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Abstract This is the second in a two-part series of papers on information-
theoretic capacity scaling laws for an underwater acoustic network. Part II
focuses on a dense network scenario, where nodes are deployed in a unit area.
By deriving a cut-set upper bound on the capacity scaling, we first show that
there exists either a bandwidth or power limitation, or both, according to
the operating regimes (i.e., path-loss attenuation regimes), thus yielding the
upper bound that follows three fundamentally different information transfer
arguments. In addition, an achievability result based on the multi-hop (MH)
transmission is presented for dense networks. MH is shown to guarantee the
order optimality under certain operating regimes. More specifically, it turns
out that scaling the carrier frequency faster than or as n1/4 is instrumental
towards achieving the order optimality of the MH protocol.
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1 Introduction

In Part I [1] of this two-part series, we studied a large-scale underwater acoustic
network of unit node density (i.e., an extended network [2–6]), in which both
bandwidth and received signal power can be limited significantly, and analyzed
its total capacity scaling, first introduced by Gupta and Kumar [7] in wireless
radio networks. More specifically, we characterized the connection between
the number of nodes, n, the carrier frequency, and the sum throughput while
allowing the frequency scaling with n. Both an information-theoretic upper
bound and an achievable rate scaling were derived in extended regular net-
works, and then using the nearest-neighbor multi-hop (MH) routing strategy
was shown to be order-optimal for all the operating regimes (i.e., path-loss
attenuation regimes) that are characterized by choosing the frequency based
on n.

This work constitutes the second of the two-part series. The focus shifts
towards an underwater network of unit area, i.e., a dense network [4, 7, 8]. In
particular, we show that different operating regimes are possible by allowing
the carrier frequency of narrow-band transmissions to scale as a function of
n. Both upper and lower bounds on the capacity scaling are derived for the
different operating regimes.

We explicitly characterize an attenuation parameter depending on the fre-
quency scaling as well as the transmission distance, and then identify funda-
mental path-loss attenuation regimes according to the parameter. For dense
networks with n regularly distributed nodes on a square, we derive an upper
bound on the total throughput scaling using the cut-set bound. Our upper
bound basically follows the arguments, similarly as in [9]: there exists either a
bandwidth or power limitation, or both, according to the operating regimes.
Our results hence indicate that the upper bound for dense networks follows
three fundamentally different information transfer arguments according to the
attenuation parameter. Specifically, the network is bandwidth-limited as the
path-loss attenuation is small. This is because network performance on the
total throughput is roughly linear in the bandwidth. However, at the medium
attenuation regime, the network is both bandwidth- and power-limited since
the amount of available bandwidth and received signal power affects the per-
formance. Finally, the network becomes power-limited as the attenuation pa-
rameter increases exponentially with respect to more than

√
n, i.e., as the

frequency scales faster than or as n1/4, which corresponds to the high at-
tenuation regime. In addition, we present a constructive achievability result
based on the nearest-neighbor MH transmission, which is suitable in practice
for underwater networks due to the very long propagation delay of acoustic
signal in water [17], for dense regular networks. By showing frequency scaling
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conditions, we identify the operating regimes such that the optimal capacity
scaling is guaranteed. More importantly, our results demonstrate that the MH
protocol is not able to achieve a total network throughput scaling of

√
n (i.e.,

the scaling obtained by MH in wireless radio networks) without scaling the
carrier frequency with respect to the number of nodes, n. In fact, we point out
the correct scaling of the carrier frequency to achieve

√
n scaling.

The rest of this paper is organized as follows. Section 2 describes our system
and channel models. In Section 3, the cut-set upper bound on the throughput
is derived. In Section 4, the achievable throughput scaling is analyzed. Finally,
Section 5 summarizes the paper with some concluding remarks.

Throughout this paper, [·]ki denotes the (k, i)-th element of a matrix. In

is the identity matrix of size n × n, det(·) is the determinant, and |X | is the
cardinality of the set X . C is the field of complex numbers and E[·] is the
expectation. Unless otherwise stated, all logarithms are assumed to be to the
base 2.

2 System and Channel Models

In order to set up the discussions in this paper, we reiterate the system and
channel models described in Part I. Our model used in this paper follows
exactly the same line [1] as the extended network case except for per-node
distance.

We consider a two-dimensional underwater network that consists of n nodes
on a square such that two neighboring nodes are 1/

√
n unit of distance apart

from each other, i.e., a regular network [5,6]. We randomly pick a matching of
S–D pairs. Each node has an average transmit power constraint P (constant),
and we assume that the channel state information (CSI) is available at all
receivers, but not at the transmitters. It is assumed that each node transmits
at a rate T (n)/n, where T (n) denotes the total throughput of the network.

Now let us turn to channel modeling. We assume frequency-flat channel
of bandwidth W Hz around carrier frequency f , which satisfies f � W ,
i.e., narrow-band model. We simply focus on a line-of-sight channel between
each pair of nodes. An underwater acoustic channel is characterized by an
attenuation that depends on both the distance rki between nodes i and k
(i, k ∈ {1, · · · , n}) and the signal frequency f , and is given by

A(rki, f) = c0r
α
kia(f)rki (1)

for some constant c0 > 0 independent of n, where 1 ≤ α ≤ 2 is the spreading
factor and a(f) > 1 is the absorption coefficient [11]. As in Part I, we consider
the case where the frequency scales at arbitrarily increasing rates relative to n.
From a common empirical model of the absorption coefficient a(f) for f [11,12],
it follows that

a(f) = Θ
(
ec1f2

)
(2)
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for some constant c1 > 0 independent of n.1 The noise ni at node i ∈ {1, · · · , n}
is assumed to be circularly symmetric complex additive colored Gaussian with
zero mean and power spectral density (PSD) N(f), and thus to be frequency-
dependent. Since the PSD N(f) decays linearly on the logarithmic scale in the
operating frequency region [11,13], its approximation is given by

N(f) = Θ

(
1

fa0

)
(3)

in terms of f increasing with n, where a0 > 0 is some constant independent
of n. From (2) and (3), we may then have the following relationship between
the absorption a(f) and the noise PSD N(f):

N(f) = Θ

(
1

(log a(f))a0/2

)
. (4)

From the narrow-band assumption, the received signal yk at node k ∈ {1, · · · , n}
at a given time instance is given by

yk =
∑
i∈I

hkixi + nk,

where

hki =
ejθki√

A(rki, f)
(5)

represents the complex channel between nodes i and k, xi ∈ C is the signal
transmitted by node i, and I ⊂ {1, · · · , n} is the set of simultaneously trans-
mitting nodes. The random phases θki are uniformly distributed over [0, 2π)
and independent for different i, k, and time. We thus assume a narrow-band
time-varying channel.

Based on the above channel characteristics, operating regimes of the net-
work are identified according to the following physical parameters: the ab-
sorption a(f) and the noise PSD N(f) which are exploited here by choosing
the frequency f based on the number of nodes, n. In other words, if the rela-
tionship between f and n is specified, then a(f) and N(f) can be given by a
certain scaling function of n from (2) and (3), respectively.

Further details on the system and channel models can be found in Section
2 of Part I.

3 Cut-set Upper Bound

To access the fundamental limits of a dense underwater network, a new cut-set
upper bound on the total throughput scaling is analyzed from an information-
theoretic perspective [14]. Consider a given cut L dividing the network area

1 We use the following notation: i) f(x) = O(g(x)) means that there exist constants C

and c such that f(x) ≤ Cg(x) for all x > c. ii) f(x) = o(g(x)) means that lim
x→∞

f(x)
g(x)

= 0. iii)

f(x) = Ω(g(x)) if g(x) = O(f(x)). iv) f(x) = ω(g(x)) if g(x) = o(f(x)). v) f(x) = Θ(g(x))
if f(x) = O(g(x)) and g(x) = O(f(x)) [10].



Title Suppressed Due to Excessive Length 5

Fig. 1 The cut L in a two-dimensional dense regular network. SL and DL represent the
sets of source and destination nodes, respectively, where DL is partitioned into two groups
DL,1 and DL,2.

into two equal halves, as in [1,4,9] (see Fig. 1). Under the cut L, source nodes
are on the left, while all nodes on the right are destinations. In this case,
assuming an Θ(n) × Θ(n) multiple-input multiple-output (MIMO) channel
between the two sets of nodes separated by the cut leads to the best we can
hope for, i.e., a fundamental upper bound on the throughput performance.2

Unlike the extended network case (refer to Section 3 of Part I), it is nec-
essary to narrow down the class of S–D pairs according to their Euclidean
distance to obtain a tight upper bound in a dense network. In this section, we
derive a new upper bound based on hybrid approaches that consider either
the sum of the capacities of the multiple-input single-output (MISO) channel
between transmitters and each receiver or the amount of power transferred
across the network according to operating regimes, similarly as in [9].

For the cut L, the total throughput T (n) for sources on the left half is
bounded by the capacity of the MIMO channel between SL and DL, corre-
sponding to the sets of sources and destinations, respectively, and thus is given
by

T (n) ≤ max
QL≥0

E

[
log det

(
In/2 +

1
N(f)

HLQLHH
L

)]
, (6)

where HL is the matrix with entries [HL]ki = hki for i ∈ SL, k ∈ DL, and QL ∈
CΘ(n)×Θ(n) is the positive semi-definite input signal covariance matrix whose
k-th diagonal element satisfies [QL]kk ≤ P for k ∈ SL. In the extended network

2 Note that such an upper-bounding technique has been commonly used when we would
like to characterize a cut-set upper bound in large-scale ad hoc networks [4, 16].
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framework [1], upper bounding the capacity by the total received signal-to-
noise ratio (SNR) yields a tight bound due to poor power connections for all
the operating regimes. In a dense network, however, we may have arbitrarily
high received SNR for nodes in the set DL that are located close to the cut,
or even for all the nodes, depending on the path-loss attenuation regimes,
and thus need the separation between destination nodes that are well- and ill-
connected to the left-half network in terms of power. More precisely, the set DL

of destinations is partitioned into two groups DL,1 and DL,2 according to their
location, as illustrated in Fig. 1. Then, by applying generalized Hadamard’s
inequality [15], we then have

T (n) ≤ E

[
log det

(
In/2 +

P

N(f)
HLHH

L

)]
≤ E

[
log det

(
I|DL,1| +

P

N(f)
HL,1HH

L,1

)]
+E

[
log det

(
I|DL,2| +

P

N(f)
HL,2HH

L,2

)]
, (7)

where HL,l is the matrix with entries [HL,l]ki = hki for i ∈ SL, k ∈ DL,l, and
l = 1, 2. Here, the first inequality comes from the fact that Lemmas 1 and 2 of
Part I also hold for a dense network, i.e., the covariance matrix QL maximizing
the upper bound (6) is given by the diagonal Q̃L with entries [Q̃L]kk = P for
k ∈ SL (see [1] for more description). Note that the first and second terms
in the right-hand side (RHS) of (7) represent the information transfer from
SL to DL,1 and from SL to DL,2, respectively. Here, DL,1 denotes the set of
destinations located on the rectangular slab of width xL/

√
n immediately to

the right of the centerline (cut), where xL ∈ {0, 1, · · · ,
√

n/2}. The set DL,2

is given by DL \ DL,1. It then follows that |DL,1| = xL
√

n and |DL,2| =
(
√

n/2− xL)
√

n.
Let Tl(n) denote the l-th term in the RHS of (7) for l ∈ {1, 2}. It is then

reasonable to bound T1(n) by the cardinality of the set DL,1 rather than the
total received SNR. In contrast, using the power transfer argument for the term
T2(n), as in the extended network case, will lead to a tight upper bound. It is
thus important to set the parameter xL according to the attenuation parameter
a(f), based on the selection rule for xL [9], so that only DL,1 contains the
destination nodes with high received SNR. To be specific, we need to decide
whether the SNR received by a destination k ∈ DL from the set SL of sources,
denoted by P

(k)
L /N(f), is larger than one, because degrees of freedom (also

known as capacity pre-log factor) of the MISO channel are limited to one. If
destination node k has the total received SNR greater than one, i.e., P

(k)
L =

ω(N(f)), then it belongs to DL,1. Otherwise, it follows that k ∈ DL,2.
For analytical tractability, suppose that

a(f) = Θ
(
(1 + ε0)nβ

)
for β ∈ [0,∞), (8)

where ε0 > 0 is an arbitrarily small constant, independent of n, which repre-
sents all the operating regimes with varying β. As in the extended network
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case, we define the following parameter

P
(k)
L =

P

c0

∑
i∈SL

r−α
ki a(f)−rki (9)

for some constant c0 > 0 independent of n, which corresponds to the total
power received from the signal sent by all the sources i ∈ SL at node k on the
right (see (1) and (5)). Let us index the node positions such that the source
and destination nodes are located at positions

(
−ix+1√

n
,

iy√
n

)
and

(
kx√

n
,

ky√
n

)
,

respectively, for ix, kx = 1, · · · ,
√

n/2 and iy, ky = 1, · · · ,
√

n. We then obtain
the following scaling results for P

(k)
L as shown below.

Lemma 1 In a dense regular network, the term P
(k)
L in (9) is upper- and

lower-bounded by

P
(k)
L =



O(n) if 1 ≤ α < 2
and kx = o

(
n1/2−β+ε

)
O (n log n) if α = 2

and kx = o
(
n1/2−β+ε

)
O
(

nα/2

(1+ε0)kxnβ−1/2 max
{
1, n1/2−β

})
if kx = Ω

(
n1/2−β+ε

)
(10)

and

P
(k)
L =


Ω
(

nα/2−ε

kα−1
x

)
if kx = o

(
n1/2−β+ε

)
Ω

(
1

(1+ε0)
kxnβ−1/2 max

{
1, n1/2−β

(1+ε0)
nβ−1/2

})
if kx = Ω

(
n1/2−β+ε

)
,

(11)

respectively, for arbitrarily small positive constants ε and ε0, where kx/
√

n is
the horizontal coordinate of node k ∈ DL,2.

The proof of this lemma is presented in Appendix A.1. Although the up-
per and lower bounds for P

(k)
L are not identical to each other, showing these

scaling results is sufficient to make a decision on xL according to the oper-
ating regimes. It is seen from Lemma 1 that when kx = o

(
n1/2−β+ε

)
, P

(k)
L

does not depend on the parameter β (or a(f)), while for kx = Ω
(
n1/2−β+ε

)
,

node k ∈ DL,2 gets ill-connected to the left half in terms of power since P
(k)
L

decreases exponentially with n. More specifically, when kx = o
(
n1/2−β+ε

)
, it

follows that P
(k)
L = ω(nαβ) from (11), resulting in P

(k)
L = ω(N(f)) due to

N(f) = O(1). In contrast, under the condition kx = Ω
(
n1/2−β+ε

)
, it is ob-

served from (10) that P
(k)
L is exponentially decaying as a function of n, thus

leading to P
(k)
L = o(N(f)). As a consequence, using the result of Lemma 1,
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three different regimes are identified and the selected xL is specified accord-
ingly:

xL =


√

n/2 if β = 0
n1/2−β+ε if 0 < β ≤ 1/2
0 if β > 1/2

(12)

for an arbitrarily small ε > 0. It is now possible to show the proposed cut-set
upper bound in dense networks.

Theorem 1 Consider an underwater regular network of unit area. Then, the
upper bound on the total throughput T (n) is given by

T (n) =


O(n log n) if β = 0
O
(
n1−β+ε log n

)
if 0 < β ≤ 1/2

O
(

n(1+α+βa0)/2

(1+ε0)nβ−1/2

)
if β > 1/2,

(13)

where ε and ε0 are arbitrarily small positive constants, and a0 and β are defined
in (3) and (8), respectively.

Proof We first compute the first term T1(n) in (7), focusing on the case for
0 ≤ β ≤ 1/2 since otherwise T1(n) = 0. Since the nodes in the set DL,1 have
good power connections to the left-half network and the information transfer
to DL,1 is limited in bandwidth (but not power), the term T1(n) is upper-
bounded by the sum of the capacities of the MISO channels. More specifically,
by generalized Hadamard’s inequality [15], T1(n) can be easily bounded by

T1(n) ≤
∑

k∈DL,1

log

(
1 +

P

N(f)

∑
i∈SL

1
A(rki, f)

)

≤ xL

√
n log

(
1 +

Pnα/2+1

a(f)1/
√

nN(f)

)
≤ xL

√
n log

(
1 +

Pnα/2+1

N(f)

)
≤ c2xL

√
n log n (14)

for some constant c2 > 0 independent of n, where the last two steps are
obtained from the fact that 0 < a(f) ≤ 1 and N(f) tends to decrease polyno-
mially with n from the relation in (4). The upper bound for the second term
T2(n) in (7) is now derived under the condition β ∈ (0,∞). From the fact that
log(1 + x) ≤ x for any x, it follows that

T2(n) ≤
∑

k∈DL,2

log

(
1 +

P

N(f)

∑
i∈SL

1
A(rki, f)

)

≤
∑

k∈DL,2

∑
i∈SL

P

A(rki, f)N(f)

=
1

N(f)

∑
k∈DL,2

P
(k)
L , (15)
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which corresponds to the sum of the total received SNR from the left-half
network to the destination set DL,2. Hence, combining the two bounds (14)
and (15) along with the choices for xL specified in (12), we obtain the following
upper bound on the total throughput T (n):

T (n) ≤


c2n log n if β = 0
c2n

1−β+ε log n + 1
N(f)

∑
k∈DL,2

P
(k)
L if 0 < β ≤ 1/2

1
N(f)

∑
k∈DL

P
(k)
L if β > 1/2

=


c2n log n if β = 0
c2n

1−β+ε log n + 1
N(f)

∑√
n/2

kx=xL

∑√
n

ky=1
nα/2+1/2−β

(1+ε0)kxnβ−1/2 if 0 < β ≤ 1/2
1

N(f)

∑√
n/2

kx=1

∑√
n

ky=1
nα/2

(1+ε0)kxnβ−1/2 if β > 1/2

≤


c2n log n if β = 0
c3n

1−β+ε log n if 0 < β ≤ 1/2
n(1+α)/2

N(f)

∑√
n/2

kx=1
1

(1+ε0)kxnβ−1/2 if β > 1/2
(16)

for an arbitrarily small ε > 0 and some constant c3 > 0 independent of n,
where the equality comes from (10). The second inequality holds due to the
fact that the term nα/2

(1+ε0)kxnβ−1/2 tends to decay exponentially with n under the

conditions 0 < β ≤ 1/2 and xL ≤ kx ≤
√

n/2, and thus the total is dominated
by the information transfer T1(n) in (14). Now let us focus on the last line of
(16), which corresponds to the total amount of SNR received by all nodes for
the condition β > 1/2. For β > 1/2, using the two relationships (4) and (8)
follows that

n(1+α)/2

N(f)

√
n/2∑

kx=1

1
(1 + ε0)kxnβ−1/2 ≤ n(1+α)/2

N(f)
1

(1 + ε0)nβ−1/2 − 1

≤ c4n
(1+α+βa0)/2

(1 + ε0)nβ−1/2

for some constant c4 > 0 independent of n, where the second inequality holds
due to (1+ε0)nβ−1/2

= ω(1) under the condition. This coincides with the result
shown in (13), which completes the proof.

Note that the upper bound [4] for wireless radio networks of unit area is
given by O(n log n), which is the same as the case with β = 0 (or equivalently
a(f) = Θ(1)) in the dense underwater network. Now let us discuss the fun-
damental limits of the network according to three different operating regimes
shown in (13).

Remark 1 The upper bound on the total capacity scaling is illustrated in Fig. 2
versus the parameter β (logarithmic terms are omitted for convenience). We
first address the regime β = 0 (i.e., low path-loss attenuation regime), in which
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Fig. 2 Upper (solid) and lower (dashed) bounds on the capacity scaling T (n).

the upper bound on T (n) is active with xL =
√

n/2, or equivalently DL,1 =
DL, while T2(n) = 0. In this case, the total throughput of the network is limited
by the degrees of freedom of the Θ(n)×Θ(n) MIMO channel between SL and
DL, and is roughly linear in the bandwidth, thus resulting in a bandwidth-
limited network. In particular, our interest is in the operating regimes for
which the network becomes power-limited as β > 0. In the second regime
0 < β ≤ 1/2 (i.e., medium path-loss attenuation regime), as pointed out in the
proof of Theorem 1, the upper bound on T (n) is dominated by the information
transfer from SL to DL,1, that is, the term T1(n) in (14) contributes more than
T2(n) in (15). The total throughput is thus limited by the degrees of freedom
of the MIMO channel between SL and DL,1, since more available bandwidth
leads to an increment in T1(n). As a consequence, in this regime, the network
is both bandwidth- and power-limited. In the third regime β > 1/2 (i.e., high
path-loss attenuation regime), the upper bound (15) is active with xL = 0, or
equivalently DL,2 = DL, while T1(n) = 0. The information transfer to DL is
thus totally limited by the sum of the total received SNR from the left-half
network to the destination nodes in DL. In other words, in the third regime,
the network is limited in power, but not in bandwidth.

Note that the upper bound on T (n) decays polynomially with increasing β
in the regime 0 < β ≤ 1/2, while it drops off exponentially when β > 1/2. In
addition, two other expressions on the total throughput T (n) are summarized
as follows.

Remark 2 From (4) and (8), the upper bound and the corresponding operating
regimes can also be presented below in terms of the attenuation parameter
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a(f):

T (n) =


O(n log n) if a(f) = Θ(1)
O
(

n1+ε log n
log a(f)

)
if a(f) = ω(1) and a(f) = O

(
(1 + ε0)

√
n
)

O
(

n(1+α)/2(log a(f))a0/2

a(f)1/
√

n

)
if a(f) = ω

(
(1 + ε0)

√
n
)
.

Note that as a(f) = ω
(
(1 + ε0)

√
n
)
, we also obtain

T (n) = O

(
n(1+α)/2

a(f)1/
√

nN(f)

)
,

which is expressed as a function of the spreading factor α as well as the ab-
sorption a(f) and the noise PSD N(f). Using (2) and (3) further yields the
following expression

T (n) =


O(n log n) if f = Θ(1)
O
(

n1+ε log n
f2

)
if f = ω(1) and f = O

(
n1/4

)
O
(

n(1+α)/2fa0

ec1f2/
√

n

)
if f = ω

(
n1/4

)
,

which represents the upper bound for the operating regimes identified by fre-
quency scaling.

4 Achievability Result

In this section, to show the order optimality of underwater networks, we an-
alyze the achievable throughput scaling for dense networks. We focus on the
achievability based on the nearest-neighbor MH routing. In a dense regular net-
work, we also identify the operating regimes for which the achievable through-
put matches the upper bound shown in Section 3.

As in the extended network case (refer to Section 4 of Part I), the nearest-
neighbor MH routing [7] is used with a slight modification. The basic procedure
of the MH protocol under our dense regular network is briefly described as
follows:

– Divide the network into n square routing cells, each of which has the same
area.

– Draw a line connecting an S–D pair.
– At each node, use the transmit power of

P min

{
1,

a(f)1/
√

nN(f)
nα/2

}
.



12 Won-Yong Shin et al.

The scheme operates with the full power when a(f) = Ω
(

nα
√

n/2

N(f)
√

n

)
. On the

other hand, when a(f) = o
(

nα
√

n/2

N(f)
√

n

)
, the transmit power Pa(f)1/

√
nN(f)/nα/2,

which scales slower than Θ(1), is sufficient so that the received SNR at each
node is bounded by 1 (note that having a higher power is unnecessary in terms
of throughput improvement).

The amount of interference is now quantified to show the achievable through-
put based on MH.

Lemma 2 Consider a dense regular network that uses the nearest-neighbor
MH protocol. Then, the total interference power PI from other simultaneously
transmitting nodes, corresponding to the set I ⊂ {1, · · · , n}, is bounded by

PI =


O

(
max{n(1/2−β)(2−α),log n}

nβa0/2

)
if 0 ≤ β < 1/2

O
(
n−βa0/2

)
if β = 1/2

O
(

nα/2

(1+ε0)nβ−1/2

)
if β > 1/2

(17)

for an arbitrarily small ε0 > 0, where a0 and β are defined in (3) and (8),
respectively.

The proof of this lemma is presented in Appendix A.2. From (4) and
(8), we note that when β = 1/2, it follows that PI = O(N(f)), i.e., PI is
upper-bounded by the PSD N(f) of noise. Using Lemma 2, a lower bound on
the capacity scaling can be derived, and hence the following result shows the
achievable rates under the MH protocol in a dense network.

Theorem 2 In an underwater regular network of unit area,

T (n) =


Ω

( √
n

max{n(1/2−β)(2−α),log n}

)
if 0 ≤ β < 1/2

Ω (
√

n) if β = 1/2
Ω
(

n(1+α+βa0)/2

(1+ε0)nβ−1/2

)
if β > 1/2

(18)

is achievable.

Proof Suppose that the nearest-neighbor MH protocol described above is used.
Then, from (1), the received signal power Pr from the desired transmitter is
given by

Pr =
P min

{
1, a(f)1/

√
nN(f)

nα/2

}
nα/2

c0a(f)1/
√

n
,

which can be rewritten as

Pnα/2

c0(1 + ε0)nβ−1/2 min

{
1,

(1 + ε0)nβ−1/2

n(α+βa0)/2

}

=

{ P
c0nβa0/2 if 0 ≤ β ≤ 1/2

Pnα/2

c0(1+ε0)nβ−1/2 if β > 1/2 (19)
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with respect to the parameter β using (4) and (8). To obtain a lower bound
on the capacity scaling, the signal-to-interference-and-noise ratio (SINR) seen
by receiver i ∈ {1, · · · , n} can be computed using (17) and (19). By assuming
the worst case noise, which lower-bounds the transmission rate, and full CSI
at the receiver, the achievable throughput per S–D pair is then lower-bounded
by

log(1 + SINR)

= log
(

1 +
Pr

N(f) + PI

)

=


Ω

(
log
(

1 + 1

max{n(1/2−β)(2−α),log n}

))
if 0 ≤ β < 1/2

Ω(1) if β = 1/2
Ω
(
log
(
1 + n(α+βa0)/2

(1+ε0)nβ−1/2

))
if β > 1/2

=


Ω

(
1

max{n(1/2−β)(2−α),log n}

)
if 0 ≤ β < 1/2

Ω(1) if β = 1/2
Ω
(

n(α+βa0)/2

(1+ε0)nβ−1/2

)
if β > 1/2,

where the second equality holds since N(f) = Θ(n−βa0/2) and thus PI =
ω(N(f)) for 0 ≤ β < 1/2, PI = Θ(Pr) = Θ(N(f)) for β = 1/2, and PI =
o(N(f)) for β > 1/2. The last equality comes from the fact that log(1 + x) =
(log e)x + O(x2) for small x > 0. Since there are Ω(

√
n) S–D pairs that can

be active simultaneously in the network, the total throughput is finally given
by (18), which completes the proof.

Note that the achievable throughput [7] for wireless radio networks of unit
area using MH routing is given by Ω(

√
n), which is the same as the case for

which β = 1/2 (or equivalently a(f) = Θ
(
(1 + ε0)

√
n
)
) in a dense underwater

network. The lower bound on the total throughput T (n) is also shown in Fig. 2
according to the parameter β. From this result, an interesting observation fol-
lows. To be specific, in the regime 0 ≤ β ≤ 1/2, the lower bound on T (n)
grows linearly with increasing β, because the total interference power PI in
(17) tends to decrease as β increases. In this regime, note that PI = Ω(Pr).
Meanwhile, when β > 1/2, the lower bound reduces rapidly due to the expo-
nential path-loss attenuation in terms of increasing β.

In addition, similarly as in Section 3, two other expressions on the achiev-
ability result are now summarized as in the following.

Remark 3 From (4) and (8), the lower bound on the throughput T (n) and the
corresponding operating regimes can also be presented below in terms of the
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attenuation parameter a(f):

T (n) =


Ω

( √
n

max{a(f)(2−α)/
√

n,log n}

)
if a(f) = Ω(1) and a(f) = o

(
(1 + ε0)

√
n
)

Ω (
√

n) if a(f) = Θ
(
(1 + ε0)

√
n
)

Ω
(

n(1+α)/2(log a(f))a0/2

a(f)1/
√

n

)
if a(f) = ω

(
(1 + ε0)

√
n
)
.

Furthermore, using (2) and (3) follows that

T (n) =


Ω

( √
n

max{ec1(2−α)f2/
√

n,log n}

)
if f = Ω(1) and f = o

(
n1/4

)
Ω (

√
n) if f = Θ

(
n1/4

)
Ω
(

n(1+α)/2fa0

ec1f2/
√

n

)
if f = ω

(
n1/4

)
,

which represents the lower bound for the operating regimes obtained from the
relationship between the frequency f and the number n of nodes.

Now let us turn to examining how the upper bound shown in Section 3 is
close to the achievable throughput scaling.

Remark 4 Based on Theorems 1 and 2, it is seen that if β ≥ 1/2, then the
achievable rate of the MH protocol is close to the upper bound up to nε for
an arbitrarily small ε > 0 (note that the two bounds are of exactly the same
order especially for β > 1/2). The condition β ≥ 1/2 corresponds to the
high path-loss attenuation regime, and is equivalent to a(f) = Ω

(
(1 + ε0)

√
n
)

or f = Ω
(
n1/4

)
. Therefore, the MH is order-optimal in regular networks of

unit area under the aforementioned operating regimes, whereas in extended
networks, using MH routing results in the order optimality for all the operating
regimes.

Moreover, the derived achievable rate scaling is compared with the case of
wireless radio networks.

Remark 5 The total throughput scales as Θ(
√

n) when a MH routing is used
for nodes regularly distributed in a wireless radio network of unit area [7]. As
illustrated in Fig. 2, it is shown in dense underwater networks that the MH
protocol achieves a total network throughput scaling of Ω(

√
n), which is the

best result we can hope for with MH, only when β = 1/2 (or equivalently
f = Θ

(
n1/4

)
). Our results thus indicate that without a judicious scaling of

the carrier frequency, the MH does not achieve the throughput scaling
√

n,
obtained by MH in dense wireless radio networks.
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5 Conclusion

In Part II of a two-part series, dense underwater acoustic networks were an-
alyzed in terms of capacity scaling. In dense networks, the upper bound was
derived characterizing three different operating regimes, in which there exists
either a bandwidth or power limitation, or both. The nearest-neighbor MH
protocol was introduced with a slight modification to show the achievabil-
ity result—the MH protocol was shown to be order-optimal in power-limited
regimes (i.e., the case where the frequency f scales faster than or as n1/4) of
dense networks. Our results indicated that without a judicious scaling of the
carrier frequency, the MH protocol does not achieve the throughput scaling√

n, obtained by MH in dense wireless radio networks. We also identified the
appropriate carrier frequency scaling required to achieve a throughput scaling
of
√

n with MH. Therefore, it turned out that there exists a right frequency
scaling that makes our scaling results for underwater acoustic networks to
break free from scaling limitations related to the channel characteristics that
were described in [18]. For all the operating regimes, the exact capacity scal-
ing of dense underwater networks remains still open, which offers an enormous
scope for further research in this area.
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A Appendix

A.1 Proof of Lemma 1

Upper and lower bounds on P
(k)
L in a dense network are derived by basically following the

same node indexing and layering techniques as those in Part I. We refer to Appendix A.2
and Fig. 4 in [1] for the detailed description (note that the destination nodes are, however,

located at positions
�

kx√
n

,
ky√

n

�
in dense networks). Similarly to the extended network case,

from (9), the term P
(k)
L is then given by

P
(k)
L =

P

c0

√
n/2X

ix=1

√
nX

iy=1

nα/2

((ix + kx − 1)2 + (iy − ky)2)α/2 a(f)

q
((ix+kx−1)2+(iy−ky)2)/n

.
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First, focus on how to obtain an upper bound for P
(k)
L . Assuming that all the nodes in

each layer are moved onto the innermost boundary of the corresponding ring, we then have

P
(k)
L ≤

Pnα/2

c0

kx+
√

n/2−1X
i′=kx

c5(i′ + 1)

i′αa(f)i′
√

n

≤
2c5Pnα/2

c0

√
nX

i′=kx

1

i′α−1a(f)i′
√

n

= c6Pnα/2

√
nX

i′=kx

1

i′α−1 (1 + ε0)i′nβ−1/2 (20)

for some positive constants c0, c5, and c6 independent of n and an arbitrarily small ε0 > 0,
where the equality comes from the relationship (8) between a(f) and β. We first consider
the case where kx = o

�
n1/2−β+ε

�
for an arbitrarily small ε > 0. Under this condition, from

the fact that the term i′α−1 in the RHS of (20) is dominant in terms of upper-bounding

P
(k)
L for i′ = kx, · · · ,

√
n, (20) is further bounded by

P
(k)
L ≤ c6Pnα/2

√
nX

i′=kx

1

i′α−1

≤ c6Pnα/2

 
1

kα−1
x

+

Z √n

kx

1

xα−1
dx

!
,

which yields P
(k)
L = O

�
nα/2(

√
n)2−α

�
= O(n) for 1 ≤ α < 2 and P

(k)
L = O (n log n) for

α = 2. When kx = Ω(n1/2−β+ε), the upper bound (20) for P
(k)
L is dominated by the term

(1 + ε0)i′nβ−1/2
, and thus is given by

P
(k)
L ≤ c6Pnα/2

√
nX

i′=kx

1

(1 + ε0)i′nβ−1/2

≤ c6Pnα/2

 
1

(1 + ε0)kxnβ−1/2 +

Z √n

kx

1

(1 + ε0)xnβ−1/2 dx

!

= c6Pnα/2

 
1

(1 + ε0)kxnβ−1/2 +

Z √n/kx

1

kx

(1 + ε0)xkxnβ−1/2 dx

!

≤ c6Pnα/2

 
1

(1 + ε0)kxnβ−1/2 +
n1/2−β

(1 + ε0)kxnβ−1/2

!

≤
c7Pnα/2

(1 + ε0)kxnβ−1/2 max
n

1, n1/2−β
o

(21)

for some constant c7 > 0 independent of n, which is the last result in (10).

Next, let us turn to deriving a lower bound for P
(k)
L . Since each layer has at least

one node that is onto the innermost boundary of the corresponding ring, the lower bound
similarly follows

P
(k)
L ≥

Pnα/2

c0

kx+
√

n/2−1X
i′=kx

1

i′αa(f)i′
√

n

= c6Pnα/2
kx+

√
n/2−1X

i′=kx

1

i′α (1 + ε0)i′nβ−1/2 . (22)
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For the condition kx = o(n1/2−β+ε), (22) is represented as

P
(k)
L ≥ c6Pnα/2

kx+
√

n/2−1X
i′=kx

1

i′α (1 + ε0)i′nβ−1/2

≥ c6Pnα/2
2kx−1X
i′=kx

1

i′α (1 + ε0)i′nβ−1/2

≥
c6Pnα/2

nε′

2kx−1X
i′=kx

1

i′α

≥
c8Pnα/2

nε′kα−1
x

for an arbitrarily small ε′ > 0 and some constant c8 > 0 independent of n, where the third

inequality holds due to (1 + ε0)kxnβ−1/2
= O(nε′ ). On the other hand, similarly as in the

steps of (21), the condition kx = Ω(n1/2−β+ε) yields the following lower bound for P
(k)
L :

P
(k)
L ≥ c6P

kx+
√

n/2−1X
i′=kx

1

(1 + ε0)i′nβ−1/2

≥ c6P

 
1

(1 + ε0)kxnβ−1/2 +

Z kx+
√

n/2−1

kx+1

1

(1 + ε0)xnβ−1/2 dx

!

≥ c9P

 
1

(1 + ε0)kxnβ−1/2 +
n1/2−β

(1 + ε0)(kx+1)nβ−1/2

!

≥
c9P

(1 + ε0)kxnβ−1/2 max

(
1,

n1/2−β

(1 + ε0)nβ−1/2

)

some constant c9 > 0 independent of n, which finally complete the proof of the lemma.

A.2 Proof of Lemma 2

The layering technique used in Part I is similarly applied (see Fig. 2 in [1]). From (1),
the total interference power PI at each node from simultaneously transmitting nodes is
upper-bounded by

PI =

√
nX

k=1

(8k)

P min

�
1,

a(f)1/
√

nN(f)

nα/2

�
c0(k/

√
n)αa(f)k/

√
n

=

8Pnα/2 min

�
1,

a(f)1/
√

nN(f)

nα/2

�
c0

√
nX

k=1

1

kα−1a(f)k/
√

n
. (23)
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Using (4) and (8), the upper bound (23) on PI can be expressed as

PI ≤ c10Pnα/2 min

(
1,

(1 + ε0)nβ−1/2

n(α+βa0)/2

) √
nX

k=1

1

kα−1(1 + ε0)knβ−1/2

≤

8>>><
>>>:

c10P

nβa0/2

P√
n

k=1
1

kα−1(1+ε0)knβ−1/2 if 0 ≤ β < 1/2

c10P

nβa0/2

P√
n

k=1
1

(1+ε0)k if β = 1/2

c10Pnα/2
P√

n
k=1

1

(1+ε0)knβ−1/2 if β > 1/2

≤

8>>><
>>>:

c10P

nβa0/2

P√
n

k=1
1

kα−1(1+ε0)knβ−1/2 if 0 ≤ β < 1/2

c10P

nβa0/2
1

(1+ε0)−1
if β = 1/2

c10Pnα/2 1

(1+ε0)nβ−1/2−1
if β > 1/2

≤

8>>><
>>>:

c10P

nβa0/2

P√
n

k=1
1

kα−1(1+ε0)knβ−1/2 if 0 ≤ β < 1/2

c11P

nβa0/2 if β = 1/2

c11Pnα/2

(1+ε0)nβ−1/2 if β > 1/2

for some positive constants c10 and c11 independent of n. Based on the argument in Ap-
pendix A.1, when 0 ≤ β < 1/2, it follows that

√
nX

k=1

1

kα−1(1 + ε0)knβ−1/2 =

n1/2−β−1X
k=1

1

kα−1(1 + ε0)knβ−1/2 +

√
nX

k=n1/2−β

1

kα−1(1 + ε0)knβ−1/2

≤
n1/2−β−1X

k=1

1

kα−1
+

1

n(1/2−β)(α−1)

√
nX

k=n1/2−β

1

(1 + ε0)knβ−1/2

≤
 

1 +

Z n1/2−β

1

1

xα−1
dx

!

+
1

n(1/2−β)(α−1)

 
1

1 + ε0
+

Z √n

n1/2−β

1

(1 + ε0)xnβ−1/2 dx

!

≤ 2

Z n1/2−β

1

1

xα−1
dx +

2

n(1/2−β)(α−1)

Z nβ

1

n1/2−β

(1 + ε0)x
dx

≤
�

4n(1/2−β)(2−α) if 1 ≤ α < 2
log n if α = 2,

which results in PI = O

 
max

n
n(1/2−β)(2−α),log n

o

nβa0/2

!
. This completes the proof of the

lemma.
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