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Abstract—Wireless networks with the consideration of social relationships among network nodes are highly appealing for lots of
important data communication services. Ensuring the security of such networks is of great importance to facilitate their applications in
supporting future social-based services with strong security guarantee. This paper explores the physical layer security-based secure
communication in a finite Poisson network with social friendships among nodes, for which a social friendship-based cooperative
jamming scheme is proposed. The jamming scheme consists of a Local Friendship Circle (LFC) and a Long-range Friendship Annulus
(LFA), where all legitimate nodes in the LFC serve as jammers, but the legitimate nodes in the LFA are selected as jammers through
three location-based policies. To understand both the security and reliability performance of the proposed jamming scheme, we first
model the sum interference at any location in the network by deriving its Laplace transform under two typical path loss scenarios. With
the help of the interference Laplace transform results, we then derive the exact expression for the transmission outage probability (TOP)
and determine both the upper and lower bounds on the secrecy outage probability (SOP), such that the overall outage performances of
the proposed jamming scheme can be depicted. Finally, we present extensive numerical results to validate the theoretical analysis of
TOP and SOP and also to illustrate the impacts of the friendship-based cooperative jamming on the network performances.

Index Terms—Poisson networks, social relationship, physical layer security, cooperative jamming.

✦

1 INTRODUCTION

DUE to the rapid proliferation of smartphones, tablets
and PDAs, hand-held devices have been an essential

integral part of wireless networks. As these devices are
usually carried by human beings, wireless networks, such
as mobile ad hoc networks [1], device-to-device (D2D)
communications [2] and delay-tolerant networks [3], ex-
hibit some social behaviors (e.g., friendship) nowadays.
Thus, wireless networks with the consideration of social
relationships among network nodes are highly appealing
for lots of important data communication services, like
content distribution, data sharing and data dissemination
[4]. The inherent open nature of wireless medium makes
the information exchange over wireless channels susceptible
to eavesdropping attacks from unauthorized users, posing
a significant threat to the security of wireless networks
[5]. As a result, ensuring the security of such networks
is of great importance to facilitate their applications in
supporting future social-based services with strong security
guarantee, like mobile online social application, location-
based application and autonomous mobile application [6].

The traditional solutions to ensure information security
are mainly based on cryptography [7], which encrypts
the information with secret keys through various kinds
of cryptographic protocols. In cryptography, eavesdroppers
are assumed to have limited computing power, so even if
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they captures the ciphertext, they cannot decrypt it without
the secret key. However, as the computing power advances
rapidly nowadays, these solutions are facing increasingly
high risk of being broken by the relentless attempts of
eavesdroppers. In addition, due to the lack of centralized
control, secret key management and distribution in decen-
tralized wireless networks are very costly and complex
to be implemented. This necessitates the introduction of
more powerful schemes to ensure wireless network security.
Physical layer (PHY) security [8] has been recognized as
a promising strategy to provide a strong form of security
for wireless communications. The basic principle of PHY
security is to exploit the inherent randomness of noise
and wireless channels to ensure the confidentiality of mes-
sages against any eavesdropper regardless of its computing
power [9]. Compared to the cryptography-based solutions,
PHY security can offer some major advantages, like an
everlasting security guarantee, no need for key manage-
ment/distribution, a high scalability for the next-generation
networks [10].

Some recent efforts have been devoted to the study of
PHY security-based secure communication in wireless net-
works with social relationships. Wang et al. [11] considered
a D2D communication scenario, where the head of two D2D
user (DUE) clusters wish to communicate with the help of
an intermediate Decode-and-Forward relay. The communi-
cation security is guaranteed by the cooperative jamming
scheme, where multiple friendly jammers send jamming sig-
nals to suppress eavesdroppers, and the social relationship
is modeled by a social trust parameter µ ∈ [0, 1]. Two sets of
jammers (one set per cluster) are selected from DUEs with
social trust above some threshold µmin. With the consider-
ation of power constraint, the authors studied the optimal
selection of relay and jammers to maximize the secrecy rate
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of DUE transmission and also to ensure a required signal-to-
interference-plus-noise ratio (SINR) level to cellular users.
Tang et al. [12] considered a wireless network consisting of
one source-destination pair, a set of cooperative jammers
and one eavesdropper. Cooperative jamming is adopted to
ensure the security and the concept of social tie is introduced
to model the social relationship between jammers and the
source/destination. The strength of social tie of the n-th
jammer is denoted by an ∈ {0, 1}, where 1 (0) indicates
that the jammer is (is not) willing to participate in the coop-
erative jamming. The authors modeled the decision problem
of jammers as a social tie-based cooperative jamming game
and then explored the secrecy outage performance of the
source-destination pair by computing the Nash equilibrium
of the game.

While the above works represent a significant process
in the study of PHY security-based secure communication
in wireless networks with social relationships, the social
relationships they considered are simply modeled by an in-
dicator variable. Although these variables are acceptable for
characterizing some location-independent social relation-
ships, like social tie and social trust, they may fail to model
some important social properties closely related to geomet-
ric properties of networks, e.g., small-world phenomenon
[13], [14]. Also, the network scenarios they considered are
quite simple, which consists of either only one eavesdropper
and several jammers or only two clusters of jammers. To
the best of our knowledge, the study of PHY security-based
secure communication in more general large scale wireless
networks with small-world social relationships still remains
unknown, which is the scope of this paper.

This paper considers a finite Poisson network consisting
of one transmitter-receiver pair, multiple legitimate nodes
and multiple eavesdroppers distributed according to two
independent and homogeneous Poisson Point Processes
(PPP), respectively. It is notable that the Poisson network
model can nicely capture the random geometric properties
of networks and enable the analytical modeling of net-
work interference statistics in general [15], so it has been
widely used in the PHY security performance study of
large scale wireless networks without the consideration of
social relationships [16]–[24] (Please refer to Section 6 for
related works). In particular, we consider a more realistic
location-based friendship model to characterize the small-
world social relationships among nodes in the network. The
main contributions of this paper are summarized as follows.

• This paper proposes a friendship-based cooperative
jamming scheme to ensure the PHY security-based
secure communication between the transmitter and
receiver. The jamming scheme comprises a Local
Friendship Circle (LFC) and a Long-range Friendship
Annulus (LFA), where all legitimate nodes in the LFC
serve as jammers, and three location-based policies
are designed to select legitimate nodes in the LFA as
jammers.

• The transmission outage probability (TOP) and se-
crecy outage probability (SOP) are adopted to model
the reliability and security performance of the pro-
posed jamming scheme [25]. For the modeling of
these performance metrics, we first conduct analysis

Fig. 1. System model: nodes are distributed over a bi-dimensional disk
B(o,D) with radius D. The transmitter is located at the origin o and the
receiver is located at y0 with ||y0|| = l. Legitimate nodes and eavesdrop-
pers are distributed according to two independent homogeneous PPPs.
The friendship-based cooperative jamming model comprises a LFC with
radius R1 and a LFA with inner radius R1 and outer radius R2.

of the sum interference at any location in the network
by deriving its Laplace transforms under the three
location-based jammer selection policies and two
typical path loss scenarios [26].

• With the help of the interference Laplace transform
results, we then derive the exact expression for
the TOP and determine both the upper and lower
bounds on the SOP, such that the overall outage
performances of the proposed jamming scheme can
be fully depicted.

• Finally, we present extensive numerical results to
validate the theoretical analysis of TOP and SOP and
also to illustrate the impacts of the friendship-based
cooperative jamming on the network performance.

The remainder of this paper is organized as follows.
Section 2 introduces the preliminaries and friendship-based
cooperative jamming scheme. The Laplace transforms of the
sum interference are analyzed in Section 3 and the TOP and
SOP are analyzed in Section 4. The numerical results and
corresponding discussions are provided in Section 5. Section
6 presents the related works of PHY security performance
study for Poisson networks without social relationships.
Finally, we conclude this paper in Section 7.

2 PRELIMINARIES AND JAMMING SCHEME

2.1 System Model

As illustrated in Fig.1, we consider a finite wireless net-
work with nodes distributed over a bi-dimensional disk
B(o,D) ⊂ R

2 with radius D. The network consists of a
transmitter located at the origin o and a receiver located
at y0 with fixed distance ||y0|| = l to o. Also present in
the network are multiple legitimate nodes and multiple
eavesdroppers, whose locations are modeled as two inde-
pendent and homogeneous PPPs Φ and ΦE with intensities
λ and λe, respectively. Throughout this paper we will use
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x (z) to denote the random location of a legitimate node
(eavesdropper) as well as the node (eavesdropper) itself.
To suppress the eavesdroppers, a set of legitimate nodes
will serve as jammers to send jamming signals. The set of
jammer locations is denoted by ΦJ .

The channel suffers from both small-scale Rayleigh fad-
ing and large-scale log-distance path loss with exponent
α ≥ 2 [26]. The fading coefficient is constant for a block
of transmission and varies randomly and independently
from block to block for all channels. We assume that the
transmitter and jammers transmit with the same power.
Without loss of generality, unit transmit power is assumed.
The sum interference caused by the set of jammers at any
location y in the network is then given by

I(y) =
∑

x∈ΦJ

hx,y||x− y||−α, (1)

where hx,y is the fading coefficient between x and y, and
||x−y|| is the distance between x and y. Due to the Rayleigh
fading assumption, hx,y is exponentially distributed. We
assume unit mean for hx,y , i.e., E[hx,y] = 1. The network is
assumed interference-limited, and hence, the ambient noise
is negligible. The signal-to-interference ratio (SIR) for the
receiver y0 from the transmitter o is then given by

SIRy0 =
ho,y0 l

−α

I(y0)
, (2)

and the SIR for any eavesdropper z ∈ ΦE is given by

SIRz =
ho,z||z||−α

I(z)
. (3)

2.2 Friendship-based Cooperative Jamming

To ensure the transmission security, this paper proposes a
friendship-based cooperative jamming scheme by exploit-
ing the inherent friendship between the transmitter and
legitimate nodes. In this scheme, only the legitimate nodes
that are friends of the transmitter serve as jammers. It was
demonstrated in [14] that each node has not only local
friends in a circle around itself but alsoN long-range friends
randomly selected from the region outside the local circle.
It is notable that N can be drawn from any given discrete
probability distribution.

Based on the model in [14], the proposed jamming
scheme is composed of a Local Friendship Circle (LFC)
with radius R1 and a Long-range Friendship Annulus
(LFA) with inner radius R1 and outer radius R2, where
0 < R1 ≤ R2 ≤ D (illustrated in Fig.1). Both the LFC
and LFA are centered at the transmitter (i.e., the origin
o). Let A1 denote the LFC and A2 denote the LFA. In the
proposed jamming scheme, all legitimate nodes in A1 serve
as jammers, while each legitimate node x in A2 is selected as
a jammer through a location-based policy P (||x||) ∈ [0, 1].
Notice that different P (||x||) can yield different distributions
of long-range jammers (i.e., different ΦJ ). In this paper, we
design three selection policies P (||x||), which are summa-
rized as follows.

• Policy E: For each node x ∈ Φ ∩ A2, P (||x||) = p,
where p ∈ [0, 1]. This policy corresponds to the
scenario where long-range jammers are uniformly
distributed over A2.

• Policy I: For each node x ∈ Φ ∩ A2, P (||x||) is
increasing with its path loss to the transmitter, i.e.,

P (||x||) = ||x||α −Rα1
Rα2 −Rα1

. (4)

This policy corresponds to the scenario where most
of the long-range jammers are distributed near R2.

• Policy D: For each node x ∈ Φ ∩ A2, P (||x||) is
decreasing with its path loss to the transmitter, i.e.,

P (||x||) = Rα2 − ||x||α
Rα2 −Rα1

. (5)

This policy corresponds to the scenario where most
of the long-range jammers are distributed near R1.

Remark 1. The policy P (||x||) can be interpreted as a thinning
operation on Φ [27]. According to the property of thinning
operation, the number of jammers in A2 still follows a Poisson
distribution. Hence, the friendship model in the proposed jamming
scheme is a special case of the one in [14], given that N is drawn
from a Poisson distribution. Also, from (4) and (5), we can see
that Policy D generates more long-range jammers than Policy I.

2.3 Performance Metrics

The impact of friendship-based cooperative jamming
scheme on the communication between the transmitter o
and receiver y0 is two-edged. On one hand, the interference
generated by the jammers can degrade the eavesdropper
channels, which may greatly enhance the security of the
communication. On the other hand, the transmitter-receiver
link is also impaired by the unintended interference, result-
ing in a probably unreliable communication. In this paper,
we will adopt the concepts of transmission outage probability
(TOP) and secrecy outage probability (SOP) to measure the
reliability and security of the transmitter-receiver communi-
cation [25], which can be defined according to the following
outage events.

• Transmission outage: The SIR at the receiver y0 is
below some threshold β, i.e., SIRy0 < β, which
results in that the receiver y0 fails to decode the
message from the transmitter o. The probability that
this event happens is referred to as the TOP.

• Secrecy outage: The SIR at one or more eavesdrop-
pers is above some threshold βe, which results in
that the eavesdroppers can intercept the message
from the transmitter o. The probability that this event
happens is referred to as the SOP.

Formally, the TOP is given by

pto = P(SIRy0 < β), (6)

and the SOP is given by

pso = P




⋃

z∈ΦE

SIRy0 > βe



 . (7)
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3 LAPLACE TRANSFORM OF THE SUM INTERFER-
ENCE

In this section, the Laplace transform of the sum interference
I(y) at any location y ∈ B(o,D) is analyzed for all three
long-range jammer selection policies. To make the analysis
mathematically tractable, we focus on two typical path loss
scenarios of α = 2 and α = 4.

According to the definition, the Laplace transform of
I(y) is given by

LΞ,α
I(y)(s) = EI(y)

[

e−sI(y)
]

= EΦJ ,{hx,y}



exp



−s
∑

x∈ΦJ

hx,y||x− y||−α








= EΦJ ,{hx,y}




∏

x∈ΦJ

exp
(
−shx,y||x− y||−α

)





= EΦJ




∏

x∈ΦJ

Eh

[
exp

(
−sh||x− y||−α

)]





= EΦJ




∏

x∈ΦJ

1

1 + s||x− y||−α



 , (8)

where Ξ = E, I,D denotes the selection policy.
From the cooperative jamming scheme in Section 2.2, we

can see that ΦJ is indeed an inhomogeneous PPP obtained
by applying two independent thinning operations on Φ. We
now define the intensity measure of ΦJ by Λ(·), which gives
the expected number of nodes in a given set. By applying
the probability generating functional of ΦJ , we have

LΞ,α
I(y)(s) = exp

{

−
∫

B(o,D)

(

1− 1

1 + s||x− y||−α
)

Λ(dx)

}

= exp







−
∫

B(o,D)

(
s

s+ ||x− y||α
)

Λ(dx)

︸ ︷︷ ︸

A







, (9)

where Λ(dx) is given by

Λ(dx) =

{
λdx, x ∈ A1

λP (||x||)dx, x ∈ A2.
, (10)

following from the thinning property of PPP. The term A in
(9) can be rewritten as

A = λ

∫

A1

(
s

s+ ||x− y||α
)

dx

︸ ︷︷ ︸

Bα

+λ

∫

A2

(
s

s+ ||x− y||α
)

P (||x||)dx
︸ ︷︷ ︸

Cα

. (11)

Changing Cartesian coordinates to polar coordinates, we
can rewrite Bα and Cα in (11) as

Bα = 2

∫ R1

0

∫ π

0

srdθdr

s+ (r2 + ||y||2 − 2r||y|| cos θ)α/2 , (12)

and

Cα = 2

∫ R2

R1

∫ π

0

srP (r)dθdr

s+ (r2 + ||y||2 − 2r||y|| cos θ)α/2 . (13)

3.1 The Case of α = 2

In this subsection, we derive the Laplace transform of I(y)
for the case of α = 2. The main results are summarized in
the following theorem.

Theorem 1. For the case of α = 2, the Laplace transform of the
sum interference I(y) at any location y ∈ B(o,D) under Policy
E is given by

LE,2
I(y)(s) = exp

{

− λπs

[

p arcsinh
s+R2

2 − ||y||2
2||y||√s (14)

+(1− p) arcsinh
s+R2

1 − ||y||2
2||y||√s − ln

√
s

||y||

]}

,

where arcsinh t = ln(t+
√
t2 + 1) denotes the inverse hyperbolic

sine function. The Laplace transform of I(y) under Policy I and
Policy D is given by

LΞ′,2
I(y)(s) = exp

{

− λπs

[

ΨΞ′

2 (R2, s, ||y||)−ΨΞ′

2 (R1, s, ||y||)

+

(

arcsinh
s+R2

1 − ||y||2
2||y||√s − ln

√
s

||y||

)]}

, (15)

where Ξ′ = I and D,

ΨI
2(r, s, ||y||) =

√

(r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2
R2

2 −R2
1

−s+R2
1 − ||y||2

R2
2 −R2

1

arcsinh
s+ r2 − ||y||2

2||y||√s ,

and

ΨD
2 (r, s, ||y||) =

s+R2
2 − ||y||2

R2
2 −R2

1

arcsinh
s+ r2 − ||y||2

2||y||√s

−
√

(r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2
R2

2 −R2
1

.

Proof. The proof is given in Appendix B.

3.2 The Case of α = 4

The Laplace transform of I(y) for the case of α = 4 is
derived in this subsection. The main results are summarized
in the following theorem.

Theorem 2. For the case of α = 4, the Laplace transform of the
sum interference I(y) at any location y ∈ B(o,D) under Policy
E is given by

LE,4
I(y)(s) = exp

{

− λπ
√
s

[
π

2
− (1− p) (16)

× arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

−p arctan
√
s+ ψ(R2, s, ||y||)

η(R2, s, ||y||) + R2
2 − ||y||2

]}

,
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where

η(r, s, ||y||) (17)

=

√
√

(g(r, s, ||y||))2 + 4s(r2 + ||y||2)2 + g(r, s, ||y||)
√
2

,

g(r, s, ||y||) = (r2 − ||y||2)2 − s, (18)

ψ(r, s, ||y||) =
√
s(r2 + ||y||2)
η(r, s, ||y||) , (19)

and arctan t is the inverse tangent function. The Laplace trans-
form of I(y) under Policy I and Policy D is given by

LΞ′,4
I(y)(s) = exp

{

− λπ
√
s

×
[
π

2
− arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

+ΨΞ′

4 (R2, s, ||y||)−ΨΞ′

4 (R1, s, ||y||)
]}

, (20)

where Ξ′ = I and D,

ΨI
4(r, s, ||y||) =

2
√
s||y||2

R4
2 −R4

1

ln

[

(η(r, s, ||y||) + r2 − ||y||2)2

+(
√
s+ ψ(r, s, ||y||))2

]

− 1

2(R4
2 −R4

1)

×
[

(r2 + 3||y||2)ψ(r, s, ||y||)

−3
√
sη(r, s, ||y||)

]

+
s+R4

1 − ||y||4
R4

2 −R4
1

× arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2 , (21)

and

ΨD
4 (r, s, ||y||) = −2

√
s||y||2

R4
2 −R4

1

ln

[

(η(r, s, ||y||) + r2 − ||y||2)2

+(
√
s+ ψ(r, s, ||y||))2

]

+
1

2(R4
2 −R4

1)

×
[

(r2 + 3||y||2)ψ(r, s, ||y||)

−3
√
sη(r, s, ||y||)

]

− s+R4
2 − ||y||4

R4
2 −R4

1

× arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2 . (22)

Proof. The proof is given in Appendix C.

Corollary 1. For P (r) = 0, as R1 → ∞, the Laplace transform
of I(y) for the case of α = 4 is

LΞ,4
I(y)(s) = exp

(

−λ
√
sπ2

2

)

, (23)

which recovers the well-known Laplace transform of I(y) for a
homogeneous infinite PPP with α = 4 [15].

Proof. Letting P (r) = 0 yields

LΞ,4
I(y)(s) = exp

{

− λπ
√
s (24)

[
π

2
− arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

]}

.

As R1 → ∞,

lim
R1→∞

arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

= arctan
2
√
s

∞− ||y||2
= 0, (25)

which completes the proof.

4 OUTAGE PERFORMANCE

In this section, the TOP and SOP of the proposed cooper-
ative jamming scheme are analyzed. Similar to Section 3,
we focus again on the cases of α = 2 and α = 4. The
analysis is based on the Laplace transforms of the sum
interference I(y) derived in Section 3. We first determine
the exact expression for the TOP and then obtain both the
upper and lower bounds on the SOP.

4.1 Transmission Outage Probability

The TOP can be regarded as a measure of the link reliability
between the transmitter o and receiver y0. For the Rayleigh
fading channel model, the TOP can be directly derived by
applying the Laplace transform of the sum interference at
the receiver y0 [15]. The following theorem is established to
summarize the result of the TOP.

Theorem 3. Consider a finite Poisson network with nodes dis-
tributed over a bi-dimensional disk B(o,D) as illustrated in Fig.1
and the friendship-based cooperative jamming scheme in Section
2.2, the TOP of the transmitter-receiver pair is given by

pto= 1− LΞ,α
I(y0)

(βlα), (26)

where Ξ = E, I and D denotes the long-range jammer selection
policy, α denotes the path loss exponent, and the Laplace trans-

form LΞ,α
I(y0)

(βlα) of the sum interference at the receiver y0 is

given by (14), (15), (16), (20) with ||y0|| = l, s = βlα for the
cases of α = 2 and α = 4, respectively.

Proof. From the definition of TOP in (6), we have

pto = P (SIRy0 < β)

= P

(
ho,y0l

−α

I(y0)
< β

)

= EΦJ

[

P

(
ho,y0 l

−α

I(y0)
< β

∣
∣ΦJ

)]

= EΦJ

[
P
(
ho,y0 < βlαI(y0)

∣
∣ΦJ

)]

= 1− EI(y0)

[

e−βl
αI(y0)

]

= 1− LΞ,α
I(y0)

(βlα), (27)

which completes the proof.
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4.2 Secrecy Outage Probability

The SOP is a commonly-used performance metric to quan-
tify the PHY security. In the performance analysis of large-
scale systems, the exact SOP is usually unavailable, mainly
due to the reason that the analysis involves computing
highly cumbersome integrals in terms of the PPPs of both
legitimate nodes and eavesdroppers. We therefore resort
to obtain the upper and lower bounds on the SOP by
applying the bounding technique used in [19]. We establish
the following theorem to summarize the main results.

Theorem 4. Consider a finite Poisson network with nodes dis-
tributed over a bi-dimensional disk B(o,D) as illustrated in Fig.1
and the friendship-based cooperative jamming scheme in Section
2.2, the upper bound on the SOP of the transmitter-receiver pair
is given by

pUB
so = 1− exp

{

−2πλe

∫ D

0
LΞ,α
I(z)(βer

α
e )redre

}

, (28)

and the lower bound is given by

pLBso =

∫ D

0
2λeπre∗exp(−λeπr2e∗)LΞ,α

I(z∗)(βer
α
e∗)dre∗ ,(29)

where Ξ = E, I and D denotes the long-range jammer selection
policy, α denotes the path loss exponent, z∗ denotes the eavesdrop-
per nearest to the transmitter o, re∗ denotes the distance between

z∗ and o, and the Laplace transform LΞ,α
I(z)(βr

α
e ) is given by (14),

(15), (16), (20) with ||z|| = re, s = βrαe for the cases of α = 2
and α = 4, respectively.

Proof. From the definition of SOP in (7), we have

pso = P




⋃

z∈ΦE

SIRy0 > βe





= 1− P




⋂

z∈ΦE

SIRz < βe





= 1− EΦJ



EΦE



P




⋂

z∈ΦE

ho,z||z||−α
I(z)

< βe
∣
∣ΦE ,ΦJ













(a)
= 1− EΦJ



EΦE




∏

z∈ΦE

P

(
ho,z||z||−α

I(z)
< βe

∣
∣ΦE ,ΦJ

)








= 1− EΦJ

[

EΦE

[

∏

z∈ΦE

(

1− P

(
ho,z||z||−α

I(z)
> βe

∣
∣ΦE ,ΦJ

))]]

(b)
= 1− EΦJ

[

exp

{

− λe

∫

B(o,D)
P

(
ho,z||z||−α

I(z)
> βe

∣
∣ΦJ

)

dz

}]

, (30)

where (a) follows since ho,z , z ∈ ΦE are i.i.d. random
variables, and (b) follows from applying the probability gen-

erating functional of ΦE . Applying the Jensen’s Inequality
yields the upper bound on pso

pso ≤ 1− exp

{

−λe
∫

B(o,D)
EΦJ

[

P

(
ho,z||z||−α

I(z)
> βe

∣
∣ΦJ

)]

dz

}

= 1− exp

{

−λe
∫

B(o,D)
LΞ,α
I(z)(βe||z||α)dz

}

= 1− exp

{

−2πλe

∫ D

0
LΞ,α
I(z)(βer

α
e )redre

}

. (31)

The lower bound is obtained by considering only the
eavesdropper z∗ nearest to the transmitter o. Let Rz∗ denote
the random distance between z∗ and o. The probability
distribution function of Rz∗ can be given by

fRz∗
(re∗) =

{
2λeπre∗exp(−λeπr2e∗), 0 ≤ re∗ ≤ D

0, otherwise
.

Please refer to Appendix D for the proof. The SOP can then
be bounded from below by the probability that z∗ causes a
secrecy outage, i.e.,

pso ≥ P(SIRz∗ > βe) (32)

=

∫ D

0
P

(

ho,z∗r
−α
e∗

I(z∗)
> βe

)

fRz∗
(re∗)drz∗

=

∫ D

0
2λeπre∗exp(−λeπr2e∗ )LΞ,α

I(z∗)(βer
α
e∗)dre∗ .

Corollary 2. As the network size tends to infinity, i.e., D → ∞,
the SOP pso → 1 under all long-range jammer selection policies
E, I and D for the cases of α = 2 and α = 4.

Proof. See Appendix E for the proof.

5 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first conduct extensive simulations to
verify the theoretical analysis of TOP and SOP. We then
explore how the parameters of the friendship-based cooper-
ative jamming scheme affect the TOP and SOP performances
of the legitimate transmission. Finally, the impacts of the
transmitter-receiver location and network size on the TOP
and SOP performances are investigated.

5.1 Simulation Setting

A simulator based on C++ was developed to simulate the
PPPs Φ and ΦE , the friendship-based cooperative jamming
model and the transmission process between the transmitter
o and receiver y0, which is now available at [28]. The PPP
Φ (ΦE ) is simulated by applying the method in [27], where
the first step is to generate a Poisson-distributed number
M with mean λπD2 (the mean is λeπD

2 for ΦE) and the
second step is to distribute M nodes uniformly over the
network B(o,D). The total number of transmitter-receiver
transmissions is fixed as 100000 and the common transmit
power is fixed as 1. The TOP is calculated as the ratio of
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Fig. 2. Simulation results vs. Theoretical results for TOP and SOP.

the number nto of transmissions with transmission outage
to the total transmission number, i.e.,

TOP =
nto

100000
.

Similarly, The SOP is calculated as

SOP =
nso

100000
,

where nso is the number of transmissions with secrecy
outage.

5.2 Analysis Validation

Extensive simulations have been conducted to verify the
theoretical analysis of TOP and SOP. We considered the
cases of α = 2 and α = 4 and examined how the TOP
and SOP vary with the density of legitimate nodes λ under
three long-range jammer selection policies E, I and D. For
both path loss cases, the network radius was fixed asD = 30
and the density of eavesdroppers was fixed as λe = 0.001.
For the friendship-based cooperative jamming scheme, the
radius of the LFC was fixed as R1 = 1, the outer radius of
the LFA was fixed as R2 = 10 and the selection probability

in Policy E was set as p = 0.1. The SIR thresholds were
fixed as β = 0.5 for the receiver y0 and βe = 0.1 for
eavesdroppers. The transmitter-receiver distance was set as
l = 1. The corresponding simulation results and theoretical
results are summarized in Fig. 2.

Fig. 2a and Fig. 2c indicate clearly that the simulation
results of TOP match nicely with the theoretical ones, so
our theoretical results can be applied to model the TOP
performance of the Poisson networks under Policy E, Policy
I and Policy D for the cases of α = 2 and α = 4. Fig. 2b and
Fig. 2d indicate that the simulation results of SOP are very
close to the corresponding theoretical upper bounds, while
they are different from the lower bounds, so our theoretical
upper bounds can serve as accurate approximations for the
exact SOP of the legitimate transmission under Policy E,
Policy I and Policy D for the cases of α = 2 and α = 4. In
the following, we mainly focus on the case of α = 4, as the
behaviors of TOP and SOP for α = 2 and α = 4 are similar.
In addition, we use the theoretical upper bounds on SOP in
the discussions of the SOP performance.
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5.3 TOP and SOP vs. Jamming Parameters

We now explore how the TOP and SOP performances of
the network vary with the parameters of the friendship-
based cooperative jamming scheme with different long-
range jammer selection policies.

5.3.1 TOP and SOP vs. λ

We first examine the impact of the density of legitimate
nodes λ on the TOP and SOP performances. It can be
observed from Fig. 2 that the TOP increases as λ increases,
while the SOP decreases as λ increases under all policies
E, I and D for both α = 2 and α = 4. This is very
intuitive since a larger sum interference can be generated in
the network as λ increases, degrading both the transmitter-
receiver channel and eavesdropper channels. An interesting
observation from Fig. 2b indicates that Policy I and Policy
D achieve almost the same SOP for α = 2 and λe = 0.001.
However, this is not the case for other settings of λe, as
we can observe from Fig. 3. Actually, as shown in Fig. 2
and Fig. 3 that, in general, Policy I outperforms Policy D in
terms of the TOP performance, while Policy D can ensure
a better SOP performance than Policy I. This is due to the
following two reasons. The first one is that Policy D has
much more long-range jammers than Policy I, so it will
generate more interference in the network, resulting in a
better SOP performance but a worse TOP performance. The
other reason is that the long-range jammers of Policy D
are much closer to the transmitter than those of Policy I.
Notice that near (i.e., close to the transmitter) eavesdroppers
dominate the behavior of SOP, so Policy D is more effective
to suppress near eavesdroppers than Policy I, achieving a
better SOP performance.

Notice that in Fig. 2, the jammer selection probability of
Policy E is fixed as p = 0.1, which corresponds to a weak
long-range jamming scenario. For the moderate long-range
jamming scenario (p = 0.5) and strong long-range jamming
scenario (p = 1.0), Fig. 4 shows TOP and SOP vs. λ for α =
4. As shown in Fig. 4 that the behaviors of TOP and SOP are
similar for different p. One can also observe from Fig. 4 that
the TOP increases as p increases, while the SOP decreases
as p increases. This indicates that we can flexibly control
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Fig. 4. Impact of p on TOP and SOP for Policy E.

the TOP and SOP performances of Policy E by varying the
long-range jammer selection probability p.

5.3.2 TOP and SOP vs. R1

We now investigate how the TOP and SOP performances
are affected by the radius of LFC R1, i.e., the inner radius of
LFA. For the scenario of R2 = 10, D = 30, β = 0.5, λ = 0.1,
l = 2 and α = 4, Fig. 5a illustrates how the TOP varies
with R1 for Policy I, Policy D and Policy E with p = 0.5.
We can see from Fig. 5a that the TOP first increases as R1

increases, then saturates to a constant value and finally stays
almost the same for Policy I and Policy E. Actually, this is
also the case for Policy D. The increasing behavior of TOP
is because that the total number of jammers increases as
R1 increases, although the number of long-range jammers
decreases, which results in a larger sum interference in the
network. The behavior that TOP of all policies saturates to a
same constant is due to the fact that all policies finally reach
to the same jamming pattern at the point of R1 = R2. For
the scenario of R2 = 10, D = 30, βe = 0.1, λe = 0.001,
λ = 0.1 and α = 4, Fig. 5b shows how the SOP varies
with R1 for Policy I, Policy D and Policy E with p = 0.5. It
can be observed from Fig. 5b that the SOP first decreases as
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Fig. 5. Impact of R1 on TOP and SOP.

R1 increases, then saturates to a constant value and finally
stays almost the same for all policies. This is due to the same
reason as explained above.

5.3.3 TOP and SOP vs. R2

Regarding the impact of the outer radius of LFA R2 on
the TOP performance, we show in Fig. 6a how the TOP
varies with R2 for Policy I, Policy D and Policy E with
p = 0.5 under the settings of R1 = 1, D = 30, β = 0.5,
λ = 0.1, l = 2 and α = 4. As shown in Fig. 6a that the TOP
of Policy E and Policy D always monotonically increases
as R2 increases, but this is not the case for Policy I. The
increasing behavior of TOP for all policies are because that
the number of long-range jammers increases asR2 increases,
generating a larger sum interference in the network. The
decreasing behavior of TOP for Policy I is due to that
its long-range jammers are getting further away from the
receiver as R2 continues to increase, since these jammers
are mainly located in a small annulus region near R2, as
we can deduce from (4). For the impact of R2 on the SOP
performance, we illustrate in Fig. 6b SOP vs. R2 for Policy
I, Policy D and Policy E with p = 0.5 under the settings
of R1 = 1, D = 30, βe = 0.1, λe = 0.001, λ = 0.1 and
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Fig. 6. Impact of R2 on TOP and SOP.

α = 4. As expected, we can observe from Fig.6b that the
SOP decreases as R2 increases for all policies.

5.4 SOP vs. Network Radius D

We now explore how the SOP performance varies with the
network radius D. For the scenario of R1 = 1, R2 = 10,
βe = 0.1, λe = 0.001, λ = 0.1 and α = 4, Fig. 7 illustrates
how the SOP varies with D for Policy I, Policy D and Policy
E with p = 0.5. It is interesting to notice from Fig. 7 that the
SOP increases as the network radius D increases and finally
approaches 1 for all policies, which is in accordance with
Corollary 2. Notice that this is somewhat counter-intuitive,
since one might think that the SOP should finally approach
a constant determined by βe, λe, λ and α, like the result in
[19] for infinite Poisson networks without the consideration
of social friendships. Actually, since no jammers are for
counteracting the eavesdroppers that are very far away from
the transmitter in the friendship-based cooperative jamming
scheme, the impacts of these eavesdroppers on the SOP
cannot be simply neglected.
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5.5 TOP vs. Transmitter-Receiver Distance l

To explore the impact of the transmitter-receiver distance l
on the TOP performance, we show in Fig. 8 how the TOP
varies with l for Policy I, Policy D and Policy E with p = 0.5
under the settings of R1 = 1, R2 = 10, D = 30, β = 0.5,
λ = 0.01 and α = 4. We can observe from Fig. 8 that
the TOP increases as l increases for all policies, which is
intuitive since the received power decreases as l increases.
It is interesting to see from Fig. 8 that the TOP finally
saturates to a constant value for all policies. This is due to

that as l tends to infinity, the Laplace transform LΞ,α
I(y0)

(βlα)
approaches a constant, which is easy to prove according to
the proof of Corollary (2).

6 RELATED WORKS

Extensive research efforts have been devoted to the PHY-
security based secure communications of Poisson networks
without the consideration of social relationships, which can
be roughly categorized according to the network scenarios
they considered.

In general Poisson networks, the locations of eaves-
droppers and legitimate nodes are usually modeled as in-

dependent and homogeneous PPPs with different intensi-
ties. Some PHY-security properties of the networks were
analyzed from the perspective of secrecy graph, like the
secure connectivity, the maximum secrecy rate and secrecy
outage probability of a single link [16], [17]. Modeling the
additional interfers as another independent homogeneous
PPP, the authors in [18] explored some other PHY-security
properties of the network, like secrecy rate density, secrecy
rate outage density and secrecy throughput density. The de-
pendence of the area spectral efficiency of Poisson networks
on security and other parameters was studied in [19].

In traditional cellular networks, base stations and mobile
users are usually modeled as independent and homoge-
neous PPPs. Recent efforts, such as [20] and [21], have been
devoted to study the average secrecy rate achievable for a
randomly located mobile user and the related probability
of secrecy outage. For the cellular networks with D2D
users, the authors in [22] modeled the locations of base
stations, cellular users, D2D users and eavesdroppers as
four independent and homogeneous PPPs, and studied the
connection probabilities and secrecy probabilities of both the
cellular and D2D links.

It is notable that some recent works have also been
reported on the study of PHY-security secure communica-
tions for other promising network scenarios, like cognitive
networks [23] and cognitive networks with D2D communi-
cations [24].

7 CONCLUSION

This paper explored the physical layer security-based secure
communications in a finite Poisson network with social
friendships among nodes, for which a social friendship-
based cooperative jamming scheme is proposed. The jam-
ming scheme consists of a Local Friendship Circle (LFC)
and a Long-range Friendship Annulus (LFA), where all
legitimate nodes in the LFC serve as jammers, but the
legitimate nodes in the LFA are selected as jammers through
three location-based policies, namely, Policy E, Policy I and
Policy D. To understand the security and reliability perfor-
mances of the proposed jamming scheme, we analyzed its
transmission outage probability (TOP) and secrecy outage
probability (SOP) based on the Laplace transforms of the
sum interference at any location in the network. The results
in this paper indicated that, in general, Policy I outperforms
Policy D in terms of the reliability performance, while Policy
D can ensure a better security performance than Policy I.
Also, we can flexibly control the reliability and security
performances of Policy E by varying its long-range jammer
selection probability. Three other interesting observations
can also be found from the results in this paper. The first
one is that increasing the outer radius of the LFA beyond
some threshold can improve both the reliability and security
performances of the proposed jamming scheme. The second
one is that as the network size tends to infinity, the trans-
mission security can hardly be guaranteed, due to the fact
that any eavesdropper located infinitely far away from the
transmitter can still cause a non-zero SOP. This also gives
rise to the last interesting observation, that is, even if the
receiver is located infinitely far away from the transmitter ,
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it can successfully receive the information with a non-zero
probability in general.

APPENDIX A
INTEGRAL IDENTITIES

Identity 1. For a, b ∈ R and a > |b|, we have from [29] and
[30]

∫ π

0

dθ

(a+ b cos θ)n+1
=
πPn(

a√
a2−b2 )

(a2 − b2)
n+1

2

, (33)

where Pn(·) is the nth-Legendre polynomial and P0(·) = 1 .

Identity 2. Let a, b, c ∈ R and c > 0. DefiningQ = ct2+bt+a
and ∆ = 4ac− b2, we have from [29] and [30]

∫
dt√
Q

=
1√
c
ln(2

√

cQ+ 2ct+ b) [c > 0]

=
1√
c
arcsinh

2ct+ b√
∆

[c > 0,∆ > 0], (34)

Identity 3. For m,n ∈ Z and Q = ct2 + bt+ a, we have from
[29]

∫
tm

√

Q2n+1
dt =

tm−1

(m− 2n)c
√

Q2n−1

− (2m− 2n− 1)b

2(m− 2n)c

∫
tm−1

√

Q2n+1
dt

− (m− 1)a

(m− 2n)c

∫
tm−2

√

Q2n+1
dt, (35)

where a, b, c ∈ R and c > 0.

APPENDIX B
PROOF OF THEOREM 1
For α = 2, we can rewrite Bα in (12) as

B2 = 2

∫ R1

0

∫ π

0

srdθdr

s+ r2 + ||y||2 − 2r||y|| cos θ . (36)

Applying Identity 1 in Appendix A, we have

B2 = πs

∫ R1

0

2rdr
√

r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2

(c)
= πs

∫ R2
1

0

dt
√

(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2
, (37)

where (c) follows from substituting r2 with t. We then apply
Identity 2 in Appendix A and substitute t with r2 to obtain

B2 = πs

(

arcsinh
s+R2

1 − ||y||2
2||y||√s − ln

√
s

||y||

)

. (38)

Similarly, applying Identity 1, we can rewrite Cα in (13) as

C2 = πs

∫ R2

R1

2rP (r)dr
√

r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2
. (39)

For Policy E, P (r) = p. Then,

C2 = pπs arcsinh
s+ r2 − ||y||2

2||y||√s

∣
∣
∣
∣

R2

r=R1

. (40)

Substituting (40) and (38) into (11), and then substituting
(11) into (9) yields (14). P (r) can be written as P (r) = u +

vr2, where u = − R2
1

R2
2
−R2

1

, v = 1
R2

2
−R2

1

for Policy I, and u =
R2

2

R2
2
−R2

1

, v = − 1
R2

2
−R2

1

for Policy D. Hence,

C2 = πs

∫ R2

R1

2r(u+ vr2)dr
√

r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2

= πs

∫ R2
2

R2
1

(u+ vt)dt
√

(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

= πs

[

u

∫ R2
2

R2
1

dt
√

(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2

+v

∫ R2
2

R2
1

tdt
√

(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2
]

(d)
= πs

[

(u− vs+ v||y||2) arcsinh s+ t− ||y||2
2||y||√s

+v
√

(t2 + 2(s− ||y||2)t+ (s+ ||y||2)2
]∣
∣
∣
∣

R2
2

t=R2
1

, (41)

where (d) follows from applying Identity 2 and Identity 3.
Substituting t with r2, we have

C2 = πs

[

(u − vs+ v||y||2) arcsinh s+ r2 − ||y||2
2||y||√s (42)

+v
√

(r4 + 2(s− ||y||2)r2 + (s+ ||y||2)2
]∣
∣
∣
∣

R2

r=R1

.

Finally, we substitute (38) and (42) with into (11), and
then substitute (11) into (9) to obtain (15).

APPENDIX C
PROOF OF THEOREM 2
For α = 4, we can rewrite Bα in (12) as

B4 = 2

∫ R1

0

∫ π

0

srdθdr

s+ (r2 + ||y||2 − 2r||y|| cos θ)2

= 2

∫ R1

0

√
sr

2i

∫ π

0

dθdr

(r2 + ||y||2 − 2r||y|| cos θ − i
√
s)

− dθdr

(r2 + ||y||2 − 2r||y|| cos θ + i
√
s)

(e)
=

π
√
s

2i

∫ R1

0

2rdr√
C1

− 2rdr√
C2

(f)
=

π
√
s

2i
ln

√
C1 + r2 − (i

√
s+ ||y||2)√

C2 + r2 + (i
√
s− ||y||2)

∣
∣
∣
∣

R1

r=0

, (43)

where (e) follows from applying Identity 1, (f) follows from
applying Identity 2,

C1 = (r2 − ||y||2)2 − s− 2i
√
s(r2 + ||y||2),

and C2 = C∗
1 is the complex conjugate of C1. Now, we rewrite

C1 as

C1 = (η − iψ)2 = η2 − ψ2 − 2iηψ, (44)

for some real-valued functions η(r, s, ||y||) and ψ(r, s, ||y||).
We can then establish the following equation system

{
η2 − ψ2 = (r2 − ||y||2)2 − s
ηψ =

√
s(r2 + ||y||2). (45)

(17) and (19) then follow from solving the above equation
system. For simplicity of notation, we also use η and ψ to
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represent η(r, s, ||y||) and ψ(r, s, ||y||), respectively. Given
C1 as in (44),

B4 =
π
√
s

2i
ln
η + r2 − ||y||2 − i(

√
s+ ψ)

η + r2 − ||y||2 + i(
√
s+ ψ)

∣
∣
∣
∣

R1

r=0

(46)

=
π
√
s

2i
ln

1− i
√
s+ψ

η+r2−||y||2

1 + i
√
s+ψ

η+r2−||y||2

∣
∣
∣
∣

R1

r=0

= −π
√
s arctan

√
s+ ψ

η + r2 − ||y||2
∣
∣
∣
∣

R1

r=0

(g)
= π

√
s

(
π

2
− arctan

√
s+ ψ(R1, s, ||y||)

η(R1, s, ||y||) +R2
1 − ||y||2

)

,

where (g) follows from

lim
r→0

arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2

= lim
r→0

arctan

√
s+

√
2s

||y||2 + r2 − ||y||2

= arctan∞ =
π

2
. (47)

Similarly, applying Identity 1, we can rewrite Cα in (13) as

C4 =
π
√
s

2i

∫ R2

R1

2rP (r)dr√
C1

− 2rP (r)dr√
C2

, (48)

For Policy E, P (r) = p ∈ [0, 1]. Then,

C4 = −pπ
√
s arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2
∣
∣
∣
∣

R2

r=R1

. (49)

Substituting (49) and (46) into (11) and then substituting
(11) into (9) yields (16). P (r) can be written as P (r) = u +

vr4, where u = − R4
1

R4
2
−R4

1

, v = 1
R4

2
−R4

1

for Policy I, and u =
R4

2

R4
2−R4

1

, v = − 1
R4

2−R4
1

for Policy D . Hence,

C4 =
π
√
s

2i

∫ R2

R1

2r(u+ vr4)dr√
C1

− 2r(u + vr4)dr√
C2

dr

(h)
=

π
√
s

2i

∫ R2

R1

(u+ vt2)dt
√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

− (u + vt2)dt
√

t2 + 2(i
√
s− ||y||2)t+ (||y||2 + i

√
s)2

, (50)

where (h) follows from substituting r2 with t. Next, we have

∫
(u+ vt2)dt

√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

= u

∫
dt

√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

+ v

∫
t2dt

√

t2 − 2(i
√
s+ ||y||2)t+ (||y||2 − i

√
s)2

(i)
=
v

2
(r2 + 3||y||2 + 3i

√
s)(η − iψ)

+ (u+ v||y||4 − vs+ i4v
√
s||y||2)

× ln
[√

C1 + r2 − (i
√
s+ ||y||2)

]

, (51)

where (i) follows from applying Identity 3 in Appendix A
and substituting t with r2. Similarly, we have

∫
(u + vt2)dt

√

t2 + 2(i
√
s− ||y||2)t+ (||y||2 + i

√
s)2

=
v

2
(r2 + 3||y||2 − 3i

√
s)(η + iψ)

+ (u+ v||y||4 − vs− i4v
√
s||y||2)

× ln
[√

C2 + r2 − (i
√
s+ ||y||2)

]

. (52)

Thus, substituting (51) and (52) into (50) and then con-
ducting some algebraic manipulations yields

C4 = 2πvs||y||2 ln
[

(η(r, s, ||y||) + r2 − ||y||2)2

+(
√
s+ ψ(r, s, ||y||))2

]

− π
√
s

{

v

2

[

(r2 + 3||y||2)

×ψ(r, s, ||y||)− 3
√
sη(r, s, ||y||)

]

+ (u + v||y||4 − vs)

× arctan

√
s+ ψ(r, s, ||y||)

η(r, s, ||y||) + r2 − ||y||2

}∣
∣
∣
∣
∣

R2

r=R1

. (53)

Finally, we substitute (46) and (53) into (11), and then
substitute (11) into (9) to obtain (20).

APPENDIX D
PROBABILITY DENSITY FUNCTION OF Rz∗

The CCDF F̄Rz∗
(re∗ ) of the random distance Rz∗ equals

the probability that no eavesdroppers are in B(o, re∗) for
0 ≤ re∗ ≤ D. Hence, the CDF of Rz∗ is given by

FRz∗
(re∗) = 1− P (ΦE(B(o, re∗)) = 0)

= 1−
∞∑

n=0

P
(
ΦE(B(o, re∗)) = 0

∣
∣ΦE(B(o,D)) = n

)

×P(ΦE(B(o,D)) = n)

= 1−
∞∑

n=0

(

1− r2e∗

D2

)n
(λeπD

2)nexp(−λeπD2)

n!

= 1− exp(−λeπD2)
∞∑

n=0

(

1− r2e∗

D2

)n
(λeπD

2)n

n!

= 1− exp(−λeπD2)exp

[(

1− r2e∗

D2

)

λeπD
2

]

= 1− exp(−λeπr2e∗), (54)

for 0 ≤ re∗ ≤ D. Therefore, the pdf of Rz∗ is given by

fRz∗
(re∗) =

{
2λeπre∗exp(−λeπr2e∗), 0 ≤ re∗ ≤ D

0, otherwise
.

APPENDIX E
PROOF OF COROLLARY 2
Consider an annulus with inner radius D − ǫ and outer
radius D, where ǫ > 0 is a constant. The basic idea is
to first prove that as D → ∞, the probability of secrecy
outage caused by any eavesdropper z in the annulus is
above a constant, and then prove that the expected number
of eavesdroppers in the annulus tends to infinity, asD → ∞.
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We first prove the former part. For any eavesdropper z
in the annulus, we can find a constant ǫ′ (0 < ǫ′ < ǫ), such
that ||z|| = D− ǫ′. The probability of secrecy outage caused
by the eavesdropper z is then bounded from below by that
derived for the case where all legitimate nodes in A1

⋃A2

serve as jammers, i.e.,

P(SIRz ≥ βe) (55)

= LΞ,α
I(z)(βe(D − ǫ′)α)

≥ exp

{

− λ

∫ R2

0

∫ π

0

2βe(D − ǫ′)αrdθdr

βe(D − ǫ′)α + (r2 + (D − ǫ′)2 − 2r(D − ǫ′) cos θ)
α
2

}

.

As D → ∞,

lim
D→∞

P(SIRz ≥ βe)

≥ lim
D→∞

exp

{

− λ

∫ R2

0

∫ π

0

2βe(D − ǫ′)αrdθdr

βe(D − ǫ′)α + (r2 + (D − ǫ′)2 − 2r(D − ǫ′) cos θ)
α
2

}

= exp

{

− λ lim
D→∞

∫ R2

0

∫ π

0

2βe(D − ǫ′)αrdθdr

βe(D − ǫ′)α + (r2 + (D − ǫ′)2 − 2r(D − ǫ′) cos θ)
α
2

}

= exp

{

− λ lim
D→∞

∫ R2

0

∫ π

0

2βerdθdr

βe +
[

r2

(D−ǫ′)2 + 1− 2r
(D−ǫ′) cos θ

]α
2

}

= exp

(

−λ
∫ R2

0

∫ π

0

2βerdθdr

βe + 1

)

= exp

(

−λπR2
2

βe

βe + 1

)

. (56)

We now prove the latter part. According to the property
of homogeneous PPP, the expected number of eavesdrop-
pers in this annulus is

λeπ(D
2 − (D − ǫ)2) = λeπǫ(2D − ǫ). (57)

It is easy to see that limD→∞ λeπǫ(2D − ǫ) = ∞. The
probability of secrecy outage caused by the eavesdroppers
in the annulus can then be approximated by

1−
(

1− exp

(

−λπR2
2

βe

βe + 1

))∞
= 1, (58)

which completes the proof.
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