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Abstract Internet of Things (IoT) consist in the deployment of constrained and
battery-powered devices with a radio interface. Most industrial applications re-
quire to respect strict reliability and delay constraints. Lossy links imply mech-
anisms to retransmit the packets to improve the reliability. However, transient
faults (e.g. obstacles, interference) may also impact the reliability, and require
to change the routes. In this article, we present CoopStor (Cooperative Storing
mode), that detects the faults and triggers action before a packet is dropped. In
particular, the packets are cooperatively stored in the network, until the routing
protocol re-converges. The congested zone gradually increases to serve as a local
storage facility. CoopStor relies on a selection of relay and leaf nodes to reduce the
energy consumption while providing a low end-to-end delay in steady state. Our
performance evaluation campaign highlights a reduction of packet drops and an
improved energy-efficient data collection procedure.

1 Introduction

More and more smart objects are now connected to the Internet, to create the so-
called Internet of Things (IoT). Typically, smart buildings rely heavily on collecting
a large volume of data in real-time [30]. The sensors send their measurements to
a cloud infrastructure, through a border router.

Most IoT networks exhibit a convergecast traffic pattern, where all the packets
are forwarded to a border router. If the routing protocol balances the load around
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the border router, many nodes have to forward packets, resulting in a high con-
tention [4]. It is rather more efficient for the link layer to select only a small set
of nodes to forward most of the traffic [33]. This way, we reduce the number of
collisions and, thus, increase of network reliability and energy efficiency. Hence,
energy consumption is balanced by changing the role (relay / passive) of the nodes
regularly through the routing protocol.

However, the routing protocol has also to construct efficient routes on top
of a lossy topology. In particular, external interferences and collisions require to
retransmit the packets for some links. Epidemic routing proposes to flood the
network to reduce the delivery delay and to optimize the reliability [7]. However,
these schemes generate a large volume of packets and, thus, collisions, and require
a large buffer size to be efficient. Traditional unicast routing protocols are often
preferred in such environments. Multipath routing tries to exploit multiple paths
in parallel to provide high-reliability [5], [16], [21]. However, replicating the packets
consume both bandwidth and energy.

Last but not least, many critical applications need to respect strict end-to-
end constraints. However, the end-to-end delay is proportional to the wake-up
period of each relaying node: the transmitter has to wait that the receiver is awake
before transmitting its packet. Thus, maintaining a low end-to-end delay requires
to increase the energy consumption since it needs a higher duty-cycle ratio (i.e.
smaller wake-up period).

In this article, we propose CoopStor, a forwarding scheme that provides high
reliability even in presence of faults. Instead of provisioning a priori resources, we
propose a mechanism to store cooperatively the data packets when a fault occurs.
A congested area grows gradually, where all nodes cooperate to store the packets
until the network re-converges. Each decision is localized, based on the state of
the neighbors, and the buffer occupancy of the node.

The contributions presented in this paper are as follows:

1. We compute the probability of potential buffer overflow occurrence, which
depends on the traffic rate, the number of transmission opportunities toward
the next hop, the wake-up interval in the link layer, and the buffer occupancy;

2. CoopStor relies on differentiated medium access schemes to make the network
energy efficient. Only a subset of nodes forward the packets to reduce the
energy consumption while still limiting the end-to-end delay. These relay nodes
implement a high sampling rate (i.e. they wake up frequently to receive possibly
packets). Inversely, the leaf nodes may implement an ultra low duty cycle
approach to reduce their energy consumption;

3. CoopStor uses all the neighbors when the probability of a buffer overflow is
not null. We cooperatively store the packets in the different neighbors, to let
the network re-converge. This way, we limit the number of packet drops, and
we improve the reliability;

4. CoopStor reduces the traffic rate gradually, by forcing the nodes to hold their
packets back once their next hop is congested. This congested area gradually
increases, and is used as a cooperative storage area;

5. We thoroughly evaluated our solution with COOJA (an emulator for Contiki
OS) to highlight the relevance of CoopStor to deal with transient faults.
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Fig. 1: TSCH schedule for a 5 nodes topology.

2 Background

We focus in this paper on synchronized wireless networks, where the devices imple-
ment a low duty cycle to save energy. Thus, we will describe first IEEE 802.15.4-
TSCH (Time slotted Channel Hopping) [12], a slow channel hopping MAC protocol
designed to provide high reliability and robustness against external interference.
Then, we will detail RPL (IPv6 Routing Protocol for Low Power and Lossy Net-
works) [36].

2.1 IEEE 802.15.4-TSCH

The standard relies on a strict schedule of the transmissions [12]. The slotframe

contains a fixed number of timeslots, during which at most one frame and its
acknowledgment are transmitted. Each timeslot is labelled with an Absolute Se-
quence Number (ASN) which counts the number of timeslots since the Personal
Area Network (PAN) coordinator started. Based on the schedule, a node can decide
its role (transmitter/receiver/sleeping mode) at the beginning of each timeslot.

IEEE 802.15.4-2015 TSCH implements a channel hopping approach to combat
external interference and signal fading and, thus, to achieve high reliability. At
the beginning of a timeslot, a device verifies in the schedule if it has to stay
awake. If the cell is allocated to the device, the physical frequency to use for
transmission/reception is derived from the ASN of the timeslot and the channel
offset assigned to this cell. Nodes regularly broadcast Enhanced Beacons (EB) to
disseminate control information for unattached devices. The EBs may also be used
as a mean for nodes already part of the network to re-synchronize their clocks.
To this aim, an EB frame may contain synchronization of ASN and Join Metric,
channel hopping sequence identifier and TSCH slotframe.

The standard supports both distributed and centralized scheduling algorithms.
Scheduling for slow channel hopping industrial networks has received much atten-
tion in the past [32]. 6TiSCH-minimal [38] proposes to use some common (shared)
cells. Since all the nodes wake-up synchronously, a node is sure that the receiver
is awake. Besides, such shared cell is also useful to send a broadcast packets: ev-
ery neighbor will be able to decode the transmission. The shared cells should be
uniformly distributed in the slotframe helps to reduce the number of collisions [34].
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2.2 RPL

The Routing Protocol for Low Power and Lossy Networks (RPL) [36] is a distance
vector routing protocol, initially designed for topologies of thousands of nodes.
RPL focuses mostly on the convergecast traffic pattern, where all the packets are
generated toward the sink (called border router in RPL).

RPL is based on a Destination Oriented Directed Acyclic Graph (DODAG), rooted
at the border router. Each node computes its rank, denoting its virtual distance
from the border router. By selecting as parent only a neighbor with a strictly lower
rank, RPL constructs a loop-free routing structure. More precisely, RPL defines
an Objective Function (OF) to compute the rank, and a node selects as parent its
neighbor which gives it the lowest rank. Basically, an objective function takes as
arguments the rank of a neighbor and its link and node metrics.

The DODAG Information Objects (DIO) are control packets that contain the
rank of the transmitter, as well as the metrics required to compute the rank
for neighbors. Typically, we may use the popular Expected Transmission Count
(ETX) [8] metric as link quality metric. It counts the average number of (re)transmissions
required before receiving an acknowledgement (ACK). The objective function may
sum the ETX value of all the links of the path toward the border router.

3 Related Work

A Wireless Sensor Network (WSN) should be fault-tolerant, able to handle e.g.,
a node crash, or a sudden change of the link quality. In these conditions, several
approaches exist in the literature to limit the impact on the reliability.

3.1 Data Redundancy

Data redundancy mechanisms increase the number of messages the transmitter
sends to the next hop. With the HARQ (Hybrid Automatic Repeat reQuest) strat-
egy, packets which cannot be decoded are stored in the receiver to be recombined
later with the next copies [22]. The strategy to adopt to reduce both the packet
losses and the delay depends on the activation of acknowledgments.

Ruan et al. [28] propose to deal with byzantine faults. They consider the wire-
less infrastructure as a distributed storage system, storing the measurements, and
replying to the external queries. They use erasure codes to recover from a network
disconnection. However, the technique is computational intensive for our scenario,
and does not consider real-time transmissions to the sink.

Network coding can also help to introduce redundancy, and thus reliability. Wu
et al. [37] propose a per-link network coding strategy, adapted to the link quality.
When the packet loss rate exceeds a threshold, redundant and independent packets
are generated. Static coding vectors are used to simplify the decoding. Swamy et

al. [31] also uses network coding to improve the link reliability. However, these
approaches can only handle link quality variations, i.e. they cannot react efficiently
to a node failure. Alternatively, the network may adopt an end-to-end network
coding strategy [11].
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In Time Division Multiple Access (TDMA) schemes, the transmissions are
strictly scheduled to avoid collisions. The problem consists in reinforcing the sched-
ule to allocate more transmissions opportunities to the different flows while still re-
specting the end-to-end delay constraints [9]. Redundancy has a cost in bandwidth
and energy: more packets have to be transmitted, whatever the conditions [23].
In other words, they are tailored for the worst-case. We propose rather a reactive
approach: more resources are consumed only when a fault is detected.

3.2 Congestion Detection and Control

Low power and lossy networks support a combination of event-triggered, continu-
ous and query based traffic. Congestion occurs when the number of packets exceeds
the number of transmission opportunities, and creates collisions and packet drops.
Jan et al. [15] present a comprehensive survey of the existing congestion detection
and control schemes. Typically, congestion can be detected by analyzing the buffer
occupancy. If the number of packets exceeds a threshold value, it is highly proba-
ble that some packets would be dropped either because of congestion, or because
a route failure.

Kafi et al. [18] propose a congestion control based scheduling algorithm. By
appropriately scheduling the transmission, intra and inter-path interference can
be mitigated. But such scheme does only operate with TDMA schemes, which
are expensive with very low, or unpredictable traffic conditions. Pappas et al.

propose to selectively drop the oldest packets in the queue [27], considering old
information as less relevant. However, this approach assumes implicitly periodic
redundant transmissions, which is not always the case.

3.3 Intermittently Delay Tolerant Networks

Epidemic routing such as Spray and Wait [29] played a key role for routing in
delay-tolerant mobile ad hoc networks. Several copies circulate in the network to
guarantee a minimum reliability in intermittently connected topologies. Wang et

al. explore the optimal number of replicas to generate and how to schedule them
to increase the reliability [35]. They also select appropriately the packets to drop
when a buffer overflow occurs. However, the authors focus on a mobile topology of
devices, and use their contact-duration distribution to derive the optimal strategy.
These epidemic protocols are particularly efficient, but only in extreme conditions,
where the topology is intermittently connected and the links very lossy.

3.4 Content Centric Networks

Named Data Networking (NDN) tries to change the Internet paradigm to handle
directly data [39]. A producer generates data packets, that are cached in the net-
work. Symmetrically, a consumer generates an interest, routed toward one copy of
the chunk. Extensive caching strategies improve the scalability since some data are
very popular, and do not need to be forwarded independently for all the consumers.
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It has been recently extended to handle also IoT applications [6]. Indeed, IoT
applications rely on a large collection of producers which generate measurements,
consumed by controllers and actuators. To support data streams, a device may
subscribe to an interest, so that the producers automatically push the novel mea-
surements [25] (periodically, or threshold based). However, a NDN cache needs a
large amount of memory for small embedded devices.

3.5 Routing Mechanisms

A first approach consists in balancing the load among the different nodes. Ahmed
et al. [3] propose to construct multiple routes, and to distribute the load on the
less congested ones. Iova et al. proposed to modify RPL to support multi-parent
forwarding [13]. While it balances well the load (and the energy consumption),
congestion may still occur locally when a route change occurs. Kim et al. [19] pro-
vide a load-balancing technique for RPL. Each node selects its parent considering
their queue utilisation, so that the load is spread among the different nodes, to
reduce the congestion. Furthermore, in [17], the authors defined the Traffic Aware
Objective Function (TAOF), which balances the traffic load at each node locally
to provide node lifetime maximization and high network reliability.

While these approaches balance well the load, they cannot handle sudden
faults. In particular, global repairs would require a global network reconfigura-
tion, wasting time and energy. With RPL, a node may use siblings or switch its
parent for a fast recovery [20].

4 CoopStor: Cooperative Storage before the Routing Convergence

In this article, we consider that a fault may occur unpredictably (e.g. mobility
of nodes, failures of devices, failures of links). Routing tables may become incon-
sistent, and the packets may be accumulated in the buffers, leading possibly to
packet drops. Using multipath techniques, or replicating the packets may help to
alleviate the problem, but is expensive: more packets have to be transmitted.

We aim here rather to propose an adaptive scheme: energy should be consumed
only if a fault is detected. However, we must be particularly reactive since some
nodes may quickly drop data packets. Thus, we propose to use all nodes to coop-
eratively store the packets in order to reduce the potential losses. Hereafter, we
present our architecture, and we present in section 5 how each mechanism is used
during and after the routing convergence.

4.1 Motivation: duration of the convergence

Let us first simulate a simple topology as depicted in Figure 2c, using Cooja
and 6TiSCH minimal [38]. We use the parameters detailed in Table 2, as in the
performance evaluation. We let the network converge and we turn off the node B
which is the preferred parent of A. We denote by handover the process for the node
A to: i) detect its parent is not reachable, ii) find another parent, iii) reinitiate
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Fig. 2: Impact of the EB period on the disconnection time.

possibly the synchronization if it has been desynchronized, iv) change its rank and
configure its default route.

Typically, Enhanced Beacons (EB) are required to allow the network resynchro-
nization and reconfiguration. In particular, a smaller EB transmission frequency
period helps a device to find faster another time reference, but it also means that
the energy consumption is higher. As it can be observed in Fig. 2a, a large number
of EBs means that a device has to wait on average for shorter time before receiv-
ing a valid EB. However, very high EB rates (≥ 45 per minute) mean a very large
number of collisions, which jeopardize the convergence. Inversely, less EB trans-
missions reduce the collisions, but increase the convergence time. Typically, the
node A still needs 6 minutes to have a valid route with the default EB value (every
60 seconds). Meanwhile, several dozens of packets can be dropped (see Fig. 2b):
the node keeps on generating packets, and a buffer overflow occurs before having a
valid parent. This problem may be even worse if the node has packets to forward:
its buffer will fill up faster.

4.2 A two-layer topology to store packet when a fault occurs

In time-synchronized networks such as 6TiSCH minimal [38], each device has a
fixed number of transmission opportunities, equally interspaced, that defines its
duty cycle ratio. It is straightforward that increasing the duty cycle ratio means
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a smaller end-to-end delay: a node has shorter wait times before the next trans-
mission opportunity. However, it also increases the energy consumption.

We propose consequently in CoopStor to exploit two types of sensor nodes:

1. relay nodes forward the traffic of their subtree (i.e., subDODAG in RPL ter-
minology). They are similar to the Full Function Devices (FFD) of ZigBee [1].

2. leaf nodes are nodes which are not required for the routing task. Here, we
consider leaf nodes as the routing leaves only, similar to the Reduced Function
Device (RFD) of ZigBee [1]. With a convergecast traffic pattern, the leaf nodes
only wake up to transmit the sensed data to one of their parents, a relay node.

The relay nodes represent the routing backbone, i.e., the RPL DODAG, and
forward all the packets toward the border router (i.e., the sink station). All the
leaf nodes implement an ultra low duty cycle mode since they can only wake-up
when they have a date packet to transmit, without any impact on the end-to-end
delay. However, we keep on maintaining a low end-to-end delay since each node
uses only the active nodes as next hops.

Let us now consider a node crashes (for instance the node F in Fig. 3). The relay
nodes may quickly run out of memory since they need to store many packets before
having a valid route. To avoid dropping packets (e.g., on node D), we propose to
employ the neighboring leaf nodes as a temporary storage facility. When a fault
or a congestion is detected, all the neighboring leaf nodes have to stay awake to
receive packets. The packets are stored until the leaf nodes have a valid, non-
congested parent. In Figure 3b, node G has a valid parent (B) from the beginning
and can forward the packets immediately. The other leaf nodes have to wait for
the routing reconvergence (Fig 3c)).

4.3 Using leaf nodes when congestion occurs

We assume here that the wireless network is based on 6TiSCH-min [38], that uses
shared cells uniquely. Regarding the leaf nodes, they only wake up to transmit
their own data packets. Upon packet generation, they wake up and transmit their
data packet during the next available shared cell toward their preferred parent
according to the RPL protocol. As leaf nodes send their own data only, their
queues are empty most of the time and they do not suffer from congestion.

The relay nodes must know when their neighboring leaf nodes will wake-up.
Leaf nodes still send in broadcast EBs, every TEB seconds. All their neighbors,
including the relay nodes, receive these periodical EBs. Thus, a relay node can
predict the instant of EB transmission since the EB period is fixed in the network.
Therefore, a relay node has to store the last EB reception time for each leaf
neighbor, to know when each of its neighbors will wake-up.

To serve as a local storage facility when a congestion occurs, we propose that
a leaf node remains awake the Nscan shared cells following its EB transmission.
Thus, idle listening is strictly limited: leaf nodes have only to listen to Nscan shared
cells every TEB seconds. When it intercepts a message from a neighboring relay
node with a storing mode flag, the leaf node has not anymore the right to sleep
during the next shared cells: it must stay awake until all the neighboring relay
nodes have recovered. It triggers the storing mode.
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Let us consider the Nsh shared cells that are uniformly distributed in the
slotframe (with a slotframe length SFlength) [34]. Since a packet may be generated

at any time, the source has to wait on average for
SFlength

2∗Nsh
timeslots before being

able to transmit its packet. Then, the packet has to be forwarded in the next shared
cell, i.e.,

SFlength

2∗Nsh
timeslots later. Similarly, if the packet has to be retransmitted,

a random number of shared cells has to be skipped before the retransmission. In
conclusion, the end-to-end delay is directly proportional to the number of shared
cells. A large number of shared cells decreases the end-to end delay but increases
the energy consumption for relay nodes with idle listening.

5 Engaging and recovering from the storing mode

We now define when the storing mode has to be triggered. To avoid packet drops,
a node engages the storing mode upon any fault detection (e.g., no next hop,
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buffer overflow). In particular, we will compute the probability that a buffer over-
flow occurs, according to the schedule of the neighbors and the buffer occupancy.
Finally, we will describe how the network recovers when the routing protocol has
converged.

5.1 Storage Phase

A node decides to activate the storing mode in CoopStor when at least one of the
following conditions holds:

1. a routing inconsistency. Neighbor Unreachability Detection (NUD) helps to
detect that the RPL parent is not anymore up. In the same way, RPL detects
a loop when a packet is received in the upward direction from a neighbor with
a lower rank;

2. the probability of a buffer overflow before the next wake-up of a neighboring
leaf node exceeds a threshold. Each time a relay node receives an EB from a leaf
node, it has to compute the probability of a buffer overflow. We will detail in
section 5.2 how to compute this probability. If this probably exceeds a threshold
value, a relay node engages the storing mode step, and uses neighboring leaf
nodes to store temporarily the packets, and to avoid a buffer overflow;

3. a neighboring relay node is in storing mode. Typically, it reflects a routing
inconsistency, and all the nodes must stay awake until the network recovers.

Let us consider the Figure 4. The node C has crashed, and the relay node B
will be probably saturated before being able to find a correct next hop. Figure 4b
illustrates the exchanges of packets at the MAC layer. For the sake of simplicity,
we only represent the active period of the slotframe (i.e., shared cells). The relay
nodes have to wake-up for every shared cell, and consume more energy.

The node B detects its next hop (node C) has become unreachable. However,
due to its buffer occupancy and its limited storage resources (i.e., queue size),
the node B can only store a limited number of packets. Thus, it has to find local
neighbors to help it storing temporarily the packets. L1 is the first leaf node which
sends an EB, and it remains awake in the next shared cell. The relay node B starts
emptying its buffer by transmitting its packets to L1 with the storing mode flag
to force L1 to remain awake. B send all its packets (EB and data packets) with
the storing mode flag. Step by step, all the neighboring leaf nodes are notified and
remain awake during all the shared cells. Besides, a leaf node stops forwarding its
packet when it is notified that its parent has activated the storing mode.

To avoid buffer overflows, the relay nodes adopt a hot potato strategy. They
send their packets to the first leaf neighbor which sends an EB. Since this leaf
node has then to remain awake, the relay node can reduce its buffer occupancy
relatively fast. At certain point, a leaf node may also become congested, and it
will stop acknowledging packets (label ”full” in Figure 4b). Thus, the relay node
has to search for another leaf node, and waits for the next EB.

The relay node may find a neighboring leaf node which has still a valid, non-
congested parent. For instance, L2 has a valid parent (D) in Figure 4a: it is not
impacted by the crash of C. However, it will be solicited by the relay node C

and will start buffering its packets. Since the relay node D is still valid, and is its
parent, L2 can safely keep on forwarding its data packets to its parents. It is worth
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noting that the relay node C can empty its buffer thanks to L2, but remains in
storing mode, until it has a correct parent which is a relay node (node D in our
example).

Relay nodes forward most of the packets. Thus, they should stop sending their
packets when their parent (also a relay node) is congested. Similarly to the leaf
nodes, the relay nodes enter in storing mode as soon as they receive any packet
from their parent. Thus, the storing mode is activated hop-by-hop, propagated
in the subtree of the congested node. More precisely, we block all the subtree
rooted at the relay node that became congested. However, the routing protocol
will reconfigure the routes. Thus, as soon as a relay node has non congested parent,
it can safely starts re-forwarding its packets toward the sink.
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N eighp(k): Set of leaf neighbors of the node k
Tup(i): Wake-up period of the node i

rxEB(j): Last time since the reception of an EB from the leaf
node j

∆clock: Average clock drift (typically 30ppm)
per(i, j): packet error rate for the link (i, j)

Queuemax: Maximum number of packets which can be stored
in the queue

Queue: Number of packets currently in the queue
λin: Number of packets received per second (= 0 for

leaf nodes)

Table 1: Notation

5.2 Buffer Overflow Probability

We propose to monitor the queue occupancy and to compute the probability a
buffer overflow occurs before the next leaf node wakes-up. We consider also the
link reliability toward each leaf neighbor to upper bound the probability of a packet
drop. We first analyse here the conditions that each relay node must respect to
avoid a buffer overflow.

Each leaf node sends periodically an EB, and then stays awake after its EB
to receive possibly sollicitations. We denote by Tup the wake-up period of each
node, i.e. the period at which it wakes up to receive packets from its neighbors
(cf. Tab. 1 for our notation). To save energy, the wake-up period of leaf nodes is
much larger than for relay nodes.

By memorizing the schedule of its leaf neighbors, each relay node is able to
predict when each of them will wake up to store its packets if a congestion occurs. If
a relay node Nr monitors the instant at which it received the last EB from each of
its neighbors, it can compute the expected wake-up time for each of it neighboring
leaf node. A leaf node Nl sends periodically its EB every Tup(Nl). Thus, the relay
node Nr can precisely estimate the next wake-up time of each neighboring relay
node:

Twake−up(Nl, t) = rxEB(Nl) + k × Tup(Np) (1)

with rxEB() being the time of the last EB received from Nl and Tup() its wake-up
period.

One can note that we consider the next EB transmission, even if the previous
EBs have not been received correctly (because of e.g. collisions). More precisely,
the integer k is derived to respect the following condition:

rxEB + (k − 1)× Tup(Nl) ≤ t ≤ rxEB + k × Tup(Nl) (2)

with t being the current time clock.

We must also take into account the clock drift since the last reception of the
EB from the neighbor Nl. Indeed, the maximum time difference between the two
clocks of Nl and Np is:

Tdiff (Nl) =
(
Twake−up(Nl, t)− rxEB(Nl)

)
×∆clock (3)
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Finally, the maximum time to wait before Nl is able to receive the data packets,
is finally:

Twait(Nl) = Twake−up(Nl) + Tdiff (Nl) (4)

Let us now consider the packet error rate (PER) of the radio links: some
data packets may be lost because the radio link is unreliable. In this case, the
leaf neighbor would go back to the sleeping state without buffering the expected
packets.

We aim here at upper bounding the probability P [buffer overflow] that the
node undergoes a buffer overflow. Typically, P [buffer overflow] should not exceed
∆thr. (e.g. threshold reached in maximum 1% of the time). Thus, we have to con-
sider the maximum waiting time which will be guaranteed in (1−P [buffer overflow])
of the cases.

We have to determine which neighbor will be the first to acknowledge the
data packet transmissions from the congested relay node. The probability that a
given neighbor will be the first leaf node to acknowledge the anycast packet is the
probability that all the previous neighbors (with a lower waking-up time) failed,
and that the transmission of the considered neighbor is a success. Finally, this
neighbor Nfirst ∈ N eighp(Nr) must wake up sufficiently early such that:

P [buffer overflow] ≤ ∆thr. (5)

with

∆thr. ≤ (1− PER(W ))×
Twait(k,t)≤Twait(Nfirst,t)∏

k∈Neighp(Na)

(PER(k)) (6)

If a temporary disconnection occurs next, a relay node will consequently un-
dergo a buffer overflow if it receives too many packets until the waking-up of this
leaf neighbor:

(Queuemax −Queue) ≤ λin × (Twait(Nfirst, t)− t) (7)

with λin the average rate of packet reception.

5.3 Recovery Phase

When none of the conditions in section 5.1 holds, a node can consider safely the
network has converged and the steady state has been reached. A node engages the
recovery phase only when its parent announces it has recovered, i.e., the storing

mode flag is inactivated in the overheard packets. This way, the relay nodes close to
the recovered region will first empty their buffers. Step by step, the storing region
will be reduced, and the network will finally entirely turn into steady state.

In Figure 4, the relay node B has to change its parent (from C to D). Before
the change, the relay node uses its neighboring leaf nodes. After it has a correct
parent, it starts sending its data packets to D, and can remove the storing mode

flag from its packets as soon as its buffer occupancy is sufficiently low to respect
the condition of eq. 7. Similarly, the leaf node L1 observes that its parent B is not
congested anymore (the storing mode flag is off from its packets). Thus, it can
safely starts emptying its buffer by sending its packets to B. When its buffer is
empty, L1 re-engages its low power mode, and wakes up only every TEB seconds.
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Since the buffer of a recovering node is probably full, each node will transmit
several packets to its parent. However, its parent is not anymore in storing mode

and can receive multiple packets without suffering from a buffer overflow.

5.4 Overhead

Our protocol relies on Beacon and routing packets, that already exist for most of
the MAC or routing protocols, and are defined either in IEEE 802.15.4-2015 [12] or
RFC 6550 [36] standards. In particular, Enhanced Beacons packets keep on being
generated according to the same period. Each node computes the expected wake-
up time of its leaf neighbors by taking into account the instant of reception of the
last EB, and the EB period in the network.

The overhead generated by our solution consists of:

1. a storage flag in the data packets, indicating the emitter is in storing mode.
In particular, no packet is required to maintain the nodes awake in the storing

region: a node cannot sleep until all its neighbors indicated they recovered,
either in EB or data packets;

2. two additional transmissions to store a packet in a neighboring leaf node (and
retrieve it). However, the corresponding data packet would have been dropped
without our solution.

Our scheme may also be adapted for different MAC layers. With Low Power
listening (LPL) [24], leaf nodes would have a very large preamble wake-up period,
while relay nodes would wake up more frequently to reduce the forwarding delay.

6 Performance Evaluation

We assess here the performance of CoopStor through a set of simulations, to
evaluate its efficiency for using all the nodes as a temporary storage infrastructure.

6.1 Emulation Setup and Parameters

For the setup of our experiments we utilize the RIME communication stack (http:
//www.contiki-os.org/), with a gradient based routing protocol (similar to RPL).
We construct a tree rooted at the sink, and use the number of hops as routing
metric to select the next hop nodes. Table 2 regroups all the default values of our
simulation setup. We compare our work with:

Selective Drop generates several replicates for each packet, and selects carefully
the packets to drop when a buffer overflow occurs [35]; The aforementioned
strategy proves to be counter-effective in large dense WSNs.

DRAS (DistRibuted Adaptive Scheme) adapts its transmission rate depending
on the congestion [26]. It is similar to a back-pressure algorithm, reducing effi-
ciently the outgoing rate hop by hop toward the sources. Nevertheless, DRAS
does not perform always as expected and results to delays in large networks.

Default represents the default strategy. All the packets are enqueued until the
buffer is full (32 packets by default);

http://www.contiki-os.org/
http://www.contiki-os.org/
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Simulation setup Default Value
Duration 1.5 hours
Topology Random
Number of nodes 40 nodes
Number of source nodes 20 nodes
Simulation Area (in COOJA) 150x100 meters
Routing
Routing protocol RPL [36]
Routing metric Expected Transmission Count (ETX)
Objective Function MRHOF [10]
MAC
MAC protocol IEEE 802.15.4-TSCH [2]
Scheduling algorithm 6TiSCH-minimal [38]
Nsh (number of shared cells) 1
SFlength (slotframe length) 7
Nscan 1
Maximum retries 3
Queues / Traffic
Queue size 32 pkts
Application model CBR, 1 pkt/12 s
Payload size 102 Bytes
PHY
Radio chipset model CC2420
Radio propagation 2.4Ghz
Radio model Unit Disk Graph Medium (UDGM)
Modulation model O-QPSK
Transmission power −10 dBm

Table 2: Simulation setup.

Default
Selective Drop

FTF

DRAS

CoopStor

(a) No fault

Default

Selective Drop

FTFCoopStor

DRAS

Fault

Default

Selective Drop

(b) With faults

Fig. 5: Reliability achieved by the different forwarding strategies.

CoopStor is the strategy presented in this paper. It exploits all the nodes to store
the packet when a fault (i.e. buffer overflows) occurs.
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Default
Selective Drop

FTF

DRAS

CoopStor

(a) No fault

Default

Selective Drop

FTFCoopStor

DRAS

Fault

(b) With faults

Fig. 6: Duty Cycle ratios achieved by the different strategies.

6.2 Emulation of Faults

Our approach is to depict average results from 200 samples of experiments and
with 95% confidence interval used. Firstly, we measure the reliability achieved
by the different solutions when exploiting a static topology where everything is
stable (Fig. 5a). Initially we consider a topology with 40 nodes. We can verify
that all the solutions achieve high reliability, delivering most of the packets to the
sink. DRAS and Selective Drop tends to overreact, dropping some packets because
they consider false congestion. Typically, DRAS may over-estimate the congestion,
forcing the upward nodes to reduce their traffic rate, increasing the probability of
a buffer overflow.

Then, we generated faults, by turning a device off to study the convergence
for the reconstruction (Fig. 5b). Faults are inserted every 20 seconds. This period
is selected in order to let the network re-converge. DRAS achieves the lowest
reliability, dropping almost 20% of the packets when a fault occurs. Reducing
the rate is not enough: packets fill very quickly the buffers all along the routes,
which results to dropping some packets. The recovery is also quite slow, when
increasing the number of packets: upward nodes did not yet recover. RPL achieves
a slightly higher Packet Delivery Ratio, delivering more packets. However, still
10% of the packets are dropped. Selective Drop behaves similarly to RPL and
cannot accurately limit the packet drops. On the contrary, CoopStor achieves the
highest reliability, delivering almost all the packets even when a fault occurs. The
forwarding nodes store successfully the packets in the queues of their neighbors
before a buffer overflow occurs, limiting the packet drops.

Then, we measure the radio duty cycle (i.e. percentage of time the radio chipset
is turned on) in Figure 6. We can notice that RPL and DRAS are very volatile,
even without faults (Fig. 6a): the routes may change even if the topology is static,
because of a dynamic routing metric [14]. CoopStor achieves the highest stability,
and a device is awake only 4% of the time on average. Packets are enqueued until
the novel next hop is chosen, and the queue is then emptied in bursts, increasing
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Default

Selective Drop

FTF

DRAS

CoopStor

(a) Without faults

Default

Selective Drop

FTF

DRAS

CoopStor

(b) With faults

Fig. 7: Delay in large-scale topologies

the radio duty cycle regularly. The recovery is sufficiently fast to not penalize too
much the duty cycle ratio of leaf nodes.

Then, we injected faults in the topology, every 20 seconds, as previously (Fig. 6b).
The radio duty cycle is slightly increased: a device stays awake in every shared cell
until its buffer is empty. However, the impact on the energy consumption is very
reasonable. We identify a higher variability, the maximum duty cycle ratio being
slightly higher.

6.3 Scalability

We now study the scalability, with larger networks (between 80 and 160 devices)
in the same simulation area. We insert faults following a Poisson distribution with
range of [5-10] faults per minute. We first measure the delay with and without
faults (Fig. 7) and the simulation period is doubled to 3-hours in total. The end-
to-end delay increases with more nodes: the network has more packets to forward,
increasing possibly the congestion, and the number of transmissions in a given
shared cell. CoopStor keeps on providing the lowest delay compared with all the
other solutions. Typically, DRAS may introduce useless buffering delay by over-
estimating the amount of congestion. Even when no fault occurs, some packets
undergo a longer delay. The presence of faults only slightly increase the delay for
CoopStor: the packets are temporarily stored in neighboring nodes, and de-queued
as soon as a valid route exists. CoopStor achieves to reduce by 30% the end-to-end
delay compared with the Default strategy, in presence of faults.

Then, we measure the Packet Delivery Ratio (Fig. 8). With only 40 nodes,
the topology is less redundant, and each relay node has a smaller number of leaf
neighbors to store its packets. However, with 80 or 160 nodes, the PDR is close
to 100%: faults are handled transparently by the network infrastructure, and the
packets are correctly delivered to the sink. DRAS is much less scalable: a waterfall
effect may force the nodes to decrease their traffic rate, dropping more packets for
high densities. Similarly, the Default strategy cannot deliver all the packets to the
sink when the network has to re-converge to a legal state. Finally, Selective Drop
also drops more packets, and is inefficient to handle local routing modifications.
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Default

Selective Drop

FTFCoopStor

Fig. 8: Efficiency of large-scale networks in presence of faults.

7 Conclusions and Perspectives

In this paper we have presented CoopStor that targets at achieving in a reliable
data collection in fault and delay tolerant wireless networks. We have shown to
what extent such a mechanism would be profitable during the data collection
phase of a time-driven and event-driven monitoring application and even more,
in many-to-one topologies where the congestion is prominent around the root of
the tree. Our approach considerably improves the reliability in presence of faults.
Even when the routing protocol has to reconstruct some routes with e.g. a local
repair, the network infrastructure is able to store efficiently the packets to still
provide high reliability. CoopStor reduces also the delay since it triggers a storing

mode only when required, not overreacting to changes.
We aim in a future work to investigate how our solution may be adapted

to support other MAC layers. In particular, preamble sampling protocols may
implement different sampling periods for relay vs leaf nodes. We need to modify
the equations in section 5.2 to formulate the buffer overflow probability, depending
among other parameters on the density and the sampling period. We also expect
to implement our prototype on the FIT IoT-LAB large-scale testbed to assess the
performance of our buffering strategy in a smart building scenario, in presence of
external interference, with sudden radio environment changes. We also expect to
implement our prototype on the FIT IoT-LAB large-scale testbed to assess the
performance of our buffering strategy in a smart building scenario, in presence of
external interference, with sudden radio environment changes.
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