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Abstract—We consider the problem of link scheduling for problems are NP-hard even under this simplified graph-based
throughput maximization in multihop wireless networks. Major-  conflict models|[[2].
ity of previous methods are restricted to graph-based inteference While graph-based interference models help to understand

models. In this paper we study the link scheduling problem . . . -
using a more realistic physical interference model. Throub these complex link scheduling problems in wireless netaprk

some key observations about this model, we develop efficientthey do not capture some key features of real wireless com-
link scheduling algorithms by exploiting the intrinsic connections munication because they are just simple approximationiseof t

between the physical interference model and the graph-badle realistic interference constraints. A more realistic ifeeence
interference model. For one variant of the problem where edt model is the so-called physical interference mofel [3]. &nd

node can dynamically adjust its transmission power, we degh a the phvsical interf del ¢ N i
scheduling method with O(g(E)) approximation to the optimal € physical interierence model, a transmission 1S sutgess

throughput capacity where g(E) denotes link diversity. For the if the Signal-to-Interference-plus-Noise Ratio (SINR)neo
other variant where each node has a fixed but possible differe  straint is satisfied. That is, the ratio of the desired signal

transmission powers for different nodes, we design a method strength and the summed interference from all other corotirr
with O(g(£))-approximation ratio when the transmission powers — yransmissions plus ambient noise exceeds some threshold

of all nodes are within a constant factor of each other, and in This additi d alobal interf idering traissi
general with an approximation ratio of O(g(E) log p) wherelog p IS additive and global Interierence, considering trassran

is power diversity. We further prove that our algorithm for fi xed POWers, has a significant impact on the capacity of a wireless
transmission power case retaing)(g(E)) approximation for any  network. Since these features are not captured in graptdbas

length-monotone, sub-linear fixed power setting. Furthermore, models, a direct application of algorithms under graphetas
all these approximation factors are independent of networksize. 1 ,qels may even suffer arbitrarily bad performarice [4].
Given a time-slotted wireless system, one class of optimum
~ Index Terms—MWISL, throughput maximization, physical  solution to this link scheduling problem for throughput max
interference, SINR, link scheduling. imization is to find a maximum weighted independent set of
links (MWISL) under the SINR constraint at every time slot
[5]. Here weight is the queue length of a link. There are two
variants of the MWISL problem under the physical interfer-
Various wireless networks (single-hop or multi-hop), e.gence model, whether each node has an adjustable or fixed
sensor networks, cellular networks, mesh networks, haga beransmission power. The variant with adjustable transioniss
deployed for a broad range of applications. Of all thegsower shall jointly solve the power assignment; the variant
networks, a common fundamental problem is to develapith fixed transmission power takes predefined powers ag inpu
efficient scheduling algorithms that can achieve closely tsf the problem.
the optimal throughput capacity. This problem is difficult Existing works mainly focus on approximation algorithms
because of various challenging factors, especially, e&®l of MWISL for some special cases of power assignment.
interference, which constraints the set of links that candmit Constant approximation ratios are only available for theair
simultaneously. power assignment in literature, withl[6]1[7] in centralized
Most of previous algorithm design for the link schedulingmplementation and[[8] for distributed implementation.r Fo
problem and its variants simply models wireless interfeeenother power assignments, there are various logarithmic ap-
through geometric graphs, such as conflict graphs and dloximation or poly-logarithmic approximation. For unifio
graphs[[1]. In these graph-based models, interferenceiis p@ower assignment|_[7] achieves poly-logarithmic appr@aim
wise and binary. A set of links is conflict-free if they ardion where the logarithmic factors are the size of network,
pair-wisely conflict-free. Therefore, the interferencéeef of and [9] attains a logarithmic approximation factor thathe t
a transmitter is local and predefined. Intuitively, thessdees ratio between the maximum weight and minimum weight [9].
of graph-based interference models enable the link schedlihrough algorithmic reductions from maximum independent
ing problems more tractable. We note that many scheduliegt of links (MISL) problem,[[10] proves the existence of
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another logarithmic approximation dependent on the cardi- under graph-based models to design the following two
nality of a maximum independent set of links for adjustable  efficient scheduling algorithms for the physical interfer-
and fixed transmission power. Finding a MISL under physical  ence model.
interference itself is NP hard, and there are no closed-form3) For the problem with adjustable transmission power, we
expressions for size of MISL. Under some extreme cases, the present a sufficient condition for feasible power assign-
number may be in the order of network size. ments, and propose®@(g(E))-approximation algorithm
On the other hand, the throughput-optimal link scheduling ~ for MWISL with adjustable transmission power.
problem can be solved using traditional network stability 4) For the problem with fixed transmission power, we
technique, instead of solving MWISL directly. Recenfly[11 design a method applicable to any fixed transmission
has combined this technique and randomized technique to get power case. It achieve9(g(E)) approximation when
O(g(FE))-fractional capacity region for a special case of fixed  the transmission power diversitygp is a constant.
power assignment. The result holds only if, for any two links In general it achievedD(g(F)logp) approximation.
having almost the same length, transmission powers are at We further prove that the algorithm retaid$(g(E))
most a constant factor away from each other. The achieved approximation for any length-monotone, sub-linear fixed
network stability, however, is not strict Lyapunov Statyilihat power assignment.
stabilizes the system whenever the arrival rates are antégi 5) We conduct extensive simulations to verify the correct-
the capacity regiori [12]. The MWISL policy we approximate ness of our adjustable power assignment and evaluate

can guarantee strict Lyapunov Stability [12], which indésa throughput performance of our proposed scheduling
faster convergence and better delay performance. Meamwhil ~ algorithms in various network settings. Our simulation

the results on MWISL problem can further imply existence of results demonstrate correctness and performance effi-

the same order of approximation ratios for other scheduling  ciency of our proposed algorithms. For the fixed power

problems (i.e., the minimum length scheduling problem and  case when we have a previous algorithm for comparison,

the maximum multiflow problem)[10]. our proposed algorithm shows advance on throughput
In this paper we focus on developing efficient approxi- performance.

mation algorithms for the two variants of MWISL problem The rest of the paper is organized as follows. Section Il

to achieve near optimal throughput region. Different frormtroduces the network models and problem to be studied.

previous works that respectively develop specific algarih Section 1l exploits properties on distance separationtiier

for different power assignments, our work provides a unifieBINR-based interference model. Based on these properties,

approach to solve these variants of MWISL problem via son8ection IV reveals the connections between the SINR-based

intrinsic properties of physical interference. The desigour and graph-based interference. Section V and VI describe our

approaches is motivated by the method presented for tharlinproposed algorithms for the case of adjustable and fixed

power assignment ir [9]. This approach works as follows. {ftansmission power respectively. Section VII improves the

maps every link to a disk with a radius of double link lengthapproximation ratios and discusses distributed impleatgmt.

and selects a maximum weighted set of disks among the disi#ll evaluates our proposed algorithms through simulagion

Then it maps the maximum weighted set of disks back toSection IX reviews the related works. Section X concludes

set of links. It proves that the interference of the link sas h the paper.

a constant upper bound, so the link set can be further refined

into an independent set of links. However, in contrast tarthe Il. M ODELS AND PRELIMINARIES

method, we applied several new designs and novel techniquEs Network model

1) We utilize our characterized property of distance separa .
tion to identify candidate link sets for refinement. Her?/ V(;/e mtodelha wm:le?s nt(ajtworl;ztj))(/ja tvzo—ttiﬁlbi E )t V\]fhfri
we do not require a previously known power of any link. enotes the set of nodes adrenotes the Set of finks.

2) We design a new method to extract link sets sufficie e assume that all nodes are distributed in the Euclidean
for adjustable power assignments from these candid ane. Each n0(_1e with one radio can transmit or receive at
link sets. a time. I_Each directed link; = (s;,t;) € E represents a

3) We employ the fact of fading metrids [13] to prove thos ommunication request _from a send;erto a receivert;. Let
relevant results (Lemma 1 and Lemma 3). These resu (su,v) denote the Euclidean distance between nadand
are independent of any power assignment. v, then the length of link; is d(s;,t;). The length of link

l; satisfiesr < d(s;,t;) < R, wherer and R respectivel

. i . ) p y

The main contributions are summarized as follows. denote the shortest link length and the longest link leniya t

1) We characterize a kind of link set with a propertypo- ensure a successful transmission. We assumer-thatl R are
tential feasibility irrespective of any power assignmentknown for a given network, and let= R, 0 < § < 1. Taking
We provide a sufficient condition for the property, andogarithm of1/§, we getlength diversityy(E) = log (R/r) for
investigate rich features of it. link set F [14]). We further assume that geographical position

2) Based on these fundamental results, we discover sonfeevery node is known.
intrinsic connections between the SINR-based andA set of links to be scheduled simultaneously must be an
graph-based interference models regarding the MWIShdependent set of links (ISL) regarding to the underlying
problem. These connections enable us to utilize resuitgerference models. Such a set of links is also callézhaible



TABLE |: Summary of notations

reference loss factor K path-loss exponent £ ambient noise
o SINR threshold R maximum link length r minimum link length
A the Assouad (doubling) dimension w the largest number of ISDs . a constant in(0, 1)
(=2 for the Euclidean plane) that an ISL can be partitioned for the PTAS of MWISD
Pmax | maximum transmission power| Py in minimum transmission power p | ratio betweenPmax and Py
1) ratio betweenr and R C |a constant in doubling dimension definitipa“? | a constant upper bound ef

scheduling setUnder the physical interference model, it is thgpacket arrival proces¥;(7) have bounded second moments
each link in the set fulfills the following SINR constraint, and they are bound b¥,.x, i.e., Yi(T) < Yimax, Vi € E.
Let a vector{0,1}/?I denote a feasible schedulg (7 at
SINR; 2 p(li) - g(si ti) >0 each time slotT’, where S;(T) = 1 if link i is active in
2esPUy) - g(sjst) +€6 7 time slot 7 and S;(T) = 0 otherwise. Packets departure
Here p(l;) is the transmitting power of link;, and the transmitters of activated links at the end of time slots.fi,he
power received byt; at a distance ofd(s;,t;) is p(l;) - thequeye lengthit is also referred to awelghtor backlog
g(si,t;), whereg(s;, t;) = min{n - d(s;,¢;)~",1} is the path vector_a(T) = {Q.(T)} evolves according to the following
gain from nodes; to t;. The constant; is the reference dynamics:
loss factor, andk is t_he path—los; exponent \_/vhich satisfies a(TJF 1) = max{ﬁ,a(T) B ?(T)} i 7(T).
2 < k < 5 generallysS is the set of links which simultaneously
transmit with/;. The constant > 0 denotes the ambient noise, Described by the set of arrival rate vectors under which
and o denotes certain threshold for correct decoding of tHBe system is stable (i.e., all queues are kept finite), the
wanted signals. throughput capacity{capacity regiof, is a major benchmark
Typically, fixed transmission power is length-monotone.(i. on throughput performance. A scheduling policystable if
p(l;) > p(l;) wheneverd(s;,t;) > d(s;,t;)) and sub-linear for any arrival rate vector in its capacity region [16],
(i.e., p(ls)/d(si, t:)" < p(l;)/d(s;,t;)" wheneverd(s;, t;) > :
d(s;j,t;)) [7]. There are three length-monotone and sub-linear Tlggo ]E[@(T)] <o
fixed power assignments widely investigated in literatife [ A throughput-optimalink scheduling algorithm can achieve
[15]. The first is the uniform power assignment, where evetiie optimal capacity regionwhich is the union of the capacity
link transmits at the same power level. The second is thaling€gions of all scheduling policie5 [17],

power gssi_gnment, wheng(l;) is proportional tod(si,ti)’f. AL {7 Y < 2, for some 3 € Co(Q)}.
The third is the mean power assignment, whelg;) is
proportional to/d(s;, t;)". Here < denotes element-wise less inequalityis the set of
For a specific power assignmeft, we assume each link all feasible maximal schedules dfy and CoQ2) is the convex
transmits at a power level(l;), satisfying that hull of €.
Pain < p(li) < Prax. Though we have already known that the policy of finding

) o a MWISL at every time slot achieves the optimal capacity
Here Py,ax and P, denote the maximum transmission powefegion, unfortunately, finding a MWISL itself is NP-hard
and the minimum transmission power. Let= Prax/Puin,  typically [2]. Thus we have to rely on approximation or

andlog p denotepower diversity To ensure successful transyeyristic methods to develop sub-optimal/imperfect salieg
mission, Prnin Must satisfyPui > o¢r" /7, even if interference g1gorithms running in polynomial time.

from all other concurrent transmissions is zero. A sub-optimal scheduling policfl7] achieves a fraction
of the optimal capacity region, which is characterized by
B. Problem definition efficiency ratioy (0 < v <1), i.e,

The maximum throughput link scheduling problef [5],
characterizes the supportable arrival rate vectors ofliiok
multihop wireless networks. The standard model is desdribe A class of imperfect scheduling polic§, [18] is to find
as follows. It assumes time-slotted and synchronized eseel a set of links with a total weight that is at leagttimes of
systems with a single frequency channel. All links are assiimthe maximum possible weight, as illustrated in the propmsit
to have unit capacity (i.e., a link can transmit one packét wibellow.
unit length in one time slot). At the beginning of each time Proposition 1: ( [18]): Fix v € (0, 1]. If the user rates7
slot, packets arrive at each link independently in a statipn lie strictly insideyA (i.e., Y lies in the interior ofyA ), then
stochastic process with an average arrival vateThe vector any imperfect scheduling policf, can stabilize the system.

(T) = {Y;(T)} denotes the number of packets arriving Consequently, in the rest of the paper we focus on near
at each link in time slotl". Every packet arrival processoptimal solutions to the two following variants of MWISL
Y:(T) is assumed to be i.i.d over time. We also assume aitoblem with the SINR-based physical interference coirgtra

v £ sup {7| the network is stable for a? € WA} )



Given a setl = {iy,ls,...,l,,} of links, at time slotT" each Algorithm 1 Bridging
link I; associates with a weight’;(T") = Q,(T), then Input: Set of LinksL = {l1,la,...,1n}.

« MWISL problem with adjustable power is to find aset % for ¢=1,...,n do , ,
of links S with maximum total weight, and then devise 2 Map l; to a diska; centered ats; with a radius of
a method to dynamically assign transmission power to @ - d(si %) and a weight ofV({l;});
every link in S such thatS is feasible under SINR 3 endfor _ _
constraint; 4: Find a maximum weighted ISD out of the mapped disks;
o« MWISL problem with fixed power is to find a max-
imum weighted independent set of linksregarding to
the predefined transmission power of every link.

Let D be the selected MWISD,;
for j=1,..,|D| do
Map a; back tol;;
end for
Let Lp be the set of links mapped back;
10: ReturnLp.
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Ill. PROPERTIES OF DISTANCE SEPARATION

Given a setL of links, let V(L) be the set of nodes
containing all senders and receivers of linksfin For any
nodev € V(L), if it holds that

IV. BRIDGING THE SINR-BASED AND GRAPHBASED

RH/

E <o INTERFERENCE
d(w,v)*

weV (L)

Based on those properties of distance separation, we then

where ¢ is a constant, then we refer to such a set ag a reveal some intrinsic connections between the SINR-based
separation setFor convenience, we let the elemeriti(v, v)® and graph-based interference regarding the classical MWIS
be zero. problem. Through a subtle mapping between the links and

We will show later that a-separation set has good potentidnterference disks, we can obtain a set not only having the
to be a feasible set. Since any two links of a feasible schedBroperty of distance separation, but also the set having an
ing set can not share a common node in a wireless netwayRight of constant approximation to the optimal.
with single channel and single radio, we also suppose thatThe bridging mechanism, shown in Algorithm 1, is designed
links of a ¢-separation set do not share common nodes. Tls follows. Given a seL of links, we map every link; to a
assumption does not influence our results. We now introdudisk a;. Each disk is centered at the sendet;pfvith a radius
a sufficient condition for a)-separation set. of - d(s;,t;) , o > 1. The disk also has the same weight as

Lemma 1:Given a setL of links, if the distance betweenthat of ;. A set of disks is independent if any pair of disks
any two nodes oV (L) is at leastd = 612, whered > 0 is a in it do not intersect with each other. We select a maximum
constant, then for arbitrary node< V'(L), we have weighted independent set of disks (MWISD) among the disks,

R" referred to ag®. Each disk inD is mapped back to the original
Z d(w,v)" <o, link, and then these links compose a new Eet
wev(L) The above procedure gracefully connects the graph-based
_92etl 3 interference models and SINR-based interference models. A
where¢ = 6(k—2)0% is known there are many exiting good approximations for

Proof: We leave the proof in Appendix A for a bettersolving the MWISD problem (e.g., the PTAS [ [|1])Nhile by
flow of the paper. B the bridging mechanism we can leverage these results te solv
~ Through the above lemma, we further conclude the followhe MwWISL problem under the SINR constraint indirectly.
ing property for aj-separation set. T On one hand, by explicitly setting the radius greater than

CotroIIary é': G_|v‘(3nLa¢F]separatlontseIL,d!f tlt sansﬁfesttfl\at he link length, it ensures that the candidate link set Basis
grz ev}\g)trr]lgnefgrlgn)(l ")nklale(:: ’;? )ueu %, itlshg{zjcsetr?ata easEhe suffici_ent condition of asteparation set. An gppreciate
¢-separation set is a latent independent set of links. On the

Z d(si,ti)" < o other hand, the selection of MWISD can preserve a constant-
) d(sj,ti)~  — 7 approximation ratio to the optimal under the SINR constrain
(sj,t;)€EL L. . . .
. providing fundamentals to theoretical proofs in later mers.
S bl oy The | below formally claims th It, | tive of
At = @ e lemma below formally claims the result, irrespective o
(s5:t5)€L any power assignment.
3 (s )" é Lemma 3:Let L be an independent set of links with min-
(s5t)EL d(sj,ta)* — imum link length ofr under the physical interference model,
then L can be partitioned into at most independent sets of
Proof: The results follow directly Lemma 1. m disks with a radius ofv - d(s;,t;). Herew = O(1/64).
Lemma 2:A ¢;-separation set can be partitioned into con-
stantly manyg,-separation sets, wherg > ¢s. 10ther constant approximation algorithms on the MWISD peabhre also

. . . . pplicable, depending on the desired tradeoff between atatipn complexity
Proof: The proof process is similar with Theorem 1 o nd approximation ratio. For example, we can also use otgerithms with

[Bﬂ. B lower complexity and smaller constant approximation matio



Proof: By the technique of signal strengthening [3], weloes not influence the derivation of a constant-approxomati
decompose the link sét into [2 - 3%/0]? disjoint sets, each or logarithmic-approximation ratio for the optimal.
feasible with an SINR threshold ef’ = 3*. We then prove
that each of the sets can be partitioned into constantly Manyy, A ppROXIMATION ALGORITHMS WITH ADJUSTABLE
independent set of disks with a radius of- d(s;,t;). For

convenience, we let” > ¢, but we do not necessarily assume N _
3% > o, we later show that the lemma also holds wB&r< o. Now we utilize these fundamentals to develop solutions to

Claim 1: [19] Considering any two distinct linkg; = the MWISL with adjustable transmission power.
(siti) . 1; = (sj,t;) in one of the setsL’ fulfilling the
SINR thresholds’ = 3%, the distance between any pair ofp Adjustable power assignment
the involved nodes; , ¢; , s; , t; has to be at least for any
power setting.

It is obvious that the claim still holds whe3t < o, and
nodes inV(L’) have a mutual distance ofat least. ¢ d(si, )"

We then prove that the corresponding disk of any link.in p(li) 2o - Ed(si,ti)" + > p(lj)ﬁ :
intersects constantly many disks of other links. We observe li€{LANL} o
that any pair of disks intersect if and only if the mutualrpat s, the assigned power shall compensate the intederen
distance of their senders are less thari(s;, t;)+a-d(s;,t;).  of ambient noise and the simultaneous transmissions. There
We then get that no d_isl_<s will interse_ct with other disks & thfore a natural method is to assign the power iterativeld an
distance of any two distinct senders is abave. Therefore, compensate the interference respectively from ambiersenoi
we just need to show only a constant number of sendgfg previously assigned links and the later assigned liRés.
located in the disk centered at any sender with a radius ofspecific link, the suffered interference from ambient @ois

2aR. and the previously assigned links is easy to calculate, the
We initially assume that séf;(L’) consists of senders of all P Y ¢ y ’

TRANSMISSION POWER

Given a feasible scheduling s&t to ensure feasibility, the
assigned powep(l;) for link [; shall satisfy,

links in L’. For any sendes; € V,(L'), we define a followin question is 1o estimate an upper b°“_”d of the interfer_ence
set fulfilling, Y (&) 9 from the later assigned links. Works i [19]. [20] provide
R hints for the problem. The basic idea is to assign a power
V= {sj € Vo(L)|d(s;,8:) < O/‘Q g} that is a scale of the summed interference from ambient
T

noise and the preassigned links. Then the interference from
It is obvious that|V’| is the maximum possible number ofthe later assigned links can be actually looked upon as an
links whose disks may intersect with the disk of the givek linindirect interference of the noise and previously assidimis.

l;. To prove it, we just need to apply the fact of fading metricslowever, the sufficient conditions on the candidate linkiset
and the packing bound once again. feasible power assignments differ greatly. We first intrmslu

between any pair of distinct senders is at leasthis is, balls lterative power assignment.Consider a sek* of links, and
of radiusr/2 centered at nodes i’ are fully contained in |q¢ li.ly. ..., be a permutatibn of links i*. Note in this

B (si, (2;;’; +1)- g). It implies procedure, we do not need to order the links in the ordering of
decreasing length as done in[19], [20]. It works for arbitra
, 2aR A 4o A ordering of links as long as the given set satisfies the seiffici
Vi < C<r/—2 + 1) C(y + 1) ; condition we propose later. Assign the first lihka power,
and we get the number of disks which may intersect with the p(ly) = m"_fd(sh t1)".
same disk bounded. n
Thus L can be at most partitioned into The powers assigned to later links are iteratively set by

w=[2-3%/0]*-|V'| = O(1/6") = O(1/8%)
subsets of links, the disks of which do not intersect muyuall
This finishes the proof. | H | he di . ¢ th
Note that our proposed algorithm and results apply equalé¥ erem relates to the distance separation property of the

to the bi-directional link case. In a bi-directional casacle ven set. Certainlyn shall be greater than to cover

node is a sender and receiver. That is, for each bi-diraa:ltioﬁhe interference from the ambient noise and the previously
link I; with endpoints: andwv, u getsuw |3ackets to while v assigned links. A strict bound ofi depends on the sufficient

getsw, packets ta:. We just need to change the previous oné:-Ondltlons below. ) . I,
to-one mapping in Algorithm 1 to a one-to-two mapping. We Lemma_4: Let L. _be a¢—separat|on s.et, IT." fulfills the
take link!; as two directional links(u, v) with a weight ofw,, two following conditions simultaneously:

and(v, u) with a weight ofw,,. According to the mapping rules 1) for any two distinct links inL*, i.e., l;, I;, i # j, the
in Algorithm 1, we get two distinct disks with the same radius ~ mutual distance between the sendeysss; is at least
of 2||l;]|, one centered at with a weight ofw,,, the other a - (d(si, ti) + d(sj, t5)),

centered ab with a weight ofw,. This process just doubles 2) the constanp satisfies that < =y, wheref =

the number of candidate disks for computing of MWISD, but ~ 22=L.

p(l;) = mod(si, t;)" <Z % + %) )



then the iterative power assignment generates a feasillerpo

assignment fol.* if m is within

1++/1—4-B5¢c(c+1)
2-prgo(o+1)

1—+/1-4-p5¢a(c+ 1)
2-prgo(c+1) 7

Proof: The proof respectively treats the interference from
the ambient noise, the previously assigned links and tles lat

assigned links. It is equivalent to prove that

mod(si,t;) (st f)

i—1

€ o d(sutl)K
o- <5d(8i,ti) +Zp(lj)m

j=1
=3

i)
Jj=i+1 ’L)

p(li) =

Y

IN

IN

S d(st) Ao, 1) + o o ts) |
e d(sk, ;) - d(sj,ti)

j=max{i,k}

d(f)’j7 tz) + 2(a—171)d(8j7 tz) ) K

d(sk, t;) - d(sj, i)

> (o) (G

J‘*max{i k}

o)y’

B () ()
QZ:PZ { PoN o) R (H)}

200 — 1
(=)«

By rearranging the terms, we just need to show that thghe |ast third inequality results from the generalized mean
inequality (cf. [20]). The last step is built on Corollary Eor
brevity, we let22=1 = 3.

interference from the later aSS|gned links get bounded by,

~pll) (S _pl) €
Sy Asanta)” : ) <J§_:1 st~ 77)
_ m—=1 p(l)
o mo d(si,t;)""

T =

Next we analyze the upper bound of the interference from
the later assigned links.

As we mentioned previously, the basic idea of the proof is
to take the interference from the later assigned links as the_

indirect effect of the interference from the previously edd
A crucial claim to bound the indirect interference is asdoi.

For anyi andk within max{i, k} < n,

- d(sj,t;)" - d(sk, )" 20 — 1\ "
> P L 6.
d(8k7tj) 'd(sj7tz) a—1

j=max{i,k}

From the first condition ofL*, we can get thatl(sy,t¢

(0 —1) - d(s;, t;), since J) >

d(sk,t;) d(sk, 85) — d(sj, ;)
a - (d(sk,tk) +d(sj,t;)) — d(sj,t;)
o d(8k7tk) + (Oé — 1) . d(Sj,t]‘).

v Iv

Similarly, we get thati(s;, ¢;) > (o — 1)d(s;,t;) by
d(sj,ti) = d(sj,s:) — d(si, ti)
> - (d(si,ti) +d(sj,t5)) — d(si, ti)
= Oé~d(8j,tj)+(0é—1)d(8i7ti)
> (Oé — 1)d(8j,tj).

Having the two inequalities, it then follows,

>

j=max{i,k}

d(sj, ;)" - d(sk, t:)"
d(sk, t;)" - d(sj,ti)"~

< f: d(sj,t5)" - (d(sk, t;) +d(sj, t;) + d(s;,t:))"
- d(sk,t;)"* - d(s;,t:)"
j=max{i,k
i d( sk,t] —|— Ld(sj,t;)
< d t
= Z (85,t5)" - < (s, t;) - d(s;, ) +
j=max{1, k}
d(S]7 Sjvt]
d(sk,tJ sj,

IN

~  p(ly)
d(sj ) 'J"’i)N

n j—1 ®
e < (1) - dls 1)
+1

n §d(8j7tj)n>

5 = d(sk, ty)" - d(sj,ta)s  md(sy, )"
n Jj—1
p(lk) d(sjvt] 'Sjvtj
mo
<j_z'+1 h—1 d(8k7tj) d(8J7 sz;rl d 8J7 )
n Jj—1
p(lk) - d(s;j, ;)" £
mo +mop= .
j;rl ; d(slﬁtj)N ' d(sjﬁti)N ¢7]

The last inequality bases on the third inequality in Corglla
1. We then focus on the first term of the above inequality, by
rearranging the sums we get

{ d(sj, t)"
mo
Pap IR
SRS o) o LU,
j=it1 k= 1d8k’t7 (Sj’t)n
d(sj, t)"
mo
ZZ T e
o~ p(le) - d(syt)"
= mo
kzzlj;iﬂ d(sk, t;)" - d(s;j, i)~
o~ p(l) - d(sj, )"
mo
kzz;ljzz;l d(8k7tj) d(8J7t )I'€
o Siw 8]7t1)
- stlm Z d8k7 (‘9J7t)1‘€
= 3k7 )N (Sjvtj)
mo
k;ld 8k7 Z d 8k7t])n d(8J7 )n
~ p(li) - B¢ P(
<
< mod i) Z T
k=1 k=i+1



Algorithm 2 Approximation algorithm with adjustable power

i1 p(ie) o(ls) Input: Set of LinksE = {1, 12, ..., [ |z}
< maﬂwz At + maﬁ%m + 1: Preproces#’ using the Bridging algorithm and I€ip be
p=1 VT o the returned result;
mo e 2": p(lx) 2: RefineLp to a collection ofp*-separation sets with* =
Woy dlsk, ta)" m by the first-fit algorithm in proof of Lemma 2;
= 1+ mg)ﬁﬂﬁbd(igg)n - mf’ﬁ%% + 3: Select the most weighted set from the collection;

4: Let LY, = {I},13,...,1%} be the resulted set;

5: Assign power to each link of}, by the iterative power
assignment withn = 2;

6: ReturnL3, with assigned powers.

K - p(lk)
mo B¢ Z P TEREALR

k=i+1

Thus we can surely get a bounded interference by,

—~  p(ly)
2 d(sj, ti)"

j=itl B. Approximation algorithm
< (14+mo)B s pl) mgg~¢§ + Now we describe our proposed algorithm for MWISL with
d(si, t:)" n adjustable transmission power. The pseudo codes are shown
() 3 in Algorithm 2.
R + =
mop ¢k§+1 d(sk, ti)"~ mmbn Theorem 1:Algorithm 2 for MWISL with adjustable trans-
() n () mission power outputs a feasible scheduling set having a
< (14mo)Bgp——"e tmof Y i weight of O(1/52(:+1)) approximating to the optimal.
d(SZ7 tL) X d(8k7 tz) . . .
3 k=it+1 Proof: We first verify the correctness of the algorithm.
< (1 +mo)p"é _plli) 7 It is obvious thatLj, fulfills the sufficient conditions for
L—mofc¢  d(si,ti)" a feasible power assignment. And = ———— makes
becausenc3*¢ < - < 1 whenm in m = 2 exactly. Thus, the iterative power assignment generates
o a feasible power assignment far,.
1—y/1-4-B¢c(c+1) 1++/1—4-85¢pa(c+1) Then we prove the theoretical bound for the algorithm. We
2. Brpo(o+1) ’ 2-Brgpo(o+1) ’ use W(L) to denote the summed weight of a skt and

: ' Co . W(OPT) to denote the optimum.

Finally we can colnflrm that whem: lies in the region, ~ the nodes of all links if.» have a smallest mutual distance
combining¢ < ey, it exactly ensures the following of - — § . Thus, according to Lemma L is a¢'-separation
inequality holds, which is also the final objective of thi®pf, set, where

, 22N+1 3
~ o) o (1+mo)B  p(l) ¢ = G(TQZ;?
Sty At T 1 —moBre d(si, t)"
m—1  p(l,) Next, by Lemma 2, can be partitioned into at most,
= o d(snt)r ¢*-separation sets, whetg is a constant upper bounded by
This finishes the proof. n _ 4. W'Q]
Lemma 5:Given a¢-separation set fulfilling the sufficient wro= 2
conditions, using the iterative power assignment, thegassi 92rH1 3oy 2
power has an upper bound of < 4. {m 4 BFo(o+ 1)]
. R" 2
pur = &, " w | ko(o+1)
T —mod = e [T s

Proof: From Lemma 4, we havewoc¢S” < 1. We then

prove by induction. For the first assigned link, it holds that FEqor L3 is the most weighted one among the collection, we
further have
p(l) =

m—agd(sl,tl)” < mTUgR’“ = (1 —moe)Pyix. w1 - W(Lp) > W(Lp).

_ ) _ By Lemma 3, any feasible set of links can be partitioned into
. Iflfor any 't‘?ltleﬁ assigned link;,i > 1, p(l;) < Pmax. then gt mostw 1SDs, so the optimal MWISL has a weight at most
Or fi1 We Stll have w-W(Lp)/(1—¢). Herel/(1—¢) is the approximation ratio

of Algorithm 2 in [1] for the MWISD problem.

K . l
mod(sii1,tiy1) <§ % + %) Consequently, we get
g=1

< mogPuax + (1= mod)Puix = Prax:

p(lit1)
wWw1i
1—e€
This finishes the proof. B This completes the proof. [ |
Remember thaf’,,,, refers to the maximum transmission We then analyze the time complexity of Algorithm 2.
power of all links, thus it also satisfies th&f,., < P“? The algorithm mainly consists of the bridging process, the

max"*

W (L) > W(OPT).



refinement process and power assignment part. The refifégorithm 3 Approximation algorithm with fixed power
ment process and the iterative power assignments resglgctiinput:  Set of LinksE = {l1, [z, ...,l ||}

cost O(|E|) rounds. The complexity of the bridging process 1: Preprocessr using the Bridging mechanism and B
depends on the graph-based algorithm for MWISD problem. be the output;

If we utilize PTAS [1] in this part, the complexity would be 2: if p is not a constanthen

exponential of E|. It is ok to small-scale networks, but not ap- 3:  Divide Lp into log p sets and choose the most weighted
plicable to large-scale networks. To improve efficiency,oaa set asL;

choose other simple constant-approximation algorithnts wi 4: else

some sacrifice of approximation ratios. For instance, we cas: let L}, = Lp;

use greedy maximal schedule to find MWISD in complexitys: end if

of O(|E|log(|E|). Then the complexity of Algorithm 2 will 7: Refine L}, to a collection of ISLs using a simple first-fit

be reduced t@(|E|log(|E|)). greedy method,;
8: Select an ISL with the largest weight &s
VI. APPROXIMATION ALGORITHM WITH FIXED 9: return  S.

TRANSMISSION POWER

In this section we study the problem with fixed transmission therwi
power. Similarly with Algorithm 2, Algorithm 3 is still buil ~°"'€"WIS€:

X ) o arx (I;) < 2¢"P¢,
on our proposed properties and bridge. We first list several Lp(l) < ¢

existing results which facilitate a simple proof of our pogpd where¢ = % by Lemma 1.
algorithm. Therefore, we have /7 bounded byc“?p¢ when p is a
Definition 1: (affectance[[B]) The relative interference ofonstant andc?¢ otherwise. m

link I; on; is the increase caused byin the inverse of the

SINR atl;, namely Next we give the approximation ratio for our algorithm.

Theorem 2:Algorithm 3 achieves an approximation ratio of

r (1) = p(s) - 9(ss, ti) O(1/52(++1)) for the MWISL problem with fixed transmission
p(li) - g(si, ti) power whenp is a constant, and an approximation ratio of
For convenience, define, (I;) = 0. Let O(log p/52*+1)) generally. _ _
- Proof: By the t_echn|<12ue of signal strengthening [2};,
%= T ot ol -9t can be partitioned intd /7 ISLs at most, thus
indicate the extent to which the ambient noise approaches th % -W(S) > W(Lp).

required signal at receivef. Sincec; is a constant related to
the properties of link;, we assume a constant upper boun
of ¢; for all links, i.e.,

dBy Algorithm 3, we have
W(Lp) =W(Lp)

if pis a constant, or

log p- W(Lp) > W(Lp)
This is a fairly reasonable assumption. It simply says that igjnce the most weighted set is selectedlas
the absence of other concurrent transmissions, the trasgmi . .
succeeds comfortably. The affectance of lipkcaused by a Through Lemma 3, the optimal MWISL has a weight at
setS of links that transmit simultaneously with, is the sum MOstw - W(Lp)/(1 —€).
of relative interference of the links i§ on;, scaled byt;, or Hence, wherp is a constant we have,

"’ = max{¢;} < ho,h > 1.
l,eE

4 1 .
as(l) =i S m, (). ﬁ -W(8) = W(OPT), where~ = c"” pg,
bes and whenp is not a constant we have,
For a single linkl;, we use the shorthang(l;) = a;, (;). Awlog p 1
Definition 2: (7-signal set[[8]) We define a-signal set to o -W(S) 2 W(OPT), where — = 2c""¢.
be one where the affectance of any link is at migist. Clearly, -
any ISL is a 1-signal set. _ Theorem 3:For any sub-linear and length-monotone fixed
Lemma 6: L7, is a7-signal set, and /7 is bounded above power assignment, e.g., the uniform power assignment, the
by CUFZ;W f"_V_r}ﬁ”P P atconstapt a”gcl?% ot?grwst.e.f. linear power assignment, and the mean power assignment,
roof: The affectance of each link & Ly, satisfies, Algorithm 3 has an approximation factor 6f(1/6%(++1)),
ars (L) < av(op)(ti) Proof: Considering any two distinct linkg; and/;, we
? () d(sits) assumei(s;, t;) > d(s;,t;) for brevity, then we have
s o we;@ : (p(li) ' d(w,ti)”) p(l:)/p(l;) < d(si ti)" /d(s;, t5)"
" . by the sub-linear feature. Thus we further gdiounded by,
< CuP . Z p(lw) . R .
- p(ll) d(w,ti)"“ P = Pmax/—Pmin < Rh/"ﬁ~

weV (Lp)

Immediately, we also get/7 = ¢“?¢/6" for the correspond-

ing approximation ratio%. |

arx (1) < c*po, The complexity of AIgorighm 3 is the same as Algorithm 2.
D

If pis a constant then,



VII. | MPROVING THE ALGORITHMS feasible scheduling set consisting of all local schedutey
we shall carefully set the distance of disjoint subsquares,
i.e., the value ofM. This could be derived using a similar

ratios polynomial inl /3 — R/r could be further improved%ethOd in [8]. To provide theoretical guarantee for disttéal

o ithmic of R /r b liaht modificat £ th iinal implementation, we shall guarantee that the cardinalithe$e
0 logarithmic of &/r by a slight modification of the onginal o4 scheduling set are bounded by a constant from above.

algorithms. We then present the modification and theo"et"@bviously the local scheduling sets produced by algoritims

analysis. this paper satisfy this condition since the number of nodes i

. The modnjcatmn 1S tha}t we shall initially group the NPUGy e scheduling set are bounded by a constant after an initial
links according to link diversity, and then choose the mo rition

weighted group of links as input of the two original algonité.
Let g be a constant, and links with length {g’~'r, g/7)
belong to the same group;. Then we totally gey(E) groups VIIl. SIMULATIONS

of links. Let G- be the most weighted group and input of . )
Algorithm 2 an'd3, then we have, In this section we evaluate performance of our proposed

Theorem 4:Algorithm 2 has an approximation ratio 0]calgoriFhms (Algorithm 2 and Algorithm 3) through simylatio
O(g(E)); Algorithm 3 has an approximation of(g(E)) experiments. The throughput performance of scheduling-alg
when p is a constant and(¢(E) log p) otherwise. rithms is often measured by the total number of unscheduled

Proof: Please note that for links ifi;- , the ratio between packets, which is also termed the total backlog. Generally,

the longest links and shortest links becomes the congtantiN€ total backlog fluctuates slightly in a region if the aafiv
The factorl/§ contained in previous results is then replaced@t® Vector lies in the achievable capacity region of a link

by g. We give the proof of Algorithm 2. Le§ be the output, scheduling algorithm. Inversely, the total backlog inse=a
dramatically if the arrival rate vector exceeds the achikva

A. Improving approximation ratios
For both Algorithm 2 and Algorithm 3, the approximatio

then, 0(1) - W(S) > W(G;-). papqcity region. If the_total backlog increases unboundex|
infinity, the network will become unstable.

SinceG;- is the most weighted group, we have, In the following simulations, we will evaluate each algo-
rithm in two network settings. One uses a randomly generated

W(Gj+) = 9(B)- W(E) 2 g(E) - W(OPT). network topology and the %ther uses a real netwo}r/kgtopology

The proof for Algorithm 3 is similar. m from the CitySee project. In the random network topology,

We also get an improved result under length-monotone, sue randomly selecR0 links as input from a network with

linear fixed power assignments. 100 nodes, half of which as senders randomly located on a

Lemma 7:Algorithm 3 achievesO(g(F)) approximation plane with sizel00 x 100 units, the other half as receivers
ratio for any length-monotone, sub-linear fixed power assigpositioned uniformly at random inside disks of radilis= 5
ment. around each of the senders. The minimum length of links is

We then calculate some numeral results on these apprdkien set as = 1. For the other setting, the network topology
mation ratios. Considering a typical wireless sensor ngtwois part of the topology of the Citysee wireless sensor nekwor
we haveR = 60 andr = 5. Let 0 = 3%,k = 3. If we which is deployed for environment monitoring in the City
seta = 2, g = 2 and use PTAS in the bridging processyVuxi, China. The topology we use is shown in Fig. 1. (It
then we havev ~ 4. For the adjustable power assignmentjses the Cartesian coordinate system that is transforroad fr
the ratio is aroundl024 - 124+*+3, For the uniform power the geodetic coordinate system). It contaid$ nodes in an
assignment, let*? = 2, and the approximation ratio is aroundl000m x 1250m area. The maximum transmission range of
435+7 The computed approximation ratio for uniform powethe nodes outdoor 500 meters. A link of such a large length
assignment is much better than adjustable power case. Theasy to fail in fixed power settings, thus we set the largest
larger approximation ratio for the adjustable power case ligk length to be60 meters. We set the minimum length of

mainly caused by the constraint on a small value)tf links as10 meters.

B. Distributed implementation adsso S
We then introduce how to implement distributed schedulir samsar

using our proposed algorithms. Our previous works have ¢ s.asso}

veloped localized algorithms for the problem under thedime
power setting and uniform power settirid [8] [21]. The basi

3.485-

3.48481

Y range (meter)

idea is that of partitioning the plane into super-subsouafe o h"su--sf'..;:-@;?.“- :
length K cells, and performing centralized local scheduling i s.asa6 Y *t”\f,;::",j;:;}:w o
subsquares inside these super-subsquares. Each sublsasiar asasa] ' L e Tt i} L3
of length (K — 2M) cells—separating each local schedulin e RS ‘
set, to limit the interference from other super-subsquare OSSAB00 0SB0 A0SO gl ety o400 40535000

The partitions are subsequently shifted so that all links ca _ .
participate in the scheduling process. To guarantee a fjoba Fig. 1: Topology of the Citysee wireless sensor Network
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Other common settings are as follows. The path loss exgazerformance and power assignments are shown in Fig. 4, Fig.
nent is set to b8 and the SINR threshold i8). Packets arrive 5. Similarly, combining the three subgraphs of Fig. 4, we can
at each link independently according to a Poisson procdss wionclude that the maximum average arrival rate that Algorit
the same average arrival rake Initially, we assign each link 2 achieves is0.01 under the Citysee network setting. We

k packets wheré: is randomly chosen fromi00, 300]. then make some explanations that why the maximum average
arrival rate takes such a low value. According to the clasic
A. Algorithm 2 with adjustable power results in [22], an arbitrary wireless network can not pdevi

Next we present simulation results for Algorithm 2 witt" average throughput more than(1/log|V]) if we use
adjustable powers. We evaluate the throughput performance/Nit capacity. Thus we can roughly approximate that the

Algorithm 2, and verify correctness of the adjustable powé)rptima‘I value is in the order df.047 for the Citysee network.
assignment process. The comparison indicates that Algorithm 2 perform nearly

We first present the throughput performance of Algorithm 9Ptimally.
under the random network topology. We plot three figures to )
evaluate the maximum supportable average arrival rategn Fi R — :':Xi‘;:;ﬂﬁfvﬁj
2. We first study the fluctuation of the total backlog when the A= Minimum power)
arrival rate increases frori to the maximum link capacity
of 1. The increasing step is set to foel. It will give us
an rough approximation of the achievable capacity region by
link scheduling algorithms. Fig. 2(a) illustrates the tteof
the total backlog at time slot00000 as the average arrival 1
rate increases. Fig. 2(b) zooms in the region|®t,0.2] in ‘ I L S L
Fig. 2(a). It shows that the total backlog keeps stable atoun
0.185. We then plot the fluctuation of the total backlog fronfig. 5: Power at different time slot under the Citysee togglo
time slot0 to time slot100000 under the average arrival rate
0.185. In Fig. 2(c) it shows that the total backlog decreases
rapidly at the beginning, and then kegps stablgi, 2000]. g Algorithm 3 with fixed power
It indicates that Algorithm 2 can still support an average _. i ) , )
arrival rate of0.185. Fig. 2(c) also illustrates the results when E|xed power assignments mplude IOt? of variants. _It IS
the average arrival rate i6.190, 0.195 and 0.20. The total difficult to conduct a comparative experiment for all fixed

backlog under0.195 still converges at a stable region, but iPOWer settings,_ there being no obvious previous algorithms
can not be stabilized under20. After an initial decrease, the 0 COMpare it with. Here we focus on throughput performance

total backlog for the average arrival rate0 increases nearly Under @ commonly used uniform power assignment. By The-

linearly since time sloi0000. Thus we infer that Algorithm orem 2, Algorithm 3 has best theoretical performance under

2 can serve an maximum average arrival rate arounds the uniform power assignment because of the smallest power

under the random network topology. diversity among all fixed power assignments. We compare
Fig. 3 presents the assigned powers at different time sIQr algorithm with a logarithmic approximation algorithj [

for the random network setting. It respectively shows tnd the simple greedy maximal schedules [4] we can do

maximum assigned power, the minimum assigned power afnparison with it o
the average power per activated link at the selected tinte.slo | N€ @lgorithm in[9] works as follows. First it removes the
The maximum assigned power is no greater than much least weighted links. Next it partitions the remaining Bnk

smaller than the theoretical upper bound by Lemin@The into log(A) groups ac_cording to theirlw_eightA is_the ratio
theoretical upper bound i$43 in our setting). This verifies of the maximum weight and the minimum weight among
our theoretical analysis. the remaining links. For each group, it finds a maximum

independent set of links (MISL) by a constant-approxinratio
algorithm. Then the most weighted MISL of theg(A)

Assigned power
< v N s» »
plp 7R e G & o

e

o

o
-
ol
@

—e—Maximum powe|

= Nerage power MISLs is returned as the final result. We call this algorithm

—&— Minimum power

20r

Weight for brevity.

The greedy algorithm works as follows. First it orders links
in a decreasing order of weight. Going through the links, it
choose the most weighted link to the scheduling set. If the
newly added link makes the scheduling set unfeasible, It wil

Assigned Power

R L wm o, 2 remove this link and turn to the next one. The process repeats
Time sit x1d until no links can be added. We refer to it as Greedy in the
Fig. 3: Power at different time slot under the random netwofkllowing paper.
topology We set the same series of simulations as we do for Al-

gorithm 2. The simulation results using the random network
We have also done the similar simulations and analydigpology is shown in Fig. 6 and Fig. 7, and the simulation
for the Citysee network topology. The results on throughptasults using the Citysee network topology shown in Fig. 8
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Fig. 4: Capacity region of Algorithm 2 under the Citysee tiogy
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Fig. 6: Comparison between Weight, Greedy, and Algorithffig. 8: Comparison between Weight, Greedy, and Algorithm
3 at different arrival rates under the random network togplo 3 at different arrival rates under the Citysee topology

IX. RELATED WORKS

and Fig. 9. Algorithm 3 outperforms Weight and Greedy under The link scheduling problem and its variants have been
the random topology. Under the Citysee topology, it stils heextensively studied in literature. Early works are mostly o
better performance than Weight, and the same performanceesph-based models that simplify the complexity of wirsles

Greedy. communication[[23],[124],[116],[125],126], 1171 127] 148 In
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Fig. 9: Achievable capacity region by Weight, Greedy, andokithm 3 under the Citysee topology

the seminal work([5], Tassiulas and Ephremides prove theat ttnodel, the capacity of a link is not a fixed value(e.b.if
celebrated maximum weighted scheduling (MWS) achiev&NR threshold satisfied artlotherwise), but determined by
the optimal throughput capacity. Since finding a MWS is NRhe SINR value at the receiver (i.dag(1l + SINR;)). For
hard in general interference models, a variety of simpléf@n simplification, it assumes static path gain over time, wasre
suboptimal scheduling algorithms are proposed to achigiVe fthe gain is actually determined by concurrent transmission
or fractional optimal throughput capacity. and thus varies over time. Consequently, the problem sludie
Under the physical interference model, Chafe&nal. [29] in [32] does not include an ISL problem with complex
make a first attempt on logarithmic-approximation algarigh interference constraints. The solution bases on a pick-and
for the problem with the uniform and linear power assigreompare approach [1L6] to asymptotically achieve the optima
ments. However, the attained bound is not relative to thowever, the probability of this near-optimal approachuge
original optimal throughput capacity, but to the optimaluea low (i.e., the probability istN —" where N is the number of
by using slightly smaller power level$.][4] analyzes thef@er nodes). The simulation results in [32] show that it can just
mance of GMS under the physical model with uniform powestabilize an arrive rate of 0.03 under a random network of 16
assignment, and employs a techniqgue named “interfereme®les, while we can support an maximum arrival rat@.87
localization” to prevent the achievable performance v@ing. under a random network of 20 Nodes.
Xu et al. [g] firstly get a constant-approximation algorithm . . .
for the MWISL problem with linear power assignment. A WO related problems on capacity are the capacity maxi-
subsequent work gains a logarithmic-approximation fact@#ization problem which seeks a maximum number of inde-
related to ratio between the maximum and minimum weigR€ndent links of a given set of links, and the minimum length
for the uniform case ]9]. Most recently, Halldorsson andrii Scheduling problem which seeks a partition of a given set of
also claim a constant-approximation ratio for the lineavgo links into the fewest independent sets. We makg a briefwevie
setting, and poly-logarithmic approximation ratios degmt ©" the problems under the context of physical interference.

on size of link set for other length-monotone, sub-lineaedix For the capacity maximization probleni, [33] and ][19]
power settings [7]. The proposed algorithms utilize a I'Féuasrespectively achieve a constant-approximation factoh wie

apProaCh to fi_nd a link set with constant affectance, and thgpjyious power and power control. However, to ignore the
refine the set into a feasible scheduling set. Neverthelesg, . quence of ambient noise[ [19] has to assume arbitrary

have to rely upon a huge constant (the exact value is nothgmission power for each link. This assumption is not

specified in[[7]) to upper bound the affectance, which resulfy,gonaple in practice. Motivated by this, Wetrel. [15] then

in a quite small approximation ratio in the order of the seuabet a constant-approximation algorithm which does notrassu

of the huge constant. _ ) i unbounded maximum transmission power. A distributed imple
All these aforementioned algorithms are centralized, SOfigsntation with a constant-approximation factor is propdse

works al_so deve!op _dlstrlbuted link sch_edullng algonthm[@] which implicitly assumes the uniform power assignment

for practical applications. Zhoet al. [8] firstly propose a g 5igorithm makes a strong assumption that all nodes have

dlstn_buted algorithm with a constant?apprc.)x!ma.tlon odor physical carrier sensing capability and can detect if thsee

the linear power case, and a randomized vision is also seerjfla| exceeds a threshold. This assumption undoubtedly

[30]. [11] very recently proposed a low complexity schedgli ey ces the difficulties because the main challenge of the

algorithm for a special fixed power assignment where tran@r‘iginal problem is to locally approximate and bound the
mission powers of two links with almost equal length arg..nown global interference.

within a constant from each othel. [31] proposes a CSMA-

type distributed link scheduling approach with throughput For the minimum length scheduling problem, the overall

optimality for the uniform power case. However, this aptoa state-of-the-art retains in the order of logarithm undes th

has high communication overhead uniform power setting[[3][110][135]. In[]3], an attempt on
A quite related work([32] studies the distributed throughpwa constant-approximation algorithm for this problem witki-u

maximization problem via random power allocation under tiferm power assignment fails, and the claim has been rettacte

SINR-RATE based interference model. In such a interferenbg the authors recently.



X. CONCLUSION

[16]

We tackle the link scheduling problem for throughput max-
imization under the physical interference model. We sol&’l]
two variants of the problem by developing approximation
algorithms for MWISL problem in a unified scheme. Oufig)
algorithms are based on our discovery of intrinsic conoecti

between the SINR-based and graph-based interference. BHJI’

results are applicable to the minimum length schedulindgppro
lem and the maximum multiflow problem from an algorithmic
reduction view[[10].

20
Many problems remain open and are left for future WOI’ké.

Our current approximation ratios are related to link diitgrs

and power diversity. It is still open that whether there st

constant approximation independent of these network param
ters. Meanwhile, these results in this work are proved tal hol
in a special fading metric space (the Euclidean plane). It (]

unknown whether the same results are attainable in gengpgj

metric spaces. Moreover, all aforementioned challenges ar

tion. Other SINR-constrained link scheduling problem with
different optimization objectives, or effective multihdjow
scheduling with these optimization objectives, still néedter
solutions.
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APPENDIX

A. Proof of Lemma 1

Proof: Our proof bases on the fact of fading metrics|[13].

In fading metrics the path loss exponentmust be strictly
greater than the doubling dimension of the metric, and the
doubling dimensiord = n for the n—dimensional Euclidean

space. We have assumed the Euclidean plane and the path

loss exponenk > 2, obviously these assumptions construct
a fading metric of doubling dimensioA = 2. For the fading
metric of doubling dimensioni, there are at mosf'¢g* balls
of radius 7 inside a ball of radiug;Z for any ¢ > 0. Here



C = %77\/5 ~ 0.907 for the Euclidean plane. A ball of radius
u, centered ab is defined byB(v, u).

Let X, = {w € V(L)|d(w,v) < gd/2} for g > 0. The
distance between any two nodes ¥WL) is at leastd. It
implies B(v, (g + 1)d/2) contains all balls of radius o/

2 centered at the nodes i,

and these balls do not intersect.

It is obvious that|X3| = 0 for the smallest mutual distance
between any pair of nodesds Then for each node € V (L),

it holds that,
> o
wGV(L) (w,v)"
N e
R" = 1
< I
= (d/2)x Z ( 1= g”)
S (d/2) g:3|X9| N+1
R & K
< C - -
= (d/2)r ; (g = 1)=tt
R" St 1) 2n+1
< fpr 2° G
221<L+1 C
S = A)
_ 22K+1\/§ﬂ'l{ _ .
= S = 0(1/6%)
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