
1 

Smart Cities via Data Aggregation 

Javier Poncela
1
, Panagiotis Vlacheas

2
, Raffaele Giaffreda

3
, Suparna De

4
, Massimo Vecchio

3
, Septimiu 

Nechifor
5
, Raquel Barco

1
, Mari Carmen Aguayo-Torres

1
, Vera Stavroulaki

2
, Klaus Moessner

4
, 

Panagiotis Demestichas
2
 

 
1 University of Malaga, ETSI Telecomunicacion, Malaga, 29071, Spain. {jponcela, rbarco, 

mdaguayo}@uma.es 

2
University of Piraeus, 80, Karaoli & Dimitriou Str, 18534, Piraeus, Greece. {panvlah, veras, 

pdemest}@unipi.gr 

3
CREATE-NET, Via alla Cascata 56/D Povo - 38123 Trento – Italy. {massimo.vecchio, 

raffaele.giaffreda}@create-net.org 

4
Centre for Communication Systems Research (CCSR), University of Surrey, Guildford GU2 7XH. 

United Kingdom. {S.De, K.Moessner}@surrey.ac.uk 

5
Siemens Corporate Technology, Siemens SRL, Brasov, Eroilor 3a 500007, Romania, 

septimiu.nechifor@siemens.com 

 

Abstract    Cities have an ever increasing wealth of sensing capabilities, recently including also Internet of 

Things (IoT) systems. However, to fully exploit such sensing capabilities with the aim of offering effective city-

sensing-driven applications still presents certain obstacles. Indeed, at present, the main limitation in this respect 

consists of the vast majority of data sources being served on a “best effort” basis. To overcome this limitation, 

we propose a “resilient and adaptive IoT and social sensing platform”. Resilience guarantees the accurate, timely 

and dependable delivery of the complete/related data required by smart-city applications, while adaptability is 

introduced to ensure optimal handling of the changing requirements during application provision. The associated 

middleware consists of two main sets of functionalities: (a) Formulation of sensing requests: selection and 

discovery of the appropriate data sources; and (b) Establishment and control of the necessary resources (e.g., 

smart objects, networks, computing/storage points) on the delivery path from sensing devices to the requesting 

applications. The middleware has the intrinsic feature of producing sensing information at a certain level of 

detail (geographical scope/timeliness/accuracy/completeness/dependability) as requested by the applications in a 

given domain. The middleware is assessed and validated at a proof-of-concept level through innovative, 

dependable and real-time applications expected to be highly reproducible across different cities. 
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1. Introduction 

Legacy cities are already characterized by the potential of collecting a wealth of data through 

a number of different sensing infrastructures. At present, this data is partially used for 

different, but often isolated, application purposes. Nevertheless, beside the bespoke 

applications and the associated sensing infrastructures that particular cities may have, the 

trend will continue to be towards an ever increasing amount of data coming from connected 

objects (sensors) as well as from “social sensing” applications. In other words, data are 

envisioned to come from (i) the Internet of Things (IoT) that becomes more and more 

established and (ii) the more and more sophisticated features of smart end-user devices in 

conjunction with the established social networks applications. Obviously, the effect of this 

trend will further enrich the overall “city sensing” capabilities. 

In  light of the above, the main question addressed in this paper relates to how to leverage 

such an increasing wealth of sensing capabilities to make an  impact through sensing-driven 

applications (mainly from – but not limited to – “city management” stakeholders) that will 

effectively improve the  quality of life of citizens in future smart cities. The main obstacle to 

overcome is that, at present, the vast majority of data sources are served through “best effort” 

data and data stream delivery, which is not enough for creating dependable, real-time and 

mission critical applications. Indeed, there is an increasing need for the applications to timely 

retrieve more complete and accurate data/data-streams, often in a dependable way. All these 

features, which are also in accordance with the Quality of Information (QoI) paradigm, can be 

seen as the fundamental issues to be tackled to enable an extended deployment of essential, 

innovative “city-sensing”-driven applications. The latter are envisioned to be, in turn, able to 

assist and support not only citizens’ everyday needs (e.g., real-time traffic sensing and 

environmental monitoring) but also those of city stakeholders (e.g., improving the 

management policies of the cities and providing prompt reactions against the identified 

problems). 

The discussion so far yields the need to conceive a resilient and adaptive IoT and social 

sensing platform, whose associated middleware could actually play the role of key enabler to 

achieve the vision of better and more reactive services in a generic smart city framework of 

the future. We will see, in fact, that the proposed middleware is able to natively support the 
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selection of the most appropriate data sources and to be in charge of establishing and 

controlling the delivery of the data in agreement with configured constraints. 

The rest of the paper is organised as follows. Section 2 presents the four basic pillars upon 

which the proposed middleware rests. Specifically, these are identified as a) virtualisation 

(that is, a dynamic and intelligent virtual representation of real objects and resources  allowing 

them to become virtually “always-on”); b) cognitive management (that is, a dynamic selection 

of behaviour through self-management, taking into account policies, information and 

knowledge in the context of operation); c) resilience (that is, delivery of a service that can be 

justifiably trusted in dynamic environments) and d) scalability (that is, the capability to enable 

the coexistence of a large number of heterogeneous objects). Section 3 describes in detail the 

proposed middleware for a resilient, adaptive IoT and social sensing platform. Section 4 

presents a set of applications that can be used to highlight the most representative features of 

the middleware. Finally, in Section 5 we draw some conclusions and outline possible future 

research actions. 

2. Basic Pillars 

This section discusses the four key themes that make up the enhancements of the proposed 

platform, namely: a) virtualisation; b) cognitive management; c) resilience; and d) scalability. 

Based on them, it aims to improve the representation and composition of IoT enabling 

technologies and to support and exploit a variety of enablers. 

2.1 Virtualisation  

A recent study on smart cities by the BBC points out that in 5 years’ time, the “data 

infrastructure of our cities is going to become as important as the train and roads are now” 

[1]. Recent advances in the wider IoT area also offer new ways to analyse and measure city 

life, from “whether water pipes are leaking to how traffic is flowing on the roads and whether 

buildings are using energy in the most efficient way” [2]. Examples include lamp-posts being 

fitted with sensors that can transmit information about cloud cover to offer hyper-local 

weather forecasting in Birmingham, to tweeting bus-stops in Norway to geo-tagging rubbish 

pieces to determine recycling efficiency in Seattle. 

The above examples point to the ability of smart objects, such as sensors, to interact either 

among themselves or with other entities in the network. Facilitating such interactions requires 

provisioning mechanisms that enable virtualisation of such objects. Recommendations from 
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the IoT Special Interest Group of the Technology Strategy Board of the UK government also 

point to the need for design tools to abstract complexity and a layered, structured approach to 

data and resources [3]. Moreover, it is important to remember that the physical and digital 

aspects are considered as an integral unit in comprising a ‘thing’, though with various layers. 

In keeping with these observations, the virtualisation concept as applied in this paper 

envisages abstracting heterogeneous data sources into a common sensing substrate. The 

semantics used in the enrichment of virtualised object descriptions can facilitate knowledge 

extraction from available data, resulting in a substantially reduced amount of engineering 

needed for individuals or city administrations to provide new services. The envisioned 

services will leverage the increased wealth of city sensing data to provide the ability to easily 

adapt and control the required level of monitoring detail.  

Existing platforms with connected devices and offering Application Programming Interfaces 

(APIs) for directory (searching objects) and data services include Xively (formerly 

Pachube/Cosm) [4], Nimbit [5], ThingSpeak [6] and Thingworx [7]. Research works include 

those applying semantic profiles to describe connected objects, as well as search strategies for 

the Web of Things (WoT) spaces [8] and frameworks following the Representational State 

Transfer (REST) principles to expose objects as web resources and gateways enabling such 

functionalities on devices running proprietary protocols, such as Zigbee [9, 10]. Several EU 

and international projects also exploit virtualisation concepts, such as CONVERGENCE [11] 

(concept of Versatile Digital Items (VDIs) as a common container for any kind of digital data, 

including representations of services, people and real world objects), EBBITS [12] 

(transforming every device into a web service with semantic resolution), SOFIA [13] (making 

physical world information available for smart services) and iCore [14] (virtually ‘always-on” 

dynamic virtual representations of any real-world object) projects. The rise of citizen sensing 

is made possible by new social media that supports crowd sourcing approaches and when 

users converge in social media spaces in response to certain events [15]. Web-based social 

sensing platforms include the Ushahidi platform, which is a Google-maps based mashup for 

geo-located responses to a crisis and its instantiation in the Ushahidi Haiti map [16] which 

allowed people and organisations to post their needs on the crisis map following the 2010 

Haiti earthquake. The WikiCrimes project [17] in Brazil aims to foster citizen and public 

organisation (e.g., non-governmental organisations (NGOs), newspapers) participation in law 

enforcement through crowd mapping. In the city context, the DiYSE project [18] has looked 

at deriving citizens’ behaviour patterns and obtaining feedback on a city-wide view of data 
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collected through Bluetooth-enabled City SensePod sensors which included noise, relative 

humidity, COx and NOx levels and GPS sensors. 

Virtualisation should include IoT sensing objects, either alone or in conjunction with 

associated external data stream processing, in a way that enables the generation of “smart” 

sensing feeds that can autonomously satisfy requests at different levels of sensing detail. It is 

worth mentioning that the sensing detail levels may reflect not only the geographical scope of 

analysis, but also other constraints such as accuracy, timeliness, etc. In addition to social 

sensing as enabled by the increasing number of features available on smart end-user devices, 

open data sources (e.g., those in the Linked Open Data cloud [19]) should also be seamlessly 

incorporated as sensing streams to enable smart cities. The virtualised objects need to be 

enriched with metadata as well as with cognitive capabilities, in order to achieve self-

awareness, self-manageability and self-(re-)configurability. Representation of different levels 

of sensing abstraction and the ability to swiftly move between these (i.e., zoom-in and zoom-

out feature) will also have to be provided in a domain agnostic way to empower similar 

applications in various smart-city applications. 

2.2 Cognitive Management 

The role of cognitive mechanisms has largely been applied so far to networks, with a 

cognitive network defined as a network with a cognitive process [20], also known as the 

MAPE-K cycle (Monitor-Analyse-Plan-Execute-Knowledge) [21], able to perceive current 

network conditions, plan, decide, act on those conditions and learn from the consequences of 

its actions. However, in the scope of IoT and in the context of smart cities, where potentially 

large sets of interconnected and heterogeneous devices produce data, appropriate cognitive 

techniques able to handle both devices and data in real-time and autonomously are more 

desirable. From theory to practice, the iCore framework and the associated platform [22] 

introduce cognitive management techniques in IoT at three levels, namely the Virtual Object 

(VO) level (self-configuration to maintain a constant link with the relevant real world objects 

and to manage the relevant data flows), the Composite Virtual Object (CVO) level (to enable 

the automatic selection of the most appropriate objects among the available ones for the 

resilient delivery of a service) and the Service level (to reason about the application 

requirements and the user preferences in a seamless way). 

We believe that, to build reliable, smart and adaptive IoT applications for smart cities-, which 

needs to address the heterogeneity of a huge quantity of objects, as well as to guarantee the 

resilience of the associated sensing services in an automated way, the exploitation of 
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cognitive mechanisms is a prerequisite. Sensing devices should be intrinsically empowered 

with cognitive capabilities in order to achieve self-awareness, self-manageability, self-(re-) 

configurability during their operation. Thus today’s sensing devices should be upgraded to 

future “smart objects”. Different levels of sensing detail should be enabled to address the 

scalability in the data plane (being data processed as close as possible to their source), 

achieving not only the data sources selection and analysis according to geographical scope but 

also accuracy, timeliness, QoI objectives etc., as well as to reduce the overall amount of 

required sensed data to be delivered to the applications. In addition to smart sensing objects, 

cognition in terms of reasoning mechanisms is required in order to infer about the specific 

requirements/constraints imposed by the smart city application. These mechanisms will allow 

the automatic translation of the application into “machine/system parseable” requests for 

sensing services subject to constraints in terms of Service Level Agreements (SLAs) for 

timeliness and quality of information (e.g., accuracy) to be delivered. Learning mechanisms 

may also build knowledge on application preferences and eventually act on behalf of the 

application. Furthermore, optimisation/reasoning techniques are needed for the selection of 

the most relevant and trustful sources to be used for sensing data, as well as the more 

appropriate and resilient resources for the delivery of the sensed data to the application under 

the specified constraints in dynamic environments.  

Citizens are also expected to contribute to smart city applications, thus making the step 

towards the “Social IoT (SIoT)”, which will increase significantly the number of available 

sensing devices in a vast variety of geographical locations. This offers some level of 

redundancy to data being gathered, which gives an opportunity to assess both data integrity 

and take remedial actions that will complete missing information, adding robustness against 

failures and disconnections. To that respect, inference mechanisms are required for the 

retrieval of data from social sensing devices. Machine Learning (ML) and Complex Event 

Processing (CEP) can be used to aggregate and build knowledge from the captured data of 

sensors, breaking down “hierarchically” the problem of having to deal with a “flat” huge 

number of data sources. Semantic techniques may be exploited to select appropriate resources 

able to partially address application requests, when exact matches are unavailable. Learning 

techniques can help building knowledge about earlier decisions, so as to reach faster and/or 

more sophisticated decisions in similar future requests, as well as to acquire awareness about 

the available resources either in the IoT or in the Cloud infrastructure. Monitoring and 

assurance mechanisms for managing the real-time data flows are also of utmost importance, 

in order to either reason about a problem with a sensing feed or to predict probable anomalies, 
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as well as to provide remedial actions. Finally, intrinsic management functionalities, such as 

coordination techniques for handling the lifecycle of object virtualisations that support 

different applications but may control the same underlying resources, are highly required. 

In a nutshell, cognitive techniques in the smart city context could be exploited to derive 

automated mechanisms for inferring about the application requests, for selecting and 

activating the most relevant resources for delivering sensing service at different levels of 

detail, as well as for managing the associated real-time data flows including Process Models 

to guarantee the availability and the integrity of data. The data sources considered include 

object virtualisations, cloud sources and social sensing streams. Last but not least, cognition 

should co-exist with security and privacy, allowing the owner of IoT sensing objects to decide 

to what “audience” and to which extent the owned/sensed data could be exposed. 

2.3 Resilience 

In its most general form, resilience is the desire to maintain dependability in spite of 

continuous changes. In our context it means guaranteeing the accurate/timely/dependable 

delivery of data. Social sensing may offer redundancy to sensing data and will add robustness 

against failures and disconnections. 

Several reference models and architectures for self-adaptive systems have emerged in recent 

years. For instance, the multi-layer model proposed in [29] organises the system into a 

“component control” layer responsible for component-level adaptation, a “change 

management” layer for system-level adaptation based on a set of predefined plans, and a 

“goal management” layer for devising new adaptation plans when the predefined ones are no 

longer sufficient. The decentralised autonomic control patterns for self-adaptive software 

systems advocated in [30] aim at achieving quality requirements such as resilience, robustness 

and scalability in large distributed systems. The Quality of Service (QoS) Management and 

Optimisation of Service-based systems (QoSMOS) framework [31] introduces a reference 

architecture for self-adaptive service-based software systems. The QoSMOS architecture 

supports the dynamic selection of the concrete services that implement the operations of a 

service-based system to ensure that the performance and reliability QoS requirements of the 

system are achieved with minimal cost at all times. Finally, the authors of [32] identify a 

unified information representation and exchange framework as a fundamental principle of a 

cloud computing architecture capable of adaptation. The importance of this uniform 

information representation and message exchange between all business entities (i.e., cloud 

clients, partners and vendors) is further emphasized by the information-centric paradigm 
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defined in [33]. One approach could be introducing self-adaptive features at network and 

device levels. Another way is using an intelligent layer that, based on a set of rules, selects the 

best sources for each service according to user preferences.  

In this area, new cognitive techniques to select and activate the most trustful and resilient 

sources are needed. Redundancy allows for robustness against failures and disconnections and 

provides the basis for remedial actions. In addition, anticipatory planning will help by pre-

fetching and preparing of data in advance in fast changing environments. The research should 

also target new customized algorithms for scheduling, optimising and managing real-time 

data flows. 

The approach presented in this paper intends to address resilience regarding both dependable 

services and real-time services that require low latency, as well as maximizing the availability 

of objects, the performance of services and the integrity of data. In this respect, the view 

pushes resilience one step forward by taking into account the QoI in addition to QoS and 

Quality of Experience (QoE). Therefore, in our view, resilience is the ability to deliver service 

and information that can be justifiably trusted in spite of continuous changes and is in 

accordance with user requirements and resource constraints. The latter reveals the need for 

mechanisms for adaptation to user requirements and resource constraints (e.g., time variant 

traffic demand, on demand provision and resource elasticity). As explained, the concept uses 

virtualisation and cognitive management as enablers to achieve resilience. The basic idea is to 

exploit the whole cognitive outfit as analysed for further enhancing the resilience capability. 

This includes optimisation/reasoning for the selection of the most appropriate sensing data 

objects (use of trustful sources) and infrastructure resources for the delivery of data under the 

specified constraints, situation awareness (in terms of objects, resources, application, etc.), 

cognitive monitoring and discovery, and triggering of appropriate remedial actions 

(assurance). 

In this framework, to successfully enable resilience appropriate algorithms for scheduling, 

optimising and managing the real-time data flows should be investigated. Moreover, suitable 

Process Models should be better exploited as means to establish resilience (e.g., ask another 

source to send data, data caching, reestablishment of missing data, data reconciliation). A 

major contribution in this respect is the use of social sensing, which will significantly increase 

the number of available sensing devices across geographical locations. As stated in the 

previous section, this adds redundancy to the sensed data, which allows potential robustness 

and also the basis for supporting Process Models in the identification of remedial actions that 

will complete missing information. Besides integrity and reliability of sensed data, if these are 
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expected to support dependable applications, special care has to be taken also about the 

delivery of such data within given application constraints. Network virtualisation techniques 

(network slicing) are considered enablers, in order to exploit spare resources that may even 

belong to different networks, as well as to build a dynamic, federated virtual infrastructure to 

enhance the connectivity between the IoT sensing infrastructure and the applications that 

make use of it. Moreover, a flexible cloud infrastructure should be used to further support and 

enhance the IoT infrastructure (i.e., processing for data stream conversion) making it more 

robust against failure. 

Another possible track is to investigate anticipatory planning for application requests through 

discovery of additional relevant objects that are deployed in the neighbourhood of the scope 

of interest and including them in a multi-plan. This feature can support the pre-fetching and 

setting up of data even before it is needed by means of real-time activation of these alternate 

data streams from the multi-plan by the middleware in sometimes fast changing environments 

(e.g., due to mobility, the source of data may become unavailable or just be useless), so that 

resilience (availability, integrity, performance) of data is guaranteed. 

2.4 Scalability 

Cities and urban areas represent the ideal testbed for future and innovative (or, in a word, 

smart) technologies, services and applications. However, if we consider that currently 50 

percent of the world’s population lives in cities (in Europe and the US, this percentage 

increases up to more than 75 percent) and that by 2050 this urban population will most likely 

reach 6.4 billion people [23], while already by 2020 we will reach the next trillion-level 

communication industry linking over a hundred billion devices [24], we understand that 

scalability represents a mandatory requirement for a future smart city context. 

Loosely speaking, scalability means enabling the coexistence of a large number of 

heterogeneous objects (ecosystem). Thus, it leans on other basic pillars described in this 

section, namely virtualisation and resilience. Moreover, the virtual ecosystem will produce a 

huge amount of data, spanning environmental data produced by sensor networks, to video 

streams captured by traffic and surveillance cameras and by citizens with their personal 

smartphones. It follows that this data torrent has to be forwarded, stored and processed. This 

simple observation reveals interesting contact points with apparently orthogonal research and 

development planes, namely Social Sensing, Crowd Sourcing, Big Data and Cloud 

Computing, which are briefly summarized here. 
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Indeed, the widespread use of personal mobile communication devices (e.g., phones, PDAs) 

let people create and share content acquired by the on-board sensors (e.g., cameras, GPS) 

through the Internet, hence enabling new urban sensing and management opportunities, also 

known as Social Sensing [25]. Contextually, a completely new collective awareness is 

growing day by day and pushing people to collaborate towards continuous data collection, 

processing and interpretation, also known as Crowd Sourcing [26]. Thus, if judiciously 

analysed and aggregated, this huge volume of data of varying nature (e.g., raw data, text, 

image, video) coming from different sources (sensors, users of social platforms) at potentially 

high throughput can represent a gold mine of information to build effective smart city 

applications and services. It is not a coincidence that the three Vs that historically constitute 

the Big Data concept (Volume, Velocity and Variety) [27] were included in the previous 

sentence. Indeed, we believe that, to actually reach sufficient levels of scalability, smart city 

applications have to leverage on Big Data principles and tools. In particular, Big Data 

principles should be used to provide services at different scales (e.g., districts, towns, 

regions), while its data presentation tools (e.g., visualisation) could be used to guarantee 

added value for the citizens. Moreover, by means of Big Data tools, it is natural to think about 

individuals capable of aggregating open data with their own private ones, or defining their 

own services, composing existing ones, or even defining from scratch new ones. Finally, and 

as observed in [28], we believe it is a limitation to consider the Cloud as a mere endpoint of a 

smart city infrastructure. Rather, it should be handled in the same way as computing and 

storage resources usually are, in the more traditional Cloud stack e.g., abstracted, virtualized, 

and grouped into Clouds. 

3. Middleware enabling a resilient, adaptive and social 

sensing IoT platform 

The proposed middleware intends to support a wide range of “city-sensing” applications by 

providing them with resilient and adaptive data/data-stream delivery. In the previous section, 

we already introduced the notion of resilience, as it is conceived by the proposed middleware. 

As regards its ability to adapt, loosely speaking, it ensures the handling of new requirements 

that are likely to occur during a smart-city application provision. 

The proposed middleware comprises the following two main sets of functionalities: 

 Formulation of sensing requests and selection of the appropriate data sources. Data 

sources can be either IoT objects (simple ones or more intelligent ones as those 
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empowered by cognitive mechanisms (section 2.2)) or other devices, such as 

smartphones. This task involves the discovery of data sources, the assessment of the 

relationship of their data, and the realization of selection decisions, based also on the 

potential for the resolution of filtering and interoperability issues (the latter through 

associated processing at appropriate points on the delivery path). 

 Establishment and control (activation, modification, release) of the necessary 

resources that are along the data path, according to the specific levels of timeliness, 

accuracy, completeness and dependability requested by the application. This task 

involves the activation of smart objects (i.e., virtualised sensors/IoT objects, jointly 

with the associated processing that adequately transforms the sensed data stream to fit 

the requests) and the selection of the suitable infrastructure resources (i.e., networks, 

computing and storage points) supporting the request.  

The main proposition of the middleware is therefore an IoT sensing and resource control 

middleware or a “city–sensing” infrastructure. Figure 1 shows an example of how the 

proposed two functionality sets are supposed to interwork.  

 

 

Fig. 1 Middleware high-level block diagram 

 

City sensing applications submit their request to the interface component that parses the 

request. Such requests are formulated here in an abstract way as a function of X, representing 

the geographical scope of interest, the domain and the required quality levels. This request 

triggers the selection, assessment and preparation of the most suitable data sources; 

“suitability” here is not only meant to reflect geographical matching but also other constraints 

such as accuracy, completeness, timeliness, dependability, etc. If necessary, new smart objects 

are instantiated. The planning component integrates the most suitable data sources into a 

“multi-plan” that represents different alternatives for achieving the desired results. The 
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anticipatory planning component adds smart objects that may be needed if the city sensing 

application is interested in an adjacent area or in a different zoom level. The outcome is then 

passed for runtime execution and activation of resources on the delivery path. The runtime 

components use the plan to select and activate the smart objects that are most suitable, taking 

into account the current system situation and the optimisation criteria. Based on the 

anticipatory planning, the pre-fetching of information is initiated to enable a timely adaptation 

if the sensing application changes the request, as anticipated by the planning component. 

The assurance component is there to “train” the middleware towards acquiring fast “zoom-

in”, as well as “data repair” capabilities. Therefore, the results of the execution are returned to 

the requesting sensing application and, at the same time, feedback is provided to the 

anticipatory planning and pre-fetching components. The execution is being monitored and in 

case of problems, an attempt is made to find alternatives based on the existing multi-plan. 

Only if this fails, the more expensive re-planning is triggered by the planning component. In 

the picture “~X” is a representation of the neighbouring regions of X and the feedback arrows 

enable a quick reaction to zoom-in requests, as well as to requests for more accurate or 

complete data within a given region X. 

 

 

Fig. 2 Conceptual separation of middleware layers 
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Figure 2 provides another perspective on the functionality separation. There, the top half 

refers to the overall planning and preparation phase, responsible for the formulation of the 

sensing requests coming from various stakeholder domains. These requests involve 

subsequent discovery, inference and assessment of suitable data sources, as well as the type of 

processing needed to transform the associated data flows. The bottom-half of the figure refers 

to the overall execution and runtime phase. It depicts the establishment and control 

(activation, modification, release) of the necessary data flows, as well as the selection of 

appropriate supporting infrastructure resources (i.e., computing, storage and networking) for 

delivering the data to the applications within the given constraints of time, accuracy, 

completeness and dependability. 

Special emphasis will be on developing a “level of sensing detail” associated with a zoom-in 

concept along different dimensions, able to trigger different outputs from IoT objects/sensors. 

These objects are virtualised through specific middleware features, making them more 

capable of supporting the production of different sensing output. The zoom-in concept and the 

anticipatory planning are key techniques for transforming an IoT based infrastructure into a 

flexible, efficient and scalable smart-city sensing substrate. Specially, the proposed 

middleware addresses scalability through the zoom-in feature that allows reducing the overall 

amount of required sensed data to be delivered to the applications, according to what they 

request. The use of cognitive techniques (ML and CEP) also addresses this problem by 

transforming the “flat” data source plane into a hierarchy.  

Giving further insights into the zoom-in feature, let us consider the lowest level of detail. The 

target could be the rendering of an overall snapshot of “hot” areas on a city map (i.e., colour 

shaded mapping outlining areas with problems – high traffic density, abnormal energy/water 

consumption). Similarly the middleware-enabled smart objects could also be activated to 

produce detailed sensing information (i.e., “live video feed of traffic on a particular street”, or 

“current water consumption within a specific block of flats” etc.). A possible use of the 

proposed middleware would allow the selection of a region of interest on a map to produce 

sensing information in a given domain (i.e., traffic, energy, water) at a certain level of detail 

(see Figure 3). 

In order to achieve these goals, it is envisaged that IoT objects will have to be virtualised in a 

way that exposes their features (including, when applicable, control interfaces appropriately 

secured for access) and either alone or in conjunction with associated external data stream 

processing, be able to generate middleware-enabled smart sensing feeds that satisfy requests 

at different levels of sensing detail. For example, a CCTV camera video stream can either be 



14 

activated “as is” or fed to a video processing algorithm that extracts information such as 

numbers of cars/people/objects in a given street. Besides, it could complement available 

sensing objects and data sources with social sensing IoT objects (i.e., cameras, 

accelerometers, gyroscopes, sensors, GPSs, etc.). 
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Fig. 3 Middleware zoom-in feature enabling different levels of sensing detail (geographical 

match, accuracy, completeness, timeliness, dependability) 

 

Bespoke intelligent information systems already exist in legacy cities and leverage on given 

sets of collected monitoring information for supporting various applications in given domains. 

Having the middleware support collecting data from adaptable sets of sources at desired level 

of resolution and with appropriate resilience is the Holy Grail for dependable and innovative 

application development.  

The middleware scope will therefore translate into a considerably lowered “entry level 

threshold” (rich sets of data potentially available through one middleware) for extracting 

knowledge from available data. This will result in a substantially reduced amount of 

engineering for individuals or city administrations to provide new services that leverage on 

increased wealth of city sensing data and on the ability to easily adapt and control the required 

level of monitoring detail. 
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The subsequent impact is assessed and validated at a proof-of-concept level through 

innovative, dependable and real-time applications (presented in the next section) that will help 

and support city authorities to better address citizens needs and requirements and which are 

expected to be highly reproducible across different cities. 

4. Applications in real Smart City context 

This section presents some smart city applications that demonstrate the usefulness and 

feasibility of the innovations proposed in this paper. Applications should take into account the 

cross-application nature of objects from several fields, such as smart living, smart spaces and 

smart communities. The aim of the applications in a smart city context could be to identify 

priority areas to improve quality of life, to detect and analyse public safety issues, to show 

city status with detailed analysis support, to introduce eco-friendly principles, to keep the 

highest quality standards for the tourism industry, to support the authorities in the analysis 

and solving of mid/long terms patterns of infrastructure failure, criminality, etc. 

The applications make use of the technological infrastructure available in many cities: Wi-Fi 

networks, broadband network (optical fiber), cameras, Geographic Information System (GIS), 

public lighting network, traffic management system, parking sensors, water meters, etc. In 

addition, high amount of data flows from heterogeneous sources are involved and, from these 

flows, proper high-level views are obtained through the use of the smart processing 

algorithms proposed in this paper. The selected applications are depicted in Figure 4. 
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Fig. 4 Applications in real Smart City context 
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a) Smart and Green Mobility 

The objective of this application is to achieve social and “green” mobility by organising 

traffic in a sustainable and rational way and by helping citizens optimise their time when 

moving within the city. With this aim, traffic information is collected from multiple 

heterogeneous sensing devices e.g., traffic sensors, traffic cameras, etc. Information from 

smartphones (SIoT), from electric cars and from public vehicles (e.g., buses, police, taxis) 

can be used in combination with other sensors’ information to reason about a traffic 

congestion. Parking sensors can be used to know the available parking places. A 

centralised system for incident management can be used to avoid crossing areas where 

incidents have happened or, conversely, to inform about incidents in the city. Traffic lights 

can be regulated based on traffic analysis, concentration of public transport, etc. 

Once this information is processed and smartly analysed, maps of traffic intensity are 

derived and subsequently several applications are built, such as: 

1) The user defines his final destination. Then, the application suggests the best route 

that he could follow to save time (e.g., avoiding traffic congestions) and guides him to a 

parking lot with available places in the area. Other constraints can be taken into account 

e.g., to follow a route with minimum air pollution. 

2) The routes of the waste trucks can be optimally scheduled, taking into account 

traffic issues, the seamlessness of the collection in line with the social and financial fabric 

of the city/country, the resources consumed by the truck fleet, the data from the sensors in 

the waste containers, etc. 

3) Intelligent management of public transport. Routes of buses can be optimised 

depending on traffic density (change routes, change bus frequencies, etc.). In addition, the 

taxis, or even buses, in a given area can be coordinated.  

The innovations proposed in the previous sections are essential to efficiently develop these 

applications. Firstly, the huge amount of heterogeneous object instances (traffic sensors, 

traffic cameras, parking sensors, traffic light regulators, incident management system, 

sensors in waste containers, taxis, smartphones, credit card payment, etc.) involved in 

these applications require the capability of dealing with complex real-time data flows. 

Secondly, fast zoom-in both in time and space to highlight critical areas is needed. Thirdly, 

social sensing innovations are also an added value to these applications by using citizens’ 

smartphones as a rich source of data. Lastly, the timeliness and accuracy of the exchanged 

information is of critical importance, in order to realise resilience. 

b) Smart and Green Management of Energy and Water resources 
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The objectives of this application are to manage the energy and water resources of a smart 

city in a smart and green way and to help the city and the citizens to reduce the energy and 

water billing expenses. With this aim, water and energy consumption should be measured 

in each house, something that is already under way. Different resolutions in time and space 

are defined for the measurements. For example, for billing purposes it is enough to take 

measurements once a month, but it has to be done in each and every home. Conversely, if 

there is an abnormal consumption in an area (e.g., due to a water leakage), measurements 

will have to focus on that area and need to have a higher time resolution. 

Subsequently, maps of energy and water consumption in the city, together with indicators 

of water quality, are built and behaviour patterns are investigated. In addition, the citizens, 

by means of their IoT social network tools, are able to exchange information on their water 

and energy usage to perform local benchmarking, to warn about incidents, etc. The city 

could offer incentives to the citizens with bigger energy and water consumption, as well as 

encouraging participation. 

The large amount of sensing devices and the huge amount of information to be remotely 

measured will need the features described in previous sections, in order to select the 

appropriate support infrastructure resources for the delivery of the sensing data within 

given constraints of time, accuracy and quality. In addition, these applications will make 

use of the proposed capability of zooming in those areas which have higher energy or 

water consumption, especially when there is an abnormal increase that can indicate an 

incident. Social sensing innovations will also be an added value to this application by 

using citizens’ smartphones to exchange information about water and energy usage in 

those areas where remote monitoring is not possible.  

c) Smart public safety 

The objective of this application is to provide an effective way to detect, analyse and solve 

public safety issues (emergencies, criminals on the run, lost children or children in danger, 

outbreaks in public manifestations, hazardous material transports, etc.). This should be 

done by supporting citizens to provide real-time communication with the authorities about 

these issues, by informing citizens and evacuating/isolating the involved city areas and by 

supporting the authorities in the analysis and solving of mid/long-term patterns of 

infrastructure failure, criminality, etc. 

Citizens can report to the authorities about public safety issues such as fires, water 

leakages, robbery or similar incidents through a centralised incident management system. 

With the enhancements proposed in this paper, the dynamic capabilities of citizens 
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offering “events” out of their own data stream captures (sound, movement of the 

smartphone, video, etc.) will be added. In addition, traffic and security cameras, dynamic 

user reports, and other data stream sources will allow the public authorities to detect, 

monitor and track the geographical evolution of the public safety issues. Some example 

areas where this could be applied are: 

1) The density of people in an incident area could be estimated based on multiple 

sensing devices (cameras, electronic payment, entrance in museums, smartphones, etc.). 

After the intelligent aggregation of the resulting real time information, public authorities 

will be able to quickly determine the risk for the population, so as to decide in a well-

informed way e.g., on the number of staff needed to control the area, on the amount of 

temporary sanitary installations needed, etc. 

2) Support for the determination of a traffic-density-optimised path that the 

emergency response teams can follow to reach the incident area in the fastest way.  

3) In the mid/long-term, the daily routes of the police patrol can be scheduled so as to 

optimally anticipate incidents in areas known to be most problematic. Based on the 

proposed features, these routes could be automatically redefined following the dynamic 

variations of identified criminality and conflict patterns. 

These cases illustrate well the use of a number of the capabilities proposed in this paper. 

First of all, for example, in incident reporting and monitoring, a wide, heterogeneous range 

of device types and data sources, such as city or traffic cameras, smartphones, incident 

management system inputs, etc. needs to be supported. Secondly, for authorities to take 

informed decisions, real-time data analysis is needed, dynamically taking into account all 

relevant devices and data sources, but also with the system “understanding” potential 

needs of the authorities in this respect. The automated collection (and learning) of 

real-world knowledge, as part of the planning capabilities of our proposed solution, and 

the efficient aggregation and processing of all the needed data (based on dynamically 

deployed CEP technology) are key enablers needed for this. Thirdly, the proposed “zoom-

in” functionality will enable to monitor a moving target of interest in an efficient way, 

with the allocation of processing resources dynamically following the important aspects, 

varying geographically or in data type nature, as required by a response team. The 

resilience offered by the features proposed in this paper is also important in order to 

deliver the service in a fast changing environment e.g., due to mobility of targets and 

sensing devices, as well as the real-time nature of the exchanged information. Finally, 

since it would be difficult to cover all the city area with sensing devices, the integration of 
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social sensing capabilities in the platform will allow increasing the number of sensing 

objects and using them in an opportunistic manner. 

Conclusions 

In this paper we presented a resilient, adaptive and social sensing platform for smart cities, 

in order to address the pressing need for on-time and dependable delivery of data/data-

streams in innovative “city-sensing”-driven applications. This requirement is crucial for 

supporting not only citizens’ everyday needs but also the needs of the respective city 

stakeholders. The basic pillars of the associated middleware were identified in terms of 

virtualisation, cognitive management, resilience and scalability, together with the added 

value features that the pillars may offer to such a platform. The high level principles of the 

middleware were described in detail, including the discovery and selection of appropriate 

data sources, the establishment and control of the data delivery in agreement with 

configured application constraints, the increase of the number of available sensing sources 

through social sensing and the ability to produce sensing information at a certain level of 

detail (e.g., geographical scope, timeliness, accuracy, completeness, dependability) 

according to the application request. The middleware was validated at a proof-of-concept 

level, through the presentation of innovative, dependable and real-time applications, 

namely Smart and Green Mobility, Smart and Green Management of Energy and Water 

resources and Smart Public Safety, which are enabled by the middleware added value 

features. These applications make use of the technological infrastructure available in many 

cities, such as Wi-Fi networks, broadband network (optical fiber), cameras, Geographic 

Information System (GIS), public lighting network, traffic management system, parking 

sensors, water meters, etc., and they could exploit the smart processing algorithms to 

effectively maintain and handle the high amount of data flows produced from such 

numerous heterogeneous sources. Future plans include a more thoughtful investigation of 

security and privacy concerns, as well as a more detailed proof-of-concept in terms of 

qualitative/quantitative results. 
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