

each node’s gain is affected not only by its own decision but also by the decision of other potential forwarders. A 

node’s forwarding cost, on the other hand, is taken to be the expected total number of transmission attempts until 

successful delivery to its one-hop neighbors. Under slow fading, the forwarding cost depends on the node’s channel 

states which evolve randomly with time. Hence, the nodes’ forwarding utilities should be defined in a (channel) state-

dependent manner. This rules out static games as a suitable formalism in our setting, since these games are defined 

for a single-shot play and do not account for the evolution of players’ utilities over time. To capture the uncertainty 

associated with the channel states, we use a dynamic robust game specification [c.f., 23, chapters 4 and 7]. Dynamic 

robust game is a generic term to refer to game-theoretic formulations which capture multi-stage interactions of a set 

of agents in uncertain (noisy) environments. Basically, the players’ utilities in a robust game specification are also 

functions of some state variables which are of random nature and evolve over the stages of the play independently of 

the players’ actions. This readily corresponds to our case in that the forwarding game is also modulated by current 

channel states whose evolution is governed solely by the slow fading process. More formally, the dynamic robust 

game for the forwarding control problem is a quadruple 𝒢 = (𝒩, (𝐴𝑖)𝑖∈𝒩 , 𝓢, (𝑢𝑖(. ))𝑖∈𝒩), where 𝒩 is the set of 

players, 𝐴𝑖 denotes the set of actions available to player i, 𝓢 represents the set of states of the game, and 𝑢𝑖(. ) is player 

i’s utility function. In what follows, we give a detailed description of the components of the game 𝒢 in the form of 

subsections 3.1 to 3.4. Then, in 3.5, we give a formal definition of the forwarding game’s objective.  

3.1 Set of Players in the Forwarding Game 

Without loss of generality, we assume that the broadcast flow emanates from a single source node which 

periodically sends out critical broadcast messages to be diffused across the network. The dissemination process should 

be carried out in a reliable fashion so that if any forwarding attempt fails, re-transmissions are in order. Over the course 

of a single network-wide message dissemination, every local ensemble of nodes that are currently in hold of a fresh 

copy of a broadcast message ℳ𝑠𝑒𝑞  with sequence number 𝑠𝑒𝑞 form a set of strategic players provided that their 

immediate neighbor sets intersect (see Fig. 1). The fact that a node 𝑖’s payoff is only affected by a subset of other 

nodes makes our scenario an instance of a graphical game [45], a notion which is also well-suited to wireless ad hoc 
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settings. With a slight abuse of notation, the symbol 𝒩 = {1,2, … , |𝒩|} denotes a representative set of such players. 

It is noteworthy that a node 𝑖 in the forwarding game does not need to be explicitly aware of its fellow players; instead, 

it suffices to only infer its actually realized payoff at each stage.  

 
Fig. 1. Nodes 𝑖, 𝑖′and 𝑖" are currently in hold of the broadcast message ℳ𝑠𝑒𝑞  and may choose to forward or not. Node 

𝑖 has 𝑗 and 𝑘 as common neighbors with 𝑖′ and has 𝑙 in common with 𝑖". The links 𝑖𝑗, 𝑖𝑘, 𝑖𝑙, 𝑖′𝑗, 𝑖′𝑘 and 𝑖"𝑙 may differ 

in terms of their instantaneous signal quality. 

3.2 Forwarding Actions and Strategies 

 The action space 𝐴𝑖 = {0, 1} for every node 𝑖 simply consists of two choices: to either ′𝑑𝑟𝑜𝑝′ ≝ 0 the current 

message ℳ𝑠𝑒𝑞  or ′𝑓𝑜𝑟𝑤𝑎𝑟𝑑′ ≝ 1 it to a neighboring node with a possibly limited number of retries. The game 

proceeds with imperfect monitoring, i.e., a node does not need to observe the actions taken by the other potential 

forwarders. Let 𝓐 =×𝑖=1
|𝒩|

𝐴𝑖 be the joint action space of all nodes in 𝒩. We denote by 𝝅 ∈ ∆(𝓐) a joint probability 

distribution over 𝓐.  

3.3 Forwarding Game States 

We use 𝑠𝑖
𝑛(𝑗) to denote the channel quality state of the link connecting the 𝑖-th node to its immediate neighbor 𝑗 

at the 𝑛-th stage of the game. In general, the evolution of fading channels can be modeled as a finite state Markov 

chain (FSMC) (e.g., see [46]). In this model, the SNR range is discretized into 𝐾 distinct regions and then mapped 

into a finite-state space: 𝑆𝑖(𝑗) = {𝓈1, 𝓈2, … , 𝓈𝐾}, ∀𝑖 ∈ 𝒩, ∀𝑗 ∈ 𝑁𝑖, with 𝑁𝑖 being the immediate neighbor set of the 𝑖-

th node. More precisely, suppose a set Γ of 𝐾 + 1 SNR thresholds: Γ = {Γ1 = 0, Γ2, … , Γ𝐾+1 = ∞}. Assume 𝑠𝑖
𝑛(𝑗) =

𝛾, where 𝛾 is the instantaneous SNR associated with the link 𝑖𝑗. If 𝛾 satisfies Γ𝑘≤ 𝛾 < Γ𝑘+1, the 𝑖𝑗 channel is said to be 

in state 𝓈𝑘. In FSMC model for slow fading, we assume that 𝛾 evolves slowly with time; i.e., at time 𝑛 + 1, it is highly 

likely that 𝛾 stays within the same region as it was at time n, but there is also a slight chance that it transitions to other 

regions. When a node probes the channel, the steady-state probability of being in the 𝑘-th state is given by : 



9 

 

DRAFT          March 17, 2013 
 

𝑣𝑘 = ∫ 𝑔(𝛾)𝑑𝛾
Γ𝑘+1

Γ𝑘
,      𝑘 = 1,2, … , 𝐾. (3-1) 

where, 𝑔(𝛾) is the probability density function (PDF) of 𝛾. Also, let 𝑆𝑖 = [𝑆𝑖(𝑗)]𝑗∈𝑁𝑖
, then, we use 𝓢 =×𝑖=1

|𝒩|
𝑆𝑖  to 

denote the channel state composition over all the nodes. The learning scheme discussed in the next section 

accommodates for two variants of the forwarding game: the zero-knowledge scenario where CSI 𝒔𝑖
𝑛 = [𝑠𝑖

𝑛(𝑗)]𝑗∈𝑁𝑖
 is 

unavailable to the nodes and the case that CSI can be exploited to speed up the learning process. However, in both 

variants, the law of transitions between states is assumed unknown.  

3.4 Individual Node Utilities 

The instantaneous utility 𝑢𝑖
𝑛 of a node 𝑖 at stage 𝑛 of the forwarding game is a random variable comprised of a 

reward and a cost component. When 𝑖 chooses to forward a message, the accrued reward depends on whether or not 

the maximum number of trials is capped in the actual protocol implementation; two reliability regimes can be 

envisaged: semi-reliable or reliable forwarding. The semi-reliability regime limits the number of re-transmissions to 

a given maximum in case extremely high error rates are being experienced like, for example, when a packet is hit by 

a deep fade. When CSI is available, a primitive scheme to implement semi-reliability is to approximate the number 𝑐∗ 

of trials needed to deliver the packet with a desired minimum probability 𝛿 ∈ (0,1). Technically, the number 𝑐∗ is the 

𝛿-quantile of the random variable indicating the number of trials needed by a node to successfully transmit a message 

over its outgoing links. With 𝐹 being the probability distribution of the number of trials, 𝑐∗ is given by: 𝑐∗ = 𝐹−1(𝛿) =

min{𝑐 ∈ ℕ: 𝐹(𝑐) ≥ 𝛿}.  

The reliable regime, on the other hand, is based on the assumption that when a node decides to take part in the 

forwarding operation, it keeps re-transmitting until either the message ℳ𝑠𝑒𝑞  is successfully delivered to all its next-

hop neighbors or the next message ℳ𝑠𝑒𝑞+1 is received by 𝑖, marking the extinction of ℳ𝑠𝑒𝑞 . There is, however, a 

price to pay for such persistence which we capture by 𝑐𝑖
𝑛, denoting the actual number of re-transmissions caused by 

physical layer errors.  

Also, let |𝑁́𝑖
𝑛| be the cardinality of the set of 𝑖’s covered neighbors for 𝑎𝑖

𝑛 = 1; 𝑟𝑖
𝑛 =

|𝑁́𝑖
𝑛|

|𝑁𝑖|
 denotes the reward 𝑖 

accrues for taking part in the forwarding operation at stage 𝑛. In case a node chooses to drop ℳ𝑠𝑒𝑞 , it incurs no cost, 

yet it might still accrue a non-zero reward 𝑟́𝑖
𝑛 =

|𝑁́́𝑖
𝑛|

|𝑁𝑖|
 given that a subset 𝑁́́𝑖

𝑛 ⊆ 𝑁𝑖  of its next-hop neighbors may receive 



10 

 

DRAFT          March 17, 2013 
 

ℳ𝑠𝑒𝑞  through other forwarders. A non-forwarding node 𝑖 would be able to count the members of 𝑁́́𝑖
𝑛 by simply 

overhearing (i.e., idle listening) the Acks its next-hop neighbors send out for receiving ℳ𝑠𝑒𝑞 . 

Now that the reward and cost components of the utility are specified, the equation in (3-2) is considered to be the 

instantaneous utility a node 𝑖 actually perceives at each stage of the reliable forwarding game. The coefficient 𝛼 in (3-

2) is a constant scaling parameter between the two parts of the utility. Ideally, 𝛼 should be chosen according to node 

density to give a reasonable trade-off between delivery ratio and the forwarding cost. As can be noted, the definition 

of the local performance measure at each node is in line with the global objective of minimizing the number of 

transmissions while guaranteeing near perfect delivery ratio.  

𝑢𝑖
𝑛 = {

𝑟𝑖
𝑛 − 𝛼. 𝑐𝑖

𝑛 ,      𝑎𝑖
𝑛 = 1

𝑟́𝑖
𝑛,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3-2) 

3.5 System-Wide Objective 

To achieve global coordination of the nodes’ forwarding decisions, we seek correlated equilibria (CE) [28] of the 

forwarding game as the system-wide solution concept. Structurally, the set of CE of a game is a convex polytope of 

joint action probability distributions which possess an equilibrium (quiescence) property; i.e., a CE represents 

competitively optimal behavior between the nodes, in which the action of each node is an optimal response to the 

actions of other potential forwarders. Compared to Nash equilibrium (NE), the notion of CE directly considers the 

ability of the nodes to correlate their actions. This correlation can lead to higher performance than if each node was 

required to act in isolation as is the case in NE. Moreover, the convexity of the set of CE arguably allows for better 

fairness between the nodes [47], which is also evidenced by our simulation experiments. However, in our dynamic 

robust game formulation, the channel states and the nodes’ forwarding utilities evolve according to the slow fading 

process. Hence, the set of CE of the forwarding game should also be defined in a state-dependent manner. Let 𝒔 ∈ 𝓢 

be a global channel state. We denote by 𝝅𝒔 ∈ ∆(𝓐) a probability distribution over the joint action space 𝓐 for state 

𝒔. The state-dependent set of CE of 𝒢, denoted by ℂ(𝒔), is defined as (3-3) below [24,25]: 

ℂ(𝒔) ≝ {𝝅𝒔: ∑ 𝝅𝒔(𝑎, 𝒂−𝑖). [𝑢𝑖(𝑏, 𝒂−𝑖; 𝑠𝑖) − 𝑢𝑖(𝑎, 𝒂−𝑖; 𝑠𝑖)] ≤ 0, ∀

𝒂−𝑖∈𝑨−𝑖

𝑎, 𝑏 ∈ 𝐴𝑖 , 𝑖 ∈ 𝒩}, (3-3) 

in words, if a joint forwarding action (𝑎, 𝒂−𝑖) is drawn from a CE distribution 𝝅𝒔 ∈ ℂ(𝒔) (presumably by a trusted 

third party), and each node , 𝑖 ∈ 𝒩 is told separately its own component 𝑎, then it has no incentive to choose a different 

forwarding action 𝑏, because, assuming that all other nodes 𝑖′ ∈ 𝒩\{𝑖} also obey, the suggested action 𝑎 is the best 
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in expectation [48]. Therefore, reaching CE can be viewed as formation of a suboptimal consensus amongst the nodes’ 

forwarding strategies. 

To compute ℂ(𝒔) in the forwarding game 𝒢, a few remarks are in order: Basically, at each stage 𝑛 of the game 𝒢, 

a node 𝑖 ∈ 𝒩 would simply choose a forwarding action 𝑎𝑖
𝑛 and receive a numerical noisy value  𝑢𝑖

𝑛 of its utility at that 

stage. Hence, a player’s information at each stage consists of her past own-actions and perceived own-utilities. A 

private history ℎ𝑖
𝑛 of length 𝑛 for node 𝑖 is a collection: ℎ𝑖

𝑛 = ( 𝑎𝑖
0,  𝑢𝑖

0,  𝑎𝑖
1,  𝑢𝑖

1, … ,  𝑎𝑖
𝑛−1,  𝑢𝑖

𝑛−1) ∈ 𝐻𝑖
𝑛 ≔ (𝐴𝑖 × ℝ)𝑛. 

In such setting, each node 𝑖 selects its actions autonomously according to a strategy 𝝈𝑖 which is a map 

𝝈𝑖
𝑛+1: ⋃ 𝐻𝑖

𝑛 → ∆(𝐴𝑖)𝑛 . In other words, 𝒢 is a game of incomplete information and imperfect monitoring. Given this 

minimal amount of information available to the players, the state-dependent CE ℂ(𝒔) of 𝒢 cannot possibly be 

characterized through introspection and rationalistic (pre-play) analysis. Instead, the solution is inevitably online in 

the sense that the rational behavior should arise naturally via live repeated interactions during which the nodes 

indirectly acquire a coordination signal through their realized payoffs. In other terms, the nodes iteratively craft their 

strategies 𝝈𝑖 and update them by using their gradually built private history of the game. In the next section, we resort 

to recent results from the strategic learning literature [24,25] to shape the nodes’ forwarding strategies in real time so 

that their collective behavior tracks the system-wide solution concept ℂ(𝒔𝑛) as it evolves under slow fading.  

4. Cognitive Forwarding Control through Regret Tracking 

In this section, we deploy an adaptive heuristic, viz. “regret tracking broadcast (RTB)” which is built on the “regret 

tracking” procedure proposed in [24,25] in order to learn the expected payoffs simultaneously with the CE strategies 

of the dynamic robust game defined in subsection 3.5. Before presenting RTB’s pseudo-code, we first introduce its 

regret-based learning engine for shaping the nodes’ forwarding strategies (𝝈𝑖)𝑖∈𝒩 , and will subsequently motivate our 

regret-tracking-based design. In 4.2, we discuss two variants of RTB: one that works without the knowledge of CSI, 

and the other variant that exploits the availability of CSI to enhance the learning process. Finally, in 4.3, we discuss 

RTB’s properties in terms of convergence and computational complexity. 

 

4.1 Regret-Tracking Broadcast (RTB) 

Consider again the binary-valued strategy space of the nodes in our forwarding game (i.e., 𝐴𝑖 = {0, 1}). The 

dynamics of a game under a regret-matching procedure [26,27] generally proceeds as follows (See Fig. 2 for a 
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schematic illustration): At stage 𝑛, each player 𝑖 ∈ 𝒩 perceives its utility 𝑢𝑖
𝑛 gained from implementing its forwarding 

decision 𝑎𝑖
𝑛 = 𝑎. It then computes two quantities:  

 First, an estimation 𝑈̂𝑛(1 − 𝑎) of the average potential utility it could have obtained had it chosen the 

alternative action (1 − 𝑎) instead of 𝑎 in all past plays of 𝑎 throughout the entire history of the game; the 

reason for this estimation is that the direct calculation of 𝑢(𝑎𝑖
𝑛 , 𝒂−𝑖

𝑛 ; 𝑠𝑖
𝑛) is not possible in our case given that 

node 𝑖 only perceives its instantaneous utility at each stage in the form of a numerical value. A general 

technique for obtaining the estimate 𝑈̂𝑛 is through the notion of proxy regrets, first introduced in [27]. 

However, as we discuss in 4.2.2., there is a possibility for obtaining better quality estimates in our case. 

 Second, the average of the perceived 𝑢𝑖
𝜂
 utilities it has actually accrued over the stages it has chosen to play 𝑎; 

i.e., over the course of {𝜂 ≤ 𝑛: 𝑎𝑖
𝜂

= 𝑎}. We denote the value of this average at stage 𝑛 by 𝑈𝑛(𝑎) which is 

calculated as follows:   𝑈𝑛(𝑎) ≔
1

𝑛
∑ 𝑢𝑖

𝜂
.𝜂≤𝑛:𝑎

𝑖
𝜂
=𝑎     (4-1) 

Let [. ]+ denote max {. ,0}. The difference 𝑄𝑖
𝑛(𝑎, 1 − 𝑎) = [𝑈̂𝑛(1 − 𝑎) − 𝑈𝑛(𝑎)]

+
 is technically called the regret 

for not having played (1 − 𝑎) instead of 𝑎 over the course of the stages 𝜂 ≤ 𝑛: 𝑎𝑖
𝜂

= 𝑎. In other words, 𝑄𝑖
𝑛(𝑎, 1 − 𝑎) 

simply denotes the increase, if any, in the average payoff that would result if all past plays of action 𝑎 were to be 

replaced by action (1 − 𝑎), and everything else remained unaltered [26,27]. The player 𝑖 then switches to action (1 −

𝑎) with a probability 𝑝𝑟𝑜𝑏(1 − 𝑎) proportional to 𝑄𝑖
𝑛(𝑎, 1 − 𝑎) and sticks with 𝑎 by 1 − 𝑝𝑟𝑜𝑏(1 − 𝑎). The game 

moves on to stage 𝑛 + 1 and the process repeats. 

It has been shown in [26,27] that if all players follow the update rule prescribed by the aforementioned regret-

based procedure, their joint empirical frequency of play asymptotically converges to the set of correlated equilibria of 

the game. However, as described in Section 3.5, the equilibrium set ℂ in our forwarding game is state-dependent and 

time-varying. Therefore, the mere notion of convergence does not suffice. It is further required that this set be tracked 

in time as the channel states change due to slow fading. We now elaborate on the key change that has to be made in 

updating a node’s regret-based forwarding strategy to account for the slow fading effect. Our discussion here is based 

on the theoretical results in [24,25]. We only go through the intuition behind the main idea in tracking ℂ(𝒔𝑛) and refer 

the reader to [24,25] for technical exposition. In the standard regret-based scheme we just described, the decisions of 

each player are based on the uniform average history of all past observed utilities (note the factor 
1

𝑛
 in equation (4-1)). 

Such uniform treatment of the obtained utilities is not desirable in our setting since the fading process causes the 
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channel states and thus the transmission success probabilities evolve over time. As a result, the utilities gained by a 

forwarding node is essentially noisy and their expected values may vary every once in a while. Hence, the nodes 

should keep a perpetual state of readiness for temporal variations in their expected utilities. This observation directs 

us to use a temporally adaptive variant of the regret matching procedure, the so-called regret tracking algorithm 

[24,25]. In regret-tracking, the average utility is computed in a discounted manner to value more recent utilities higher 

than more distant utilities. In particular, a constant discount factor  

𝜀 is used to introduce exponential forgetting of the past and to permit tracking of a slowly time-varying environment. 

With this change, the calculation of the average discounted actual utility gained from implementing a given action 𝑎 

throughout the stages {𝜂 ≤ 𝑛: 𝑎𝑖
𝜂

= 𝑎} follows equation (4-2): 

𝑈𝑛(𝑎) ≔ ∑ 𝜀(1 − 𝜀)𝑛−𝜂𝑢𝑖
𝜂

𝜂≤𝑛:𝑎
𝑖
𝜂
=𝑎

,     0 < 𝜀 ≪ 1 
(4-2) 

Using regret-tracking updates, the nodes learn and maintain their part in a correlated equilibrium of the forwarding 

game; however, unlike the almost-sure convergence of the classical regret matching, here, convergence to the set of 

correlated equilibria takes place in a weaker sense. We reiterate this result more formally in Section 4.3 and refer the 

reader to [24-27] for extensive discussion.  

Now that a complete picture of each node’s learning engine is described, we may present the complete pseudo-

code of our regret-tracking-based broadcast management algorithm (RTB). Of particular note is that since in RTB a 

node does not need to explicitly monitor the others’ actions, no particular synchronization mechanism is required 

between the participants. This relieves the algorithm from the exchange of signaling messages given that it only 

suffices to have an observation of the individual utilities per learning iteration. We are thus able to present RTB in an 

asynchronous event-driven style (See Algorithm 1 for pseudo-code and Table 1 for symbols and definitions). 
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Fig. 2. Schematic of the regret-based machinery for strategic learning in a binary-valued strategy space. The dark-

filled block (i.e., estimation of the average potential utility) constitutes the subject of Section 4.2. 

Table 1.  Notations Used in Regret Tracking Broadcast (RTB) Algorithm. 

Symbol Definition 

ℳ𝑠𝑒𝑞 fresh copy of the 𝑠𝑒𝑞-th broadcast message delivered to node 𝑖  
𝑁𝑖 node 𝑖’s neighbor set 

𝑁́𝑖 node 𝑖’s covered set (𝑁́(𝑖) ⊆ 𝑁(𝑖)) 

𝝈𝑖
𝑛 node 𝑖’s forwarding strategy at stage 𝑛 

𝑎𝑖
𝑛 node 𝑖’s selected action at stage 𝑛 

𝑐 number of (re)transmissions made by node 𝑖 at stage 𝑛 

𝛼 a constant scaling factor  

𝑢𝑖
𝑛 instantaneous utility node 𝑖 actually receives at stage 𝑛 

𝑈𝑛(𝑎) actual (weighted) average utility for playing action 𝑎 

𝑈̂𝑛(1 − 𝑎) estimated (weighted) average utility for playing 𝑎’s alternate action  

𝜀 constant discount factor, 0 < 𝜀 ≪ 1 

𝛿 exploration factor 

𝜇 normalization constant (update inertia), 𝜇 > 𝑄𝑖
𝑛(𝑎, 1 − 𝑎) 

𝑄𝑖
𝑛(𝑎, 𝑏) node 𝑖’s regret for not having played 𝑏 instead of 𝑎 

 In the beginning, each node 𝑖 ∈ 𝒩 has a random initial action 𝑎𝑖
0 ∈ {0,1}, a zero regret value 𝑄𝑖

0 = 0, empty 

covered set 𝑁́(𝑖) = ∅, and zero (re)transmission count 𝑐 = 0.  

 Upon reception of a fresh copy of a broadcast message ℳ𝑠𝑒𝑞  with sequence number 𝑠𝑒𝑞, each node 𝑖 ∈ 𝒩 first 

fires an event indicating the expiration of its previously handled message ℳ𝑠𝑒𝑞−1 (line 1). Processing the 

ℳ𝑠𝑒𝑞−1_EXPIRED event provides the opportunity to update the parameters of the learning engine. The numerical 

value of 𝑖’s payoff 𝑢𝑖
𝑛 for ℳ𝑠𝑒𝑞−1 is computed in line 13 using equation (3-2). Line 14 calculates the estimate 

𝑈̂𝑛(1 − 𝑎), the specifics of which is the subject of discussion in section 4.2. Lines 15 to 17 are essentially the 

standard update routine for regret-based learning (see Fig. 2). In line 17, taking the minimum with 
1

|𝐴𝑖|
 guarantees 
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that the assigned probabilities form a valid probability measure over 𝐴𝑖 = {0, 1}. The second term forms a uniform 

distribution on 𝐴𝑖 (with probability δ) and can be interpreted as the “exploration”. Exploration is necessary in cases 

such as ours where nodes continuously learn their utility functions and ensures both actions being played with a 

non-zero chance [27]. Lines 4 to 8 correspond to the case when the node has chosen to forward ℳ𝑠𝑒𝑞 . It basically 

keeps sending ℳ𝑠𝑒𝑞  until either all 𝑗 ∈ 𝑁𝑖  are covered (by 𝑖 or others) or the next message is received by 𝑖. The 

number of transmissions made by 𝑖 is tracked by the counter 𝑐, which is a random variable whose realization 

depends on the channel states at time 𝑛. The firing of the event ACK_MESSAGE_RECEIVED_OR_OVERHEARD 

notifies 𝑖 that ℳ𝑠𝑒𝑞  has been received by some 𝑗 ∈ 𝑁𝑖 either through 𝑖 or other forwarders. It allows 𝑖 to compute 

its local delivery ratio 
|𝑁́𝑖|

|𝑁𝑖|
 which is also a random variable whose realization depends on 𝑖’s decision as well as the 

decisions of its fellow players’. In case a node chooses to drop ℳ𝑠𝑒𝑞  (line 10), it just idly listens to the medium to 

overhear the Acks from 𝑗 ∈ 𝑁𝑖 .  

Algorithm 1.  Regret Tracking Broadcast (RTB) Algorithm.  

Initialization: 

    𝑁́𝑖 ≔ ∅;  𝑐 ≔ 0; 𝜎𝑖
0(0) = 𝜎𝑖

0(1) ≔
1

|𝐴𝑖|
;  𝑛 ≔ 0; 

begin 

   case (event) do 

          BROADCAST_MESSAGE_RECEIVED:  // Received a fresh copy of ℳ𝑠𝑒𝑞 from a neighboring node.  

1:           Fire ℳ𝑠𝑒𝑞−1_EXPIRED;     // Node 𝑖 fires an event indicating the expiration of previous message ℳ𝑠𝑒𝑞−1.  

2:           ℎ𝑎𝑛𝑑𝑙𝑒𝑑(ℳ𝑠𝑒𝑞) = true;    // Node 𝑖 sets a private flag indicating it is going to handle ℳ𝑠𝑒𝑞 .  

3:           Choose 𝑎𝑖
𝑛 = 𝑎 with probability 𝜎𝑖

𝑛(𝑎); 

4:           if (𝑎 == 1) then                     

5:                while (𝑁́𝑖 ≠ 𝑁𝑖) do 

6:                     Broadcast ℳ𝑠𝑒𝑞; 

7:                      𝑐 = 𝑐 + 1; 
8:                end while 

9:           else 

10:              /*  idle listening… */ 

11:         end if 

          ℳ𝑠𝑒𝑞−1_EXPIRED:  // ℳ𝑠𝑒𝑞−1 expires when ℳ𝑠𝑒𝑞 is received. 

12:        if (ℎ𝑎𝑛𝑑𝑙𝑒𝑑(ℳ𝑠𝑒𝑞−1)) then   // Node 𝑖 updates its parameters only if it has handled ℳ𝑠𝑒𝑞−1. 

13:           𝑢𝑖
𝑛 ≔

|𝑁́𝑖|

|𝑁𝑖|
− 𝛼. 𝑐; 

14:           Calculate the estimate 𝑈̂𝑛(1 − 𝑎);   // The specifics of this estimation is discussed in subsection 4.2.  

15:           𝑈𝑛(𝑎) ≔ ∑ 𝜀(1 − 𝜀)𝑛−𝜂𝑢𝑖
𝜂

𝜂≤𝑛:𝑎𝑖
𝜂
=𝑎 ; 

16:           𝑄𝑖
𝑛(𝑎, 1 − 𝑎) ≔ [𝑈̂𝑛(1 − 𝑎) − 𝑈𝑛(𝑎)]

+
;                

17:           𝜎𝑖
𝑛+1(1 − 𝑎) ≔  (1 − 𝛿)min {

𝑄𝑖
𝑛(𝑎,1−𝑎)

𝜇
,

1

|𝐴𝑖|
} +

𝛿

|𝐴𝑖|
;  𝜎𝑖

𝑛+1(𝑎) ≔  1 − 𝜎𝑖
𝑛+1(1 − 𝑎);   // Update forwarding 

probability.   

18:           𝑁́𝑖 ≔ ∅;  𝑐 ≔ 0;  // Reset covered set and (re)transmission number for the next stage. 

19:           𝑛 ≔ 𝑛 + 1.   // Update the time index.  

20:        end if 

          ACK_MESSAGE_RECEIVED_OR_OVERHEARD:  // Node 𝑖 is Acked or overhears an ACK for ℳ𝑠𝑒𝑞 from some 𝑗 ∈

𝑁𝑖. 

21:         𝑁́𝑖 ≔ 𝑁́𝑖 ∪ {𝑗}; 
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end 

Thus far, we have not specified how each node obtains an estimate of its average potential utility. In the following 

two subsection, we give two variants of RTB which differ in their estimation of the quantity 𝑈𝑛(1 − 𝑎). 

4.2 Estimation of the Average Potential Utility  

The RTB algorithm requires that both the forwarding and dropping decisions be somehow evaluated at each stage 

of the game so as to be able to update the regret values associated with a nodes’ sequence of decisions. Depending on 

the forwarding decision made at stage 𝑛, a node will need to get hold of different types of information for determining 

the instantaneous utility its alternate choice would have yielded at the same stage: 

 In case a node 𝑖 chooses to drop the message ℳ𝑠𝑒𝑞 , it needs to calculate the forwarding cost 𝑐𝑖
𝑛 it would have 

actually incurred, had 𝑖 broadcast ℳ𝑠𝑒𝑞  over its communication channels. Assuming the availability of CSI, 

𝒔𝑖
𝑛 = [𝑠𝑖

𝑛(𝑗)]𝑗∈𝑁𝑖
, at the forwarding node 𝑖, a theoretically valid estimate of the forwarding cost would be the 

expected number of re-transmissions 𝐶𝑖̅
𝑛(𝒔𝑖

𝑛), which can be calculated using closed-form analytical expressions 

for BER in a given fading channel type. The enhanced learning with CSI-based cost estimation is the subject of 

subsection 4.2.2. However, while we can safely assume the perfect CSI at the receiver end, the inaccuracy of the 

channel estimation process, erroneous or obsolete feedback, and time delays or frequency offsets between the 

reciprocal channels may impede the sender from obtaining the perfect CSI. The estimation of the average utility 

𝑈̂𝑛(1) in subsection 4.2.1 totally disregards the availability of the CSI and thus is particularly suited for scenarios 

where there is neither a feedback channel from the receiver to the sender nor is there a mechanism for exploiting 

the channel reciprocity such as in time-division duplexing systems. 

 Unlike the cost component, the forwarding reward 𝑟𝑖
𝑛 has no straightforward estimate when the message is 

dropped; also, in case of forwarding ℳ𝑠𝑒𝑞 , a node has no means to correctly determine 𝑁́́(𝑖) (its covered set) given 

that its own transmission may result in others immaturely backing off from the forwarding endeavor. Hence, the 

reward components need to be estimated through the technique of proxy regrets discussed in 4.2.1. 

4.2.1 Zero-knowledge Learning with Proxy Regrets 

The unavailability of the information necessary for evaluating the alternate actions calls for a zero-knowledge 

learning scheme with bandit (or opaque) feedbacks. More specifically, a node may define a proxy regret measure [27] 

by using the utilities it has perceived thus far when it actually played the alternate action (1 − 𝑎) over the previous 
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stages of the forwarding game. The calculation of the (proxy) regret measure 𝑄𝑖
𝑛(𝑎, 1 − 𝑎) would then require that the 

average  𝑈̂𝑛(1 − 𝑎) be estimated as follows: 

𝑈̂𝑛(1 − 𝑎) = ∑ 𝜀(1 − 𝜀)𝑛−𝜂
𝜎𝑖

𝜂
(𝑎)

𝜎𝑖
𝜂
(1 − 𝑎)

𝑢𝑖
𝜂

𝜂≤𝑛:𝑎
𝑖
𝜂
=(1−𝑎)

. (4-3) 

In the above equation, 𝝈𝑖
𝜂
 denotes the play probabilities at stage 𝜂; in effect, the proxy regret for not having played 

(1 − 𝑎) instead of 𝑎 measures the difference of the average utility over the stages when (1 − 𝑎) was actually used 

and the stages when 𝑎 was used. The term 
𝜎𝑖

𝜂
(𝑎)

𝜎
𝑖
𝜂
(1−𝑎)

 normalizes the per-stage utilities 𝑢𝑖
𝜂
 so that the length of the 

respective stages would become comparable.  

4.2.2 Enhanced Learning with CSI-based Cost Estimation 

The zero-knowledge case, discussed in the previous subsection, is oblivious to the availability of CSI, and instead, 

relies on a rough estimation technique to approximate the average utility 𝑈̂𝑛(1) associated with a node’s alternate 

decision to ′𝑓𝑜𝑟𝑤𝑎𝑟𝑑′. However, when CSI does exist, there is room for some enhancement. In effect, to obviate the 

need for extra action exploration, we can exploit CSI to derive a higher quality estimate of the costs. In order to do so, 

we note that, given its current CSI, 𝒔𝑖
𝑛 = [𝑠𝑖

𝑛(𝑗)]𝑗∈𝑁𝑖
, and assuming BPSK modulation, a node 𝑖 can calculate the 

instantaneous BER on its links with neighboring nodes 𝑗 ∈ 𝑁𝑖  as follows [49]: 

𝐵𝐸𝑅𝑖𝑗
𝑛 (𝑠𝑖

𝑛(𝑗) = 𝓈𝑘) ∶=
∫ 0.2 × 𝑒−1.6𝛾Γ𝑘+1

Γ𝑘
× 𝑔(𝛾)𝑑𝛾

∫ 𝑔(𝛾)𝑑𝛾
Γ𝑘+1

Γ𝑘

,  (4-4) 

Now, assuming that the broadcast message ℳ𝑠𝑒𝑞  is 𝐿 bits long, 𝑖’s transmission of ℳ𝑠𝑒𝑞  to 𝑗 would succeed with 

probability 𝑝𝑖𝑗
𝑛 , calculated as: 

𝑝𝑖𝑗
𝑛 = (1 − 𝐵𝐸𝑅𝑖𝑗

𝑛 (𝑠𝑖
𝑛(𝑗)))

𝐿

.  (4-5) 

To guarantee delivery, node i will need to make 𝐶𝑖
𝑛(𝒔𝑖

𝑛) number of (re)transmissions until ℳ𝑠𝑒𝑞  successfully 

reaches all 𝑗 ∈ 𝑁𝑖 . 𝐶𝑖
𝑛(𝒔𝑖

𝑛) is a random variable whose realization depends on i’s channel state in period n. Using link 

reception probabilities 𝑝𝑖𝑗
𝑛 , and the derivation in [6], we may express the expected value of 𝐶𝑖

𝑛(𝒔𝑖
𝑛) as follows: 

𝐶𝑖̅
𝑛(𝒔𝑖

𝑛) = 1 + ∑
1 − 𝑝𝑖𝑗

𝑛

𝑝𝑖𝑗
𝑛

𝑗∈𝑁𝑖

.  (4-6) 

With 𝐶𝑖̅
𝑛(𝒔𝑖

𝑛) at hand, we may rewrite (4-3), i.e., the estimated average 𝑈̂𝑛(1 − 𝑎𝑖
𝑛), for 𝑎𝑖

𝑛 = 0 as: 

𝑈̂𝑛(1, 𝒔𝑖
𝑛) = [ ∑ 𝜀(1 − 𝜀)𝑛−𝜂

𝜎𝑖
𝜂(0)

𝜎𝑖
𝜂(1)

𝑟𝑖
𝜂

− ∑ 𝜀(1 − 𝜀)𝑛−𝜂𝐶𝑖̅
𝑛

𝜂≤𝑛:𝑎
𝑖
𝜂
=0𝜂≤𝑛:𝑎

𝑖
𝜂
=1

(𝒔𝑖
𝑛)]. (4-7) 
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In effect, we decompose the estimated average utility into its reward and penalty components, and replace the 

index of the cost summation to match with the stages corresponding to ′𝑑𝑟𝑜𝑝′ decisions, given that now a comparable 

stage-by-stage estimate is available for the cost component. For ease of reference, we refer to this modified version of 

RTB as Enhanced-RTB.  

4.3 Convergence and Computational Complexity 

In this section, we discuss RTB’s convergence and computational complexity. Similarly to [24,25], we denote by 

𝒛𝜀
𝑛 ∈ ∆(𝓐) the (empirical) average collective forwarding behavior under RTB, which can also be viewed as a 

diagnostic that monitors the forwarding performance of the entire network. When all nodes choose their forwarding 

actions 𝒂𝑛 = (𝑎𝑖
𝑛)

𝑖∈𝒩 using Algorithm 1, 𝒛𝜀
𝑛 can be viewed as an average or moving average frequency of play, and 

can be represented by the following recursion for ∀𝒂 ∈ 𝓐: 

𝒛𝜀
𝑛+1(𝒂) = (1 − 𝜀). 𝒛𝜀

𝑛(𝒂) + 𝜀. 𝕀{𝒂𝑛+1=𝒂}.  

In other terms, for a joint action 𝒂 ∈ 𝓐, 𝑧𝜀
𝑛(𝒂) = ∑ 𝜀(1 − 𝜀)𝑛−𝜂 . 𝕀{𝒂𝜂=𝒂}𝜂≤𝑛 , where 𝕀{.} is the indicator function. 

It has been shown in [24,25] that 𝒛𝜀
𝑛 asymptotically tracks the time-evolving set of CE ℂ(𝒔) (see Eq. (3-3)). In a 

Markovian environment, the technical condition that guarantees this tracking result is that the underlying Markov 

process transitions at infrequent intervals (e.g., if the mean time between state changes is O(1/𝜀) [24,25]). This 

condition is satisfied in our case, since we assumed fading evolves slower than the packet–level timescale (we 

elaborate more concretely about this in the simulation setup). However, in the face of higher fading rapidity, since the 

regret-tracking procedure underlying RTB is an instance of an adaptive filtering algorithm [50,51], if the underlying 

random process changes too fast, then it is not possible to keep track of the time-varying conditions. This is because 

the dynamics of the underlying Markov process is not explicitly accounted for in the algorithm. 

As for RTB’s computational complexity, note that similarly to [24,25], it is possible to compute the regret measure 

𝑄𝑖
𝑛(. , . ) in a more efficient recursive form. This avoids having to compute 𝑄𝑖

𝑛 from scratch in every period. For 

instance, the regret update equation for RTB in the zero-knowledge case can be expressed as:  

𝑄𝑖
𝑛(𝑎, 𝑏) = 𝑄𝑖

𝑛−1(𝑎, 𝑏) + 𝜀 ([
𝜎𝑖

𝑛(𝑎)

𝜎𝑖
𝑛(𝑏)

𝑢𝑖
𝑛(𝑎𝑖

𝑛). 𝕀{𝑎𝑖
𝑛=𝑏} − 𝑢𝑖

𝑛(𝑎𝑖
𝑛). 𝕀{𝑎𝑖

𝑛=𝑎}]

+

− 𝑄𝑖
𝑛−1(𝑎, 𝑏)). (4-8) 

With this modification in RTB’s pseudo-code, basically, at each iteration, each node needs to perform just a few 

standard arithmetic operations and comparisons, along with one random number generation to take the next forwarding 
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action 𝑎𝑖
𝑛+1. It is noteworthy that in this recursive form, the parameter 𝜀 can be viewed as a constant step size 

governing the adaptation rate of the algorithm [24,25]. 

5. Performance Evaluation 

In this section, we simulate the performance of the proposed cognitive forwarding scheme for managing the 

dissemination of broadcast messages across slow fading channels in a wireless ad-hoc environment. We assume 

constant packet sizes of length equal to 𝐿 = 512 bytes. Each forwarding node transmits at a constant power of 0.1 

Watts. Although RTB does not depend on any distribution for the channel SNR 𝛾, for the purpose of modeling, we 

simulate slow Rayleigh channels for each link. For a Rayleigh mode, channel SNR 𝛾 is an exponentially distributed 

random variable with probability density function given by 𝑔(𝛾) =
1

Γ̅
𝑒

−𝛾

Γ̅ , where Γ̅ = 𝔼[𝛾] is the average SNR. We 

discretize the channel into eight equal probability bins, with the boundaries specified by {(−∞,−8.47 dB),

[−8.47 dB, −5.41 dB),   [−5.41 dB, −3.28 dB), [−3.28 dB, −1.59 dB), [−1.59 dB, −0.08 dB),   [−0.08 dB,

1.42 dB),   [1.42 dB, 3.18 dB), [3.18 dB,∞)}. The fixed quantized average SNR value 𝛾̅𝑘 for each state 𝓈𝑘 , 𝑘 =

1,2, … , 𝐾 then becomes 𝛾̅𝑘 = (𝑣𝑘)
−1 ∫ 𝛾𝑔(𝛾)𝑑𝛾

Γ𝑘+1

Γ𝑘
, where following (3-1), 𝑣𝑘 = 𝑒

−Γ𝑘
Γ̅ − 𝑒

−Γ𝑘+1
Γ̅ . Similarly to 

[52,53], the transition probability matrix  (ℙ𝑘,𝑘́)𝑘,𝑘́=1,…8
 of the FSMC is assumed to have the following structure: 

ℙ =

[
 
 
 
 
𝜌 𝜎 0 0 0 ⋯ 0 𝜎
𝜎 𝜌 𝜎 0 0 ⋯ 0 0
0 𝜎 𝜌 𝜎 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝜎 0 0 0 0 ⋯ 𝜎 𝜌]

 
 
 
 

, 

where 𝜌 = 1 − 2𝜎 and 𝜎 = 𝒪(𝑓𝑑𝜏), with 𝑓𝑑 and 𝜏 denoting the Doppler frequency shift and packet duration time, 

respectively. The product 𝑓𝑑𝜏 characterizes the fading speed of the channel relative to the packet length. A small 𝑓𝑑𝜏 

means that the channel fading rate is small. Throughout simulations, different instances of the matrix ℙ are used to 

generate the channel data profile with the only restriction that 𝑓𝑑𝜏 be in the same order of magnitude as RTB’s step 

size parameter 𝜀. The RTB algorithm works in the pure bandit setting and is thus not aware of the instantaneous CSI; 

however, for the sake of Enhanced-RTB, we assume that only finite CSI is fed back, and the nodes only know 𝛾 

belongs to an interval [Γ𝑘, Γ𝑘+1) instead of having the exact value. The nodes are assumed to have modulation and 

coding schemes that support a transmission rate of 1Mbps for all the links in the network. We assume that the nodes 

operate in a collision-free environment and that they periodically exchange beacon messages to maintain their one-

hop neighbor sets. In the simulation runs, 50 nodes are distributed uniformly over a square region with the node density 
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varying between 20 to 170 nodes/km2. The node density is controlled by adjusting the simulation area while keeping 

the number of nodes fixed. Table 2 lists the simulation parameters used in our experiments.   

Table 2.  Simulation Parameters. 

Parameter Value 

number of nodes 50 

node density 20-170 nodes/km2 

packet length  512 bytes 

fading  slow Rayleigh  

transmission power 0.1 Watts 

transmission rate 𝑇 1 Mbps 

modulation BPSK 

RTB’s step size 𝜀 0.1 

RTB’s scaling parameter 𝛼 
0.1 for low density regime 

0.3 for high density regime 

packet origination rate 10 pkts/sec 

Performance evaluation is done in terms of delivery ratio, number of transmissions and the balance in load 

distribution. For the sake of comparison, we simulate three other broadcasting schemes: simple flooding with 

retransmissions (e.g., RBAV in [54] or ACK-flooding in [55]), multi-point relaying (MPR) [56,57] with 

retransmissions, and the game-based broadcast tree construction (GB-BTC) scheme recently proposed in [6].  

 MPR: MPR is a broadcasting scheme based on two-hop topological information. It is effectively implemented in 

the OLSR routing protocol, which is a proactive routing protocol ratified as a request for comments (RFC) in the 

Internet Engineering Task Force (IETF) MANET chapter [57]. Each node in the network selects a subset of its 

one-hop neighbor nodes, called multipoint relays (MPRs), as the forwarding node set to retransmit broadcast 

packets. Other nodes that are not in the MPR set can read but not re-transmit packets. The MPR set guarantees that 

all two-hop neighbor nodes of each node receive a copy of the packets and, therefore, all nodes in a network with 

reliable links can be covered without re-transmissions by every single node. In order to apply MPR to our 

unreliable setting, we incorporate an explicit ACK mechanism into the protocol operation so that a node retransmits 

a packet when it does not receive an ACK from any intended receivers in a predefined time interval. Variants of 

MPR with retransmission have been considered for instance in [58]. 

 GB-BTC: The GB-BTC scheme [6], also discussed briefly in section 2, uses the notion of potential games to 

construct, in a distributed fashion, a spanning broadcast tree with (approximately) minimum expected  number of 

transmissions for all internal nodes. Unlike RTB, the game in [6] is a parent selection game to be played by the 

successors of each internal node. A node’s utility for joining a parent node on a link is the negative sum of two 

cost components: the first component is inversely proportional to the number of nodes selecting that same parent, 

and the second cost component is proportional to the cost of the communication link connecting the node to that 
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parent. However, the links’ costs in GB-BTC (i.e., the expected number of (re)transmissions) are derived assuming 

fixed BERs, i.e., oblivious to the realistic dynamics affecting the wireless environment such as channel fading. 

Also, the construction procedure in [6] is a one-time task and there is no discussion on how to gracefully maintain 

the tree structure in response to changes. In effect, the best-response algorithm used in [6] would not converge in 

non-static environments [59]. Therefore, we have simulated the dissemination of broadcast messages in GB-BTC 

by constructing its tree using link costs corresponding to the initial CSI only.  

We first investigate the dynamic behavior of RTB and Enhanced-RTB in terms of the progression of the average 

delivery ratio as well as the average number of transmissions over time as the nodes learn their forwarding strategies. 

We do the experiments for two scenarios with respect to node density: the 20 nodes/km2 case as a representative for 

low density regime, and the case with 170 nodes/km2 showcasing a high density scenario. We allow for unlimited 

number of (re)transmissions with the lag between subsequent broadcast messages large enough so that 100% delivery 

ratio is achievable by perfect delivery schemes such as by flooding in a collision-free setting. This would also be the 

case with MPR and GB-BTC; i.e., they also ensure perfect delivery ratio given their perfect coverage guarantee. 

Therefore, there is no need to run delivery ratio-wise experiments on these three methods. As for RTB and Enhanced-

RTB, we plot the average overall delivery ratio over the course of 5000 network-wide broadcasts. Over this time, the 

channel conditions vary according to a fixed instance of the matrix ℙ. As shown in Fig. 3, in both algorithms, the 

average delivery ratio asymptotically approaches to 1. However, Enhanced-RTB is noticeably quicker in achieving 

high delivery ratio, thanks to its more accurate estimation of the forwarding costs. Also, as can be evidenced from Fig. 

3, it is the case that in both algorithms, higher delivery ratio is achievable more rapidly when node density is higher. 

Fig. 4 plots the average total number of transmissions made by the forwarding nodes in the same simulation setup as 

in Fig. 3. Once again, it is the case that although, in the long run, Enhanced-RTB incurs the same number of 

transmissions as that of RTB, it stabilizes more quickly. We have also shown GB-BTC’s average total number of 

transmissions over time. The scale of our setup is too coarse to expect to witness in action the ability (or lack thereof) 

to track link qualities. This is mainly because in a large neighborhood, the effects of variations in individual links tend 

to mostly offset each other. Couple this with the fact that in RTB’s early operation, the delivery ratio is less than 

perfect, and therefore the average transmission count is tentatively lower. However, it is evident from the figure that 

in the limit, GB-BTC imposes a larger number of transmissions. This is because the internal tree nodes are oblivious 

to the fact that the quality of their links are likely to degrade in time, while in the meantime, there may be better 
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candidates which stand idle instead of replacing those undergoing poor conditions. Hence, no matter how the 

uncertainties in link qualities play out, failure to account for these dynamics can result in lower performance.   

Fig. 3. The delivery ratio vs. time in RTB and Enhanced-RTB under dynamic channel conditions. 

 

Fig. 4. The average total number of transmissions vs. time in RTB, Enhanced-RTB, and GB-BTC under dynamic 

channel conditions. 

 

Next, more generally, we study the impact of node density on the average number of transmissions made by each 

of the four schemes. Each point in Fig. 5 is the average of 250 simulation runs with random topology instances. We 

include error bars which indicate 95% confidence that the actual average is within the range of depicted interval. The 

transmission count in all schemes tends to decrease as node density increases. In all cases in Fig. 5, RTB achieves 
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perfect delivery ratio, and yet its transmission count is lower compared to other three schemes. Fig. 6 shows the 

average number of transmissions made by each individual node in RTB and GB-BTC. As can be seen, the distribution 

of load in RTB is significantly more balanced compared to that of GB-BTC. In fact, while GB-BTC’s forwarding 

structure remains unchanged, each forwarding node in RTB consistently re-examines the value of its contribution to 

the overall forwarding endeavor, and once the quality of its links degrades, refrains from forwarding and instead relies 

more on those who enjoy higher quality links. A byproduct of these reconfigurations is the more even distribution of 

the broadcast load across the network. As observed from Fig. 6(b), RTB’s load balancing property is much more 

apparent when node density is as high as 170 nodes/km2,  whereas GB-BTC puts the burden of forwarding on a fewer 

number of internal nodes. 

Fig. 5. The number of transmissions vs. various node densities under dynamic channel conditions. 

We extend the simulation to consider one more scenario. We examine the performance of RTB when channel 

states remain static throughout the simulation; i.e., the evolution of SNR on each link is a stationary process with a 

constant expected value corresponding to one of the 8 regions [Γ𝑘, Γ𝑘+1). Given the stationary nature of the link 

variations in this case, we run RTB with a decaying step size 1/𝑛 to achieve an almost sure convergence to the CE set 

of the forwarding game. Fig. 7 shows the average total number of transmissions made by RTB and GBG-BTC in this 

case. RTB starts with no prior knowledge of the statistics of the link qualities, while GB-BTC has already constructed 

its broadcast tree with the exact knowledge of the expected SNR on each link. Although the performance margin 

between RTB and GB-BTC is small, but RTB is much slower to stabilize, especially when node density is low. This 
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is also the case with delivery ratio (see Fig. 8); i.e., while GB-BTC guarantees perfect delivery from the outset, it takes 

a while for RTB before starting to catch up. Finally, as discussed in [6], with fixed expected SNRs, the lower bound 

for the average total transmission count can be obtained using a mixed integer linear program (MILP) to construct a 

minimum spanning tree with perfect delivery ratio. Fig. 9 illustrates the sub-optimality gap for RTB and GB-BTC 

under varying node densities. 

 
(a) 

 
(b) 

Fig. 6. Broadcast flow distribution in RTB and GB-BTC under dynamic channel conditions; (a): node density is 20 

nodes/km2. (b): node density is 170 nodes/km2. 
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Fig. 7. The average total number of transmissions vs. time in RTB and GB-BTC under static channel conditions. 

 
Fig. 8. The delivery ratio vs. time in RTB and Enhanced-RTB under static channel conditions. 
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Fig. 9. The number of transmissions vs. various node densities under static channel conditions. 

6. Conclusions and Outlook 

The broadcast management problem in WANETs has been tackled with a wide assortment of heuristic-based 

methods reported in sundry publications. However, these methods lack a principled basis to explicitly factor the 

stochastic dynamics associated with variable link qualities into the problem formulation. In a departure from the prior 

art, this paper has presented a dynamic robust game formulation of this problem to capture the realistic effect posed 

by channel dynamics on message propagation. As an online solution to the decentralized stochastic control of 

broadcasting in a WANET with slow fading channels, a cognitive forwarding control mechanism has been proposed 

which is capable of inducing and maintaining strategic coordination between the forwarders’ decisions. More 

specifically, we have deployed the strategic and non-stationary learning algorithm of regret-tracking which can 

converge to and track the correlated equilibria of the formulated game. An important aspect in our design has been to 

present a model-based variant of the learning algorithm which can exploit the available CSI for deriving a theoretically 

valid estimate of the transmission costs to speed up the learning process. As evidenced from the comparative numerical 

results, our proposed scheme can reduce the number of (re)transmissions and achieve a more balanced flow of 

messages while also maintaining near perfect delivery ratio in the presence of time-varying link qualities. As part of 

our plan for future work, we intend to extend our cognitive forwarding scheme to the other degradation categories for 

fading rapidity. In particular, we plan to come up with a stochastic game formulation of the broadcast management 

problem for WANETs with a fast fading regime of channel variations. 
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