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Abstract In wireless sensor networks, when each target is covered by multiple sensors,
we can schedule sensor nodes to monitor deployed targets in order to improve lifetime of net-
work. In this paper, we propose an efficient scheduling method based on learning automata,
in which each node is equipped with a learning automaton, which helps the node to select its
proper state (active or sleep), at any given time. To study the performance of the proposed
method, computer simulations are conducted. Results of these simulations show that the
proposed scheduling method can better prolong the lifetime of the network in comparison to
similar existing methods.

Keywords Wireless sensor network · Energy efficiency · Sensor scheduling ·
Maximum disjoint set covers · Learning automata (LA)

1 Introduction

Recent improvements in affordable and efficient integrated electronic devices have a con-
siderable impact on advancing the state of wireless sensor networks, which constitute the
platform of a broad range of applications including national security, surveillance, health
care and environmental monitoring. Sensor nodes are small devices equipped with one
or more sensors, one or more transceivers, processing, storage resources and possible
actuators [1].
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Energy efficiency remains a critical issue in wireless sensor networks as long as sensor
nodes are powered by battery. In the past few years, much research work has been done on
making efficient use of battery energy toward a longer network lifetime. Among many oth-
ers, energy aware routing, energy efficient data dissemination and aggregation, transmission
power control and node activity scheduling are the common approaches to improve energy
efficiency. A duty cycle is therefore introduced to allow each sensor to switch between active
and sleep modes to save energy. On the other hand, a certain amount of active nodes should
be present to ensure a desired level of coverage at all times. The method to rotate the role of
each sensor to meet certain objectives is called scheduling, where nodes alternate between
active and sleeping modes.

One major problem in the area of sensor networks is the coverage problem. This problem
deals with the ability of the network to cover a certain area or some certain events. Coverage
problem is classified into three different types [16]:

• Area coverage: covering (monitoring) the whole area of the network is the main objective
of area coverage problem.

• Point coverage (target): the objective of point coverage problem is to cover a set of
stationary or moving points.

• Barrier coverage: barrier coverage can be considered as the coverage with the goal of
minimizing the probability of undetected penetration through the barrier (sensor network).

In this paper, we focus on the problem of target cover-age. A common definition of this
problem is to cover (monitor) some stationary or moving target points in the area of sensor
network using as few sensor nodes as possible [16].

Sensor networks are usually redundantly deployed, i.e., each target is covered by more
than one sensor. Sensor nodes are often scheduled to turn on and off, alternating between an
active working mode and a sleep mode. The motivation for this scheme is not just to turn
off redundant sensors to save energy. Research shows that if batteries are given sufficient
recovering period between two intensive consumption periods, the actual battery lifetime
is extended [24]. Therefore appropriate scheduling will not only improve sensor network
lifetime, but also individual battery’s performance.

In this paper, we propose a learning automata-based scheduling mechanism for target cov-
erage applications. We assume that a large number of sensor nodes are dispersed randomly in
close proximity of a set of targets and the objective of the scheduling mechanism is to select
a subset of sensor nodes as active nodes, which can cover all of the targets. In the proposed
scheduling mechanism, each sensor node is equipped with a learning automaton, which helps
the node to select its proper state (active or sleep) at any time during the operation of the
network.

The rest of the paper is organized as follows. In Sect. 2, we present energy efficient and
coverage related work. Section 3 describes the target coverage problem. Learning automata
(LA) as a basic learning strategy used in the proposed method will be discussed in Sect. 4. In
Sect. 5, the proposed method is presented. Sect. 6 presents the simulation results and Sect. 7
concludes the paper.

2 Related Work

Wang [29] provided a good resource for various coverage control problems in sensor net-
works, a hot topic that has been intensively researched in recent years. Due to some unique
characteristics of sensor networks such as energy constraint and adhoc topology, the coverage

123

Author's personal copy



Maximizing Lifetime of Target Coverage

problems in sensor networks have many new scenarios and features that entitle them an
important research issue in recent years.

In sensor coverage problems, the goal is to have each location in the physical space of
interest within the sensing range of at least one sensor. Cardei and Wu [8] survey recent sen-
sor coverage problems proposed in literature and categorize them according to the following
design criteria: objective of the problem: maximize network lifetime or minimize the number
of sensors deployed sensor deployment method: deterministic versus random

In [12] authors categorized scheduling algorithms that deals with the problem of covering
(monitoring) either the entire area of the network or some target points (stationary or moving)
in the area of the network using as little sensor nodes as possible [16]. Usually, a minimum
number of nodes are selected to be active and monitor the area or the target points while
the rests of the nodes are inactive and save energy. This number of selected nodes is called
cover set. The node selection is repeated periodically or based on a certain schedule to allow
balance energy consumption of all nodes. A number of centralized [9,34,22,32,3,2,30,31]
and decentralized [19,20,10,18,17,13,4,5] methods are given in the literature for address-
ing this problem. In centralized methods, by assuming that the sink node has the topology
information of the network, usually the problem is solved optimally using a linear integer
programming approach or sub-optimally using a heuristic approach. In distributed methods,
each node locally and periodically checks whether it is necessary for it to be active or not. It
is necessary for a node to be active only if the sensing region of the node cannot be covered
completely by its neighbors. Necessity for becoming an active node can be determined using
a learning scheme [19,20].

Authors proposed energy efficient centralized mechanisms by dividing the sensor nodes
into disjoint sets, such that every set can individually perform the coverage tasks [6,15].
These sets are then activated successively, and while the cur-rent sensor set is active, all other
nodes are in the sleep mode. The goal of this approach is to determine a maximum number
of disjoint sets, as this has a direct impact on conserving sensor energy resources as well as
on prolonging the network lifetime. Cardei and Du [6] address the target coverage problem
where disjoint sensor sets are modeled as disjoint set covers, such that every cover completely
monitors all the target points. Disjoint set coverage problem is proved to be NP-complete,
and a lower approximation bound of 2 for any polynomial-time approximation algorithm is
indicated. The disjoint set cover problem [6] is reduced to a maximum flow problem, which
is then modeled as a mixed integer programming.

In [7] the authors abstract the objective of maximizing the network lifetime under maxi-
mum set cover (MSC) problem. MSC is proven to be NP-complete by a polynomial trans-
formation from a well-known NP-complete problem. Authors propose two heuristics and
Greedy method to compute maximum number of set covers.

Slijepcevic and Potkonjak [15] address the area coverage problem where the area is mod-
eled as a collection of fields, where every field has the property that any enclosed point
is covered by the same set of sensors. The most-constrained least-constraining algorithm
[15] computes the disjoint covers successively, selecting sensors that cover the critical ele-
ment (field covered by a minimal number of sensors), giving priority to sensors that: cover
a high number of uncovered fields, cover sparsely covered fields and do not cover fields
redundantly.

If faulty nodes exist in a sensor network, single coverage is not sufficient to satisfy the QoS
requirements. In [26], the k-coverage problem is addressed, i.e., to select a minimal active set
of sensor nodes to maintain a complete area k-coverage, which is defined as a minimum set
cover problem. It further extends it to address the probabilistic k-coverage problem, which
requires a point is covered by at least k sensors with a required probability.
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Moving target detection is a different category of coverage problem. In Megerian et al.
[28], defined the worst and best-case coverage problems and proposed polynomial time
algorithms to compute them. The coverage calculation here is independent of paths trav-
eled by the target, which is different from [15]. Esnaashari and Meybodi in [11] proposed
a learning automata-based scheduling solution to the dynamic point coverage problem. In
the proposed scheduling algorithm, the learning automaton of each node learns the sleep
duration of that node based on the movement pattern of a single moving target point in
the network. Optimization techniques have been used to improve the performance of com-
munication networks since a very early stage [25] provided a collection of problems and
optimization techniques for telecommunication.

3 Problem Statement

In this section, we first state the target coverage problem in wireless sensor networks and
then restate this problem as a disjoint set coverage problem.

Consider a sensor network of n sensor nodes s1, s2, . . . , sn, which are randomly deployed
within an LxL rectangular area �. Furthermore, consider m targets r1, r2, . . . rm with fixed
locations within � which must be continuously monitored (covered) by the sensor network.
We assume that the number of sensors deployed in � is greater than that required for moni-
toring the target points. Thus, a scheduling mechanism can be applied to alternate the activity
status of sensor nodes between active and sleep states.

Definition 1 (Target coverage problem (TCP)) Given m targets and a wireless sensor net-
work with n sensors, randomly deployed in �, schedule the sensor nodes activity such that
all the targets are continuously observed and network lifetime is maximized [7].

In this paper we focus on designing a node scheduling mechanism, and do not address the
problem of selecting which protocol is used for data gathering or node synchronization. To
efficiently transmit data from the sensors to the BS, a mechanism like LEACH [14] can be
used [7].

3.1 Disjoint Set Covers Problem

In this section we restate the target coverage problem as a disjoint set covers problem (DSC).
Let us first consider a simple example of target coverage. As illustrated in Fig. 1a, there are
six sensors and four targets in a randomly deployed network. If we consider a disk coverage
model, then the targets z2 and z4 are each covered by two sensors; and the targets z1 and z3
are each covered by three sensors. We use coverage mapping to refer to the coverage relations
among all sensors and all targets that can be represented by a sensor-target bipartite graph:
The vertices are the sensors and targets, and an edge exists between a sensor and a target if
the sensor covers the target. Figure 1b plots the sensor-target bipartite graph of the example
sensor network.

In the context of target coverage, it is a common prerequisite that all targets can be covered
if all sensors are activated for sensing. However, activating all the sensors at the same time is
not energy efficient. If every sensor can only operate for one time unit in a continuously active
state, then activating all sensors all the time results in a total network lifetime of also one time
unit. Instead, we can alternatively activate sensors. For example, in the network shown in
Figure 1, we can activate C1 = {s1, s3, s6} for one time unit and C2 = {s2, s4, s5} for another
time unit. Since all targets are still covered by either C1 or C2, the coverage requirements
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Fig. 1 Illustration of a a randomly deployed sensor network for covering targets and b the corresponding
sensor-target bipartite graph

are not sacrificed. Furthermore, the target coverage lifetime can be extended to two time
units. Obviously, we can have other choices of partitioning the sensors into different subsets,
such as C3 = {s1, s2, s5} and C4 = {s3, s6}. The objective of the target coverage problem
is to find the optimal subsets and their active intervals such that the coverage requirements
can be satisfied and the total target coverage lifetime can be maximized. Note that a circular
sensing area (like the one used in Fig. 1) is not a requirement here; the only requirement is
that each sensor be able to identify the set of targets it can cover. It has been proved that DSC
is NP-complete [7].

4 Learning Automata

An ‘automaton’ is a self-operating machine or a mechanism that responds to a sequence of
instructions in a certain way, so as to achieve a certain goal. The automaton either responds to
a pre-determined set of rules, or adapts to the environmental dynamics in which it operates.
The term ‘learning’ refers to the act of acquiring knowledge and modifying one’s behavior
based on the experience gained. Thus, in our case, the adaptive automaton we study in this
paper, adapts to the responses from the environment through a series of interactions within
it. It, then, attempts to learn the best action from a set of possible actions that are offered to it
by the random stationary or non-stationary environment in which it operates. The automaton,
thus, acts as a decision maker to arrive at the best action.

The operation of LA can be best described through the words of the pioneers Narendra and
Thathachar [21]: ‘…a decision maker operates in the random environment (RE) and updates
its strategy for choosing actions on the basis of the elicited response. The decision maker, in
such a feedback configuration of decision maker (or automaton) and environment, is referred
to as the learning automaton. The automaton has a finite set of actions, and corresponding
to each action; the response of the environment can be either favorable or unfavorable with
a certain probability’ (Ref. [21, p. 3]).

LA finds applications in optimization problems in which an optimal action needs to be
determined from a set of actions. It should be noted that in this context, learning might be of
best help only when there are high levels of uncertainty in the system in which the automaton
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operates. In systems with low levels of uncertainty, LA-based learning may not be a suitable
tool of choice [21].

A comprehensive overview of research in the field of LA can be found in the classic text
by Narendra and Thathachar [21], and in the recent special issue of the IEEE Transactions
on Systems, Man, and Cybernetics, Part B [27]. However, to ease out the understanding
of the philosophy underlying our solution approach, we briefly review below some of the
fundamental concepts.

4.1 The Automaton

The Automaton in our case is, typically, defined by a quintuple {A, B, Q, F(., .), G(.)},
where [21]:

(i) A = {α1, α2, . . . , αr} is the set of outputs or actions, and α(t) is the action chosen by
the automaton at any instant t .

(ii) Bis the set of inputs to the automaton,. {β1, β2, . . . , βr}. β(t) is the input at any instant
t , while the set B can be finite or infinite.

(iii) Q = {q1(t), q2(t), . . . , qs(t)} is the set of finite states, where q(t) denotes the state of
the automaton at any instant t.

(iv) F(., .) : Q × B → Q is a mapping in terms of the state and input at the instant t,
such that, q(t + 1) = F[q(t), β(t)]. It is called a transition function, i.e., a function
that determines the state of the automaton at any subsequent time instant t + 1. This
mapping can either be deterministic or stochastic, depending on the environment in
which the automaton operates.

(v) G(.) : is a mapping G : Q → A, and is called the output function. Depending on the
state at a particular instant, this function determines the output of the automaton at the
same instant as: α(t) = G[q(t)]. This mapping can, again, be considered to be either
deterministic or stochastic, depending on the environment in which the automaton
operates [29]. Without loss of generality, G is deterministic.

4.2 The Environment

The environment, E, typically, refers to the medium in which the automaton functions. The
environment possesses all the external factors that affect the actions of an automaton. Math-
ematically, an environment can be abstracted by a triple {A, C, B}. A, B, and C are defined
as follows [21].

(i) A = {α1, α2, . . . , αr} represents a finite input set,
(ii) B = {β1, β2, . . . , βr} is the output set of the environment, and

(iii) C = {c1, c2, . . . , cr} is a set of penalty probabilities, where element ci ∈ C corresponds
to an input action αi.

The process of learning is based on a learning loop involving the two entities: the RE
and the LA, as described in Fig. 2. In the process of learning, the LA continuously interacts
with the environment to process responses to its various actions. Finally, through sufficient
interactions, the LA attempts to learn the optimal action offered by the RE. The actual process
of learning is represented as a set of interactions between the RE and the LA.

The RE offers the automaton with a set of possible actions {α1, . . . , αr} to choose from.
The automaton chooses one of those actions, say αi, which serves as an input to the RE. Since
the RE is aware of the underlying penalty probability distribution of the system, depending
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Fig. 2 The
Automaton-environment
feedback loop [8]

on the penalty probability ci corresponding to αi, it ‘prompts’ the LA with a reward (typically
denoted by the value ‘0’), or a penalty (typically denoted by the value ‘1’). The reward/penalty
information (corresponding to the action) provided to the LA helps it to choose the subsequent
action. By repeating the above process, through a series of Environment-Automaton interac-
tions, the LA finally attempts to learn the optimal action from the environment [27].

We now provide a few important definitions used in the field of LA. Given an action
probability vector P(t) at time ‘t’, the average penalty is defined as [21]

M(t) = E[β(t)|p(t)] =
r∑

i=1

ci pi (t) (1)

The average penalty for the ‘pure-chance’ automaton is given by Narendra and Thathachar
[21]:

M0 = 1

r

r∑

i=1

ci pi (n). (2)

As t → ∞, if the average penalty M(t) < M0, at least asymptotically, the automaton is gen-
erally considered to be better than the pure-chance automaton. E[M(t)] is given by Narendra
and Thathachar [21]

E[M(t)] = E{E[β(t)|P(t)]} = E[β(t)] (3)

4.3 Action Probability Updating

In our work, we deal with the variable structure stochastic automata (VSSA). VSSA are
the ones in which the state transition probabilities are not fixed. In such automata, the state
transitions or the action probabilities themselves are updated at every time instant using a
suitable scheme. The transition probabilities and the output function in the corresponding
Markov chain vary with time, and the action probabilities are updated on the basis of the input.
VSSA depend on random number generators for their implementation. The action chosen
is dependent on the action probability distribution vector, which is, in turn, updated based
on the reward/penalty input that the automaton A variable-structure automaton is defined
by the quadruple {α, β, P, T } in which α = {α1, . . . , αn} represents the action set of the
automata, β = {β1, . . . , βn} represents the input set, P = {P1, . . . , Pn} represents the action
probability set, and finally p (n + 1) = T [α (n) , β (n) , p (n)] represents the learning algo-
rithm. This automaton operates as follows. Based on the action probability set p, automaton
randomly selects an action αi , and performs it on the environment. After receiving the envi-
ronment’s reinforcement signal, automaton updates its action probability set based on Eqs.
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(3, 4) for favorable responses, and Eq. (5) for unfavorable ones.

pi (n + 1) = pi (n) + a[1 − pi (n)]
p j (n + 1) = (1 − a)Pj (n) ∀ j, j �= i (4)

pi (n + 1) = (1 − b)pi (n)

p j (n + 1) = b

r − 1
+ (1 − b)P j (n) ∀ j, j �= i (5)

In these two equations, a and b are reward and penalty parameters respectively. For a = b,
learning algorithm is called L R−P ,1 for b � a, it is called L RεP .2, and for b = 0, it is called
L R−I .3 For more information the reader may refer to Narendra and Thathachar [21].

5 Proposed Method

The proposed target monitoring algorithm consists of three phases: Initial phase, learning
phase, and target monitoring phase. In the initial phase which is performed when the net-
work starts operating, all nodes of the network participate. At the end of this phase all node in
network know its neighbors and monitored targets. In learning phase which is performed in
different rounds, learning automat of each node helps to node to select suitable state among
its states. At the end of this phase the action probability vector of each node is valued. Finally,
in target monitoring phase, learning automata of each node selects its best action. At the end
of this phase each node operates based on best action which means to be active or asleep.
Figure 3 shows pseudo code of our proposed method.

5.1 Initial Phase

Each node si in the network is equipped with a learning automaton LAi which helps the node
in determining its suitable state; whether to be active or not. Learning automaton of each
node has two actions; ACTIVE or ASLEEP. At the beginning of the algorithm, ACTIVE and
ASLEEP actions have the same probability equal to 0.5.

At the beginning of the algorithm, each node locally determines the targets it can cover.
Then each node broadcasts an advertisement packet in its neighborhood containing its ID,
position and targets it can cover. The node then listens to receive advertisement packets from
its neighbors. Network operation is divided into rounds. Each round begins with a learning
phase, followed by a target monitoring phase.

5.2 Learning Phase

In the learning phase each node in networks works as follow: During the learning phase, learn-
ing automaton of each node si randomly selects one of its actions (ACTIVE or ASLEEP).
Node si broadcasts an ACTION packet, which contains its selected action, in its neighbor-
hood. Node si then waits for certain duration to receive the ACTION packets of its neighbors.
When node si receives ACTION packets from all of its neighbors, it operates as follows:

If the selected action of LAi was ACTIVE then:

1 Linear Reward-Penalty.
2 Linear Reward epsilon Penalty
3 Linear Reward Inaction.
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The LADSC algorithm 

Input: (i) Given a set S of N sensor node and a set T of M targets and sensing range. 
(ii) iters=total number of iterations 

(iii) βα , learning parameter 

Output: 
A converged network`s targets that has monitor all targets 

BEGIN 
//INITIAL PHASE 
 obtainANetworkInstance; //Obtain a snapshot of the given network. 
For (each node n in Nework()) 
 senseEnvironmetn() 
 determinteTargetsandNeigbhors() 
End-For 
For (each node n in Nework()) 

For (each node n in NodeNeigbhors) 
 SendActionPacket 

End-For 
End-For 

  While(AllTargetsCouldCover) 

//LEARNING PHASE 
For (each node n in Nework()) 

 For (each action a in node) 
  InitialProbability=0.5; //Initialize action probabilities 

End-For 
End-For 

For (i =0 to iters) //Execute for all iterations 
For (each node n in Nework()) 

Node=getRandomAction(); //Randomly choose an action. 
sendActionPacketToNodeNeigbhors() 
receiveActionPacketFromAllNodeNeigbhors() 

If (NodeAction=ASLEEP and NeigbhorsCouldCoverTargetsOfCurrentNode) 
 Reward this action using learning automata 
ELSE 
 Penalize this action using learning automata 
End IF 
If (NodeAction=ACTIVE and NeigbhorsCouldCoverTargetsOfCurrentNode) 
 Penalize this action using learning automata 
ELSE 
 Reward this action using learning automata 
End IF 

 END FOR 
END FOR 

//TARGET MONITORING PHASE 
For (each node n in Nework()) 
 SelectBestAction() 

If (BestAction=ACTIVE) 
 NodeStatus=active 
 CurrentCoverSet=CurrentCoverSet U Node 
ELSE 
 NodeStatus=sleep 
End IF 

END FOR 
Monitor targets until end of current round. 

End While
END

Fig. 3 Pseudo code of proposed algorithm

If all of the targets under the coverage of the node si are covered by those neighbors
whose selected actions are ACTIVE, then node si penalizes its learning automaton.
Otherwise, node si rewards its learning automaton.
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If the selected action of LAi was ASLEEP then:

If all of the targets under the coverage of the node si are covered by those neighbors
whose selected actions are ACTIVE, then node si rewards its learning automaton.
Otherwise, node si penalizes its learning automaton.

Each node si separately stops its learning phase if one of the following conditions occurred:

1) Action probability of one of the actions of L Ai exceeds a specified threshold.
2) Number of action selections by L Ai exceeds MaxActionSelection.

5.3 Target Monitoring Phase

When learning phase is over, and at the startup of a new monitoring phase, each node selects
its state for the whole duration of the current monitoring phase according to the action with
higher probability in the action probability vector of its learning automaton; that is, if for a
node i, the probability of ACTIVE action is higher than the probability of ASLEEP action,
then node i selects its state as ACTIVE and vice versa. In the proposed method, target mon-
itoring phase lasts until all nodes with active state lose their residual energy. The next round
will be started when the current monitoring phase is over.

5.4 Computing Network Lifetime

During the target monitoring phase, the lifetime of each ACTIVE sensor will be updated.
We represent the activation time of each target monitoring phase is 1 and it shows that in
every phase all selected sensors consume their energy. Therefore, every phase add one unit
of lifetime to network total lifetime.

5.5 Finding Redundancy

In this section we describe how to get redundant node number that has selected by our
proposed learning automata based approach. To find redundant nodes that have selected by
proposed method, we fist offer the following definitions:

Definition 2 Redundant Node Number (γ ): Redundant Node Number is the number of nodes
that can go to sleep state after implying the proposed algorithm.

Definition 3 Coverage Redundancy: Coverage Redundancy is defined according to the fol-
lowing equation:

Coverage Redundancy = γ /nr (6)

where nr is number of required nodes for covering targets. Optimal value for coverage
redundancy is 1 because in this state we don’t have any redundant node. We use RemoveRe-
dundancy function to find redundant nodes that have been selected by our proposed method.
We apply this function after learning phase and this function returns RN that shows number
of redundant nodes. Figure 4 shows pseudo code of remove redundancy function. In this
function CP is the current cover set that has been selected by our algorithm.

6 Experimental Results

In this section, we evaluate the performance of the proposed scheduling mechanism, referred
to as LADSC hereafter, by conducting a number of computer simulations. In these simula-
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Fig. 4 Pseudo code of
RemoveRedundancy

tions, a fixed sensor network is considered, in which all sensor nodes are randomly deployed
within a 500 m×500 m area. A number of fixed targets are also deployed randomly within this
area. Sensing ranges of all sensor nodes are equal. Parameters of the conducted simulations
are as follows:

N, the number of sensor nodes. We vary the number of sensor nodes in the range [100,
300] to study the effect of node density on the performance of LADSC.

T, the number of targets to be covered. We vary the number of targets in the range
[5, 55].
r, the sensing range. We vary the sensing range of sensor nodes in the range 100–600 m.

Energy consumption of sensor nodes for communication tasks follows the first order
energy model given in [14]. Energy required to switch a node from sleep to active mode is
assumed to be negligible. Simulations are performed in wireless sensor network simulator
given in [15]. Results are averaged over 20 runs.

Experiment 1

We first study how much longer lifetime we can achieve by increasing nodes. Figure 5a
shows for 30 sensors and 15 targets, increasing the sensing range results in increasing net-
work lifetime. The lifetime is not sensitive to the number of targets in this experiment since
targets follow a random uniform distribution. Doubling the number of targets decrease the
lifetime rarely.

Figure 5b shows for 20 targets and sensing range 300, increasing the number of sensors
will get more network lifetime. When the sensing range decreases to 250, the lifetime notice-
ably drops. On the curve for T = 50 and R = 250, the average number of sensors covering
each target increases approximately from 1 to 2, and the lifetime shows the same trend.

Experiment 2

For large networks, we apply our learning automata based method to increase lifetime. Appar-
ently large networks show the same trend as in small networks, and lifetime increases as the
number of sensors per target increases. As we can see in the Fig. 6a, in proportion as we
increase the sensing range, longer lifetime gain. We compared Fig. 6a with b and observed
that even the slopes of the curves are very close.

Experiment 3

This experiment is conducted to study the effect of the number of sensor nodes deployed
within the area on the lifetime of the network. For This experiment, we set the number of
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Fig. 5 a Increasing sensing range from 150 to 600 with N = 20, T = 15 and 30,respectively; b deploying
more sensors, with N = 5 − 17, T = 20, range R = 300 and T = 50, range R = 250, respectively

targets to 10. Number of sensor nodes is set to 90. In Table 1 we consider the measurements
for 90 sensor nodes and 10 targets and compare the results produced by MC-MIP and the heu-
ristic proposed by Slijepcevic and Potkonjak in [27]. Our learning automata based approach
produces consistently more covers; therefore we can achieve better energy savings.

Experiment 4

In this experiment, we compare the lifetime of the network when LADSC, MC-MIP [7], and
Slijepcevic and Potkonjak [27] scheduling mechanisms are used. For this experiment, we
set the number of targets vary in the range [15, 55] with step of 5 targets, let the number of
sensor nodes are 90, and set sensing range r to 250 m. In Table 2, we present the maximum,
average and minimum number of covers computed by LADSC, MC-MIP and the heuristic in
[7]. The table shows that LADSC has superior result in comparison to the existing methods.
This is due to the fact that in LADSC, the chance of a node, which covers more targets, to
become an ACTIVE node is higher than a node, which covers fewer cells.
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Fig. 6 a Increasing sensing range from 100 to 600 with 50 sensors and 50 targets; b varying network size
from 20 to 100 sensors with fixed range R = 300, T = 50

Table 1 Measurements for 90 sensors and 10 targets randomly distributed

Sensors range LA-DSC MC-MIP Slijepcevic

MIN AVG MAX MIN AVG MAX MIN AVG MAX

100 2 3.7 8 0 2.4 4 0 2.4 4

120 3 5.7 10 3 5.4 7 3 5 7

140 4 7.7 10 4 6.6 8 4 6 8

160 5 9.43 16 8 8.6 11 6 7.6 9

180 7 12.6 22 6 11.6 15 6 10.2 13

200 7 16.9 27 13 15 17 11 12.6 15

220 14 20.7 25 16 18.4 21 13 16.8 21

240 15 21.4 29 13 19.6 23 13 18.2 21
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Table 1 continued

Sensors range LA-DSC MC-MIP Slijepcevic

MIN AVG MAX MIN AVG MAX MIN AVG MAX

260 25 27.8 34 15 22.2 26 15 20.4 23

280 23 30.3 36 21 27 30 21 24.4 27

300 26 35.6 44 27 31.4 33 27 29.2 31

Table 2 Measurements for 90 sensors with sensing range of 250 m

Number of targets LA-DSC MC-MIP Slijepcevic

Min Avg Max Min Avg Max Min Avg Max

15 17 26.95 37 17 22.8 27 16 20.8 23

20 14 22.95 32 17 19.4 22 16 18.2 21

25 17 22.8 29 18 20.4 23 16 18.2 19

30 19 23.4 30 18 21.2 24 16 18 19

35 13 21.8 30 11 19 23 11 16.6 19

40 15 21.35 29 16 19.4 22 16 16.8 18

45 16 20.35 28 17 18.4 20 15 16 17

50 15 20.35 27 18 20.6 23 15 17.2 20

55 16 21.05 26 14 17 21 14 16 18
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Fig. 7 Coverage redundancy for 90 sensors with sensing range of 250 m

Experiment 5

In this experiment, LADSC method is compared with the optimal method in terms of cov-
erage redundancy. We let the number of nodes in the network to be 90 for this experiment
and set the radio transmission range to 250 m. Figure 7 shows that our protocol has coverage
redundancies that is about 3–8 % from the optimal value (which is 1 as we stated before).
This indicates that our algorithm is able to compute near-minimal covers.
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7 Conclusion

In this paper, we addressed the target coverage problem in wireless sensor networks and
modeled this problem as a maximum disjoint set cover problem. Then, we proposed a learn-
ing automata-based scheduling mechanism for this problem in which each node is equipped
with a learning automaton. LA help each node to decide if it is redundant or not. Redundant
nodes then go to sleep mode and save their energies for later times. It was shown through
computer simulations that the proposed method outperforms the existing methods in terms
of the lifetime of the network.
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