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ABSTRACT
Modern 5G wireless cellular networks use massive multiple-input multiple-output
(MIMO) technology. This concept entails using an antenna array at a base station
to concurrently service many mobile devices that have several antennas on their side.
In this field, a significant role is played by the precoding (beamforming) problem.
During downlink, an important part of precoding is the power allocation problem
that distributes power between transmitted symbols. In this paper, we consider the
power allocation problem for a class of precodings that asymptotically work as regu-
larized zero-forcing. Under some realistic assumptions, we simplify the spectral effi-
ciency functional and obtain tractable expressions for it. We prove that equal power
allocation provides optimum for the simplified functional with total power constraint
(TPC). We propose low-complexity Intersection Methods (IM) that improve equal
power allocation in the case of per-antenna power constraints (PAPC). On simula-
tions using Quadriga, the proposed IM method in combination with widely-studied
Water Filling (WF) shows a significant gain in spectral efficiency while using a
similar computing time as the reference Equal Power (EP) solution.

KEYWORDS
5G, MIMO, Multi-antenna UE, Precoding, Regularized Zero-Forcing, Power
Allocation, MMSE-IRC Detection, Constrained Optimization,
Karush–Kuhn–Tucker conditions, Asymptotics

1. Introduction

The massive multiple-input multiple-output (MIMO) systems have attracted a lot of
attention in both academia and industry since their first appearance [1, 2]. The main
characteristic of the massive MIMO system is the large-scale antenna arrays at the cel-
lular base station (BS). Using a large number of antennas, the massive MIMO system
can exceed the achievable rate of a conventional MIMO [3] system and simultaneously
serves (with low power consumption) several users.

A critical issue for improving the performance of wireless networks is the efficient
management of available radio resources [4]. Numerous works are dedicated to optimal
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allocation of the radio resources, for example, power and bandwidth to improve the
performance of wireless networks [5].

An important part of signal processing in downlink is precoding since with this
procedure we can focus transmission signal energy on smaller regions, which allows
achieving greater spectral efficiency with lower transmitted power [6]. Various linear
precodings allow directing the maximum amount of energy to the user like Maximum
Ratio Transmission (MRT) or completely get rid of inter-user interference like Zero-
Forcing (ZF) [7, 8]. The precoding problem is well-studied (see e.g., overview [9–11] and
textbooks [12, 13] and bibliography within), nonetheless there are open questions. For
example, most of the works consider the total power constraint (TPC) (see e.g., [14]),
the more realistic per-antenna power constraints (PAPC) are much less studied (see
e.g., [15, 16]).

An important component of the precoding procedure is the power allocation (PA)
problem that is widely discussed in the literature. In [17], by using either the signal-
to-interference-and-noise ratio (SINR) or the outage probability as the performance
criteria, different power allocation (PA) strategies are developed to exploit the knowl-
edge of channel means. In [18] bounds on the channel capacity are derived for a similar
model with Rayleigh fading and channel state information (CSI). The power alloca-
tion problem in a three-node Gaussian orthogonal relay system is investigated in [19]
to maximize a lower bound on the capacity. Two power allocation schemes based on
minimization of the outage probability are presented in [20] for the case when the in-
formation of the wireless channel responses or statistics is available at the transmitter.
In [21] studies optimal power allocation schemes in a multi-relay cooperating network
employing amplify-and-forward protocol with multiple source-destination pairs. The
work [22] advocates the use of deep learning to perform max-min and max-prod power
allocation in the downlink of Massive MIMO networks. In [23] the total downlink
power consumption at the access points is minimized, considering both to transmit
powers and hardware dissipation.

The most relevant works to the current paper are of E. Björnson et al. In [12,
sec. 7.1] the case of single-antenna user equipment (UE) is studied in detail, target-
ing UE spectral efficiency and using multi-criteria optimization approach and Pareto
front analysis. In [16, p. 328] multi-antenna UEs are considered, but they are sup-
posed to get only one data channel (or stream). The difficulty of the multi-antenna
UE case is that the channels between different antennas of one UE are often spatial
correlated [24]. Therefore, the matrix of the user channel is ill-conditioned (or even has
incomplete rank) thus one can not efficiently transmit data using the maximum num-
ber of streams. To solve this problem, instead of the full matrix of the user channel,
vectors from its singular value decomposition (SVD) with the largest singular values
are used for precoding [25]. When the number of streams (UE rank) is greater than
one, it is necessary to consider the phenomenon of effective Signal-to-Interference-
and-Noise-Ratio (effective SINR) [26]. In [27] a dynamic optimization model which
maximizes the total energy efficiency along with satisfying the necessary QoS con-
straints is proposed. In [28] a novel approach to joint optimal power allocation and
user association techniques in which cells are powered via a common grid network and
alternative energy resources is suggested. In [29] a dynamic optimization model to
minimize the overall energy consumption of 5G heterogeneous networks is proposed.

In this paper, we study the problem of power allocation (PA) of MIMO wireless
systems with users with multiple antennas and generalize the results of E. Björnson et
al. for the case of multi-antenna UEs with rank greater than one. We present the novel
solutions to the PA problem that maximize network throughput in terms of spectral
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Figure 1. Multi-User precoding allows transmitting of different information to different users simultaneously.

Using the matrix W we can configure the amplitude and phase of the beams presented on the picture. The

problem is to find the optimal precoding matrix W of the system given the target SE function (13).

efficiency (SE) subject to either total or per-antenna power constraints. The original
problem is not convex, but we managed to simplify it to a convex one with additional
assumptions on the system model, e.g., applying a specific class of detection. Under
some natural assumptions, we simplify the spectral efficiency functional and prove that
the uniform power allocation provides its optimum subject to TPC. For the case of
PAPC, we equivalently reformulate the optimization problem as the Lagrange system
of equations and write down the Karush–Kuhn–Tucker conditions. Here, algorithmic
solutions of PA problem are proposed assuming realistic PAPC.

The simulation results based on Quadriga channel simulator [30] show the effec-
tiveness of the proposed algorithmic approach in comparison with the reference PA
schemes. To the authors’ best knowledge, these mathematical results are new.

The rest of this paper is organized as follows. After this Introduction, Section 2 is
devoted to the channel and system model where we introduce the downlink MIMO
channel model, reference precoding methods, various detection schemes, and quality
measures. In Section 3 we show a simplification of the PA problem, where we describe
asymptotic diagonalization property of precoding matrices are used, proof of similarity
of Conjugate and MMSE-IRC matrices, and Effective SINR models. In Section 4 we
consider the problem of the PA algorithm under TPC and PAPC assumptions, where
we describe equal power allocation under the TPC, and the solution under the PAPC
assumptions. We also consider problem-solving taking into account Modulation and
Coding Scheme (MCS) (4.2). The numerical algorithm description is presented in
Section (4.5). Numerical experiments to compare considered algorithms are provided
in Section 5. Algebraic notations and reference values are shown in Tab. 1.

2. Channel and System Model

According to [12, 13, 31, 32] we consider a MIMO broadcast channel. Symbol r ∈ CL

is a received vector, and x ∈ CL is a sent vector, and H ∈ CR×T is a channel matrix,
and W ∈ CT×L is a Precoding matrix, and G ∈ CL×R is a block-diagonal detection
matrix, n ∼ CN (0, σ2IR) is a noise-vector, x ∼ CN (0, IL) is a vector of sending
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Table 1. Algebraic notations together with the reference values.

Symbols Notations

H ∈ CR×T ,W ∈ CT×L,G ∈ CL×R Channel, precoding and detection matrices

wn ∈ CT n-th column of matrix W

hk ∈ CT ,wk ∈ CL k-th row of matrices H,W

hnm ∈ C, wnm ∈ C n,m-th element of matrices H,W

S = diag(s1, . . . , sL) ∈ CL×L Diagonal matrix of singular values

K (= 4) the number of users

T (= 64) the number of transmit antennas

R (= 16) the total number of receive antennas

Rk (= 4) the number of receive antennas for each user

L (= 8) the total number of layers in the system

Lk (= 2) the number of layers for each user

()
H

Complex conjugate operator
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Figure 2. The linear system model assumes only a linear transformation of the transmitting symbols.

symbols. Note that the linear precoding and detection are implemented by simple
matrix multiplications. The constant T is the number of transmit antennas, R is the
total number of receive antennas, and L is the total number of transmitted symbols
in the system. Usually, they are related as L ⩽ R ⩽ T . Each of the matrices G,H,W
decomposes by K users, so please see the scheme in Fig. 2. The Multi-User MIMO
model is described using the following linear system:

r = G(HWx+ n). (1)

In this paper, we make the following assumptions: i) that all users’ channels are
subject to uncorrelated Rayleigh fading, and ii) that the transmitter has perfect CSI
of all downlink channels. This assumption is reasonable in time division duplex (TDD)
systems because it enables the transmitter to use reciprocity to estimate the downlink
channels. iii) that each user only has access to their own CSI.

2.1. Singular Value Decomposition of the Channel

The channel matrix for user k, Hk ∈ CRk×T contains channel vectors hi ∈ CT by
rows. The path loss diagonal matrix Sk ∈ RRk×Rk contains Rk singular values σkn in
decreasing order along its main diagonal. It is convenient [25] to represent Hk via its
Singular Value Decomposition (SVD): Hk = UH

k SkVk.
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Figure 3. A graphical illustration of the Main Decomposition Lemma 1.

Lemma 1 (Main Decomposition). [33] Denote H = [H1, . . . ,HK ] ∈ CR×T the
concatenation of individual channel rows Hk. Similarly, U = bdiag{U1, . . . ,UK},
S = diag{S1, . . . ,SK}, V = [V1, . . . ,VK ]. Then, the decomposition exists (see
Fig. 3): H = UHSV , where the H ∈ CR×T , and S = diag(Sk) ∈ CR×R, and
U = bdiag(Uk) ∈ CR×R is block-diagonal unitary matrix, V = [V1, . . . ,VK ] ∈ CR×T

is the concatenation of corresponding UE singular vectors and C = V V H − I ̸= O.

Lemma 1 means that by collecting all users together, we can write a specific channel
matrix decomposition [33]. Note, that such decomposition is not a convenient SVD
of the channel matrix H, and the matrix V is not unitary. But it consists of the K
SVDs of the size Rk × T and has block-diagonal unitary left matrix U . We use this
form in the construction of the optimal detection matrix G [25].

Usually, the transmitter sends to UE several layers and the number of layers (rank)
is less than the number of UE antennas (Lk ⩽ Rk). In this case, it is natural to choose

for transmission the first Lk vectors from Ṽk that correspond to the Lk largest singular
values from S̃k. Denote by S̃k ∈ CLk×Lk the first Lk largest singular values from Sk,
and by ŨH

k ∈ CRk×Lk , Ṽk ∈ CLk×T the first Lk left and right singular vectors that

correspond to S̃k:

S̃k = diag{sk,1, . . . , sk,Lk
}, ŨH

k = (uH
k,1, . . . ,u

H
k,Lk

), Ṽk = [vk,1; . . . ;vk,Lk
], (2)

i.e. rankṼk = Lk ⩽ Rk = rankVk. Numbers Lk (and particular selection of Ṽk) are
defined during the Rank Adaptation problem that, along with Scheduler, is solved
before precoding. For the Rank adaptation problem, we refer for example to [34] and

in what follows we consider Lk, Ṽk already chosen.

2.2. Precoding Matrices

The precoding matrix W is responsible for the beamforming from the base station to
the users [35]. The linear methods for precoding do the following. Firstly, the linear
solutions obtain singular value decomposition for each user Hk = UH

k SkVk ∈ CRk×T

(Lemma 1) and take the first Lk singular vectors Ṽk ∈ CLk×T which attend to the first
Lk greatest singular values [25]. All these matrices are concatenated to the one matrix

Ṽ ∈ CL×T , which is used as the main building block of these precoding constructions.
Finally, the precoding matrix is constructed from the obtained singular vectors. We
describe linear methods for constructing a precoding matrix.

5



We are considering precoding matrices in the following form:

W = W ′P , W ′ = W ′(Ṽ ), (3)

where Ṽ is taken from the specific SVD decomposition from Lemma 1 and P is a
diagonal matrix of power allocation.

Let us repeat some known precodings that are considered as initial solutions for
studied power allocation methods.

The inter-user interference is vanished by the Zero-Forcing (ZF) precoding [7]:

WZF = Ṽ †P , Ṽ † := Ṽ H(Ṽ Ṽ H)−1 (4)

It can be improved by using Regularized Zero-Forcing (RZF) precoding:

WRZF = Ṽ H(Ṽ Ṽ H + λI)−1P , (5)

where the regularization parameter λ = σ2L
P > 0 depends on noise level and average

path-losses [36].
Further improvement is possible with diagonal regularization as in Adaptive Reg-

ularized Zero-Forcing (ARZF) [33] precoding (this idea was discussed in [12, 37], the
following explicit heuristic formula for the MU MIMO case was proposed and studied
in [33]):

WARZF = Ṽ H(Ṽ Ṽ H + λS−2)−1P (6)

Detailed comparison of these algorithms and bibliography can be found in [33].

2.3. Detection Matrices

After precoding and transmission, on the side of UE k, we have to choose a detec-
tion matrix Gk ∈ CLk×Rk , which takes into account the rank of UE Lk. The way the
UE performs detection strongly affects overall performance, and different detection
algorithms require different optimal precoding matrices (see [36], where precoding is
chosen as a function of the detection matrix). The best way would be to consistently
choose precoding and detection, but this is hardly possible due to the distributed na-
ture of wireless communication. However, there are ideas on how to set up a precoding
matrix, assuming a specific detection method on the UE side in the transmitter [38].
We do not consider such an approach in our work, although it can be used to further
improve our main proposal.

We assume the effective channel matrix Ak = HkWk to be calculated on the UE
side. The Minimum Mean Square Error (MMSE ) detection for the user k, where λ ⩾ 0
is the regularization value [39, 40], performs as follows:

GMMSE
k (λ) = (AH

k Ak + λI)−1AH
k (7)

In this paper, priority is given to theMMSE -Interference-Rejection-Combiner (MMSE-
IRC ) detection [41]:

GIRC
k (λ) = AH

k (A
H
k Ak +Rk

uu + λI)−1. (8)

6



And covariance matrix Rk
uu of total intra-user interference:

Rk
uu = Hk(WWH −WkW

H
k )HH

k . (9)

To conduct analytical calculations, we assume virtual Conjugate Detection (CD) in
the following form [33]:

GC
k = Pk

−1S̃−1
k Ũk = P−1

k ĜC
k ∈ CLk×Rk , (10)

where Pk is a corresponding to k-th user sub-matrix of matrix P in equation (3).

2.4. Quality Measures

We measure the quality of precoding using well-known functions such as Signal-to-
Interference-and-Noise-Ratio (SINR) [42] and Spectral Efficiency (SE) [43]. These
functions are based not on the actual sending symbols x ∈ CL×1, but some distri-
bution of them [44]. Thus, we get the common function for all assumed symbols,
which can be sent using the specified precoding matrix. We denote Lk as the set of
symbols for k-th user. The SINR function is defined as:

SINRl(W ,Hk, gl, σ
2) :=

|glHkwl|2∑L
i ̸=l |glHkwi|2 + σ2∥gl∥2

, ∀l ∈ Lk. (11)

For simulations of a physical layer (PHY) in multi-carrier and multi-layer OFDM
systems an effective SINR mapping (ESM) model is used. Such model compresses the
given set of SINRs experienced by the receiver over every sub-channel into a single
scalar value (called effective SINR). According to the paper [26], the effective SINR
for a user k is calculated using the SINR at each layer of each Resource Block (RB)

as follows. Functions β = β(MCS) and MCS = MCS(SINReff
β ) are table-defined (see,

e.g., Table 4 for β(MCS)). Assuming only one RB, we can define SINReff
β as a self-

consistent solution of the following system:

SINReff
β,k (W ,Hk,Gk, σ

2) = −β ln

(
1

Lk

∑
l∈Lk

exp
{
− SINRl(W ,Hk, gl, σ

2)

β

})
(12)

This model is called Exponential effective SINR mapping (EESM) and the accuracy
of EESM has been validated in several studies [45–47]. To get the SE function, we apply
Shannon’s formula over all effective user SINRs (29):

SE(W ,H,G, σ2) =

K∑
k=1

Lk log2(1 + SINReff
β,k (W ,Hk,Gk, σ

2)) → max
W

. (13)

2.5. Problem Statement

We consider the channel model in the form (1) that particularly means exact mea-
surements of the channel. To further simplify the problem we suppose detection policy
G = G(H,W ) to be a known function, moreover we assume Conjugate Detection (10)
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that simplifies the channel model to (24). Based on this channel model, we calculate
SINR of transmitted symbols by (11) and effective SINR of UE, which can be approx-
imately calculated by (12) and (29). We denote the total power of the system as, P ,
assuming P = 1 in the experiments.

The total power constraint and the more realistic per-antenna power constraints
(see [12]) impose the following conditions on the precoding matrix. Since case W =
W ′(V )P is considered in this paper, conditions read:

(a) ∥W ′P ∥2 ⩽ P, or (b) ∥w′tp∥2 ⩽ P/T, t = 1, . . . , T, (14)

where P = diag(p) = diag
(√

p1 . . .
√
pL
)
= diag

( √
ρ1

∥w′
1∥ . . .

√
ρL

∥w′
L∥

)
is power allo-

cation matrix and P is total power of base station. The goal is to find a power
allocation matrix that maximizes SE (13) given the power constraints (14):

SE(P ) = SE(W ′P ,H,G(H,W ′P ), σ2) → max
P

, subject to (a) or (b). (15)

3. Simplifications of the Problem

3.1. Asymptotic Diagonalization Property of Precoding

Definition 2. Let us assume the case of small noise and denote λ = σ2

P → 0 and P > 0
is some diagonal matrix. In real systems, Scheduler algorithms choose UE for pairing
if this assumption is fulfilled. Define the property of asymptotic diagonalization
of Ṽ as λ → 0 of precoding matrix as follows:

Ṽ W =


Ṽ1

Ṽ2

. . .

ṼK

 · (W1,W2 . . .WK) = P +O(λ), i.e. Ṽ W ∼ P , as λ → 0 (16)

Precoding algorithms: ZF (4), RZF (5), and ARZF (6) satisfy the property (16).
This can be easily shown with the Neumann series as in the following Lemma (it is
similar to [33, Lemma 2]).

Lemma 3. Consider square invertible complex matrices M and N of the same size
and rank. For any 0 < λ ≪ 1 and detM ̸= 0 the following matrix identity is true:
(M + λN)−1 = M−1 − λM−1NM−1 +O(λ2) = M−1 +O(λ).

Proof.

F (λ) = (M + λN)−1, and F ′(λ) = −(M + λN)−1N(M + λN)−1 (17)

F (λ) = F (0) + F ′(0)λ+O(λ2), where F (0) = M−1, and F ′(0) = −M−1NM−1

(18)

(M + λN)−1 = M−1 − λM−1NM−1 +O(λ2) = M−1 +O(λ) (19)

8



For channel singular values Ṽ such that the matrix Ṽ Ṽ H has a full rank, using
Lemma 3 for the algorithms ZF (4), RZF (5) and ARZF (6) we obtain:

Ṽ WZF = Ṽ Ṽ H(Ṽ Ṽ H)−1P = P (20)

Ṽ W ′
RZF = Ṽ Ṽ H(Ṽ Ṽ H + λI)−1P = P +O (λ) (21)

Ṽ W ′
ARZF = Ṽ Ṽ H(Ṽ Ṽ H + λS)−1P = P +O (λ) (22)

Thus, precodings ZF (4), RZF (5), and ARZF (6) satisfy property (16).

Remark 1. In this case, matrix P of definition (16) coincides with matrix P of
Conjugate Detection (10).

3.2. The Similarity of Conjugate Detection and MMSE-IRC

In this section, we prove the similarity of MMSE-IRC (8) [41] and Conjugate Detection
(CD) (10) [33]. Detection CD does not depend on precoding and allows to significantly
simplify the considered problem (15). First, we prove some useful properties about CD
(compare with [33, Theorem 1]).

Lemma 4. The detection matrix G is GC (Conjugate Detection) if and only if it
satisfies the following property:

G = GC ⇔ GH = P−1Ṽ ⇔ ∀k : GkHk = P−1
k Ṽk, (23)

where P is uniquely defined in (16), and the system model equation (1) takes the form

r = Ṽ Wx+ ñ, ñ := P−1S̃−1Ũn. (24)

Proof. Necessity. Using Lemma (1) we can write

GCH = P−1S̃−1ŨUHSV = P−1S̃−1
[
I O

]
SV = P−1S̃−1S̃Ṽ = P−1Ṽ , (25)

which immediately leads to (24).

Sufficiency. Assume that (23) holds, then Ṽ = PGH, since the matrix P > O.

Then, ∀v ∈ Ṽ expansion of vector v in basis H is unique. The elements of the matrix
PG are the coefficients of this expansion. Therefore, a matrixG with the property (23)
is unique.

The last equivalence in (23) is true due to the block diagonality of the matrix G.

Theorem 5. In assumption that Hk has the full rank and precoding W has prop-
erty (16), detection GIRC(λ) (8) asymptotically equals to GC (10), in other words
GIRC(λ) ∼ GC as λ → 0.

9



Proof. We need the following consequence of the (16) property:

WWHṼ H
k =

(
K∑
v=1

WvW
H
v

)
Ṽ H
k ∼ WkW

H
k Ṽ H

k ∼ WkPk (26)

Taking into account the form of Rk
uu we can rewrite [48]:

GIRC
k (λ) = (HkWk)

H (HkWk(HkWk)
H +Rk

uu + λI)−1 =

= (HkWk)
H (HkWk(HkWk)

H +Hk(WWH −WkW
H
k )HH

k + λI)−1 =

= (HkWk)
H (HkW (HkW )H + λI)−1.

Using (23), (26), Lemma 4 in the case λ → 0 we obtain:

GC
k = IGC

k I = P−1
k PkG

C
k (HkW (HkW )H)(HkW (HkW )H)−1 = {Eq. 23} =

= P−1
k ṼkWWHHH

k (HkW (HkW )H)−1 ∼ {Eq. 26} ∼
∼ WH

k HH
k (HkW (HkW )H)−1 = (HkWk)

H (HkW (HkW )H)−1 ∼ GIRC
k .

Remark 2. The introduced CD detection is speculative: it hardly can be implemented
in practice. UE measures HkWk via pilot signals instead of Hk. Nonetheless, it is
very useful for theoretical research. Moreover, the asymptotic behavior of MMSE and
MMSE-IRC detection is similar to that of CD (Sec. 3.2). Particularly, if precoding
W is Zero-Forcing (4) and the noise power is zero (σ2 = 0), then GIRC(λ) = GC ; if,
additionally, precoding has the full rank, then GMMSE(λ) = GC .

Remark 3. Lemma 4 shows that the assumption that UEs use CD on their side
sufficiently simplifies the initial problem, decreases its dimensions, and allows notation
to be uniform. Namely, we can work with user layers of shapes Lk and L instead of
considering user antennas space. Note also that for precoding it is sufficient to only
perform Partial SVD of the channel Hk ∈ CRk×T , keeping just the first Lk singular
values and vectors for each user k: Hk ≈ ŨH

k S̃kṼk.
Based on this, in what follows we can omit the tilde and write Uk,Sk,Vk instead

of Ũk, S̃k, Ṽk correspondingly.

3.3. Low Correlated Users

We define an interference-correlation matrix as C = V V H − I. In real networks, the
set of UEs is chosen by Scheduler and the number of layers of each UE is chosen to be
fixed by the Rank Selection algorithm. Both Scheduler and Rank Selection methods
provide ∥C∥ = O(λ), where λ = σ2

P is the noise-power ratio. Thus, we assume user
correlation to be low compared to noise power, which means ∥C∥ = O(λ).

Lemma 6. For precoding W = W ′P satisfying the property (16) and inference-
correlation matrix C = V V H − I satisfying ∥C∥ = O(λ), is the noise-power ratio, it
is asymptotically true that GCHW = (1− λ)I +O(λ2).

10



Proof.

V W ′ = V V H(V V H+λI)−1 = {Lemma 3} = V V H((V V H)−1−λ(V V H)−2+O(λ2)) =

= I−λ(V V H)−1+O(λ2) = I−λ(C+I)−1+O(λ2) = I−λ(I+O(∥C∥))+O(λ2) =

= (1− λ)I + λO(∥C∥) +O(λ2) = {(∥C∥) = O(λ)} = (1− λ)I +O(λ2) (27)

GCHW = {Lemma 4} = P−1V W = P−1V W ′P = {Eq. 27} =

= P−1(1− λ)IP + P−1O(λ2)P = (1− λ)I +O(λ2)

Using Lemma 6 we immediately get the following

Theorem 7. For precoding W satisfying the property (16) and inference-correlation

matrix C = V V H − I satisfying ∥C∥ = O(λ), where λ = σ2

P is the noise-power ratio,

formula for SINR (11) in the case of GC (10) detection will take the asymptotic form:

SINRl(W ,Hk, g
C
l , σ

2) ∼
pls

2
l

σ2
(28)

Proof.

SINRl(W ,Hk, g
C
l , σ

2) :=
|gC

l Hkwl|2∑L
i=1, ̸=l |gC

l Hkwi|2 + σ2∥gC
l ∥2

= {Lemma 6} =

=
1− λ+O(λ2)

O(λ2) +
σ2

pls
2
l

=
1− σ2

P
+O

( σ4

P 2

)
O
( σ4

P 2

)
+

σ2

pls
2
l

∼
pls

2
l

σ2

3.4. Effective SINR Models

In this subsection, we compare two models of Effective SINR from [26, 33, 45]. In
theoretical calculations, model (12) is extremely inconvenient. To simplify the formula
of effective SINR (12), we average Lk per-symbol SINRs (11) by the geometric mean,
where Lk denotes the set of symbols for k-th user:

SINReff
k (W ,Hk,Gk, σ

2) =
(∏

l∈Lk

SINRl(W ,Hk, gl, σ
2)
) 1

Lk , ∀l ∈ Lk. (29)

Fig. 4 shows the dependencies of SINReff (dB) for a user with four antennas to
justify the close relationship of the various SINR averaging (12) and (29). The x axis
is the average SINR in dB: 1

4

∑4
l=1 SINRl(dB).

11
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Figure 4. Approximation of exponential model of SINReff (12) realized with MCS Tables 1 and 2 (green

and blue points). Geomm is an acronym of Geometrical Mean (29) (red points).

Fig. 4 shows the comparison of effective SINR in the form of the geometric mean
and the form of different MCS-β values. Differences between various effective SINRs
can take values greater than five decibels. On the other hand, points SINR with a
large difference in the maximum and minimum values are unusual in practice.

For precoding W satisfying the property (16) and from the formula for SINR (28)
with a CD using the geometric mean effective SINR model (29), we can write the
SINR for the k-th user as follows:

SINReff
k (S̃k,Pk, σ

2) =
1

σ2
Lk

√√√√ Lk∏
l=1

(s2l pl). (30)

The formula (30) reflects the channel quality for the specified user without consid-

ering other users. The value of SINReff
k (S̃k,Pk, σ

2) depends on the singular values

S̃k ∈ RLk×Lk (related to matrices Hk ∈ CRk×T ), the transmitted power Pk and noise
σ2. This function will be used in theoretical calculations due to its simplicity.

3.5. Spectral Efficiency Simplification

In this section we simplify optimization problem of Spectral Efficiency maximization in
case of Zero-Forcing algorithms with asymptotic diagonalization property (16), Con-
jugate detection matrix (10), geometrical averaging of effective SINR model (30) and
low correlated users (see Lemma 6).
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For any x ≫ 1 it is true that: log(1 + x) = log x+O(x−1), and so

SE(W ,V , σ2) =

K∑
k=1

Lk log2(1 + SINReff
k (W ,Vk,Sk, σ

2)) =

=

K∑
k=1

Lk log2(SINR
eff
k (W ,Vk,Sk, σ

2)) +

K∑
k=1

O(SINR
eff(−1)
k (W ,Vk,Sk, σ

2)) (31)

We simplify the initial optimization problem by maximization of its leading term:

K∑
k=1

Lk log2(SINR
eff
k (W ,Vk,Sk, σ

2)) =

K∑
k=1

Lk log2

(∏
l∈Lk

SINRl(W ,Hk, gl, σ
2, P )

) 1

Lk =

=

K∑
k=1

log2
∏
l∈Lk

SINRl(W ,Hk, gl, σ
2, P ) → max

P
(32)

These problems are not equivalent, although their solutions are close to each other. If
we calculate W by ZF algorithm, that gives zero interference, then SINR is as follows

SINRl(W ,vl, sl, σ
2) = {Zero-Forcing Algorithm} =

s2l
σ2

pl (33)

and maximization of the leading term gives

K∑
k=1

log2
∏
l∈Lk

SINRl(W ,vl, sl, σ
2) =

K∑
k=1

log2
∏
l∈Lk

s2l
σ2

pl =

K∑
k=1

log2
∏
l∈Lk

s2l
σ2

∏
l∈Lk

pl =

K∑
j=1

log2
∏
l∈Lk

s2l −
K∑
j=1

log2
∏
l∈Lk

σ2 +

K∑
j=1

log2
∏
l∈Lk

pl → max
P

Finally, we can reduce tasks (15) (a) and (b) to the following problems:

K∑
k=1

log2
∏
l∈Lk

pl = log2

L∏
l=1

pl → max
P

, s.t. ||W ||2 ⩽ P. (34)

4. Solutions of the Problem

According to [12, sec. 7] we consider equal transmit power strategy for all K users.
Such power allocation gives the maximum for a reasonable lower bound on the SE
(13) under some feasible assumptions. Although this Power allocation is not optimal,
these heuristics provide a good suboptimal solution.

4.1. Simplified PA Problem with Total Power Constraints

Theorem 8. If W satisfies to the property (16) and G = GC , assuming model (29)
of effective SINR, the equal PA (all ∥wl∥ is equal, namely, pl = P/L) asymptotically

13



provides maximum to the first optimization problem:

U =
∑
n

SEn → max, ||W ||2 ⩽ P. (35)

Proof. Using asymptotic ln(1+SINR) = ln(SINR)(1+O(ε)) for large SINR, conjugate
detection, SINR estimation (33) for ZF algorithm and considering coordinates ρl we
get first optimization problem (15):

L∏
l=1

ρl → max
ρ1...ρL

, s.t.

L∑
l=1

||w′
l||2

ρl
∥w′

l∥2
=

L∑
l=1

ρl ⩽ P. (36)

It is an optimization problem of the maximal volume of the box with predefined lengths
of edges which solution is

∀l : ρl = P/L, and pl =
P/L

||w′
l||2

(37)

Remark 4. The original function (13), (29) asymptotically reaches its maximum at
the solution of the simplified PA problem (37).

4.2. EESM Model and Total Power Constraints

By analogy with the formulas (31 and 32) we can calculate Spectral efficiency using
physical MCS-β model (12), where the parameter βk for each k = 1 . . .K depends on
given MCS and therefore depends on the precoding matrix, in particular on power
allocation variables pl for all l = 1 . . . L:

SE(W ,H, σ2) =

K∑
k=1

Lk ln(1 + SINReff
k ) =

= −
K∑
k=1

Lk ln

1− βk log

 1

Lk

Lk∑
j=1

exp

(
−
SINRkj

βk

) (38)

The function (38) is discontinuous. Nevertheless, if we fix βk for all k = 1 . . .K, this
function becomes smooth from pk. For example, we can take βk from point P = p1

as pl =
P/L
∥w′

l∥2 . Next, write SINR similar to Eq. (28) without interference as SINRkl =
pl

∥gl∥2σ2 (gl does not depend on pl). We can write Lagrangian for the problem 15 (a):

L = −
K∑
k=1

Lk ln

1− βl log

 1

Lk

Lk∑
j=1

exp

(
− pj
σ2βl∥gj∥2

)+λi

(
L∑
l=1

(∥w′
l∥2pl)− P

)
(39)
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And its partial derivatives concerning pl.

L′

pl
= −

1
σ2∥gl∥2xl

(1− βl ln (Xk))Xk
+

T∑
t=1

(λt|w′
tl|2), (40)

where xl = exp
(
− pl

βlσ2∥gl∥2

)
and Xk = 1

Lk

Lk∑
i=1

exp
(
− pi

βlσ2∥gi∥

)
.

We can write Karush–Kuhn–Tucker conditions:
L′

pl
= 0, l = 1 . . . L

λi

(
L∑
l=1

(∥w′
l∥2pl)− P

)
= 0,

λi ⩾ 0

(41)

And its solution is (see proof in Appendix 6.2):

pl = − ln(xl)βkσ
2∥gl∥2 = σ2∥gl∥2


P

σ2L + 1
L

L∑
v=1

∥gv∥2∥w′
v∥2fv

1
Lk

∑
v∈Lk

(∥gv∥2∥w′
v∥2)

− fl

 , (42)

where:

fl = βk ln

 ∥gl∥2∥w′
l∥2

1
Lk

∑
v∈Lk

∥gv∥2∥w′
v∥2

+ 1 (43)

4.3. Simplified PA Problem with Per-Antenna Power Constraints

Theorem 9. If W satisfies to the property (16) and G = GC , assuming model (12)
of effective SINR, we can find a strict asymptotic solution of the second optimization
problem

U =
∑
n

SEn → max, ||wt||2 ⩽
P

T
, t = 1 . . . T. (44)

by solving the system of equations.

Proof. The problem (15) (b) can be reduced to a task

L∑
l=1

log(pl) → max
P

, subject to

L∑
l=1

(|w′
tl|2pl) ⩽

P

T
∀t = 1 . . . T (45)

To solve it, we can use the Karush-–Kuhn-–Tucker conditions. Lagrangian has the
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form

L = −
L∑
l=1

log(pl) +

T∑
t=1

(
λt

(
L∑
l=1

(|w′
tl|2pl)−

P

T

))
. (46)

If pl and λt are the optimum of the optimization problem, then they satisfy the
following conditions

pl
T∑
t=1

|w′
tl|2λt = 1, l = 1 . . . L

λt

(
L∑
l=1

(|w′
tl|2pl)− P

T

)
= 0, t = 1 . . . T

λt ⩾ 0, t = 1 . . . T

⇔


ATλ = 1./p

λ. ∗
(
Ap− 1P

T

)
= 0

λ ⩾ 0

(47)

We take A = {aij = |w′
ij |2}.

For geometric reasons, the original optimization problem has a solution; therefore,
there is at least one solution to the system (47).

The resulting system can be solved by brute force on the set of zeroed lambdas.
Let’s say we have non-zero m lambdas. Consider the cases.

1. m > L, in this case the linear system
L∑
l=1

(|w′
tl|2pl) = P

T , t = 1 . . .m will be incon-

sistent since the number of equations is greater than the number of unknowns
(m > L) and the system itself (47) will not have a solution.

2. m = L, in this case the linear system
L∑
l=1

(|w′
tl|2pl) = P

T , t = 1 . . .m has exactly

one solution, and the system itself (47) has at most one solution.
3. 1 < m < L. This case reduces to the system of quadratic equations. If A′ is a

matrix consisting of rows of matrix A corresponding to nonzero lambdas, then{
A′Tλ = 1./p(
A′p− 1P

T

)
= 0

⇒

{
(A′)⊥(1./p) = 0

A′p = 1P
T

(48)

Here A′ ∈ Cm×L and (A′)⊥ ∈ C(L−m)×L is the orthogonal complement to A′.
4. m = 1, in this case, there are one nonzero lambda. Let λi ̸= 0 therefore

pl =
1

λi|w′
il|2

=
P

TL|w′
il|2

(49)

4.4. EESM Model and Per-Antenna Power Constraints

In this section, we combine two ideas of previous sections. We calculate Spectral ef-
ficiency (38) using exponential model (12) for the fixed β value. Using this, we can
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write Lagrangian for the problem 15 (b) and its partial derivatives concerning pl:

L = −
K∑
k=1

Lk ln

1− βl log

 1

Lk

Lk∑
j=1

exp

(
− pj
σ2βl∥gj∥2

)+

T∑
t=1

λt

(
L∑
l=1

(|w′
tl|2pl)−

P

T

)
(50)

L′

pl
= −

1
σ2∥gl∥2xl

(1− βl ln (Xk))Xk
+

T∑
t=1

(λt|w′
tl|2) (51)

The Karush-–Kuhn-–Tucker conditions:
L′

pl
= 0, l = 1 . . . L

λt

(
L∑
l=1

(|w′
tl|2pl)− P

T

)
= 0, t = 1 . . . T

λt ⩾ 0, t = 1 . . . T

(52)

The resulting system can be solved by brute force on the set of zeroed lambdas.
Let’s say we have non-zero m lambdas. Consider the cases.

1. m > L, in this case the linear system
L∑
l=1

(|w′
tl|2pl) = P

T , t = 1 . . .m will be incon-

sistent since the number of equations is greater than the number of unknowns
(m > L) and the system itself (52) will not have a solution.

2. m = L, in this case the linear system
L∑
l=1

(|w′
tl|2pl) = P

T , t = 1 . . .m has exactly

one solution, and the system itself (52) has at most one solution.
3. 1 < m < L. If T ′ is the set of indexes of nonzero lambda, then this case reduces

to the system of following equations:
L′

pl
= 0

L∑
l=1

(|w′
tl|2pl) = P

T , t ∈ T ′

λt ⩾ 0, t ∈ T ′

(53)

4. m = 1, in this case there are one nonzero lambda. Let λi ̸= 0 therefore

pl = − ln(xl)βkσ
2∥gl∥2 = σ2∥gl∥2


P

σ2TL + 1
L

L∑
v=1

∥gv∥2|w′
iv|2fv

1
Lk

∑
v∈Lk

(∥gv∥2|w′
iv|2)

− fl

 , (54)
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where:

fl = βk ln

 ∥gl∥2|w′
il|2

1
Lk

∑
v∈Lk

∥gv∥2|w′
iv|2

+ 1 (55)

The proof is similar to the proof of Eq. (42) which can be found in the Appendix.

4.5. Heuristic Algorithms, based on KKT-analysis

In this section we proposed two algorithms for SE maximization in the case of PAPC of
two different models of Effective SINR. The first Alg. 1 assume Geometrical Averaging
model (29), while the second Alg. 2 uses the proper EESM model (12)

Algorithm 1: IM CD — Heuristic Intersection Method of Power Allocation
using Conjugate Detection and effective SINR as the geometrical mean

Input: Channel H = UHSV by Lemma 1, precoding matrix W (V ), station
power P , number of base station antennas T , noise σ2;

Calculate A = {aij = |wij |2} ∈ RT×L, where ai ∈ RL is a row vector.
Calculate starting point p1 : (p1)l =

P
TL∥wl∥2

Calculate the hyperplane on which the square of the starting point lies. The
index of this hyperplane is the maximal row norm:
i(p1) = argmaxi{∥(Wdiag(p1))i,:∥};

Calculate optimal point on this hyperplane p2 : (p2)l =
P

TL|wil|2

if p2 satisfies to Per-Antenna Power Constraints then
return Wopt = Wdiag(p2)

else
Calculate direction vector d = p2

2 − p2
1

Calculate first intersection p2
opt on a beam {p2

1 + αd|α > 0} with other

hyperplanes : p2
opt = p2

1 + αoptd where αopt = min{αi|αi =
P/T−aT

i p
2
1

aT
i d

> 0}
return Wopt = Wdiag(popt)

end

Both Alg. 1 and Alg. 2 take equalizing powers as the first approximation of the
vector p (see Point 1 on Fig. 5). Then it finds the hyperplane on which the given point
lies and searches on this hyperplane for the optimal (Point 2). To find the optimal
point, we use the Eq. (49) for the Alg. 1 and by Eq. (54) for Alg. 2.

If the obtained point is satisfied with the Power Constrains, then this is the result of
the algorithm. This point may not be satisfied with the Power Constraints. In this case,
we construct a beam from the starting point to the optimal point. The first intersection
with other hyperplanes (Point 3) is a result of the algorithms. The formula for Point 2
can be negative or zero. In this rare case, the result of the algorithm is Point 1.

Fig. 6 shows the transmitted symbol powers using Alg. 1 (IM) compared to the
EP method. The SINR values in dB of each layer are also given for comparison. It is
shown that the SINR values increase for those symbols for which the power increases.
And vice versa, the SINR decreases for those symbols for which the power decreases.
The total precoding power increases with the use of Alg. 1 (IM).
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Algorithm 2: IM CD and IM IRC — Heuristic Intersection Method of Power
Allocation using MMSE IRC Detection and exponential effective SINR (12)
with MCS-β Tab. 4

Input: Channel H = UHSV by Lemma 1, station power P , noise σ2;
Define smooth precoding function W (V );
Define smooth detection function G(H,W ) using MMSE-IRC (8) or CD (10);
Define smooth target function J(P ). For example,
JSE(P ) = SE(W ′P ,H,G, σ2) using (11), (13) and (12);

Calculate A = {aij = |wij |2}, where ai ∈ RL is a row vector.
Calculate starting point p1 : (p1)l =

P
TL∥wl∥2

Calculate the hyperplane on which the square of the starting point lies. The
index of this hyperplane is the maximal row norm:
i(p1) = argmaxi{∥(Wdiag(p1))i,:∥};

Calculate the optimal point on this hyperplane p2 = argmax(JSE(P )) (54)
if min

i
(p1)i < 0 then

return Wopt = Wdiag(p1)
end
if p2 satisfies to Per-Antenna Power Constraints then

return Wopt = Wdiag(p2)
else

Calculate direction vector d = p2
2 − p2

1

Calculate first intersection p2
opt on a beam {p2

1 + αd|α > 0} with other

hyperplanes : p2
opt = p2

1 + αoptd where αopt = min{αi|αi =
P/T−aT

i p
2
1

aT
i d

> 0}
return Wopt = Wdiag(popt)

end

𝑃3

𝑃2

𝑃1

2

3

1

Figure 5. Geometrical illustration of the PA Intersection Method (Algs. 1 and Alg. 2) with a small layer space

(L = 3). Point 1 is the first approximation for solution of the algorithm and lies on the green hyperplane. Point 2

is the optimal Point on the green hyperplane, which we obtain as a solution to the Lagrange problem (49).
The red hyperplane contains the closest intersection of the beam from Point 1 to Point 2 concerning other

hyperplanes. Point 3 is the intersection of the beam from Point 1 to Point 2 on the red hyperplane. If Point 3

lies between Points 1 and 2, it is a solution of the algorithms, otherwise, a solution is Point 2.
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Figure 6. Power of the transmitted symbols (EP red circles and IM blue hexagons) and SINR of these

symbols (EP yellow squares and IM green vertices) corresponding to Alg. EP and Alg. 1 IM. The EP method
gives equal power to each transmitted symbol, which relates to equal yellow bars.

4.6. Computational Complexity

In terms of complexity, the IM algorithms have the same order as the EP algorithm.
In Tab. 2 computational complexity of each intermediate step of the algorithms 1,

2 and computational complexity of EP, IM, IM CD, IM IRC and WF algorithms are
presented. For these algorithms we assume that we already calculate matrix W′. For
algorithms IM CD, IM IRC and WF we need precalculate matrices GC , GIRC and
S respectively. The difficulty of calculating some parts can be reduced. For example,
when you calculating Popt, you may not consider intersections with some hyperplanes.
Note that for calculation of Alg. 2 we need to calculate matrix G.

The final complexity of the aforementioned algorithms is O(TL).

5. Simulation Results

5.1. Channel Dataset

The datasets generated and analysed during the current study are
available in the GitHub repository, https://github.com/eugenbobrov/

Power-Allocation-Algorithms-for-Massive-MIMO-Systems-with-Multi-Antenna-Users

To generate channel coefficients, we use Quadriga [30], open-source software for
generating realistic radio channel impulse responses. We consider the Urban Non-Line-
of-Sight [49] scenarios. For each seed, we generate the random sets of user positions
and compute channel matrices for the obtained configurations of users. Example of
the random generation of users for Urban setup: there are two buildings, and the users
are assigned to either a cluster in a building or to the ground near the building. The
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Table 2. Complexity of the proposed Algs. 1 and 2 with the number of summations, multiplications and use

of special operations.
Variable Summations Multiplications Special operations

A TL 2TL

∥wl∥2, l = 1, ..., L (T − 1)L
P1 and P 2

1 4L
WP1 2TL

i(P1) T (L− 1) TL T − 1 comparisons
P2 and P 2

2 (Alg 1) 5L
∥gC

l ∥2, l = 1, ..., L 2RkL− L 2RkL

P2 and P 2
2 (Alg 2) 3L L(4L+ 8) L calculations of logarithm

WP2 2TL
d L

α 2TL T (L+ 1) T − 1 comparisons
Popt L L

Wopt = WPopt 2TL

Algorithm Summations Multiplications Special operations

EP (2T − 1)L 4TL+ 4L

IM (Alg 1) 5TL+ L− T 9TL+ 10L 2T − 2 comparisons

IM CD, IM IRC(Alg 2) 9TL+ 2RkL− T (6T + 4L+ 2Rk + 13)L 2T − 2 comparisons, L logs
WF TL+ 0.5L(L− 1) 4TL+ L L comparisons, 1 sort

Table 3. Review of the studied PA algorithms with their optimization function and assumed constraints.

Algorithm Optimization Function Constraints Initialization
EP

∏
pl → max TPC -

IM
∏

pl → max PAPC EP
WF SE(GC) → max TPC -
IM CD SE(GC) → max PAPC EP
IM IRC SE(GIRC) → max PAPC EP
WF IM SE(GC) → max PAPC WF

parameters of the experiments are listed in Table 1. We describe the generation process
in detail in our work [33].

5.2. Numerical Experiments

We compare different PA algorithms based on RZF precoding. Primarily, the compar-
ison involves precoding with the base power (BP) method — native method without
PA, and the power equalization algorithm (37). Also, we consider some algorithms
based on Karush-Kuhn-Tucker conditions (47). In Tab. 3 algorithms with different
parameters of the target optimization function, the power constraints and the starting
point for intersection methods used for RZF method are presented.

For reference we use the Power Allocation methods from the works of E. Bjorn-
son et al., namely Equal Power (EP) and Water-Filling (WF) that are derived in
assumption of Total Power Constraints (TPC). Proposed Intersection Methods (IM)
are constructed to maximize Spectral Efficiency (SE) taking into account Per-Antenna
Power Constraints (PAPC) and gives gains over the EP and WF methods in the spec-
ified region. Additionally, the IMs method can use WF solution as the starting point
to achieve the cumulative gain in SE. This result is shown in Fig. 9.

In Figs. 7 and 8 we present an average SE (13) from numerical simulations of the
proposed Intersection Method (1) IM and algorithm IM IRC with its modifications
to MCS-β model (2) IM CD and IM IRC and reference BP and EP methods. And
in Figs. 9-11 we present their gains over the reference EP method. Percentage gain
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means expressing the increase in SE value of the considered algorithm as a percentage
compared to the baseline, in other words:

SE Gain =
SEconsidered − SEbaseline

SEbaseline
(56)

All Figs. 7-11 claim SE improvement of the proposed algorithms over the baseline
EP method. Fig. 9 shows SE gain assuming Geometric Mean Effective SINR (29), while
Figs 10 and 11 assume the Exponential Averaging model (12). Both the IM and IM IRC
algorithms provide better power allocation (PA) under per-antenna power constraint
(PAPC), which means better value of Spectral Efficiency (13) of the obtained precoding
in comparison to the BP and EP methods.

In Fig. 12 we present the distribution of power allocated to different layers (∥wl∥2)
in case of PAPC when SU SINR is equal to 15dB. Cumulative distribution function
(CDF) is calculated over transmitted layers. Here we see that IM majorizes both BP
and EP methods in terms of power of layers (while still preserving PAPC), which is the
main source of IM gains. In contrast, the WF method makes redistribution of power
from UE with lower SINR to UE with higher SINR, which can be unfair and lead to
blocking of cell-edge UE due to their poor contribution to the SE function. The WF
IM (IM method applied to WF initial distribution) also majorizes WF and partially
fixes its unfairness.

Presented experiments claim that the proposed method IM outperforms the refer-
ence EP up to 5% at the low SUSINR region (< 5 dB) and up to 2% at high (> 20
dB). The modification of the algorithm IM IRC provides better results up to 6% at
the low SUSINR region. This is the result of better distribution of transmitted symbol
powers (see example on Fig. 6).

The proposed IM method in combination with widely-studied Water Filling
(WF) [50] show a significant gain in spectral efficiency while using a similar com-
puting time as the reference Equal Power (EP) solution (see Fig. 9.)

The assumption that the noise-power ratio is close to zero was chosen that the
Equal Power (EP) and Water-Filling (WF) method are close enough. Now we provide
experiments both for EP and WF methods in Fig. 9 in a wide range of noise-power
ratio. Although theoretical results stay correct only for close to zero noise-power, it
helps to derive the Intersection Method (IM), which shows a good performance in a
wide range of noise-power ratio.

Finally, it is experimentally proved out that the modification IM CD in case of
both table 1 and table 2 MCS-β values (see Tab. 4) provides better results than IM.
The difference in quality is clear in Gains of SE Figs. 10, 11, which show that the
performance improvement of Alg. 2 is because of Alg. 2 utilizes EESM Model 12.

6. Conclusions and Suggested Future Work

In this work, we study the power allocation (PA) problem of wireless MIMO systems
with multi-antenna users. We simplify the initial problem using asymptotics of MMSE-
IRC detection and SE function when noise and correlations are small. In the case of
total power constraint (TPC) the simplified problem can be solved exactly and its
solution is Equal Power (EP) distribution. In the case of per-antenna power constraints
(PAPC) simplified problem can be further equivalently reformulated as a Lagrange
problem for which the Karush–Kuhn–Tucker conditions hold.
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Figure 7. Average SE (13) values Geometric Mean Effective SINR (29) and the different PA algorithms.
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Figure 8. Average SE (13) values using Exponential Averaging SINR (12) using table 1 MCS-β values (see

Tab. 4) and the different PA algorithms. Using the table 2 MCS-β values gives results similar to this plot.

23



10 15 20 25 30 35 40
SU SINR (dB)

-5%

0%

5%

10%

15%

20%
G

eo
m

 A
vg

 S
E 

IR
C

 G
ai

n
BP
EP
WF
IM
WF IM

Figure 9. Average SE (13) gains using Geometric Mean Effective SINR (29) and the different PA algorithms.
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Figure 10. Average SE (13) gains using Exponential Averaging SINR (12) using table 1 MCS-β values (see
Tab. 4) and the different PA algorithms.

24



10 15 20 25 30 35 40
SU SINR (dB)

-6%

-4%

-2%

0%

2%

4%

6%

EE
SM

 S
E 

IR
C

 M
C

S 
Ta

bl
e 

2 
G

ai
n

BP
EP
IM
IM CD
IM IRC

Figure 11. Average SE (13) gains using Exponential Averaging SINR (12) using table 2 MCS-β values (see

Tab. 4) and the different PA algorithms.
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Figure 12. The distribution of power of layers in the case of PAPC (on a set of scenarios with SU SINR =
15dB).
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Based on such analysis we propose low-complexity heuristic algorithms that pro-
vide sub-optimal solutions to the initial PA problem. We study proposed Intersection
Methods (IM) on simulations using Quadriga and compare them with Equal Power
and Water Filling reference algorithms. When simulated using Quadriga, the proposed
IM methods combined with the widely studied Water Filling (WF) show a significant
gain in SE using similar computational time compared to the EP baseline solution and
allow improving the quality of MIMO systems in the future. Analyzing the CDF of
power of layers we show that proposed IM methods majorize considered reference al-
gorithms, provide more power under realistic Per-Antenna Power Constraints (PAPC)
constraints and by this way improve Spectral Efficiency.

Since the main focus of this paper is the analytical study of the PA methods, we
assume that the base station has perfect channel measurements and neglect all other
potential hardware impairments. Nevertheless, the robustness of the noise to a given
measurement keeps the current results asymptotically correct and can be carefully
considered in future work. There are other possible direction of the future work. Firstly,
future work can include a detailed study of PA algorithms, taking into account BLER
performance with realistic 5G LDPC coding (e.g. using physical communication system
level simulators such as Sionna [51]) rather then approximate effective SINR models
such as EESM. Secondly, the more complicated system model considering multiple RBs
can be of interest. Thirdly, proposed IM algorithm can be perhaps further improved:
improvement of SE can be realized with increasing the complexity of the algorithm,
or otherwise, the complexity can be decreased with small decreasing of the SE.
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Appendix

6.1. Search of MCS-β Effective SINR

The values of β for Modulation and Coding Scheme (MCS) [52] are taken from Tab. 4.
There are different β values for different MCSes [45]. The Table 4 shows β values,
which corresponds to Tables 5.1.3.1-1 to 5.1.3.1-2 in [53]. The MCS value depends on

the radio quality and therefore on SINReff
β .

Thus, SINReff
β can be found by simple iteration method on the equation (12),

initializing SINReff
β by geometrical average using (29) and then taking β = β(MCS)

from Tab. 4 and MCS = MCS(SINReff
β ) from Tab. 5.

Also note that low values of SINReff
β (up to -5dB) indicate that the user is almost

out of service, and high values of SINReff
β (after 23dB) do not make much sense.

6.2. Derivation of the eq. (42)

From the identity (40) L′

pl
= 0:

xl = (1− βk ln(Xk))Xkβkσ
2∥gl∥2λi∥w′

l∥2 (57)

Taking average of (57):

Xk =
1

Lk

∑
l∈Lk

xl ⇔ Xk = (1− βk ln(Xk))Xk
1

Lk

∑
l∈Lk

(
σ2s−2

l λi∥w′
l∥2
)

(58)
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Table 4. Optimal β values for each MCS.

MCS β-table 1 β-table 2
0 1.6 1.6
1 1.61 1.63
2 1.63 1.67
3 1.65 1.73
4 1.67 1.79
5 1.7 4.27
6 1.73 4.71
7 1.76 5.16
8 1.79 5.66
9 1.82 6.16
10 3.97 6.5
11 4.27 10.97
12 4.71 12.92
13 5.16 14.96
14 5.66 17.06
15 6.16 19.33
16 6.5 21.85
17 9.95 24.51
18 10.97 27.14
19 12.92 29.94
20 14.96 56.48
21 17.06 65
22 19.33 78.58
23 21.85 92.48
24 24.51 106.27
25 27.14 118.74
26 29.94 126.36
27 32.05 132.54

Table 5. Optimal SE values for each MCS.

MCS SE-table 1 SE-table 2
0 0.2344 0.2344
1 0.3066 0.377
2 0.377 0.6016
3 0.4902 0.877
4 0.6016 1.1758
5 0.7402 1.4766
6 0.877 1.6953
7 1.0273 1.9141
8 1.1758 2.1602
9 1.3262 2.4063
10 1.3281 2.5703
11 1.4766 2.7305
12 1.6953 3.0293
13 1.9141 3.3223
14 2.1602 3.6094
15 2.4063 3.9023
16 2.5703 4.2129
17 2.7305 4.5234
18 3.0293 4.8164
19 3.3223 5.1152
20 3.6094 5.332
21 3.9023 5.5547
22 4.2129 5.8906
23 4.5234 6.2266
24 4.8164 6.5703
25 5.1152 6.9141
26 5.332 7.1602
27 5.5547 7.4063

Dividing (57) by (58) we get:

xl
Xk

=
σ2s−2

l λi∥w′
l∥2

1
Lk

∑
v∈Lk

(
σ2s−2

v λi∥w′
v∥2
) =

s−2
l ∥w′

l∥2
1
Lk

∑
v∈Lk

(
s−2
v ∥w′

v∥2
) (59)

From (58):

Xk = exp

 1

βk
− 1

βk
1
Lk

∑
l∈Lk

(
σ2s−2

l λi∥w′
l∥2
)
 (60)
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From (59) and (60) we can derive:

xl =
s−2
l ∥w′

l∥2
1
Lk

∑
v∈Lk

(
s−2
v ∥w′

v∥2
) exp

 1

βk
− 1

βk
1
Lk

∑
l∈Lk

(
σ2s−2

l λi∥w′
l∥2
)
 (61)

Also we know that xl = exp
(
− pl

βlσ2s−2
l

)
. So we know pl = −βlσ

2s−2
l ln (xl) and we

can substitute (61) in the pl expression.

Taking into account
L∑
l=1

(∥w′
l∥2pl) = P we obtain:

L∑
l=1

(∥w′
l∥2pl) = −

K∑
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βk ln
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1
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s−2
v ∥w′
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 (62)

Substituting (62) into (60) and (60) into (59) we get the required expressions for xl
and then for pl.
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