
Wireless Personal Communications (2007) 42:445–464
DOI 10.1007/s11277-006-9187-6 c© Springer 2006

Context Awareness in Mobile Computing Environments

CHRISTOS B. ANAGNOSTOPOULOS, ATHANASIOS TSOUNIS and STATHES
HADJIEFTHYMIADES
Pervasive Computing Research Group, Communication Networks Laboratory, Department of Informatics and
Telecommunications, University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece
E-mails: bleu@di.uoa.gr, shadj@di.uoa.gr

Abstract. In this article, we report software architectures for context awareness in mobile computing environments,
sensor centric systems and discuss context modeling issues. Defining an architecture for supporting context-aware
applications for mobile devices explicitly implies a scalable description of how to represent contextual information
and which are the abstraction models capable of handling such information. Using sensors to retrieve contextual
information (e.g., user location) leads to a sensor network scheme that provides services to the applications level.
Operations for capturing, collating, storing, and disseminating contextual information at the lowest level and aggre-
gating it into increasingly more abstract models qualify the context-aware systems. In this article, we introduce
context aware systems in mobile computing environments, review the basic mechanisms underlying the operation
of such systems, and discuss notable work and important architectures in the area.

Keywords: context definition, context modeling, context-aware applications

1. Introduction

In the recent years, we have witnessed rapid advances in the enabling technologies for mobile
and ubiquitous computing, such as the increasing pervasive computing paradigm, embedded
sensor technologies and wide range of wired and wireless protocols. Specifically, context-
aware computing is emerging as the next computing paradigm in which infrastructure and
services are seamlessly available anywhere, anytime, and in any format. In order to engineer
context-aware computing systems, it is of high importance to understand, apprehend, and
define the constituent components of context from an engineering perspective, as well as,
from a model-theoretic perspective.

Moreover, mobile and context-aware computing applications respond to changes in the
environment in an intelligent manner in order to enhance the computer experience of the user.
Specifically, context-aware applications tend to be enhanced mobile applications for the fol-
lowing reasons: (i) user context changes frequently subject to the user’s mobility behavior,
and (ii) the need for context-aware behavior is greater in a mobile environment (context-
aware applications have to take into account user location, network resources, and device
capabilities).

One could consider a space into which the structure for a Context-Aware System (CAS)
could be defined. Such space, which is depicted in Figure 1, encompasses three logical axes,
Context Modeling, Pervasiveness, and, System Behavior. Context Modeling is, mainly, a
methodology that is based on a structural logical set of definite or abstract environmental

446 C.B. Anagnostopoulos et al.

Knowledge Assertion

Knowledge Reasoning

Simple DataModel

Semantics Integration

Context Insensitive

Context DependenContext-aware
computing

Mobile computing

Context Modeling

Pervasiveness
System Behavior

Figure 1. Context-aware logic space.

entities describing a physical or conceptual object, respectively. The definition of a context
model may range from unstructured raw-data models (e.g., location, spatial data, network
measurement, Quality of Services (QoS) indicators, and environmental state) to logic-based
models (e.g., spatiotemporal models, object-oriented models, relational models, and proposi-
tional logics). The latter, logic-based models could relate to actual activities of specific entities
(e.g., human activities, such as meeting, working, sleeping, and walking).

Additionally, sensor-based systems use sensors, in order to capture low-level context.
Such systems couple the collected data with a compatible data model. Obviously, high-level
representation of context (i.e., context modeled by logic-based data representations) cannot
be directly acquired or disseminated from sensors. Specifically, in mobile computing a well
known technique for capturing contextual information is called proximity selection. Proximity
selection is primarily based on the user location context. Such context can be (i) resources and
devices in the vicinity of the user, (ii) places of interests closest to the user current position,
and (iii) computational objects with which the mobile user is currently interacting. It is, also,
the reasoning process that produces, or, even, entails (i.e., assertion of consistent knowledge)
such new context derived from the existing and consistent one. One could view that kind of
capability (i.e., reasoning) as an aspect of pervasiveness in a context-aware system. The more
a system can extend (i.e., assert knowledge) and infer (i.e., entail such knowledge) knowledge
for a specific world (e.g., application domain), the more pervasive could it be considered, as
it can reason and learn behaviors, or, estimate values for that context.

Obviously, CAS should be aware of the very specific context that falls in its management
responsibility including, context storage, dissemination, adaptation, provision, and reasoning.
System behavior, with respect to context management, means the ability of the system to adapt
and, consequently, react to the expected dynamic changes of the context (e.g., from the fact
that a sensor broke down, to a mobile user changing direction, to finding inconsistencies in the
knowledge base). Moreover, context-aware systems target to the provision of context-aware

Context Awareness in Mobile Computing Environments 447

services that are assumed to differently handle context adaptation. Such systems may contin-
uously react to the highly dynamic nature of context and behave accordingly at any context
alteration, or, remain idle and insensitive to those changes. The various context models that
the majority of context-aware applications adopt are discussed in the following section.

1.1. D e fi ni t i o n o f C o ntext

It is common knowledge that the concept of context is studied in many research areas such
as cognitive science [1, 2] and linguistics [3]. However, not only had context been introduced
in the area of artificial intelligence (e.g., first-order logic systems [4]), but it had become a
widely discussed issue as it had been well formalized in [5, 6]. Specifically, according to such
theories about context definition and utilization, one could consider that context is used as a
means of solving the problem of generality. In fact, contexts have been used in various appli-
cations in mobile devices that deal with modeling situations, beliefs, probabilities, spatial, and
temporal relations, web semantics, integration of heterogeneous knowledge resources, and,
databases. Moreover, the authors in [7] defined context as a means to formalize theoretical
issues concerning reasoning over heterogeneous contextual information of beliefs related to
such information.

We define the term contextual information as the retrieved and relevant data that comprise
the context. Specifically, such data are retrieved from heterogeneous and comprise a certain
application context. Each piece of such information focuses on a specific epistemic field tightly
related to its application context. Furthermore, the authors in [7] defined the concept of context
according to two principles: locality and compatibility. The former principle is based on the
reasoning only on part of knowledge that is currently available, i.e., what is currently known.
The latter principle denotes the compatibility relations being reasoned among diverse contexts.

Moreover, CAS focuses on the contextual information manipulated by a certain applica-
tion. A well-known context definition related to the application specific context was proposed
by the authors in [6]. According to this definition, “Context is any information that can be
used to characterize the situation of an entity. An entity is a person, place or object that is
considered relevant to the integration between a user and an application, including the user
and the application themselves”. From this definition, one could derive that context is a set of
situations and actions. Such situations force to change over time, describing humans’ behav-
iors, application and environmental states, whenever specific actions are applied (e.g., such
actions can be considered as the fluent predicates in situation calculus [8]).

In the remainder of the article, we firstly (Section 2) discuss previous efforts on con-
text modeling. Such efforts are discussed from two viewpoints: context representation and
context detection. Section 3, presents the requirements for a mobile computing application
to be considered as context-aware. Section 4, refers to existing application frameworks for
context sensing, producing abstract contextual information (i.e., from raw data selection to
abstract data definitions, such as clustering, classification, or, even, approximate reasoning).
Section 5, reports on infrastructures and architectures that enable and support context-aware
mobile services with respect to context monitoring, adaptation, distribution and reasoning.
Finally, in Section 6, a discussion related to applications of large scale context-aware systems
is provided, whilst, conclusions along with future considerations and open issues related to
context-awareness in mobile computing environments, are discussed in Section 7.

448 C.B. Anagnostopoulos et al.

2. Context Modeling

The context modeling is a research area that tries to answer the following questions:

• which are the most appropriate contextual information that can model well enough the spe-
cific context in a certain domain (e.g., epistemic field, such as mobility behavior of a user,
network congestion control, early warning, and transportation traffic notification),

• which are the relations among such pieces of information,
• how can one take into account the information change, and, how can one react to such

change, if necessary.

Hence, modeling context is a technique focuses on how to find and relate contextual infor-
mation that better captures the observation of certain worlds of interest.

In this section, context modeling approaches can be classified into two, not necessarily
disjoint, taxonomies: Context Theoretic and Context Conceptual Modeling. The first class of
approaches relies on context modeling with the aid of context theoretic modeling. The second
class of approaches addresses the problem of context modeling as a problem of context con-
ceptual modeling. The former methodology is based on modeling the contextual information
as situations and the contextual information changes as actions, which are applicable to certain
situations. The latter methodology is based on mapping contextual information into concepts
(e.g., predicates or formulae in first-order logic) and on associating each compatibility relation
with a conceptual role in conceptual modeling (e.g., binary or n-ary association). Currently, the
most useful, in terms of reasoning complexity, mapping of context to concepts is attained by
the Description Logics (DL) [9]. Such logics interprets the possible worlds of context parts as
a set of interpretation models (e.g., a knowledge base with facts) in order to achieve contextual
reasoning.

Further discussion will reveal that context is more than situations and actions, but, sev-
eral modals are attached to its definition to extend its semantics [9]. The concept of modal
is interpreted as a specific property of the world, into which context belongs. Context
model has to bear in mind the appropriate selection of modals over the context. Con-
sider, for instance, the modal Belief. This means that, either Alice’s location is the R19
office with some degree of belief, or Alice is actually in R20 office, but she may move
to R19 office, at a certain time with a certain probability. We report several modals that
describe the contextual information change as follows: (i) Activity modal, when context
modeling refers to activity-oriented context, (ii) Belief modal, when refers to belief revi-
sion and update, (iii) Probability modal, when refers to probabilistic-based context models,
(iv) Time modal, when dealing with temporal reasoning, (v) Fuzzy modal, when reasoning
about uncertain and vague information context models, and (vi) Category modal, when
refers to more abstract or more specific contexts in terms of their taxonomical interpreta-
tions.

It can be noticed that there are several context formulations for such context model
methodologies. The most important formulations are these, which have the ability to
reason about context and to infer (unknown a-priori) situations or even possible world
states of context parts entities. Context models that support such mechanisms are of high
interest, and especially those models that can reason in polynomial time of complex-
ity (e.g., currently, this constrain is only satisfied by the Category modal based context
models [10]).

Context Awareness in Mobile Computing Environments 449

2.1. C o nt e x t T heoretic Modeling

2.1.1. Context as situation composition
In this situation theoretic context model, the concept of context is constructed by the captured
events, or, activities into which contextual entities get evolved. A contextor [11] is a software
abstraction that models relationships between observables. Contextors share a common I/O
structure including control channels and meta-data to ensure and express Quality of Service
(QoS). They can be composed as directed graphs or encapsulated into higher computational
units (i.e., compound contextors). Hence, the authors in [11] expand the idea of context on the
basis of the notion of situation. Specifically, contextual information is modeled as a vector of
snapshots (i.e., values or contents) of observables, which match to predefined situations. The
composition or synthesis of such snapshots, over time, forms context. Observables and their
relationships can be mapped to colonies of contextors. Context at specific time derives from
the composition of multiple situations (e.g., meeting, working) over time intervals. A situation
may refer to a specific set of users involved in a particular task or set of tasks. Moreover, a
contextor should be viewed as a means of retrieval of the values (or contents) of the observ-
ables that belonged to the corresponding context. The composition of the contextors implies
the composition of the partial contexts, in order for the context-aware application to capture
the whole context. Figure 2 provides a graphical representation of a contextor.

Context awareness should take into account the roles assigned to a context (i.e., the descrip-
tion of a user’s behavior when engaged in a certain activity) and its relations with others.
The authors in [12] view context as an intermixture of modules, which are defined as trans-
formations of observations. Modules are assembled into reflective processes, enriched with
meta-information, under the direction of a supervisory controller. A fundamental aspect of
interpreting sensor observations (similarly to Contextors [11]) is to construct context by gath-
ering observation. Hence, context is modeled as a composition of situations relevant to a task.
Within a situation, context shares the same set of roles and relations. Then, the context model
determines the appropriate collection of roles and relations for a certain task. Let U be the set
of users to whom one attempts to assign specific roles (e.g., Alice is a “secretary” or “business
manager”) and their relations (e.g., Alice as secretary “presents confidential information” to
her boss, but her colleagues cannot obtain such confidential information during the meeting). A
role implies a certain action within a task T. The authors in [12] discuss the important problem
of how to provide a mechanism for dynamically composing federations of meta-controllers
that observe the roles and the relations over context. This approach is based on a rule-based

Data in

Meta
Data in

Data out

Meta
Data out

Control in

Control out

Figure 2. Graphical representation of contextor.

450 C.B. Anagnostopoulos et al.

system written in JESS1. Meta-supervisors are designed for specific contexts (i.e., every plau-
sible situation has its own meta-supervisor) and maintain a model for the current context of the
U. This model includes information about contexts that derive from the current context of U.

Figure 3 depicts the transformation of data (i.e., roles and relations) and generated events,
undertaken by an observation process (i.e., contextual retrieval process), under the direction
of a reflective controller.

2.1.2. Context as activity hierarchy
Considering context as a set of activities, as discussed in [13], focuses on a specific type of
context. The latter describes the performance (i.e., realization) of an agent’s activity. Consider
a set of activities A as the activities that an agent may perform. A subset of these activities B
⊂ A, is the set of activities that the agent can really perform, and the set difference D = A\B
is the set of the activities that the agent categorically cannot perform. Hence, context can be
considered as the information that describes the performance of the activities of the set B.
Activities may vary in scope (from general to specific). General activities often contain one
or more specific activities (e.g., Alice is moving, from one room to another, is a more general
activity, of these into which Alice is running, or walking, between the same rooms). The
performance of a general activity generates a corresponding general context, given that more
specific activities have already been performed, and then, have already generated more specific
contexts. Such model of context differs from the previous approaches, because it focuses on
context-aware applications that support mechanisms for recognition of activities, rather than
context-aware applications that focus on time, location or other contextual information. An
indicative representation of this model is provided in Figure 4.

2.2. C o nt e x t C o nceptual Modeling

This type of context modeling describes context as concepts and the relations among such con-
cepts as binary or n-ary associations. Furthermore, such type of modeling categorizes context
according to its prevalent characteristics.

The motivation of adopting several modals to context models has derived from the fact,
that, applications need to be sensitive and more reliable to contextual information, as the latter
is dynamically changing. The authors in [14] classify contextual information according to cer-
tain characteristics. Basically, the type of the contextual information exhibits certain temporal
characteristics. Contextual information can be static, which means that it describes invariant

Events

Data

Co

State
and

Capabilitiesntrol

Events

Data

Transformation

Figure 3. Transformation of data and events observed by a reflective controller.

1 Rule engine for the Java platform [http://herzberg.ca.sandia.gov/jess/].

Context Awareness in Mobile Computing Environments 451

Agent

Performance Activity

Context

General
Context

General
Activity

Involved In

Surrounds

Subsumes

of

of

Figure 4. View of an activity-centric context.

aspects (e.g., Alice’s date of birth), and dynamic, which refers to observations varying over
time (e.g. Alice’s location). Static context can be obtained directly from users. Frequently
changing context can be obtained indirectly (e.g., through sensors). Hence, context could be
imperfect, meaning that, its descriptive information is either inconsistent, or, out of date, or,
incomplete. Moreover, a context model may support multiple representations of the same
context in different forms (e.g., expressions) and at different levels of abstraction (e.g., logical
representations versus concrete values).

2.2.1. Context as conceptual graph
In [14], a context model is described as a conceptual graph with context modeling, as con-
cepts, and relations, as associations among concepts. In this model, several relations can be
considered between three specific contextual entities: person, device and their communication
channels. Such context model is assumed to be an object-based approach, in which, context is
structured as a set of physical or conceptual concepts (e.g., PDA, persons, and communication
channels). Properties of concepts are represented by attributes, and are linked to attributes
uni-directional relations. Such model classifies relations, according to the change rate of their
values, into two main parts: static relations and dynamic relations. The context captured by
a static relation is typically known with a high degree of confidence (confidence can be con-
sidered as a modal operator). The context captured by dynamic relations through hardware
or software sensors (e.g., widget [15]) is not inserted directly to the model, but is, somehow,
transformed to bring it closer to the level of information abstraction required by context-aware
applications.

Additionally, the model classifies the relations, according to their structure, into two types:
simple and composite relations. A simple relation could be considered as a link between a
concept and its property. A composite relation is a communication link from a Person to a set
of her Activities. For managing such context model, it is reasonable to define a meta-model
of relations known as dependencies. A dependency is a special type of relation that exists
between relations. Specifically, a dependency can be qualified by a participation constraint
(i.e., cardinality constraint), which limits the pairs of relations to whom that dependency is
applied. Furthermore, the uncertain context may raise quality issues that this model could
handle. The information systems community has extensively researched for Context Quality
Modeling (CQM) [16]. According to CQM, the observables are tagged with various qual-
ity indicators, like coverage, resolution, accuracy, repeatability, frequency, and, freshness of
context. Moreover, Figure 5 depicts such conceptual graph and the dependencies between

452 C.B. Anagnostopoulos et al.

the corresponding relations. It could be noticed that, the dependency dependsOn restricts two
relations engagedIn and locatedAt, which means that, Alice presents some information during
the meeting activity given that her location is actually the meeting room.

2.2.2. Context as semantic graph
This approach is based on how to describe context, not as a graph representation, but as a
set of propositions in some propositional logic. The statements of propositional languages are
visualized as graphs, thus, the aforementioned context model is viewed as a conceptual graph
of semantics. In fact, first-order logic systems can, accurately, assert context as predicates that
are valid, for certain time intervals, and relations among concepts as n-ary predicates. The
context model, in [14], can be described as a set of clauses with unary, or n-arty predicates.
Finally, research work on semantics [9] has recently proposed a methodology for modeling
such kind of knowledge, as conceptual graphs through Semantic Web languages (e.g., RDF(S)
[17]).

3. Requirements of Context-Aware Applications

Applications should posses certain capabilities in order to be characterized as context-aware.
Specifically, a context-aware application has to take into consideration a set of characteristics
related to context modelling, handling and adaptation. Such characteristics could be:

• Context acquisition: A mechanism to obtain context data from diverse context sources. Con-
text acquisition could be dealt with hardware sensors delivering information that conforms
to a low-level data model.

• Context aggregation: A mechanism that provides context storing and integrity. In case
of a shared context model, the context aggregation forms a basis for merging correlated
contextual information. The context composition is a specific kind of context aggrega-
tion, when the involved contexts are compatible with the same, or equivalent, context
model.

• Context consistency: Context consistency enables the rationality of dynamically changing
distributed context models. Such mechanism, regarded as being an extended context aggre-
gation mechanism, maintains the structure of the contextual model into higher levels of
abstraction.

Person

Activity Location

Communication
Channel

Engaged In Located At

Device

Depends On

has Channel Requires

IDName
Identified By

Named As

Type

Has Type

Figure 5. Context conceptual graph enriched with relations and dependencies.

Context Awareness in Mobile Computing Environments 453

• Context discovery: The aim of context discovery is to locate, and access contextual sources,
in terms of serving context requests (e.g., discovering the appropriate, or approximate, con-
text pertinent to an entity). Context discovery covers issues, such as, service description,
advertisement, and discovery.

• Context query: By exploring contextual information, residing in distributed context reposi-
tories, a reference model needs a high-level mechanism for posing queries. Complex context
retrieval tasks (e.g., queries as list all persons in the same conference hall whose presen-
tation is at the same time with mine) must be transparent to end-users. Context query
mechanism should, also, pose design issues as context query language (e.g., RDQL [18]),
query optimizations, trigger messages, and, definitions of constraints related to context
acquisition.

• Context adaptation: The application should be capable of adapting its behavior according
to contextual information. Specifically, it, automatically, adapts the system configuration
in response to a contextual change. For instance, the application may configure itself to use
the display device available to the user. Moreover, context adaptation can be achieved by
IF-THEN rules used to specify how context-aware software should respond intelligently to
contextual changes.

• Context reasoning: Context can be elaborated with reasoning mechanisms. Context reaso-
ning is a process for inferring new context, previously unidentified on the basis of a-priori
known context. Reasoning tasks check context consistency and deduce high-level context.
Such tasks can be realized through logical schemes like first-order predicates and description
logics.

• Context quality indicators: Context data can come from heterogeneous context sources,
such as, sensors, and software services. The lack of a universal context model and appli-
cation-specific representation of the contextual data undermines the consistency of the
sensed information. A mechanism for maintaining predefined sets of quality indicators is
very important. Such indicators may be resolution, accuracy, repeatability, frequency, and
staleness of context.

• Context integration: Context model outlines an expressive scheme for context represen-
tation and context interpretation. Existing context models vary in the expressiveness they
support, in semantics, and in the abstraction level of the conceptual entities. Context model
is based on (i) capturing general features of contextual entities, like activities, (ii) specific
features, like temperature, and (iii) interrelations between contextual objects, like spatial
relations. Contextual information integration (i.e., contextual semantic integration of the
individuals of an ontology) can be conducted whenever different context models are in
accordance, not only, with their semantics, but, also, with their similar domains of interest.

4. Context-Sensing Applications

The contextual information captured by a sensor-based system (e.g., [19–21]) is interfaced
with an appropriate context model. Contextual information retrieval [22] is partly accom-
plished through sensor networks. Sensors could be considered as a rudimentary knowledge
measurement engine, as they implement raw-data sensing techniques (e.g., location determi-
nation, temperature, acceleration, and light intensity measurement). On the other hand, they
could be regarded as a more sophisticated mechanism, which can, for instance, determine that
Alice’s situation is at_meeting (e.g., [23]). Sensor interaction with mobile devices introduces

454 C.B. Anagnostopoulos et al.

many challenges to mobile computing. Apart from discovering services, or even resources,
and, gathering context in a sensor-aware system, the more important challenge is the realistic
detection of the user’s context, assuming that it is not a-priori known. Sensor-based context
detection for mobile users explicitly empowers human-computer interaction.

In this section, we outline some noteworthy techniques that are used in sensor networks to
detect and disseminate contextual information to context-aware applications. Certain sensor-
based applications have been selected in order to deal with the high usage of the contextual
modals in realistic context-aware applications. Moreover, such modals determine how much
context, and, in what type of its representation a context-aware application needs.

4.1. C o nt e x t S e nsing Based on Collecting Knowledge
from Neighbors

The work described in [24] focuses on a communication scheme for retrieving contextual
information through autonomous sensors without centralized control. These sensors called
Smart-Its [25], are aware of their sensing capabilities and can report them to their neighbors,
if necessary. The idea of introducing an interoperable data format, describing sensor-features
among Smart-Its, is based on the Smart Context-Aware Packets (sCAPs). Such protocol may
be considered as a document-based approach for collecting sensor-features sharing some sim-
ilarities with Context-Aware Packets (CAP) [26]. The sCAP is gradually filled with sensed
information on its way through the environment. Each Smart-It that receives a sCAP contrib-
utes to the required sensor-features and forwards it to another Smart-It in its neighborhood.
Combining the features stored in the sCAP allows each Smart-It to make assumptions about
the current context. Based on this knowledge, it can forward this sCAP to an appropriate
sensor for further processing. Figure 6 depicts the interaction of a mobile device using the
context detection mechanism of sCAP.

4.2. O r g a ni zi ng C o ntext-Sensed Information in Layers
of Abstraction

Intelligent architectures that support multi-granular context descriptions (i.e., different context
representations) are required, in order to model complex contextual information. The sensor
devices range in complexity, as discussed in [27], from simple binary on-off reporting mod-
ules to sensors that can decide whenever a person is engaged in a certain activity at a specific
location.

User

Smart-Its Smart-Its

Request for
User’s context

user moves

User

Smart-Its

Response for
User’s context

sCAP0

sCAP2

sCAP3

sCAP3

sCAP2

sCAP1

Figure 6. Context detection using sCAPs.

Context Awareness in Mobile Computing Environments 455

Sensors

Smart Sensors

Smart Environment
Agents

IE Repository

User
Model

Figure 7. Merino agent environment.

Merino is an architecture for constructing context layers, as depicted in Figure 7. Merino
consists of five elements: sensors, smart sensors, smart environment-agents, repository, and
the user model. In the lowest level, sensors are mechanisms, both hardware, and software able
to interrogate both the physical and computational environment. Smart sensors, forming the
first layer of the context abstraction, are responsible for filtering and aggregating the raw sen-
sors data into structures that are available through the repository interface. Such interface is a
space where smart environment-agents can make use of the processed data, and, thus, provide
a richer context. Smart environment-agents constitute the second layer of that context abstrac-
tion. These agents may be classified in two categories: rich context agents and performance
enhancers. The former agent category accesses the contextual information from the repository
in order to reformulate it to higher-level contextual information (called rich-context). Smart
agents produce rich context that may be provided in varying levels of granularity. Moreover,
the user model is managed by a smart personal assistant, which has access to the repository,
in order to customize and configure the user needs.

4.3. S e r v i c e A d a ptation Based on User Context

The adaptation of the provided services to the user needs depends on the fact that the user
context is self-described. This means that, such context describes user needs in terms of con-
straints, preferences, and beliefs. Such constraints are used for enabling service selection and
execution, and, also, act as mediators for expressing service needs to the environment. Such
service needs arise from the user context (e.g., a service that reminds Alice for her meeting).

The Context-Aware Packets Enabling Ubiquitous Services (CAPEUS) [28] system discov-
ers, selects, and executes services, with regard to the current user context. CAPEUS adopts the
situation composition and conceptual graph context models. Such models discussed in Sec-
tion 2. The discussed system adopts a standard document format, known as Context-Aware
Packets (CAP), in order to describe service needs and constraints on a logical level. The CAP
is initiated by the user and placed in the network, where it is evaluated. Service needs are
expressed by context constraints, which describe the situation and circumstances under which
the user intends to use a service. The CAP document is organized into three parts: Context
Constraints, Scripting, and Data. Context Constraints take into account user’s service needs.
A Context Constraint is further analyzed into three entities: the Abstract, the Relation, and
the Event entity. The former relates to the service peer, sensor, or, person. The Relation entity
describes dependencies related to the service selection. Events, which are represented by logi-
cal conditions, report situations detected by sensors, thus forming a trigger. The scripting part

456 C.B. Anagnostopoulos et al.

represents simple scripts to be executed during service invocation, whilst the data section is
the prerequisite data to be processed by the service.

Consider the following scenario: A user injects a CAP to a local Service Access Node
(SAN). The SAN evaluates the CAP in two phases: selection and execution. The SAN checks
whether the CAP is related to a service in its domain. If not, it routes the CAP to the appropriate
SAN to fulfill these service needs. In the second phase, the service is executed according to
the contextual constraints, being described in the CAP, and, if possible, to the user context.

A demonstration of a printing service execution related to contextual constraints is depicted
in Figure 8. Alice wants to print a PDF file for her presentation at the meeting, but the nearest
printer can not support this type of file. Then, a CAP is transparently injected in the network
(step [1]) and the SAN routes this CAP to the appropriate SAN (step [2]), which can convert
that PDF file to the type of file that the nearest printer supports. Finally, the converted data in
the CAP is printed (step [4]).

5. Context Aware System Architectures

This section provides a brief introduction to well-known architectures for supporting
context-aware systems. Such architectures rely on sensor-based context detection. Some con-
text detection is needed in order to: (a) enrich context with semantics (b) provide secure access
to the context (c) distribute context to grid applications, and (d) attempt to integrate heter-
ogeneous context semantics with other context-aware applications, thus forming a Semantic
Web community. The common underlying philosophy of context-aware system architectures
[29–32] is their hierarchical structure. Such layered structure covers two levels of context
utilization: the operational and the informational level.

On the operational level, the system modules, which are distributed in a mobile comput-
ing environment, may serve as: (a) Sensors that capture raw data (b) Autonomous mediators
that process and filter raw data streams transforming them into higher data representations (c)
Smart agents that communicate with each other, in order to mine knowledge that resides in the
system (d) Context-aware applications that provide innovative services to end users catering
for user context adaptation and maintenance of an integrity scheme for that context.

With respect to the informational level, knowledge representation may focus on: (a) A
simple data model without semantics or meta-data (b) Modeling large amount of data using
relational or object-oriented paradigms (c) Serving as an ontology that describes distributed

Alice

SAN SAN

Printer

SAN

Converter

[1]

[2]

[3]

[4]

Figure 8. Using CAP in a ubiquitous manner.

Context Awareness in Mobile Computing Environments 457

knowledge resources, such as user profiles, device capabilities, service features, and, even, con-
texts of applications, and (d) Context integration, in terms of contextual information retrieval
(e.g., similarity methods taking data semantics into consideration). The operational level cou-
pled with its informational counterpart comprises a universal context-aware system model.
Building context-aware systems involves facing several design challenges to cope with highly
dynamic environments and constantly changing user requirements. Such challenges are mainly
related to gathering, storage, modeling, distribution, and monitoring of context. The follow-
ing paragraphs refer to several system architectures, which fulfill the requirements of context
modeling and implement some of the features of mobile computing environments (e.g., context
management, representation, and security).

5.1. A r c hi t e c t ur e s f o r C o ntext-Aware Web Services

The Web Architectures for Services Platforms (WASP) [33, Un published] is a project dealing
with the definition of a service platform, which supports the development and the deployment
of context-aware integrated speech and data applications, based on Web Services technol-
ogy, on top of 3G mobile networks. The contextual information in this system is modeled by
conceptual graphs describing ontologies of context-aware services (Section 2). Such platform
provides services to Context providers, which communicate through the Context interpreter
module. The latter gathers context and makes it available to the rest of the platform. The
platform consists of a set of Repositories, which support the Monitor component with knowl-
edge related to the elements involved in WASP. Repositories collect information from the
context interpreter (e.g., user preferences and constraints) and make use of the services of
the service providers. The Monitor component is responsible for managing application sub-
scription by using a WASP Subscription Language (WSL) and by gathering information from
both Repositories and Context Interpreters. Applications use WSL during their subscription,
or the configuration of the platform, so as to react to a given set of events. The specific
context-model is relevant to Data Entities. Data Entities represent objects of the real world
(e.g., person, activity, device, location). Attributes and associations are, also, combined with
Data Entities. Different Data Entities must share common contextual representation, allowing
the derivation of more complex context. The WASP exploits the Semantic Web Technology,
building contextual information using ontologies from ontology-based markup languages (e.g.,
DAML+OIL, OWL). The platform could be invoked by different conceptual layers, such as
from context storage to adaptive interfaces and from service description-discovery to complex
service composition.

5.2. Ag e nt- Ba s e d C A S

Among the critical research issues in developing context-aware systems are context modeling,
context reasoning, knowledge sharing, and protection of user context. The system presented
in [33], addresses such issues by developing an agent-oriented architecture, the Context Bro-
ker Architecture (CoBrA). The CoBrA is considered as a large scale implementing paradigm,
which models its contextual information through semantic graphs (e.g., ontologies). Such
graphs describe user profiles, user preferences, and device capabilities. CoBrA aims to assist
devices, services and agents to become context-aware in smart spaces (e.g., an intelligent
meeting room). Such an infrastructure requires the following functionality: (a) a collection of

458 C.B. Anagnostopoulos et al.

ontologies for modeling contextual information (i.e., Context Conceptual Modeling method-
ology) (b) a shared model for the current context, and (c) a declarative policy language that
users and devices may use for defining constraints on their sharable resource (e.g., personal
agenda). The CoBrA uses languages from the Semantic Web for defining contextual ontol-
ogies providing not only a semantically richer context representation, but, also, making use
of the ability of reasoning and sharing knowledge. CoBrA provides a resource-rich agent,
called context broker, to manage and maintain the shared context into consistency. A con-
text broker is associated with a certain smart spaces environment. It may be considered as
an aggregation of other brokers representing smaller parts of the original smart space envi-
ronment. Such hierarchical approach, with the support of shared ontologies, is capable of
avoiding the bottlenecks associated with a single centralized broker. The Context broker can,
also, infer contextual information that cannot be easily acquired from sensors. Furthermore,
it can detect and resolve inconsistent knowledge that often emerges as a result from imperfect
context sensing. Moreover, CoBrA provides a policy language that allows users to control the
provision of their contextual information. A context broker acquires contextual information
from heterogeneous sources and fuses such information into a coherent model that is, then,
shared among computing entities inside the environment.

Another infrastructure that enables scalable and flexible sensor-based services and makes
use of the agent technology is that of Irisnet [34]. IrisNet adopts a hierarchical system model,
which forms a two-tier hierarchy of sensing nodes and information brokering nodes. It, sub-
stantially, reduces network bandwidth requirements through the use of senselets. Senslets
are binary code fragments that perform intensive data filtering at the sensing nodes. Irisnet
includes advanced sensor devices, which form a wide area sensor network for context pro-
cesses. Such processes refer to distributed filtering, hierarchical caching, query routing, and
context freshness evaluation (e.g., when to update the contextual repository). The two tiers
of agents are: (a) the Sensing Agents (SA), and (b) the Organizing Agents (OA). The former
category of agents collects and filters sensor readings according to a data model, whilst the
later category performs query-processing tasks on those sensor readings. Irisnet OAs provide
a simple way, for a service, to incorporate support for complex queries. The system enables
senselets to be uploaded from OAs to any SA in order to instruct and perform tasks (e.g.,
collecting the required information, filtering, and caching) and to transmit the distilled infor-
mation to the OA. The OA and SA execution environment uses a service-specific processing
and filtering over the sensor feeds, which eliminates duplicated and redundant information.
Figure 9 represents an Irisnet instance.

The My Campus system [35] is an agent-based environment for context-aware mobile ser-
vices. It revolves around a growing collection of customizable agents capable of automatically
discovering and accessing Internet and Intranet services. The scalability of such architecture
is attributed to the use of ontologies describing contextual information (e.g., user preferences
and constraints). Moreover, agents focus on context-sensitive message filtering, message rout-
ing, and context sensitive reminding. More sophisticated agents incorporate planning and
automated Web Service access functionality.

5.3. C A S Ba s e d o n S patial Information

One of the most important concepts in the mobile computing context is that of location. Archi-
tectures, like ParcTab[36] process the location information through suitable spatial models

Context Awareness in Mobile Computing Environments 459

Sensing
Devices

Sensing
Agent

Sensing
Devices

Sensing
Agent

Sensing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

Organizing
Agent

service A
service B

OA Group
Per

Service

OA Group
Per

Service

Figure 9. Iris net instance.

(e.g., the Geometric Model WGS842). RAUM [37] system develops context-aware applica-
tions based on the contextual information retrieved by the user location. The system supports
context generated by an appropriate spatial model (i.e., Context conceptual modeling method-
ology). Such context model is based on conceptual graphs representing hierarchies of symbolic
locations (see Section 2). Spatial contextual information (location symbolic model) is based
on the relative location of entities (e.g., users) rather than on their identity. The RAUM is a
spatial-aware communication model, in which, two entities are considered contextually rele-
vant (i.e., the relative location information is the compatibility relation between those entities)
through their locations rather than their network identifiers. Such model consists of two main
parts: the Location Representation Model (LRM), and the Communication Model (CM). The
LRM defines how location is represented, stored, and communicated in the RAUM architec-
ture, whilst the CM defines how location information is used in the communication among
the RAUM entities. Figure 10 depicts the RAUM – LRM adopted a tree presentation for loca-
tion selection. Such logical representation consists of three general layers: (a) a tree-root (b)
the semantic sub-layers, and (c) a location expressed in three-dimensional Cartesian coordi-
nates. Further specialization of the third layer into sub-sections enables a more fine grained
differentiation of locations.

The RAUM system makes use of distributed storage of the location information, as long
as all the involved objects are capable of handling such information. Hence, no central entity
for storing and providing the complete location-tree is required. All the objects (e.g., mobile

3D
Positions

Root

3D
Positions

Sensing
Agent

Sensing
Agent

Sensing
Agent

3D
Positions

3D
Positions

Figure 10. RAUM Tree spatial model.

2 World geodetic system [http://www.wgs84.com/]

460 C.B. Anagnostopoulos et al.

devices) in the system hold only the part of the tree that is pertinent to them. In this respect,
most objects have only to store the path through the tree by representing their own location.
This implies that, RAUM is used whenever peer-to-peer communication is required.

6. Applications of Large Scale Context-Aware Systems

In this section, we refer to certain abovementioned indicative context-aware systems. The
discussed systems depict the enabling technology for building and testing mobile and ubiqui-
tous computing scenarios, and the emerging functionality and collective context-awareness of
information artifacts.

Smart-Its [25] are small-scale, embedded devices that can be attached to everyday objects
to augment them with sensing, perception, computation, and communication. Several device
prototypes are based on Smart-Its using diverse micro-controller platforms. Smart-Its are used
for multi-sensing contextual information for mobile users, similarly to the Smart-CAPs [26].
Moreover, Smart-Its Friends is a context-aware application based on this technology. As soon
as a device becomes connected, the application notifies the mobile user with a brief tone. This
notification also occurs after a friend has been temporarily out of range and, thus, discon-
nected. Two Smart-Its-augmented objects can be connected and, then, notify the mobile users
when they venture within a certain range, acting in support of proximity awareness.

The RAUM system is currently used for inter-device communication in ubiquitous com-
puting. The RAUM location-aware application runs on desktop computers, Palm Pilots, and
micro-controllers. The Smart-Door-Plate context-aware application is used to yield context
information for applications in human computer interaction. Specifically, it displays the name
of the room, the names of the people working in that room, or events taking place there (e.g.,
a meeting). The information for recognizing that a meeting is in progress is inferred from the
context established by MediaCups [38]. The later is a computer-augmented coffee cup with
infrared communication, which distributes status information, like temperature, sound and
usage in specific time intervals.

Finally, a smart meeting room system called Easy-Meeting explores the use of multi-
agent systems, Semantic Web ontologies, reasoning, and declarative policies for security and
privacy. Building on the CoBrA system [33], Easy-Meeting provides relevant services and
information to meeting participants based on their situational needs. The CoBrA intelligent
broker agent maintains a shared context model for all computing entities in the space and
enforces user-defined privacy policies. In addition, CoBrA system models its context using a
shared conceptual graph (Section 2) for context-aware computing application, called Standard
Ontology for Ubiquitous and Pervasive Applications (SOUPA). Such ontology is expressed
using the Semantic Web languages and includes modular component vocabularies to repre-
sent intelligent agents with associated beliefs, desires, and intentions, time, space, actions and
events, and user profiles. SOUPA can be extended to support the applications of CoBrA, and
MoGATU [39], a peer-to-peer pervasive data management system.

7. Conclusions and Open Issues

In this article, emphasis was placed on context-aware mobile computing. Essentially, the form
of such computing paradigm is broader than mobile computing because it concerns not only
mobility of users and devices, but, more importantly, information surrounding the user and

Context Awareness in Mobile Computing Environments 461

computational entities. In context-aware mobile computing, the application adapts not only
to changes in the availability of computing and communication resources but also to the pres-
ence of contextual information. Issues related to context modeling and how context aware
systems deal with contextual information are discussed. We reviewed the basic mechanisms
underlying the operation of such systems. We discussed notable works and important architec-
tures reported in the relevant literature. A long-term goal of system architectures is rendering
sensors and context platforms flexible and scalable enough to be widely adopted in various
context-aware mobile applications. Aiming at Human-Computer Interaction, context-sensing
requirements in context-aware computing applications take into account the fact that sensors
are highly distributed and their configuration is highly dynamic. Based also on the assumption,
that the more complex context model can be decomposed into simpler discrete facts and events,
many context models propose a top-down systematic approach providing a clear path allowing
computers to understand context in human-like ways. Issues about privacy and distribution
of context information, conforming to an appropriate distribution model of partitioning and
replication context, are open while autonomous configuration schemes for sensors, providing
service adaptation, are equally crucial. Designing contextual data format and network pro-
tocols to allow interoperability by supporting different types of sensors and finding the right
balance of developing a universal context model and smart infrastructures are challenges for
the future. Systems should also take into account the quality of context represented into a
model supported by a meta-model scheme of context. Finally, an open issue could be the
definition of a context prediction method supporting the pro-activity of context-services in
advanced mobile computing environments.

References

1. E. Giunchiglia and F. “Giunchinglia, and Ideal and Real Belief about Belief”, Proc. FAPR’96, Bonn, Germany,
1996. pp. 261–275.

2. F. Giunchiglia F, “Contextual Reasoning, Epistemologia”, special issue on I Linguaggi e le Machine, Vol.XVI
pp. 345–364, 1993.

3. G. Fauconnier, Mental Spaces: Aspects of Meaning Construction in Natural Language, Cambridge, MA, MIT
Press, 1985.

4. R. Weyhrauch, “Prolegomena to Theory of Mechanized Formal Reasoning”, Artificial Intelligence, Vol. 13
No. 1, pp. 133—176, 1980.

5. J. McCarthy, “Notes on Formalizing Context”, Proc. 13th IJCAI’93, Chambéry, France, pp. 555–560, 1993.
6. A. Dey and G. Abowd, “Towards a Better Understanding of Context and Context-Awareness”, Proc.CHI’00,

The Hague, The Netherlands, 2000.
7. C. Ghidini and F. Giunchiglia, “Local Models Semantics, or Contextual Reasoning = Locality + Compatibility”,

Artificial Intelligence, Vol. 127, No. 2, pp. 221–259, 2001.
8. H. Levesque, F. Pirri, and R. Reiter, “Foundations for the situation calculus”, Electronic Transactions on

Artificial Intelligence, Vol. 2, No. 3–4, pp. 159–178, 1998.
9. F. Baader, D. Calvanese, D. McGiuness, D. Nardi, and P Patel-Schneider, The Description Logic Handbook –

Theory, Implementation, and Applications, Cambridge, Cambridge University Press, 2003.
10. D. Grossi, F. Dignum, and J. Meyer, “Context in Categorization”, Proc. CRR′05, Paris, France, 2005.
11. J. Coutaz and G. Rey, “Foundations for a theory of contextor”, CLIPS-IMAG, BP Vol. 53, pp. 283–302, 2000.
12. J. Crowley and P. Reigner, “An architecture for Context Aware Observation of Human Activity”, Project

PRIMA, INRIA, France.
13. P. Prekop and M. Burnett, “Activities, Context and Ubiquitous Computing”, Computer Communications,

Vol. 26, pp. 1168–1176, 2003.
14. K. Henricksen, J. Indulska and A. Rakotonirainy, Modeling Context Information in Pervasive Competing

Systems, Proc. Pervasive 2002, Zurich, Switzerland, pp. 169–180, 2002.

462 C.B. Anagnostopoulos et al.

15. IOS Widgets, [http://mdp.artcenter.edu/ ∼vanallen/ios1/2004sp/ios1_wk02d.html].
16. R. Wang, M. Reddy, and H. Kon, Towards Quality Data: An Attribute-Based Approach, Decision Support

System, Vol. 13, pp. 349–372, 1995.
17. D. Brickley, and Guha, “RDF Vocabulary Description Language 1.0: RDF Schema”, W3C Working Draft.

http://www.w3.org/TR/PR-rdf-schema (visited April 2004).
18. A. Seaborne, “RDQL – A Query Language for RDF”. W3C Member Submission. http://www.w3.org/ Sub-

mission/ 2004/ SUBM-RDQL-20040109/ (visited February 6th 2004).
19. R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge Location System”, ACM Transactions on

Information Systems, Vol. 10, No. 1, pp. 91–201, 1992.
20. M. Beigl, H.W. Gellersen, and A. Schmidt, “MediaCups: Experience with Design and Use of Computer-Aug-

mented Everyday Objects”, Computer Networks, Vol. 35, No. 4, pp. 401–409, 2001.
21. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.W. Gellersen. “Smart-Its Friends: A Tech-

nique for Users to Easily Establish Connections between Smart Artefacts”, Proc. UBICOMP, California, USA,
2001.

22. T. Bauer and B. Leake, “Exploiting Information Access Patterns for Context-Based Retrieval”, Proc. IUI’02,
Florida, USA, pp. 176–177, 2002.

23. J. Cooperstock, “Making the User Interface Disappear: the Reactive Room”, Proc. Centre for Advanced Studies
on Collaborative research, Toronto, Canada, 1995.

24. F. Michachelles and M. Samulowitz, “Smart CAPS for Smart Its – Context Detection for Mobile Users”, Proc.
IHM-HCI, Lille, France, 2001.

25. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.W. Gellersen, “Smart-Its Friends: A Tech-
nique for Users to Easily Establish Connections between Smart Artefacts”, Proc. UBICOMP, California, USA,
2001.

26. M. Samulowitz, F. Michahelles, and C. Linnhoff-Popien, “Adaptive Interaction for Enabling Pervasive Service”,
In: MobiDE01”, USA, 2001.

27. B. Kummerfeld, A. Quigley, C. Johnson, and R. Hexel, Merino: “Towards an intelligent environment architec-
ture for multi-granularity context description”, Proc. User Modeling for Ubiquitous Computing, Johnstown,
USA, 2003.

28. M. Samulowitz, F. Michahelles, and C. Linnhoff-Popien, CAPEUS: “An Architecture for Context-Aware
Selection and Execution of Services Distributed Applications and Interoperable Systems”, Proc.DAIS, 23–40,
Krakau, Poland, 2001.

29. T. Nakajima, “Pervasive Servers: A Framework for Creating a Society of Appliances”, Personal and Ubiquitous
Computing, Vol. 7, No. 3–4, pp. 182–188, 2003.

30. C. Efstratiou, K. Cheverst, N. Davies, and A. Friday, An Architecture for the Effective Support of Adaptive
Context Aware Applications, Distributed Multimedia Research Group, Lancaster University.

31. B. De Carolis, S. Pizzutilo, I. Palmisano, and A. Cavalluzzi, “A Personal Agent Supporting Ubiquitous Inter-
action accepted to Workshop on User Modelling for Ubiquitous Computing”, Proc.UM03, Johnstown, USA,
2003.

32. WASP Project, [http://www.freeband.nl/kennisimpuls/projecten/wasp/].
33. H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-Aware Pervasive Computing Environments, Special

Issue on Ontologies for Distributed Systems”, Knowledge Engineering Review, Vol. 11, Issue: 3, pp. 197–207,
2003.

34. S. Nath, Y. Ke, P. Gibbons, B. Karp, and S. Seshan, IrisNet: An Architecture for Enabling Sensor-Enriched
Internet Service, Intel Research Pittsburgh, Carnegie Mellon University, IRPTR-02–10, Bologna, Italy, 2002.

35. N. Sadeh, E. Chan, and L. Van, “MyCampus: An Agent-Based Environment for Context-Aware Mobile
Services”. Proc. UBIAGENTS, pp. 34–39, 2002.

36. B. N. Schilit, N. Adams, R. Gold, M. Tso, and R. Want, The PARCTAB Mobile Computing System, In:
Workshop on Workstation Operating Systems, pp. 34–39, 1993.

37. M. Beigl, T. Zimmer, and C. Decker, “A Location Model for Communicating and Processing of Context”,
Personal and Ubiquitous Computing, Vol. 6, 5–6, pp. 341–357, 2002.

38. M., Beigl, H.-W. Gellersen, A. Schmidt, 2002. “MediaCups: Experience with Design and Use of Computer-
Augmented Everyday Objects”. Computer Networks, Vol. 35, No. 4, Special Issue on Pervasive Computing,
Elsevier, Amsterdam, pp. 401–409, March 2001.

39. F. Perich, “On Data Management in Pervasive Computing Environments”, IEEE Transactions on Knowledge
and Data Engineering, Vol. 16, No. 5, pp. 621–634, 2004.

Context Awareness in Mobile Computing Environments 463

Christos B. Anagnostopoulos has received his B.Sc. in Computer Science from the Depart-
ment of Informatics and Telecommunications at the University of Athens, Greece in 2001 and
his M.Sc. in Computer Science - Advanced Information Systems from the same department in
2003. He is now a Ph.D. student in the University of Athens - Department of Informatics and
Telecommunications. His research interest is focused on Contextual Reasoning, Web Seman-
tics, Ontological Engineering and Uncertainty Management. Since 2004 he is a member of the
Pervasive Computing Research Group of Communication Networks Laboratory of University
of Athens.

Athanasios Tsounis has received his B.Sc. in Computer Science from the Department of
Informatics and Telecommunications at the University of Athens, Greece in 2002 and his
M.Sc. in Computer Science - Advanced Information Systems from the same department in
2003. He is now a Ph.D. student in the University of Athens - Department of Informatics
and Telecommunications. His research interest is focused on Smart Agents and Ontological
Engineering.

464 C.B. Anagnostopoulos et al.

Stathes Hadjiefthymiades received his B.Sc., M.Sc. and Ph.D. degrees in Informatics from
the Dept. of Informatics and Telecommunications, University of Athens (UoA). He also recei-
ved a Joint Engineering-Economics M.Sc. from the National Technical University of Athens.
In 1992 he joined the Greek consulting firm Advanced Services Group. In 1995 he joined
the Communication Networks Laboratory (CNL) of UoA. During the period 2001–2002, he
served as a visiting assistant professor at the University of Aegean, Dept. of Information and
Communication Systems Engineering. On the summer of 2002 he joined the faculty of the
Hellenic Open University, Patras, Greece, as an assistant professor. Since December 2003, he
is in the faculty of the Dept. of Informatics and Telecommunications, University of Athens,
where he is presently an assistant professor. He has participated in numerous EU & National
projects. His research interests are in the areas of web engineering, mobile/pervasive comput-
ing and networked multimedia. He has contributed to over 100 publications in these areas.
Since 2004 he co-ordinates the Pervasive Computing Research Group of CNL.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

