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Abstract 
 

Spectrum sensing is a key problem in cognitive radio. However, traditional detectors become 
ineffective when noise uncertainty is severe. It is shown that the entropy of Gauss white noise 
is constant in the frequency domain, and a robust detector based on the entropy of spectrum 
amplitude was proposed. In this paper a novel detector is proposed based on the entropy of 
spectrum power density, and its performance is better than the previous scheme with less 
computational complexity. Furthermore, to improve the reliability of the detection, a 
two-stage entropy-based cooperative spectrum sensing scheme using two-bit decision is 
proposed, and simulation results show its superior performance with relatively low 
computational complexity. 
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1. Introduction 

Over the last decade, because of conflicts between the increasing demands of wireless 
communication services and the scarcity of wireless spectrum, cognitive radio (CR) 
network-related research has progressed rapidly [1]. In CR, the secondary users need to 
opportunistically sense the idle channels. Once an idle channel is sensed, the secondary users 
will access the channel. Hence, spectrum sensing requests the secondary users to efficiently 
and effectively detect the presence of the primary signals, and is a fundamental problem in CR 
[2]. Generally, spectrum sensing techniques can be classified into three categories, energy 
detection [3-4], matched filtering detection [5] and feature detection [6]. In the matched 
filtering detection and feature detection, the CRs should have some knowledge about the 
primary signal features, such as preambles, pilots, synchronization symbols and modulation 
schemes. Hence, these two detection schemes require large computational costs and are not 
suitable to act as a blind detector. Energy detection is shown to be optimal if the cognitive 
devices do not have a priori information about the features of the primary signals, and it 
possesses the lowest computational costs and is easily implemented. However, it is susceptible 
to noise uncertainty and performs poorly at low SNR. 

Because of the fluctuation of background noise, noise uncertainty exists in every practical 
system. Sensitivity to noise uncertainty is a fundamental limitation of current spectrum 
sensing strategies in detecting the presence of the primary users in CR. Because of the noise 
uncertainty, the performance of traditional detectors deteriorates quickly when SNR is low [7]. 
The information entropy theory has been applied to the signal detection successfully, and thus 
several entropy-based detectors have been proposed to solve the spectrum sensing problem in 
CR [8-9]. In [8], an entropy-based spectrum sensing scheme is designed by combining the 
entropy detection in the time domain and the matched filter. However the matched filter in the 
scheme needs some necessary knowledge about the primary signal features, which requires 
additional overhead and even hardly holds in CR, and thus it is not a blind detector. In [9], an 
entropy-based spectrum sensing scheme in the frequency domain based on the spectrum 
amplitude is proposed and proved to be robust to the noise uncertainty, however, its 
performance still can be improved. 

In order to enhance sensing performance, more sensing time is needed. However, during the 
process of sensing, secondary users should stop data transmission to avoid being recognized as 
primary users. Therefore more sensing time means lower secondary system capacity, making 
this approach less attractive. Cooperative spectrum sensing (CSS) [10-14], where local sensors 
sense and then send information to the centre where the final decision is made, has been 
studied extensively as a promising alternative to improve sensing performance. There are 
mainly three schemes of CSS: AND-rule-based CSS [10], OR-rule-based CSS [11], and 
VOTING-rule-based CSS [12]. However, these three CSS schemes are rather simple, and their 
performance is limited. These days, the CSS schemes based on weight have been proposed 
[13-14] with excellent performance, however, in these schemes SNR of each secondary user 
should be estimated perfectly to get the fusion weight, and it is difficult to realize. 

In this paper, a novel entropy-based spectrum sensing scheme in the frequency domain 
based on the spectrum power density is proposed, and we prove that it is also robust to the 
noise uncertainty with better probability of detection and lower computational complexity. To 
further improve the reliability of the detection, a novel two-stage entropy-based spectrum 
sensing scheme is designed, which has better performance than those one-stage ones with 



 

 

relatively low computational complexity. Furthermore, a cooperative spectrum sensing 
scheme with two-bit decision, which is obtained from the two-stage entropy-based sensing 
results, is proposed. The proposed two-stage entropy-based robust cooperative spectrum 
scheme can achieve much better performance than AND, OR, and VOTING rule CSS 
schemes with less computational complexity. 

The rest of this paper is organized as follows. In Section II, we describe the system model 
for spectrum sensing, and the previous entropy detector based on spectrum amplitude is 
described. In Section III, the novel entropy detector based on spectrum power density is 
introduced, and its robustness to the noise uncertainty is proved. Two-stage entropy detection 
scheme is also proposed in Section III. In Section IV, the cooperative spectrum sensing 
scheme based on two-bit decision getting from two–stage sensing results is proposed. In 
Section V, the advantages of the proposed cooperative spectrum sensing scheme is illustrated 
through plenty of simulations. Conclusions are drawn in Section VI. 

2. System Model 
In order to avoid interfering with the primary users when the frequency bands are already 
occupied, detection should be made before the CR accesses the bands. So the most critical 
technique is the spectrum sensing which decides success or failure of the following steps. The 
target of spectrum sensing in CR is to determine whether a licensed band is currently occupied 
by its primary user or not. This can be formulated into a binary hypotheses testing problem 
[15] 
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where n=0, 1, …, N; N is the number of samples. The primary user’s signal, the noise and the 
received signal are denoted by s(n), w(n) and x(n) respectively. H0 represents the absence of 
primary signal, while H1 represents the presence of primary signal. The noise w(n) is assumed 
to be additive white Gaussian noise (AWGN) with zero mean and variance of σ0

2, and the 
signal s(n) can either be a deterministic signal (accounting for AWGN channel) or a stochastic 
signal (corresponding to channel characteristics like fading and multipath) with mean μ1 and 
variance σs

2. 
Applying discrete Fourier Transform (DFT) to (1), we have the following hypotheses 
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where K is the length of DFT equal to sample size N, ( )X k

r
, ( )S k
r

 and ( )W k
r

 are the complex 
spectrum of the receiver signal, primary signal and noise, respectively. 
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where Xr(k) and Xi(k) represent the real part and the imaginary part of X(k), respectively. In [9], 



 

 

an entropy-based spectrum sensing based on spectrum amplitude 2 2( ) ( ) ( )r iX k X k X k= +  is 
proposed. 

Information entropy is a measure of the uncertainty associated with a random variable. It 
quantifies information contained in a message and can be written as 
 

                                                    
1

( ) log ,
L

i b i
i

H Y p p
=

= −∑                                                  (4) 

 
where b is the base of the logarithm. In this letter, we define b equal to e. pi denotes the discrete 
probability mass function of Y. L is the dimension of the probability space. 

There are several techniques that can estimate the entropy of a continuous random variable 
based on a finite number of observations. To reduce the computational complex, we use the 
simplest approach, histogram-based estimation of the density function [16]. The number of 
states of the random variable is then equal to the bin number L (dimension of the probability 
space). Let ki denote the total number of occurrences in the ith bin with 
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probability in each state pi is the frequency of occurrences in the ith bin, that is, pi=ki/N. The 
bin width Δ can be expressed as 
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where Ymax and Ymin represent the maximum and minimum value of random variable Y, 
respectively. Once bin number L is fixed, bin width Δ varies with the range of the spectrum 
amplitude. 

Replay pi in (4) by pi=ki/N, the equation (4) can be rewritten as 
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The entropy detection in [9] makes decision on the information entropy of the spectrum 

amplitude 2 2( ) ( ) ( )r iX k X k X k= +  following (6). In hypothesis H0, 2 2( ) ( ) ( )r iX k W k W k= +  
follows Rayleigh distribution, and the information entropy of X(k) can be expressed as 
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where γ is the Euler-Mascheroni constant, and ( )1 2 log 1 .C ρ= − −  ρ is a large cumulative 
distribution function (CDF) probability (e.g. 0.99<ρ<1), which is calculated from the 
approximate maximum of variable X(k). 

In hypothesis H1, the received signal consists of both primary signal and background noise, 
and the entropy of spectrum amplitude when H1 is much smaller than that when H0. Hence, the 
gap of estimated information entropy between H0 and H1 can be utilized to detect the 
presence/absence of the primary signal. The decision rule is given as 
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where λ is the threshold determined by the false alarm probability (Pf). 

In [9], it is also proved that with probability space partitioned into fixed dimensions, the 
information entropy of the white Gaussian noise (WGN) is a constant, and the entropy 
detection based on spectrum amplitude is thus intrinsically robust against noise uncertainty. 

3. Two-stage Entropy Detection Based on Spectrum Power Density 

3.1 Entropy Detection Based on Spectrum Power Density 
The entropy detection based on spectrum amplitude has relatively high performance and is 
robust to the noise uncertainty, however, the detection performance still can be improved. In 
this paper, a novel entropy detector based on spectrum power density is proposed, with better 
performance and lower computational complex. 

In hypothesis H0, the received signal is WGN with zero mean and variance σ0
2, and the DFT 

of the received signal can be expressed as 
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where Wr(k) and Wi(k) are the real and imaginary part of ( )W k

r
, respectively. Wr(k) and Wr(k) 

both follow Gaussian distribution with variance of σ0
2/2N. So the spectrum power density of 

the received signal in H0 W2(k)=Wr
2(k)+Wi

2(k) follows exponential distribution with parameter 
σ1

2=σ0
2/2N. The probability density function (PDF), CDF and differential entropy of 

Y(k)=W2(k) can be given as 
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Therefore, in this letter, we proposed a novel entropy detection scheme based on the 

spectrum power density X2(k), and the advantages of this scheme are listed below: 
(1) The detection performance is better than the entropy detection in [9], which will be 

proved in Section V through simulations. 
(2) The computational complex of this novel detection scheme is lower than the detection 



 

 

scheme in [9], which needs additional N square-root operations. 
(3) It is also robust to the noise uncertainty with fixed bin number L, proved in Proposition 

1. 
Proposition 1: With fixed bin number L, the information entropy of spectrum power density 

of the WGN is a constant, hence entropy detection based on spectrum power density is 
intrinsically robust against noise uncertainty. 

Proof: Theoretically, the maximum value of an exponential distributed random variable is 
infinite. We assume that N samples of the exponential distributed random variable Y=W2 has 
range [0, Ymax]. Under CDF probability ρ→1 (e.g. 0.99<ρ<1), Ymax can be obtained from (11) 
as 
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where C2=-2log(1-ρ). Let L represent the number of bins, the bin width Δ can be written as 
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The relationship between information entropy H(Y) and differential entropy h(Y) can be 

approximately expressed as 
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Therefore the information entropy of Y can be expressed as 
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From (16) we can see that, the entropy based on the spectrum power density of WGN is a 
constant for a given number of L. So the novel entropy detection based on the spectrum power 
density is robust against the noise uncertainty. The decision rule of this detection scheme can 
be obtained as 
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where λ is the threshold determined by Pf, and it is set according to the method in [17]. 



 

 

3.2 Two-stage Entropy Detection 
When SNR becomes lower, the gap between the information entropies calculated in the 
hypothesis H0 and hypothesis H1 respectively are getting smaller, hence the detection results 
become unreliable. To improve the performance of the entropy detection based on spectrum 
power density at low SNR, a two-stage entropy detection scheme is proposed. 
The two-stage entropy detection scheme can be represented by the following steps: 
Step 1: Apply N-point DFT to the received signal x(n), and obtain the variable of spectrum 

power density Y(k)=Xr
2(k)+Xi

2(k), where k=1, 2, …, N. 
Step 2: Calculate the entropy of Y(k) following (17), and we can get the entropy value HL1(Y). 

The threshold is denoted as λ, and the decision of the first stage detection can be made 
following 
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where Δ0 is a positive parameter, and threshold λ can be obtained through a larger number of 
simulations in hypothesis H0 for a given Pf using this two-stage entropy detection scheme 
following the method in [17] beforehand. If HL1(Y) is not in (λ-Δ0, λ+Δ0), the finial decision is 
made and jump to Step 5; otherwise, the second stage detection will be performed and jump to 
Step 3. 

Step 3: Apply N-point DFT to the received signal x(n) again, and obtain another Y(k). 
Step 4: Calculate the entropy of Y(k) following (17), and we can get the entropy value HL2(Y) 

of the second stage. The final decision can be made following 
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In (19), the decision is finally made by considering the entropy values of these two stages 
HL1(Y) and HL2(Y), and the detection performance is improved. 

Step 5: Current detection ends. 
In the two-stage scheme described above, if the entropy in the first stage HL1(Y) is out of 

(λ-Δ0, λ+Δ0), the solution is located in the undoubted region. The final decision is made 
immediately, and the decision is quite accurate. This situation is equal to the one-stage 
detection with N samples. If HL1(Y) is in (λ-Δ0, λ+Δ0), the solution is located in the doubted 
region, and a second stage detection will be performed. The final decision is based upon both 
HL1(Y) and HL2(Y), and it is the mean of the detection results of last two N-points one-stage 
detection, using 2N samples. Therefore, the performance of two-stage at this situation is close 
to the one-stage detection using 2N points, and the decision is more reliable. Therefore, the 
two-stage detection scheme can greatly improve the detection performance and make the 
decision more reliable. 

4. Cooperative Spectrum Sensing Based on Two-stage Detection 

4.1 Traditional Cooperative Spectrum Sensing Schemes 



 

 

We consider a CR network composed of K CRs (secondary users) and a common receiver, as 
shown in Fig. 1. We assume that each CR performs spectrum sensing independently and then 
the local decisions are sent to the common receiver which can fuse all available decision 
information to infer the absence or presence of the PU.  

 
Fig. 1. Spectrum sensing structure in a cognitive radio network 

 
In traditional “n-out-of-K” rule cooperative spectrum sensing, each cooperative partner 

makes a binary decision based on its local observation and then forwards one bit of the 
decision Di (1 standing for the presence of the PU, 0 for the absence of the PU) to the common 
receiver through an error-free channel. At the common receiver, all 1-bit decisions are fused 
together according to the logic rule 
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where H0 and H1 denote the decision made by the common receiver that the PU signal is not 
transmitted or transmitted, respectively. The threshold n is an integer, representing the 
“n-out-of-K” rule. It can be seen that the OR rule corresponds to the case of n=1, AND rule 
corresponds to the case of n=K, and in the VOTING rule n is equal to the minimal integer 
larger than K/2. 

4.2 Cooperative Spectrum Sensing Based on Two-stage Detection 
To adapt to the two-stage entropy-based spectrum sensing scheme and further improve the 
sensing performance, a novel cooperative spectrum sensing scheme is proposed. In the 
proposed cooperative spectrum sensing scheme, the decision information made by each 
secondary user includes two bits, which can be calculated from the two-stage detection results.  

The proposed cooperative spectrum sensing scheme can be represented by the following 
steps: 
Step 1: At the ith secondary user, apply N-point DFT to the received signal x(n), and obtain 

the variable of spectrum power density Y(k)=Xr
2(k)+Xi

2(k), where k=1, 2, …, N. 
Step 2: Calculate the entropy of Y(k) following (17), and we can get the entropy value HL1(Y). 

The threshold is denoted as λ, and the decision of the first stage detection can be made 
following 
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where Δ0 is a positive parameter, and threshold λ can be obtained through a larger number of 
simulations in hypothesis H0 for a given Pf using this two-stage entropy detection scheme 
following the method in [17] beforehand. If HL1(Y) is not in (λ-Δ0, λ+Δ0), the two-bit finial 
decision of the ith secondary user Di is made and jump to Step 5; otherwise, the second stage 
detection will be performed and jump to Step 3. 

Step 3: Apply N-point DFT to the received signal x(n) again, and obtain another Y(k). 
Step 4: Calculate the entropy of Y(k) following (17), and we can get the entropy value HL2(Y) 

of the second stage. The final decision can be made following 
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The two-bit decision of the ith secondary user is finally made by (21) and (22), and the 
decisions of all the secondary users are then sent to the common receiver to be fused. 

Step 5: The two-bit decision Di of each secondary user is received at the common receiver. 
To transmit it easily and save the spectrum resource, the Di is two-bit binary, which can be 11, 
10, 01, and 00. At the common receiver, to fuse the decisions of all the secondary users 
together, Di should be changed into signed integer Fi according to 
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Therefore, we can obtain the final fused decision according to the decisions of all the 

secondary users in (23) as follows. 
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Step 6: Current detection ends. 



 

 

5. Simulation Results and Discussion 
To evaluate the detection performance of the proposed detection scheme, plenty of simulations 
are carried out. The signal of the primary user is BPSK modulated, and the baseband symbol 
rate fb is equal to 1Mbps. The sampling frequency fs at the cognitive receiver is 64MHz. The 
bin number L of the probability space is 15. In all the entropy based detectors, the sample size 
of DFT is equal to 1024 points. In energy detection, the sample size is also equal to 1024 
points. 

First, the detection probability (Pd) of these detectors is compared in Fig. 2 with the power 
of background noise fixed and Pf=0.1, and the receiver operation characteristic (ROC) curves 
of these detectors when SNR=-10dB are depicted in Fig. 3. The threshold λ of the two-stage 
entropy detection is 1.596, 1.615, 1.629, 1.630 and 1.628 with Δ0 set to 0.05, 0.1, 0.2, 0.3 and 
0.4, respectively, when Pf=0.1. In the simulations, the primary signal experiences Rayleigh 
fading. From Fig. 2 and Fig. 3, we can see that, the detection performance of the entropy 
detection based on spectrum power density is better than that of the entropy detection based on 
spectrum amplitude. The detection performance of the energy detection is a little better than 
the one-stage entropy detectors. The two-stage entropy detection has the best performance, 
and the performance becomes better when Δ0 is larger. When Δ0≥0.2, the performance remains 
almost unchanged. In addition, we can see that the detection performance of energy detection 
is better than two-stage detection (Δ0≥0.2) when SNR is lower than -13dB and Pd smaller than 
0.45. However, we don’t care much about the detection performance when Pd is smaller than 
0.5, for in this case, the detection probability is relatively small, and missed detection is very 
easy to happen. 
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Fig. 2. Detection Performance against SNR comparison of the detectors in Rayleigh fading channel 

without noise uncertainty 
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Fig. 3. ROC curves comparison of the detectors in Rayleigh fading channel without noise uncertainty 

when SNR is equal to -10dB 
 

From the simulations above, we can see that the detection performance of the energy 
detector is better than the one-stage entropy detectors, however, the entropy detectors are 
robust to the noise uncertainty while the energy detection is very sensitive to the variation of 
the background noise. The Pd and Pf performance of the energy detector and two-stage 
entropy detector is compared in Fig. 4 with the power of the background noise varying from 
-97dbmW to -93dbmW when SNR is fixed at -12dB. In Fig. 4, Pf of the energy detection and 
the two-stage entropy detection is both equal to 0.1 when the noise power is -95dbmW. Pf and 
Pd of the two-stage entropy detection remain unchanged with the noise power varying, and 
noise uncertainty can not affect the performance of the entropy-based detectors. On the other 
hand, the energy detector is very sensitive to the noise uncertainty, and the Pf and Pd become 
rather unacceptable with the noise uncertainty larger than only 0.5dbmW. As the background 
noise fluctuates in almost all the practical communication networks, the energy detection with 
fixed threshold is hardly suitable in practical systems. 
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Fig. 4. Detection performance with ±2dbmW noise uncertainty when SNR=-12dB 

To further compare the computational complex of the one-stage entropy detector and 
two-stage entropy detector, a computational complex ratio Г is defined as 
 

                      Computational complex of two-stage entropy detector ,
Computational complex of one-stage entropy detector

Γ =                    (25) 

 
and (Г-1) represents the probability of whether the second stage processing is needed. The 
computational complex ratio of the two-stage entropy detectors with different Δ0 against SNR 
is depicted in Fig. 5 when Pf is equal to 0.1 and the primary signal exists in the case of H1. It is 
shown that when SNR is smaller than -7dB and larger than -13dB, the computational complex 
of the two-stage entropy detection is almost the same as the one-stage entropy detection, and 
when SNR becomes lower or the primary user is not active, the probability of the second stage 
processing is bigger and the computational complex of the two-stage entropy detection 
becomes larger. We can also see that when Δ0 becomes larger, the computational complex of 
the two-stage entropy detection increases at certain SNR. 

We can also see the computational complex becomes a little smaller when SNR is lower 
than -13dB. This is because when SNR is extremely low, the received signal is getting close to 
only WGN received. In this case, the entropy of the spectrum power density of the received 
signal is prone to be larger than the above threshold λ+Δ0, hence, the computational complex 
becomes a little smaller. On the other hand, the comutational complex radio Γ will not reach 1 
even when only WGN is received, because Pf is set to 0.1, and that means even only WGN is 
received, the probability when detected entropy is smaller than λ+Δ0 in the first stage detection 
is larger than 0.1. 
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Fig. 5. Computational complex ratio Г against SNR with different Δ0 

 
From Fig. 5 we can see that when SNR is low (lower than -13dB) and Δ0 is relatively big 

(larger than 0.3), the computational complex of the two-stage entropy detection is close to 
twice of the computational complex of the one-stage entropy detection. It is also explicit that 
the computational complex of the one-stage entropy detection with 2N-point DFT is almost 
twice of that of one-stage entropy detection with N-point DFT. Hence it is necessary to 
compare the detection performance of the two-stage entropy detection with N-point DFT and 
one-stage entropy detection with 2N-point DFT, and it is shown in Fig. 6. In the simulation, Pf 
is set to 0.1. It is shown that the detection performance of two-stage entropy detection with 
1024-point DFT is better than that of the one-stage entropy detection with 2048-point DFT 
when Δ0 is larger than 0.1, while the computational complex of two-stage entropy detection 
with 1024-point DFT is lower than or even half of (SNR>-7dB) that of one-stage entropy 
detection with 2048-point DFT. 
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Fig. 6. Detection performance comparison of the 1024-point two-stage entropy detection and 

2048-point one-stage entropy detection 
 
Then the performance of the proposed cooperative spectrum sensing is evaluated. The Pd 

performance of some cooperative entropy-based spectrum sensing schemes are compared in 
Fig. 7 when Pf=0.1 and SNR is varying from -16dB to -6dB. In the two-stage detection 
schemes, Δ0 is both set to 0.3. To make sure that the computational complexity of these 
entropy-based cooperative spectrum sensing schemes is almost the same, in the cooperative 
two-stage detection scheme based on entropy, the DFT is 1024-point, while in the cooperative 
detection with AND, OR, and VOTING rules, the DFT is 2048-point. From Fig. 5 we can see 
that the computational complexity of two-stage 1024-point cooperative spectrum sensing 
scheme is much smaller than that of one-stage 2048-point cooperative spectrum sensing 
scheme, especially when SNR is relatively large; on the other hand, in the two-stage 
cooperative spectrum sensing scheme, the decision sent to the common receiver by each 
secondary user is two bits, while in the one-stage only one-bit decision is sent to the common 
receiver. Therefore, considering the above analysis, the computational complexity of the 
proposed two-stage cooperative spectrum sensing with 1024-point DFT is a little smaller than 
that of the one-stage cooperative spectrum sensing scheme with 2048-point DFT. The 
performance of two-stage entropy-based detection and one-stage entropy-based detection with 
only one secondary user and 1024-point DFT is also analyzed. 

From the simulation results in Fig. 7, we can see that the Pd performance of the proposed 
cooperative two-stage entropy-based detection scheme with 1024-point DFT is much better 
than the three traditional cooperative entropy-based detection schemes (AND, OR, and 
VOTING rules). 

The ROC performance of these cooperative entropy-based detectors is also analyzed when 
SNR is equal to -12dB, and the ROC curves are depicted in Fig. 8. The parameters of these 
detectors are the same as those set in Pd in Fig. 7 performance analyzed, and it is sure that the 
computational complex of the cooperative two-stage entropy-based detection scheme with 
1024-point DFT and the traditional cooperative one-stage entropy-based detection schemes 



 

 

with 2048-point DFT (AND, OR, and VOTING rules) are almost the same. From the 
simulation results in Fig. 8, we can see that the ROC performance of cooperative two-stage 
entropy-based detection scheme is much better than that of the other detectors. 
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Fig. 7. Detection Performance against SNR comparison of the entropy-based cooperative detectors in 

Rayleigh fading channel without noise uncertainty 
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Fig. 8. ROC curves comparison of the cooperative entropy-based detectors in Rayleigh fading channel 

without noise uncertainty when SNR is equal to -12dB 
 



 

 

6. Conclusion 
A two-stage entropy-based robust cooperative spectrum sensing scheme with two-bit 

decision for cognitive radio is proposed in this letter. First a novel entropy detection based on 
spectrum power density is designed, and is proved to be robust to the noise uncertainty. The 
detection performance of the novel entropy detection is shown to be better than the previous 
entropy detection with lower computational complex. To further improve the reliability of the 
proposed entropy detection, a two-stage detection scheme is proposed and combined with the 
proposed entropy detector. Furthermore, to improve the reliability of the detection, a 
cooperative spectrum sensing scheme with two-bit decision getting from results of the 
two-stage detection is proposed. It is also shown that the performance of the proposed 
two-stage cooperative spectrum sensing scheme is much better than the traditional cooperative 
spectrum sensing schemes with twice of DFT points. 
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