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Abstract—We consider the problem of link scheduling for
throughput maximization in multihop wireless networks. Major-
ity of previous methods are restricted to graph-based interference
models. In this paper we study the link scheduling problem
using a more realistic physical interference model. Through
some key observations about this model, we develop efficient
link scheduling algorithms by exploiting the intrinsic connections
between the physical interference model and the graph-based
interference model. For one variant of the problem where each
node can dynamically adjust its transmission power, we design a
scheduling method withO(g(E)) approximation to the optimal
throughput capacity where g(E) denotes link diversity. For the
other variant where each node has a fixed but possible different
transmission powers for different nodes, we design a method
with O(g(E))-approximation ratio when the transmission powers
of all nodes are within a constant factor of each other, and in
general with an approximation ratio of O(g(E) log ρ) where log ρ
is power diversity. We further prove that our algorithm for fi xed
transmission power case retainsO(g(E)) approximation for any
length-monotone, sub-linear fixed power setting. Furthermore,
all these approximation factors are independent of networksize.

Index Terms—MWISL, throughput maximization, physical
interference, SINR, link scheduling.

I. I NTRODUCTION

Various wireless networks (single-hop or multi-hop), e.g.,
sensor networks, cellular networks, mesh networks, have been
deployed for a broad range of applications. Of all these
networks, a common fundamental problem is to develop
efficient scheduling algorithms that can achieve closely to
the optimal throughput capacity. This problem is difficult
because of various challenging factors, especially, wireless
interference, which constraints the set of links that can transmit
simultaneously.

Most of previous algorithm design for the link scheduling
problem and its variants simply models wireless interference
through geometric graphs, such as conflict graphs and disk
graphs [1]. In these graph-based models, interference is pair-
wise and binary. A set of links is conflict-free if they are
pair-wisely conflict-free. Therefore, the interference effect of
a transmitter is local and predefined. Intuitively, these features
of graph-based interference models enable the link schedul-
ing problems more tractable. We note that many scheduling

problems are NP-hard even under this simplified graph-based
conflict models [2].

While graph-based interference models help to understand
these complex link scheduling problems in wireless networks,
they do not capture some key features of real wireless com-
munication because they are just simple approximations of the
realistic interference constraints. A more realistic interference
model is the so-called physical interference model [3]. Under
the physical interference model, a transmission is successful
if the Signal-to-Interference-plus-Noise Ratio (SINR) con-
straint is satisfied. That is, the ratio of the desired signal
strength and the summed interference from all other concurrent
transmissions plus ambient noise exceeds some thresholdσ.
This additive and global interference, considering transmission
powers, has a significant impact on the capacity of a wireless
network. Since these features are not captured in graph-based
models, a direct application of algorithms under graph-based
models may even suffer arbitrarily bad performance [4].

Given a time-slotted wireless system, one class of optimum
solution to this link scheduling problem for throughput max-
imization is to find a maximum weighted independent set of
links (MWISL) under the SINR constraint at every time slot
[5]. Here weight is the queue length of a link. There are two
variants of the MWISL problem under the physical interfer-
ence model, whether each node has an adjustable or fixed
transmission power. The variant with adjustable transmission
power shall jointly solve the power assignment; the variant
with fixed transmission power takes predefined powers as input
of the problem.

Existing works mainly focus on approximation algorithms
of MWISL for some special cases of power assignment.
Constant approximation ratios are only available for the linear
power assignment in literature, with [6] [7] in centralized
implementation and [8] for distributed implementation. For
other power assignments, there are various logarithmic ap-
proximation or poly-logarithmic approximation. For uniform
power assignment, [7] achieves poly-logarithmic approxima-
tion where the logarithmic factors are the size of network,
and [9] attains a logarithmic approximation factor that is the
ratio between the maximum weight and minimum weight [9].
Through algorithmic reductions from maximum independent
set of links (MISL) problem, [10] proves the existence of
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another logarithmic approximation dependent on the cardi-
nality of a maximum independent set of links for adjustable
and fixed transmission power. Finding a MISL under physical
interference itself is NP hard, and there are no closed-form
expressions for size of MISL. Under some extreme cases, the
number may be in the order of network size.

On the other hand, the throughput-optimal link scheduling
problem can be solved using traditional network stability
technique, instead of solving MWISL directly. Recently [11]
has combined this technique and randomized technique to get
O(g(E))-fractional capacity region for a special case of fixed
power assignment. The result holds only if, for any two links
having almost the same length, transmission powers are at
most a constant factor away from each other. The achieved
network stability, however, is not strict Lyapunov Stability that
stabilizes the system whenever the arrival rates are interior to
the capacity region [12]. The MWISL policy we approximate
can guarantee strict Lyapunov Stability [12], which indicates
faster convergence and better delay performance. Meanwhile,
the results on MWISL problem can further imply existence of
the same order of approximation ratios for other scheduling
problems (i.e., the minimum length scheduling problem and
the maximum multiflow problem) [10].

In this paper we focus on developing efficient approxi-
mation algorithms for the two variants of MWISL problem
to achieve near optimal throughput region. Different from
previous works that respectively develop specific algorithms
for different power assignments, our work provides a unified
approach to solve these variants of MWISL problem via some
intrinsic properties of physical interference. The designof our
approaches is motivated by the method presented for the linear
power assignment in [9]. This approach works as follows. It
maps every link to a disk with a radius of double link length,
and selects a maximum weighted set of disks among the disks.
Then it maps the maximum weighted set of disks back to a
set of links. It proves that the interference of the link set has
a constant upper bound, so the link set can be further refined
into an independent set of links. However, in contrast to their
method, we applied several new designs and novel techniques.

1) We utilize our characterized property of distance separa-
tion to identify candidate link sets for refinement. Here
we do not require a previously known power of any link.

2) We design a new method to extract link sets sufficient
for adjustable power assignments from these candidate
link sets.

3) We employ the fact of fading metrics [13] to prove those
relevant results (Lemma 1 and Lemma 3). These results
are independent of any power assignment.

The main contributions are summarized as follows.

1) We characterize a kind of link set with a property ofpo-
tential feasibility, irrespective of any power assignment.
We provide a sufficient condition for the property, and
investigate rich features of it.

2) Based on these fundamental results, we discover some
intrinsic connections between the SINR-based and
graph-based interference models regarding the MWISL
problem. These connections enable us to utilize results

under graph-based models to design the following two
efficient scheduling algorithms for the physical interfer-
ence model.

3) For the problem with adjustable transmission power, we
present a sufficient condition for feasible power assign-
ments, and propose aO(g(E))-approximation algorithm
for MWISL with adjustable transmission power.

4) For the problem with fixed transmission power, we
design a method applicable to any fixed transmission
power case. It achievesO(g(E)) approximation when
the transmission power diversitylog ρ is a constant.
In general it achievesO(g(E) log ρ) approximation.
We further prove that the algorithm retainsO(g(E))
approximation for any length-monotone, sub-linear fixed
power assignment.

5) We conduct extensive simulations to verify the correct-
ness of our adjustable power assignment and evaluate
throughput performance of our proposed scheduling
algorithms in various network settings. Our simulation
results demonstrate correctness and performance effi-
ciency of our proposed algorithms. For the fixed power
case when we have a previous algorithm for comparison,
our proposed algorithm shows advance on throughput
performance.

The rest of the paper is organized as follows. Section II
introduces the network models and problem to be studied.
Section III exploits properties on distance separation forthe
SINR-based interference model. Based on these properties,
Section IV reveals the connections between the SINR-based
and graph-based interference. Section V and VI describe our
proposed algorithms for the case of adjustable and fixed
transmission power respectively. Section VII improves the
approximation ratios and discusses distributed implementation.
VIII evaluates our proposed algorithms through simulations.
Section IX reviews the related works. Section X concludes
the paper.

II. M ODELS AND PRELIMINARIES

A. Network model

We model a wireless network by a two-tuple(V,E), where
V denotes the set of nodes andE denotes the set of links.
We assume that all nodes are distributed in the Euclidean
plane. Each node with one radio can transmit or receive at
a time. Each directed linkli = (si, ti) ∈ E represents a
communication request from a sendersi to a receiverti. Let
d(u, v) denote the Euclidean distance between nodeu and
v, then the length of linkli is d(si, ti). The length of link
li satisfiesr ≤ d(si, ti) ≤ R, where r and R respectively
denote the shortest link length and the longest link length that
ensure a successful transmission. We assume thatr andR are
known for a given network, and letr = δR, 0 < δ ≤ 1. Taking
logarithm of1/δ, we getlength diversityg(E) = log (R/r) for
link setE [14]. We further assume that geographical position
of every node is known.

A set of links to be scheduled simultaneously must be an
independent set of links (ISL) regarding to the underlying
interference models. Such a set of links is also called afeasible
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TABLE I: Summary of notations
η reference loss factor κ path-loss exponent ξ ambient noise

σ SINR threshold R maximum link length r minimum link length

A
the Assouad (doubling) dimension

(=2 for the Euclidean plane)
ω

the largest number of ISDs

that an ISL can be partitioned
ǫ

a constant in(0, 1)

for the PTAS of MWISD

Pmax maximum transmission power Pmin minimum transmission power ρ ratio betweenPmax andPmin

δ ratio betweenr andR C a constant in doubling dimension definitioncup a constant upper bound ofci

scheduling set. Under the physical interference model, it is that
each link in the set fulfills the following SINR constraint,

SINRi
∆
=

p(li) · g(si, ti)
∑

lj∈S p(lj) · g(sj , ti) + ξ
≥ σ.

Here p(li) is the transmitting power of linkli, and the
power received byti at a distance ofd(si, ti) is p(li) ·
g(si, ti), whereg(si, ti) = min{η · d(si, ti)−κ, 1} is the path
gain from nodesi to ti. The constantη is the reference
loss factor, andκ is the path-loss exponent which satisfies
2 < κ < 5 generally.S is the set of links which simultaneously
transmit withli. The constantξ > 0 denotes the ambient noise,
and σ denotes certain threshold for correct decoding of the
wanted signals.

Typically, fixed transmission power is length-monotone (i.e.,
p(li) ≥ p(lj) wheneverd(si, ti) ≥ d(sj , tj)) and sub-linear
(i.e., p(li)/d(si, ti)κ ≤ p(lj)/d(sj , tj)

κ wheneverd(si, ti) ≥
d(sj , tj)) [7]. There are three length-monotone and sub-linear
fixed power assignments widely investigated in literature [7]
[15]. The first is the uniform power assignment, where every
link transmits at the same power level. The second is the linear
power assignment, wherep(li) is proportional tod(si, ti)κ.
The third is the mean power assignment, wherep(li) is
proportional to

√

d(si, ti)κ.
For a specific power assignmentP , we assume each link

transmits at a power levelp(li), satisfying that

Pmin ≤ p(li) ≤ Pmax.

HerePmax andPmin denote the maximum transmission power
and the minimum transmission power. Letρ = Pmax/Pmin,
and log ρ denotepower diversity. To ensure successful trans-
mission,Pmin must satisfyPmin ≥ σξrκ/η, even if interference
from all other concurrent transmissions is zero.

B. Problem definition

The maximum throughput link scheduling problem [5],
characterizes the supportable arrival rate vectors of links for
multihop wireless networks. The standard model is described
as follows. It assumes time-slotted and synchronized wireless
systems with a single frequency channel. All links are assumed
to have unit capacity (i.e., a link can transmit one packet with
unit length in one time slot). At the beginning of each time
slot, packets arrive at each link independently in a stationary
stochastic process with an average arrival rateλi. The vector−→
Y (T ) = {Yi(T )} denotes the number of packets arriving
at each link in time slotT . Every packet arrival process
Yi(T ) is assumed to be i.i.d over time. We also assume all

packet arrival processYi(T ) have bounded second moments
and they are bound byYmax, i.e., Yi(T ) ≤ Ymax, ∀li ∈ E.
Let a vector{0, 1}|E| denote a feasible schedule

−→
S (T ) at

each time slotT , where Si(T ) = 1 if link i is active in
time slot T and Si(T ) = 0 otherwise. Packets departure
transmitters of activated links at the end of time slots. Then,
the queue length(it is also referred to asweight or backlog)
vector

−→
Q(T ) = {Qi(T )} evolves according to the following

dynamics:
−→
Q(T + 1) = max{−→0 ,−→Q(T )−−→

S (T )}+−→
Y (T ).

Described by the set of arrival rate vectors under which
the system is stable (i.e., all queues are kept finite), the
throughput capacity(capacity region), is a major benchmark
on throughput performance. A scheduling policy isstable, if
for any arrival rate vector in its capacity region [16],

lim
T→∞

E[
−→
Q(T )] < ∞.

A throughput-optimallink scheduling algorithm can achieve
theoptimal capacity region, which is the union of the capacity
regions of all scheduling policies [17],

Λ ,
{−→
Y :

−→
Y 4 −→ϕ , for some−→ϕ ∈ Co(Ω)

}

.

Here4 denotes element-wise less inequality.Ω is the set of
all feasible maximal schedules onE, and Co(Ω) is the convex
hull of Ω.

Though we have already known that the policy of finding
a MWISL at every time slot achieves the optimal capacity
region, unfortunately, finding a MWISL itself is NP-hard
typically [2]. Thus we have to rely on approximation or
heuristic methods to develop sub-optimal/imperfect scheduling
algorithms running in polynomial time.

A sub-optimal scheduling policy[17] achieves a fraction
of the optimal capacity region, which is characterized by
efficiency ratioγ (0 < γ ≤ 1) , i.e.,

γ , sup
{

γ| the network is stable for all
−→
Y ∈ γΛ

}

.

A class of imperfect scheduling policyFγ [18] is to find
a set of links with a total weight that is at leastγ times of
the maximum possible weight, as illustrated in the proposition
bellow.

Proposition 1: ( [18]): Fix γ ∈ (0, 1]. If the user rates
−→
Y

lie strictly insideγΛ (i.e.,
−→
Y lies in the interior ofγΛ ), then

any imperfect scheduling policyFγ can stabilize the system.
Consequently, in the rest of the paper we focus on near

optimal solutions to the two following variants of MWISL
problem with the SINR-based physical interference constraint.
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Given a setL = {l1, l2, ..., ln} of links, at time slotT each
link li associates with a weightWi(T ) = Qi(T ), then

• MWISL problem with adjustable power is to find a set
of links S with maximum total weight, and then devise
a method to dynamically assign transmission power to
every link in S such thatS is feasible under SINR
constraint;

• MWISL problem with fixed power is to find a max-
imum weighted independent set of linksS regarding to
the predefined transmission power of every link.

III. PROPERTIES OF DISTANCE SEPARATION

Given a setL of links, let V (L) be the set of nodes
containing all senders and receivers of links inL. For any
nodev ∈ V (L), if it holds that

∑

w∈V (L)

Rκ

d(w, v)κ
≤ φ

whereφ is a constant, then we refer to such a set as aφ-
separation set. For convenience, we let the element1/d(v, v)κ

be zero.
We will show later that aφ-separation set has good potential

to be a feasible set. Since any two links of a feasible schedul-
ing set can not share a common node in a wireless network
with single channel and single radio, we also suppose that
links of a φ-separation set do not share common nodes. This
assumption does not influence our results. We now introduce
a sufficient condition for aφ-separation set.

Lemma 1:Given a setL of links, if the distance between
any two nodes ofV (L) is at leastd = θR, whereθ > 0 is a
constant, then for arbitrary nodev ∈ V (L), we have

∑

w∈V (L)

Rκ

d(w, v)κ
≤ φ,

whereφ = 22κ+1
√
3πκ

6(κ−2)θκ .
Proof: We leave the proof in Appendix A for a better

flow of the paper.
Through the above lemma, we further conclude the follow-

ing property for aφ-separation set.
Corollary 1: Given aφ-separation setL, if it satisfies that

any two nodes inV (L) have a mutual distance of at least
d = θR, then for any linkl = (si, ti) ∈ L, it holds that

∑

(sj ,tj)∈L

d(si, ti)
κ

d(sj , ti)κ
≤ φ,

∑

(sj ,tj)∈L

d(sj , tj)
κ

d(si, tj)κ
≤ φ,

∑

(sj ,tj)∈L

d(sj , tj)
κ

d(sj , ti)κ
≤ φ.

Proof: The results follow directly Lemma 1.
Lemma 2:A φ1-separation set can be partitioned into con-

stantly manyφ2-separation sets, whereφ1 > φ2.
Proof: The proof process is similar with Theorem 1 of

[3].

Algorithm 1 Bridging

Input: Set of LinksL = {l1, l2, ..., ln}.
1: for i = 1, ..., n do
2: Map li to a disk ai centered atsi with a radius of

α · d(si, ti) and a weight ofW ({li});
3: end for
4: Find a maximum weighted ISD out of the mapped disks;

5: Let D be the selected MWISD;
6: for j = 1, ..., |D| do
7: Map aj back tolj;
8: end for
9: Let LD be the set of links mapped back;

10: ReturnLD.

IV. B RIDGING THE SINR-BASED AND GRAPH-BASED

INTERFERENCE

Based on those properties of distance separation, we then
reveal some intrinsic connections between the SINR-based
and graph-based interference regarding the classical MWISL
problem. Through a subtle mapping between the links and
interference disks, we can obtain a set not only having the
property of distance separation, but also the set having an
weight of constant approximation to the optimal.

The bridging mechanism, shown in Algorithm 1, is designed
as follows. Given a setL of links, we map every linkli to a
disk ai. Each disk is centered at the sender ofli, with a radius
of α · d(si, ti) , α > 1. The disk also has the same weight as
that of li. A set of disks is independent if any pair of disks
in it do not intersect with each other. We select a maximum
weighted independent set of disks (MWISD) among the disks,
referred to asD. Each disk inD is mapped back to the original
link, and then these links compose a new setLD.

The above procedure gracefully connects the graph-based
interference models and SINR-based interference models. As
is known there are many exiting good approximations for
solving the MWISD problem (e.g., the PTAS in [1])1, while by
the bridging mechanism we can leverage these results to solve
the MWISL problem under the SINR constraint indirectly.
On one hand, by explicitly setting the radius greater than
the link length, it ensures that the candidate link set satisfies
the sufficient condition of aφ-separation set. An appreciate
φ-separation set is a latent independent set of links. On the
other hand, the selection of MWISD can preserve a constant-
approximation ratio to the optimal under the SINR constraint,
providing fundamentals to theoretical proofs in later sections.
The lemma below formally claims the result, irrespective of
any power assignment.

Lemma 3:Let L be an independent set of links with min-
imum link length ofr under the physical interference model,
thenL can be partitioned into at mostω independent sets of
disks with a radius ofα · d(si, ti). Hereω = O(1/δA).

1Other constant approximation algorithms on the MWISD problem are also
applicable, depending on the desired tradeoff between computation complexity
and approximation ratio. For example, we can also use other algorithms with
lower complexity and smaller constant approximation ratios.
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Proof: By the technique of signal strengthening [3], we
decompose the link setL into ⌈2 · 3κ/σ⌉2 disjoint sets, each
feasible with an SINR threshold ofσ′ = 3κ. We then prove
that each of the sets can be partitioned into constantly many
independent set of disks with a radius ofα · d(si, ti). For
convenience, we let3κ > σ, but we do not necessarily assume
3κ > σ, we later show that the lemma also holds when3κ ≤ σ.

Claim 1: [19] Considering any two distinct linksli =
(si, ti) , lj = (sj , tj) in one of the setsL′ fulfilling the
SINR thresholdσ′ = 3κ, the distance between any pair of
the involved nodessi , ti , sj , tj has to be at leastr for any
power setting.

It is obvious that the claim still holds when3κ ≤ σ, and
nodes inV (L′) have a mutual distance ofr at least.

We then prove that the corresponding disk of any link inL′

intersects constantly many disks of other links. We observe
that any pair of disks intersect if and only if the mutual
distance of their senders are less thanα·d(si, ti)+α·d(sj , tj).
We then get that no disks will intersect with other disks if the
distance of any two distinct senders is above2αR. Therefore,
we just need to show only a constant number of senders
located in the disk centered at any sender with a radius of
2αR.

We initially assume that setVs(L
′) consists of senders of all

links in L′. For any sendersi ∈ Vs(L
′), we define a following

set fulfilling,

V ′ =

{

sj ∈ Vs(L
′)|d(sj , si) ≤ 2αR

r/2
· r
2

}

.

It is obvious that|V ′| is the maximum possible number of
links whose disks may intersect with the disk of the given link
li. To prove it, we just need to apply the fact of fading metrics
and the packing bound once again.

By Claim 1, we have already known that the distance
between any pair of distinct senders is at leastr. This is, balls
of radiusr/2 centered at nodes inV ′ are fully contained in

B
(

si, (
2αR
r/2 + 1) · r

2

)

. It implies

|V ′| ≤ C

(

2αR

r/2
+ 1

)A

= C

(

4α

δ
+ 1

)A

,

and we get the number of disks which may intersect with the
same disk bounded.

ThusL can be at most partitioned into

ω = ⌈2 · 3κ/σ⌉2 · |V ′| = O(1/δA) = O(1/δ2)

subsets of links, the disks of which do not intersect mutually.
This finishes the proof.
Note that our proposed algorithm and results apply equally

to the bi-directional link case. In a bi-directional case, each
node is a sender and receiver. That is, for each bi-directional
link li with endpointsu andv, u getswu packets tov while v
getswv packets tou. We just need to change the previous one-
to-one mapping in Algorithm 1 to a one-to-two mapping. We
take link li as two directional links,(u, v) with a weight ofwu

and(v, u) with a weight ofwv. According to the mapping rules
in Algorithm 1, we get two distinct disks with the same radius
of 2‖li‖, one centered atu with a weight ofwu, the other
centered atv with a weight ofwv. This process just doubles
the number of candidate disks for computing of MWISD, but

does not influence the derivation of a constant-approximation
or logarithmic-approximation ratio for the optimal.

V. A PPROXIMATION ALGORITHMS WITH ADJUSTABLE

TRANSMISSION POWER

Now we utilize these fundamentals to develop solutions to
the MWISL with adjustable transmission power.

A. Adjustable power assignment

Given a feasible scheduling setL, to ensure feasibility, the
assigned powerp(li) for link li shall satisfy,

p(li) ≥ σ ·





ξ

η
d(si, ti)

κ +
∑

lj∈{L\li}

p(lj)
d(si, ti)

κ

d(sj , ti)κ



 .

That is, the assigned power shall compensate the interference
of ambient noise and the simultaneous transmissions. There-
fore, a natural method is to assign the power iteratively, and
compensate the interference respectively from ambient noise,
the previously assigned links and the later assigned links.For
a specific link, the suffered interference from ambient noise
and the previously assigned links is easy to calculate, the
question is to estimate an upper bound of the interference
from the later assigned links. Works in [19], [20] provide
hints for the problem. The basic idea is to assign a power
that is a scale of the summed interference from ambient
noise and the preassigned links. Then the interference from
the later assigned links can be actually looked upon as an
indirect interference of the noise and previously assignedlinks.
However, the sufficient conditions on the candidate link setfor
feasible power assignments differ greatly. We first introduce
the procedure of power assignment below.

Iterative power assignment.Consider a setL∗ of links, and
let l1, l2, ..., ln be a permutation of links inL∗. Note in this
procedure, we do not need to order the links in the ordering of
decreasing length as done in [19], [20]. It works for arbitrary
ordering of links as long as the given set satisfies the sufficient
condition we propose later. Assign the first linkl1 a power,

p(l1) = m
σξ

η
d(s1, t1)

κ.

The powers assigned to later links are iteratively set by

p(li) = mσd(si, ti)
κ

(

i−1
∑

j=1

p(lj)

d(sj , ti)κ
+

ξ

η

)

.

Here m relates to the distance separation property of the
given set. Certainly,m shall be greater than1 to cover
the interference from the ambient noise and the previously
assigned links. A strict bound ofm depends on the sufficient
conditions below.

Lemma 4:Let L∗ be aφ-separation set, ifL∗ fulfills the
two following conditions simultaneously:

1) for any two distinct links inL∗, i.e., li, lj , i 6= j, the
mutual distance between the senderssi, sj is at least
α · (d(si, ti) + d(sj , tj)),

2) the constantφ satisfies thatφ ≤ 1
4·βκσ(σ+1) , whereβ =

2α−1
α−1 .
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then the iterative power assignment generates a feasible power
assignment forL∗ if m is within
[

1−
√

1− 4 · βκφσ(σ + 1)

2 · βκφσ(σ + 1)
,
1 +

√

1− 4 · βκφσ(σ + 1)

2 · βκφσ(σ + 1)

]

.

Proof: The proof respectively treats the interference from
the ambient noise, the previously assigned links and the later
assigned links. It is equivalent to prove that

p(li) = mσd(si, ti)
κ

(

i−1
∑

j=1

p(lj)

d(sj , ti)κ
+

ξ

η

)

≥ σ ·
(

ξ

η
d(si, ti)

κ +
i−1
∑

j=1

p(lj)
d(si, ti)

κ

d(sj , ti)κ

+
n
∑

j=i+1

p(lj)
d(si, ti)

κ

d(sj , ti)κ

)

.

By rearranging the terms, we just need to show that the
interference from the later assigned links get bounded by,

n
∑

j=i+1

p(lj)

d(sj , ti)κ
≤ (m− 1)

(

i−1
∑

j=1

p(lj)

d(sj , ti)κ
+

ξ

η

)

=
m− 1

mσ
· p(li)

d(si, ti)κ
.

As we mentioned previously, the basic idea of the proof is
to take the interference from the later assigned links as the
indirect effect of the interference from the previously added.
A crucial claim to bound the indirect interference is as follows.

For anyi andk within max{i, k} < n,

n
∑

j=max{i,k}

d(sj , tj)
κ · d(sk, ti)κ

d(sk, tj)κ · d(sj , ti)κ
≤
(

2α− 1

α− 1

)κ

· φ.

From the first condition ofL∗, we can get thatd(sk, tj) >
(α− 1) · d(sj , tj), since

d(sk, tj) ≥ d(sk, sj)− d(sj , tj)

≥ α · (d(sk, tk) + d(sj , tj))− d(sj , tj)

= α · d(sk, tk) + (α− 1) · d(sj , tj).

Similarly, we get thatd(sj , ti) > (α− 1)d(sj , tj) by

d(sj , ti) ≥ d(sj , si)− d(si, ti)

≥ α · (d(si, ti) + d(sj , tj))− d(si, ti)

= α · d(sj , tj) + (α− 1)d(si, ti)

> (α− 1)d(sj , tj).

Having the two inequalities, it then follows,

n
∑

j=max{i,k}

d(sj , tj)
κ · d(sk, ti)κ

d(sk, tj)κ · d(sj , ti)κ

≤
n
∑

j=max{i,k}

d(sj , tj)
κ · (d(sk, tj) + d(sj , tj) + d(sj , ti))

κ

d(sk, tj)κ · d(sj , ti)κ

≤
n
∑

j=max{i,k}

d(sj, tj)
κ ·
(

d(sk, tj) +
1
2
d(sj , tj)

d(sk, tj) · d(sj , ti)
+

d(sj , ti) +
1
2
d(sj , tj)

d(sk, tj) · d(sj, ti)

)κ

≤
n
∑

j=max{i,k}

d(sj , tj)
κ ·
(

d(sk, tj) +
1

2(α−1)
d(sk, tj)

d(sk, tj) · d(sj , ti)
+

d(sj , ti) +
1

2(α−1)
d(sj , ti)

d(sk, tj) · d(sj , ti)

)κ

≤
n
∑

j=max{i,k}

(

2α− 1

2(α− 1)

)κ

·
(

d(sj , tj)

d(sj , ti)
+

d(sj , tj)

d(sk, tj)

)κ

≤
n
∑

j=max{i,k}

(

2α− 1

2(α− 1)

)κ

2κ−1 ·
[(

d(sj , tj)

d(sj , ti)

)κ

+

(

d(sj , tj)

d(sk, tj)

)κ]

≤ (2α− 1)κ

2(α− 1)κ





n
∑

j=max{i,k}

(

d(sj , tj)

d(sj , ti)

)κ

+
n
∑

j=max{i,k}

(

d(sj , tj)

d(sk, tj)

)κ





≤
(

2α− 1

α− 1

)κ

φ .

The last third inequality results from the generalized mean
inequality (cf. [20]). The last step is built on Corollary 1.For
brevity, we let 2α−1

α−1 = β.
Next we analyze the upper bound of the interference from

the later assigned links.

n
∑

j=i+1

p(lj)

d(sj , ti)κ

=
n
∑

j=i+1

mσ

(

j−1
∑

k=1

p(lk) · d(sj , tj)κ
d(sk, tj)κ · d(sj , ti)κ

+
ξ

η

d(sj , tj)
κ

d(sj , ti)κ

)

= mσ

(

n
∑

j=i+1

j−1
∑

k=1

p(lk) · d(sj , tj)κ
d(sk, tj)κ · d(sj , ti)κ

+
ξ

η

n
∑

j=i+1

d(sj, tj)
κ

d(sj , ti)κ

)

≤ mσ

n
∑

j=i+1

j−1
∑

k=1

p(lk) · d(sj , tj)κ
d(sk, tj)κ · d(sj , ti)κ

+mσφ
ξ

η
.

The last inequality bases on the third inequality in Corollary
1. We then focus on the first term of the above inequality, by
rearranging the sums we get

mσ
n
∑

j=i+1

j−1
∑

k=1

p(lk) · d(sj, tj)κ
d(sk, tj)κ · d(sj , ti)κ

≤ mσ

n
∑

j=i+1

i
∑

k=1

p(lk) · d(sj, tj)κ
d(sk, tj)κ · d(sj , ti)κ

+

mσ
n
∑

j=i+1

n
∑

k=i+1

p(lk) · d(sj , tj)κ
d(sk, tj)κ · d(sj , ti)κ

= mσ
i
∑

k=1

n
∑

j=i+1

p(lk) · d(sj, tj)κ
d(sk, tj)κ · d(sj , ti)κ

+

mσ
n
∑

k=i+1

n
∑

j=i+1

p(lk) · d(sj , tj)κ
d(sk, tj)κ · d(sj , ti)κ

= mσ
i
∑

k=1

p(lk)

d(sk, ti)κ

n
∑

j=i+1

d(sk, ti)
κ · d(sj , tj)κ

d(sk, tj)κ · d(sj , ti)κ
+

mσ

n
∑

k=i+1

p(lk)

d(sk, ti)κ

n
∑

j=i+1

d(sk, ti)
κ · d(sj , tj)κ

d(sk, tj)κ · d(sj , ti)κ

≤ mσ

i
∑

k=1

p(lk) · βκφ

d(sk, ti)κ
+mσ

n
∑

k=i+1

p(lk) · βκφ

d(sk, ti)κ
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≤ mσβκφ

i−1
∑

k=1

p(lk)

d(sk, ti)κ
+mσβκφ

p(li)

d(si, ti)κ
+

mσβκφ

n
∑

k=i+1

p(lk)

d(sk, ti)κ

= (1 +mσ)βκφ
p(li)

d(si, ti)κ
−mσβκφ

ξ

η
+

mσβκφ

n
∑

k=i+1

p(lk)

d(sk, ti)κ
.

Thus we can surely get a bounded interference by,
n
∑

j=i+1

p(lj)

d(sj , ti)κ

≤ (1 +mσ)βκφ
p(li)

d(si, ti)κ
−mσβκφ

ξ

η
+

mσβκφ

n
∑

k=i+1

p(lk)

d(sk, ti)κ
+mσφ

ξ

η

≤ (1 +mσ)βκφ
p(li)

d(si, ti)κ
+mσβκφ

n
∑

k=i+1

p(lk)

d(sk, ti)κ

≤ (1 +mσ)βκφ

1−mσβκφ
· p(li)

d(si, ti)κ
,

becausemσβκφ ≤ 1
1+σ < 1 whenm in

[

1−
√

1− 4 · βκφσ(σ + 1)

2 · βκφσ(σ + 1)
,
1 +

√

1− 4 · βκφσ(σ + 1)

2 · βκφσ(σ + 1)

]

.

Finally we can confirm that whenm lies in the region,
combiningφ ≤ 1

4·βκσ(σ+1) , it exactly ensures the following
inequality holds, which is also the final objective of this proof,

n
∑

j=i+1

p(lj)

d(sj , ti)κ
≤ (1 +mσ)βκφ

1−mσβκφ
· p(li)

d(si, ti)κ

≤ m− 1

mσ
· p(li)

d(si, ti)κ
.

This finishes the proof.
Lemma 5:Given aφ-separation set fulfilling the sufficient

conditions, using the iterative power assignment, the assigned
power has an upper bound of

Pup
max =

mσξRκ

(1−mσφ)η
.

Proof: From Lemma 4, we havemσφβκ < 1. We then
prove by induction. For the first assigned link, it holds that

p(l1) =
mσξ

η
d(s1, t1)

κ ≤ mσξ

η
Rκ = (1−mσφ)Pup

max.

If for any later assigned linkli, i > 1, p(li) ≤ Pmax, then
for li+1 we still have

p(li+1) = mσd(si+1, ti+1)
κ

(

i
∑

j=1

p(lj)

d(sj , ti+1)κ
+

ξ

η

)

≤ mσφPup
max + (1−mσφ)Pup

max = Pup
max.

This finishes the proof.
Remember thatPmax refers to the maximum transmission

power of all links, thus it also satisfies thatPmax ≤ Pup
max.

Algorithm 2 Approximation algorithm with adjustable power

Input: Set of LinksE = {l1, l2, ..., l|E|}.
1: PreprocessE using the Bridging algorithm and letLD be

the returned result;
2: RefineLD to a collection ofφ∗-separation sets withφ∗ =

1
4·βκσ(σ+1) by the first-fit algorithm in proof of Lemma 2;

3: Select the most weighted set from the collection;
4: Let L∗

D = {l∗1 , l∗2, ..., l∗n} be the resulted set;
5: Assign power to each link ofL∗

D by the iterative power
assignment withm = 2;

6: ReturnL∗
D with assigned powers.

B. Approximation algorithm

Now we describe our proposed algorithm for MWISL with
adjustable transmission power. The pseudo codes are shown
in Algorithm 2.

Theorem 1:Algorithm 2 for MWISL with adjustable trans-
mission power outputs a feasible scheduling set having a
weight ofO(1/δ2(κ+1)) approximating to the optimal.

Proof: We first verify the correctness of the algorithm.
It is obvious thatL∗

D fulfills the sufficient conditions for
a feasible power assignment. Andφ∗ = 1

4·βκσ(σ+1) makes
m = 2 exactly. Thus, the iterative power assignment generates
a feasible power assignment forL∗

D.
Then we prove the theoretical bound for the algorithm. We

use W (L) to denote the summed weight of a setL, and
W (OPT ) to denote the optimum.

The nodes of all links inLD have a smallest mutual distance
of r = δR. Thus, according to Lemma 1,LD is aφ′-separation
set, where

φ′ =
22κ+1

√
3πκ

6(κ− 2)δκ
.

Next, by Lemma 2,LD can be partitioned into at mostω1
φ∗-separation sets, whereω1 is a constant upper bounded by

ω1 = 4 · ⌈ φ
′2

φ∗2
⌉

≤ 4 ·
[

22κ+1
√
3πκ

6(κ− 2)δκ
· 4 · βκσ(σ + 1)

]2

= 42κ+3π2β2κ

[

κσ(σ + 1)

δκ(κ− 2)

]2

/3.

ForL∗
D is the most weighted one among the collection, we

further have
ω1 ·W (L∗

D) ≥ W (LD).

By Lemma 3, any feasible set of links can be partitioned into
at mostω ISDs, so the optimal MWISL has a weight at most
ω ·W (LD)/(1− ǫ). Here1/(1− ǫ) is the approximation ratio
of Algorithm 2 in [1] for the MWISD problem.

Consequently, we get
ωω1

1− ǫ
W (L∗

D) ≥ W (OPT ).

This completes the proof.
We then analyze the time complexity of Algorithm 2.

The algorithm mainly consists of the bridging process, the
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refinement process and power assignment part. The refine-
ment process and the iterative power assignments respectively
costO(|E|) rounds. The complexity of the bridging process
depends on the graph-based algorithm for MWISD problem.
If we utilize PTAS [1] in this part, the complexity would be
exponential of|E|. It is ok to small-scale networks, but not ap-
plicable to large-scale networks. To improve efficiency, wecan
choose other simple constant-approximation algorithms with
some sacrifice of approximation ratios. For instance, we can
use greedy maximal schedule to find MWISD in complexity
of O(|E| log(|E|). Then the complexity of Algorithm 2 will
be reduced toO(|E| log(|E|)).

VI. A PPROXIMATION ALGORITHM WITH FIXED

TRANSMISSION POWER

In this section we study the problem with fixed transmission
power. Similarly with Algorithm 2, Algorithm 3 is still built
on our proposed properties and bridge. We first list several
existing results which facilitate a simple proof of our proposed
algorithm.

Definition 1: (affectance [3]) The relative interference of
link lj on li is the increase caused bylj in the inverse of the
SINR at li, namely

rlj (li) =
p(lj) · g(sj, ti)
p(li) · g(si, ti)

.

For convenience, definerli(li) = 0. Let

ci =
σ

1− σξ/ (p(li) · g(si, ti))
indicate the extent to which the ambient noise approaches the

required signal at receiverti. Sinceci is a constant related to
the properties of linkli, we assume a constant upper bound
of ci for all links, i.e.,

cup = max
li∈E

{ci} ≤ hσ, h > 1.

This is a fairly reasonable assumption. It simply says that in
the absence of other concurrent transmissions, the transmission
succeeds comfortably. The affectance of linkli, caused by a
setS of links that transmit simultaneously withli, is the sum
of relative interference of the links inS on li, scaled byci, or

aS(li) = ci ·
∑

lj∈S

rlj (li).

For a single linklj, we use the shorthandaj(li) = alj (li).
Definition 2: (τ -signal set [3]) We define aτ -signal set to

be one where the affectance of any link is at most1/τ . Clearly,
any ISL is a 1-signal set.

Lemma 6:L∗
D is a τ -signal set, and1/τ is bounded above

by cupρφ whenρ is a constant and2cupφ otherwise.
Proof: The affectance of each linkli ∈ L∗

D satisfies,

aL∗

D
(li) ≤ aV (LD)(ti)

≤ ci ·
∑

w∈V (LD)

(

p(lw)

p(li)
· d(si, ti)

κ

d(w, ti)κ

)

≤ cup ·
∑

w∈V (LD)

(

p(lw)

p(li)
· Rκ

d(w, ti)κ

)

.

If ρ is a constant then,

aL∗

D
(li) ≤ cupρφ,

Algorithm 3 Approximation algorithm with fixed power

Input: Set of LinksE = {l1, l2, ..., l|E|}.
1: PreprocessE using the Bridging mechanism and letLD

be the output;
2: if ρ is not a constantthen
3: DivideLD into log ρ sets and choose the most weighted

set asL∗
D;

4: else
5: let L∗

D = LD;
6: end if
7: RefineL∗

D to a collection of ISLs using a simple first-fit
greedy method;

8: Select an ISL with the largest weight asS;
9: return S.

otherwise,
aL∗

D
(li) ≤ 2cupφ,

whereφ = 22κ+1
√
3πκ

6(κ−2)δκ by Lemma 1.
Therefore, we have1/τ bounded bycupρφ when ρ is a

constant and2cupφ otherwise.
Next we give the approximation ratio for our algorithm.
Theorem 2:Algorithm 3 achieves an approximation ratio of

O(1/δ2(κ+1)) for the MWISL problem with fixed transmission
power whenρ is a constant, and an approximation ratio of
O(log ρ/δ2(κ+1)) generally.

Proof: By the technique of signal strengthening [3],L∗
D

can be partitioned into4/τ2 ISLs at most, thus
4

τ 2
·W (S) ≥ W (L∗

D).

By Algorithm 3, we have

W (L∗
D) = W (LD)

if ρ is a constant, or

log ρ ·W (L∗
D) ≥ W (LD)

since the most weighted set is selected asL∗
D.

Through Lemma 3, the optimal MWISL has a weight at
mostω ·W (LD)/(1− ǫ).

Hence, whenρ is a constant we have,
4ω

(1− ǫ)τ 2
·W (S) ≥ W (OPT ), where

1

τ
= cupρφ,

and whenρ is not a constant we have,
4ω log ρ

(1− ǫ)τ 2
·W (S) ≥ W (OPT ), where

1

τ
= 2cupφ.

Theorem 3:For any sub-linear and length-monotone fixed
power assignment, e.g., the uniform power assignment, the
linear power assignment, and the mean power assignment,
Algorithm 3 has an approximation factor ofO(1/δ2(κ+1)).

Proof: Considering any two distinct links,li and lj, we
assumed(si, ti) > d(sj , tj) for brevity, then we have

p(li)/p(lj) < d(si, ti)
κ/d(sj , tj)

κ

by the sub-linear feature. Thus we further getρ bounded by,

ρ = Pmax/Pmin < Rκ/rκ.

Immediately, we also get1/τ = cupφ/δκ for the correspond-
ing approximation ratio 4·ω

(1−ǫ)τ2 .
The complexity of Algorithm 3 is the same as Algorithm 2.



9

VII. I MPROVING THE ALGORITHMS

A. Improving approximation ratios

For both Algorithm 2 and Algorithm 3, the approximation
ratios polynomial in1/δ = R/r could be further improved
to logarithmic ofR/r by a slight modification of the original
algorithms. We then present the modification and theoretical
analysis.

The modification is that we shall initially group the input
links according to link diversity, and then choose the most
weighted group of links as input of the two original algorithms.
Let g be a constant, and links with length in[gj−1r, gjr)
belong to the same groupGj . Then we totally getg(E) groups
of links. Let Gj∗ be the most weighted group and input of
Algorithm 2 and3, then we have,

Theorem 4:Algorithm 2 has an approximation ratio of
O(g(E)); Algorithm 3 has an approximation ofO(g(E))
whenρ is a constant andO(g(E) log ρ) otherwise.

Proof: Please note that for links inGj∗ , the ratio between
the longest links and shortest links becomes the constantg.
The factor1/δ contained in previous results is then replaced
by g. We give the proof of Algorithm 2. LetS be the output,
then,

O(1) ·W (S) ≥ W (Gj∗ ).

SinceGj∗ is the most weighted group, we have,

W (Gj∗) ≥ g(E) ·W (E) ≥ g(E) ·W (OPT ).

The proof for Algorithm 3 is similar.
We also get an improved result under length-monotone, sub-
linear fixed power assignments.

Lemma 7:Algorithm 3 achievesO(g(E)) approximation
ratio for any length-monotone, sub-linear fixed power assign-
ment.

We then calculate some numeral results on these approxi-
mation ratios. Considering a typical wireless sensor network,
we haveR = 60 and r = 5. Let σ = 3κ, κ = 3. If we
set α = 2, g = 2 and use PTAS in the bridging process,
then we haveω ≈ 44. For the adjustable power assignment,
the ratio is around1024 · 124κ+3. For the uniform power
assignment, letcup = 2, and the approximation ratio is around
43κ+7. The computed approximation ratio for uniform power
assignment is much better than adjustable power case. The
larger approximation ratio for the adjustable power case is
mainly caused by the constraint on a small value ofφ∗.

B. Distributed implementation

We then introduce how to implement distributed scheduling
using our proposed algorithms. Our previous works have de-
veloped localized algorithms for the problem under the linear
power setting and uniform power setting [8] [21]. The basic
idea is that of partitioning the plane into super-subsquares of
lengthK cells, and performing centralized local scheduling in
subsquares inside these super-subsquares. Each subsquarehas
of length (K − 2M) cells–separating each local scheduling
set, to limit the interference from other super-subsquares.
The partitions are subsequently shifted so that all links can
participate in the scheduling process. To guarantee a globally

feasible scheduling set consisting of all local schedulingset,
we shall carefully set the distance of disjoint subsquares,
i.e., the value ofM . This could be derived using a similar
method in [8]. To provide theoretical guarantee for distributed
implementation, we shall guarantee that the cardinality ofthese
local scheduling set are bounded by a constant from above.
Obviously the local scheduling sets produced by algorithmsin
this paper satisfy this condition since the number of nodes in
the scheduling set are bounded by a constant after an initial
partition.

VIII. S IMULATIONS

In this section we evaluate performance of our proposed
algorithms (Algorithm 2 and Algorithm 3) through simulation
experiments. The throughput performance of scheduling algo-
rithms is often measured by the total number of unscheduled
packets, which is also termed the total backlog. Generally,
the total backlog fluctuates slightly in a region if the arrival
rate vector lies in the achievable capacity region of a link
scheduling algorithm. Inversely, the total backlog increases
dramatically if the arrival rate vector exceeds the achievable
capacity region. If the total backlog increases unboundedly to
infinity, the network will become unstable.

In the following simulations, we will evaluate each algo-
rithm in two network settings. One uses a randomly generated
network topology and the other uses a real network topology
from the CitySee project. In the random network topology,
we randomly select20 links as input from a network with
100 nodes, half of which as senders randomly located on a
plane with size100 × 100 units, the other half as receivers
positioned uniformly at random inside disks of radiusR = 5
around each of the senders. The minimum length of links is
then set asr = 1. For the other setting, the network topology
is part of the topology of the Citysee wireless sensor network,
which is deployed for environment monitoring in the City
Wuxi, China. The topology we use is shown in Fig. 1. (It
uses the Cartesian coordinate system that is transformed from
the geodetic coordinate system). It contains446 nodes in an
1000m × 1250m area. The maximum transmission range of
the nodes outdoor is100 meters. A link of such a large length
is easy to fail in fixed power settings, thus we set the largest
link length to be60 meters. We set the minimum length of
links as10 meters.
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3.4846

3.4848

3.485

3.4852

3.4854

3.4856
x 10

6

X range (meter)

Y
 r

an
ge

 (
m

et
er

)

Fig. 1: Topology of the Citysee wireless sensor Network
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Other common settings are as follows. The path loss expo-
nent is set to be3 and the SINR threshold is10. Packets arrive
at each link independently according to a Poisson process with
the same average arrival rateλ. Initially, we assign each link
k packets wherek is randomly chosen from[100, 300].

A. Algorithm 2 with adjustable power

Next we present simulation results for Algorithm 2 with
adjustable powers. We evaluate the throughput performanceof
Algorithm 2, and verify correctness of the adjustable power
assignment process.

We first present the throughput performance of Algorithm 2
under the random network topology. We plot three figures to
evaluate the maximum supportable average arrival rate in Fig.
2. We first study the fluctuation of the total backlog when the
arrival rate increases from0 to the maximum link capacity
of 1. The increasing step is set to be0.1. It will give us
an rough approximation of the achievable capacity region by
link scheduling algorithms. Fig. 2(a) illustrates the trend of
the total backlog at time slot100000 as the average arrival
rate increases. Fig. 2(b) zooms in the region of[0.1, 0.2] in
Fig. 2(a). It shows that the total backlog keeps stable around
0.185. We then plot the fluctuation of the total backlog from
time slot0 to time slot100000 under the average arrival rate
0.185. In Fig. 2(c) it shows that the total backlog decreases
rapidly at the beginning, and then keeps stable in[600, 2000].
It indicates that Algorithm 2 can still support an average
arrival rate of0.185. Fig. 2(c) also illustrates the results when
the average arrival rate is0.190, 0.195 and 0.20. The total
backlog under0.195 still converges at a stable region, but it
can not be stabilized under0.20. After an initial decrease, the
total backlog for the average arrival rate0.20 increases nearly
linearly since time slot10000. Thus we infer that Algorithm
2 can serve an maximum average arrival rate around0.195
under the random network topology.

Fig. 3 presents the assigned powers at different time slots
for the random network setting. It respectively shows the
maximum assigned power, the minimum assigned power and
the average power per activated link at the selected time slots.
The maximum assigned power is no greater than20, much
smaller than the theoretical upper bound by Lemma5 ( The
theoretical upper bound is143 in our setting). This verifies
our theoretical analysis.
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Fig. 3: Power at different time slot under the random network
topology

We have also done the similar simulations and analysis
for the Citysee network topology. The results on throughput

performance and power assignments are shown in Fig. 4, Fig.
5. Similarly, combining the three subgraphs of Fig. 4, we can
conclude that the maximum average arrival rate that Algorithm
2 achieves is0.01 under the Citysee network setting. We
then make some explanations that why the maximum average
arrival rate takes such a low value. According to the classical
results in [22], an arbitrary wireless network can not provide
an average throughput more thanO(1/log |V |) if we use
unit capacity. Thus we can roughly approximate that the
optimal value is in the order of0.047 for the Citysee network.
The comparison indicates that Algorithm 2 perform nearly
optimally.
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Fig. 5: Power at different time slot under the Citysee topology

B. Algorithm 3 with fixed power

Fixed power assignments include lots of variants. It is
difficult to conduct a comparative experiment for all fixed
power settings, there being no obvious previous algorithms
to compare it with. Here we focus on throughput performance
under a commonly used uniform power assignment. By The-
orem 2, Algorithm 3 has best theoretical performance under
the uniform power assignment because of the smallest power
diversity among all fixed power assignments. We compare
our algorithm with a logarithmic approximation algorithm [9],
and the simple greedy maximal schedules [4] we can do
comparison with it.

The algorithm in [9] works as follows. First it removes the
least weighted links. Next it partitions the remaining links
into log(∆) groups according to their weights.∆ is the ratio
of the maximum weight and the minimum weight among
the remaining links. For each group, it finds a maximum
independent set of links (MISL) by a constant-approximation
algorithm. Then the most weighted MISL of thelog(∆)
MISLs is returned as the final result. We call this algorithm
Weight for brevity.

The greedy algorithm works as follows. First it orders links
in a decreasing order of weight. Going through the links, it
choose the most weighted link to the scheduling set. If the
newly added link makes the scheduling set unfeasible, it will
remove this link and turn to the next one. The process repeats
until no links can be added. We refer to it as Greedy in the
following paper.

We set the same series of simulations as we do for Al-
gorithm 2. The simulation results using the random network
topology is shown in Fig. 6 and Fig. 7, and the simulation
results using the Citysee network topology shown in Fig. 8
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Fig. 2: Capacity region of Algorithm 2 under the random network topology
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Fig. 4: Capacity region of Algorithm 2 under the Citysee topology
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Fig. 7: Achievable capacity region by Weight, Greedy, and Algorithm 3 under the random network topology
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Fig. 6: Comparison between Weight, Greedy, and Algorithm
3 at different arrival rates under the random network topology

and Fig. 9. Algorithm 3 outperforms Weight and Greedy under
the random topology. Under the Citysee topology, it still has
better performance than Weight, and the same performance as
Greedy.
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Fig. 8: Comparison between Weight, Greedy, and Algorithm
3 at different arrival rates under the Citysee topology

IX. RELATED WORKS

The link scheduling problem and its variants have been
extensively studied in literature. Early works are mostly on
graph-based models that simplify the complexity of wireless
communication [23], [24], [16], [25], [26], [17], [27], [28]. In
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Fig. 9: Achievable capacity region by Weight, Greedy, and Algorithm 3 under the Citysee topology

the seminal work [5], Tassiulas and Ephremides prove that the
celebrated maximum weighted scheduling (MWS) achieves
the optimal throughput capacity. Since finding a MWS is NP-
hard in general interference models, a variety of simpler and/or
suboptimal scheduling algorithms are proposed to achieve full
or fractional optimal throughput capacity.

Under the physical interference model, Chafekaret al. [29]
make a first attempt on logarithmic-approximation algorithms
for the problem with the uniform and linear power assign-
ments. However, the attained bound is not relative to the
original optimal throughput capacity, but to the optimal value
by using slightly smaller power levels. [4] analyzes the perfor-
mance of GMS under the physical model with uniform power
assignment, and employs a technique named “interference
localization” to prevent the achievable performance vanishing.
Xu et al. [6] firstly get a constant-approximation algorithm
for the MWISL problem with linear power assignment. A
subsequent work gains a logarithmic-approximation factor
related to ratio between the maximum and minimum weight
for the uniform case [9]. Most recently, Halldórsson and Mitra
also claim a constant-approximation ratio for the linear power
setting, and poly-logarithmic approximation ratios dependent
on size of link set for other length-monotone, sub-linear fixed
power settings [7]. The proposed algorithms utilize a LP based
approach to find a link set with constant affectance, and then
refine the set into a feasible scheduling set. Nevertheless,they
have to rely upon a huge constant (the exact value is not
specified in [7]) to upper bound the affectance, which results
in a quite small approximation ratio in the order of the square
of the huge constant.

All these aforementioned algorithms are centralized, some
works also develop distributed link scheduling algorithms
for practical applications. Zhouet al. [8] firstly propose a
distributed algorithm with a constant-approximation ratio for
the linear power case, and a randomized vision is also seen in
[30]. [11] very recently proposed a low complexity scheduling
algorithm for a special fixed power assignment where trans-
mission powers of two links with almost equal length are
within a constant from each other. [31] proposes a CSMA-
type distributed link scheduling approach with throughput
optimality for the uniform power case. However, this approach
has high communication overhead

A quite related work [32] studies the distributed throughput
maximization problem via random power allocation under the
SINR-RATE based interference model. In such a interference

model, the capacity of a link is not a fixed value(e.g.,1 if
SINR threshold satisfied and0 otherwise), but determined by
the SINR value at the receiver (i.e.,log(1 + SINRi)). For
simplification, it assumes static path gain over time, whereas
the gain is actually determined by concurrent transmissions
and thus varies over time. Consequently, the problem studied
in [32] does not include an ISL problem with complex
interference constraints. The solution bases on a pick-and-
compare approach [16] to asymptotically achieve the optimal.
However, the probability of this near-optimal approach is quite
low (i.e., the probability is4N−N whereN is the number of
nodes). The simulation results in [32] show that it can just
stabilize an arrive rate of 0.03 under a random network of 16
nodes, while we can support an maximum arrival rate of0.37
under a random network of 20 Nodes.

Two related problems on capacity are the capacity maxi-
mization problem which seeks a maximum number of inde-
pendent links of a given set of links, and the minimum length
scheduling problem which seeks a partition of a given set of
links into the fewest independent sets. We make a brief review
on the problems under the context of physical interference.

For the capacity maximization problem, [33] and [19]
respectively achieve a constant-approximation factor with the
oblivious power and power control. However, to ignore the
influence of ambient noise, [19] has to assume arbitrary
transmission power for each link. This assumption is not
reasonable in practice. Motivated by this, Wanet al. [15] then
get a constant-approximation algorithm which does not assume
unbounded maximum transmission power. A distributed imple-
mentation with a constant-approximation factor is proposed in
[34] which implicitly assumes the uniform power assignment.
The algorithm makes a strong assumption that all nodes have
physical carrier sensing capability and can detect if the sensed
signal exceeds a threshold. This assumption undoubtedly
reduces the difficulties because the main challenge of the
original problem is to locally approximate and bound the
unknown global interference.

For the minimum length scheduling problem, the overall
state-of-the-art retains in the order of logarithm under the
uniform power setting [3] [10] [35]. In [3], an attempt on
a constant-approximation algorithm for this problem with uni-
form power assignment fails, and the claim has been retracted
by the authors recently.
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X. CONCLUSION

We tackle the link scheduling problem for throughput max-
imization under the physical interference model. We solve
two variants of the problem by developing approximation
algorithms for MWISL problem in a unified scheme. Our
algorithms are based on our discovery of intrinsic connections
between the SINR-based and graph-based interference. Our
results are applicable to the minimum length scheduling prob-
lem and the maximum multiflow problem from an algorithmic
reduction view [10].

Many problems remain open and are left for future works.
Our current approximation ratios are related to link diversity
and power diversity. It is still open that whether there exists
constant approximation independent of these network parame-
ters. Meanwhile, these results in this work are proved to hold
in a special fading metric space (the Euclidean plane). It is
unknown whether the same results are attainable in general
metric spaces. Moreover, all aforementioned challenges are
limited to the objective of long-term throughput maximiza-
tion. Other SINR-constrained link scheduling problem with
different optimization objectives, or effective multihopflow
scheduling with these optimization objectives, still needbetter
solutions.

REFERENCES

[1] X.-Y. Li and Y. Wang, “Simple approximation algorithms and PTASs
for various problems in wireless ad hoc networks,”Journal of Parallel
and Distributed Computing, vol. 66, pp. 515–530, 2006.

[2] G. Sharma, R. Mazumdar, and N. Shroff, “On the complexityof
scheduling in wireless networks,” inProc. ACM MobiCom, 2006, pp.
227–238.
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APPENDIX

A. Proof of Lemma 1

Proof: Our proof bases on the fact of fading metrics [13].
In fading metrics the path loss exponentκ must be strictly
greater than the doubling dimension of the metric, and the
doubling dimensionA = n for the n−dimensional Euclidean
space. We have assumed the Euclidean plane and the path
loss exponentκ > 2, obviously these assumptions construct
a fading metric of doubling dimensionA = 2. For the fading
metric of doubling dimensionA, there are at mostCgA balls
of radiusZ inside a ball of radiusgZ for any g > 0. Here
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C = 1
6π

√
3 ≈ 0.907 for the Euclidean plane. A ball of radius

µ, centered atv is defined byB(v, µ).
Let Xg = {w ∈ V (L)|d(w, v) < gd/2} for g > 0. The

distance between any two nodes inV (L) is at leastd. It
implies B(v, (g + 1)d/2) contains all balls of radius ofd/
2 centered at the nodes inXg and these balls do not intersect.
It is obvious that|X2| = 0 for the smallest mutual distance
between any pair of nodes isd. Then for each nodev ∈ V (L),
it holds that,
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∑
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∑
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·

∞
∑
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∞
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