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SUMMARY Overlapped FFT has been proposed as a signal
detection scheme in dynamic spectrum access to reduce the vari-
ance of the noise and improve the detection probability. However,
the improvement of the detection probability in the conventional
overlapped FFT is bounded with the upper limit of the overlap
ratio. This paper proposes a new overlapped FFT scheme us-
ing additional frames. In the proposed scheme, in addition to
the conventional FFT frames, new frames that consist of multi-
ple subframes with non-continuous samples are constructed and
included. It can realize the increase of the number of FFT out-
puts and the improvement of the detection probability compared
with the conventional scheme. Numerical results through com-
puter simulation show that the proposed scheme improves the
detection probability by up to 0.07. On indoor channel models
the proposed scheme also improves the detection probability. In
addition, it is clarified that as the delay spread increases the de-
tection probability reduces due to the correlation between the
frames.
key words: Cognitive radio, Overlapped FFT, Spectrum Sensing

1. Introduction

With the global spread of the Internet and the evolu-
tion of digital signal processing technologies in recent
years, high-speed and large-capacity wireless communi-
cations have been demanded. On the other hand, the
popularity of wireless communications causes the short-
age of frequency spectrum available for commercial use.
Therefore, cognitive radio (CR) has been attracting
much attention among researchers of wireless commu-
nications [1–3]. Cognitive radio is a technology with
which a mobile terminal recognizes the status of back-
bone networks and radio environments autonomously.
One of the cognitive radio technologies is dynamic spec-
trum access (DSA). DSA promotes the effective use of
frequency resource by finding a white space spectrum
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that is temporarily not in use by a primary wireless
system [4].

In the DSA, signal detection is important since the
prevention of interference to a primary user is the first
principle of the CR terminal. As one of signal detection
schemes, overlapped FFT has been proposed [5, 6]. [7]
investigates the flexibility of the overlapped FFT for the
rejection of the adjacent channel interference. [8] evalu-
ates the noise reduction effect with windowing functions
in the overlapped FFT.

In the overlapped FFT, the variance of the squared
noise reduces in proportion to the overlap ratio and
the detection probability improves as the overlap ra-
tio increases. In other words, the improvement of the
detection rate in the conventional overlapped FFT is
bounded with the upper limit of the overlap ratio. This
paper proposes a new overlapped FFT scheme using
additional frames. In the proposed scheme, in addi-
tion to the conventional FFT frames, new frames are
constructed and included in order to increase the num-
ber of FFT outputs. To reduce the correlation to the
conventional frames, the additional frames consist of
multiple subframes with non-continuous samples.

This paper is organized as follows. Firstly, signal
detection with the conventional overlapped FFT and
the proposed scheme is described in Section 2. The
probability of detection (PD) and the probability of
false alarm (PFA) using the conventional and proposed
schemes are evaluated in Section 3. Finally, our con-
clusions are presented in Section 4.

2. System Model

2.1 Conventional Overlapped FFT

The signal detection scheme with the conventional over-
lapped FFT is presented in Figs. 1 and 2. The received
signal s(t) is given as

s(t) = h(t)⊗ x(t) + n(t) (1)

where h(t) is the impulse response of the channel be-
tween the input of the transmit filter and the output
of the receive filter, x(t) is the baseband signal, n(t) is



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

FFT Frame

…

Input signal signal+noise

time

*Each FFT Frames are equivalent to equation (4)

FFT Frame

Overlap Ratio

Fig. 1 Frame construction in conventional overlapped FFT.

Frequency bin

1st FFT frame ...

2nd FFT frame ...

Lth FFT frame ...

Power

Average Power Compare with

Threshold

Fig. 2 Signal detection with overlapped FFT.

the additive white Gaussian noise (AWGN), and ⊗ de-
notes convolution. The impulse response of the channel
is given by

h(t) = prx(t)⊗ c(t)⊗ ptx(t) (2)

where ptx(t) and prx(t) are the impulse responses of
the transmit and receive filters, and c(t) is the impulse
response of the multipath channel. Subsequently, the
received signal s(t) is converted into digital samples as
s[n] = s(nTs) through an analog-to-digital converter
(ADC) where n (n = 0, 1, ...) is the time index and Ts

is the sampling interval. The number of FFT outputs
is given as

Lc = � I −N

N − dOL
�+ 1 (3)

where Lc is the number of the FFT frames, I is the
number of the samples, N is the FFT size, dOL is the
number of the samples overlapping between 2 consecu-
tive frames and �∗� implies the minimum integer more
than ∗. The number of FFT outputs increases as the
overlap ratio (dol = dOL/N) grows. Consequently, the
variance of the squared and averaged FFT outputs de-
creases.

The output of the lcth FFT frame in the kth bin
is given as

Slc [k] =

N−1∑
n=0

s [N(lc− 1)(1−dol)+n] exp

(
−j

2πnk

N

)

(4)

time
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Fig. 3 Frame construction in proposed overlapped FFT.

where N is the FFT size and dol is the overlap ratio be-
tween 2 consecutive frames. Finally, the average energy
in each bin is calculated as

|S[k]|2 =

∑L
lc=1 |Slc [k]|2

Lc
(5)

where Lc is the number of the FFT frames.

2.2 Proposed Overlapped FFT

In this section, the proposed overlapped FFT scheme
using additional subframes are explained. The theo-
retical analysis on the variance of the squared noise
averaged over the FFT outputs and the circuit size of
the proposed scheme are also presented.

2.2.1 Frame Format

The proposed scheme includes additional FFT frames
to reduce the variance of the squared noise by increasing
the number of the FFT outputs for averaging. The new
frames are constructed from the same received signal.
However, those frames consist of multiple subframes
that come from the different parts of the received signal.
This is to reduce the correlation between the additional
frames and the conventional frames.

Fig. 3 shows the two different ways to collect the
samples for the new frames. One way is to divide the
frame to small subframes and each subframe picks up a
single sample from the received signal. The other one
divides it into only 2 subframes. In this case each sub-
frame is formed with the consecutive samples. These
two different formats of the subframes make a large dif-
ference on the frequency spectrum of the received signal
at the FFT outputs.

The frequency responses of the transmit filter em-
ployed in computer simulation with the 2 different
frame formats are shown in Fig. 4. The size of the
FFT is set to 16. If the frame is divided into 2 sub-
frames, the frequency response is close to the original.
On the other hand, if it is divided into 16 subframes, no
suppression in the out-of-band signal can be expected.
This causes the deterioration of the signal detection
probability. Thus, the proposed scheme uses the FFT
frames with 2 subframes.

2.2.2 Proposed Overlapped FFT

The signal detection with the proposed overlapped FFT
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Fig. 5 Frame placement of the proposed scheme.

scheme is presented in Fig. 5. In addition to the con-
ventional frames, new FFT frames are used to increase
the FFT outputs. The new frames are constructed as
shown in Fig. 5. The first subframe (A) overlaps with
the part of the conventional frame while the second
subframe (B) consists of the samples just after the first
conventional subframe. In this way, the correlation be-
tween the conventional and the additional frames can
be controlled with the length of the first subframe.

Therefore, the output on the kth FFT bin for the
lsth additional frame is given as

Sls [k]

=

N−dol−1∑
i=0

s[N(ls−1)(1−dol)+i]×exp

(
−j 2πik

N

)

+

N−1∑
i=N−dol

s[N(ls−1)(1−dol)+N+(i−N−dol−1)]

× exp

(
−j 2πik

N

)
(6)

where N is the FFT size and dol is the overlap ratio of
the conventional frames. In Eq. (6), the first term cor-

responds to the first subframe (A) and the second term
calculates the FFT output for the second subframe (B).

Finally, the average energy on the kth bin is cal-
culated as

|S[k]|2 =

∑Lc

lc=1 |Slc [k]|2 +
∑Ls

ls=1 |Sls [k]|2
Lc + Ls

(7)

where Lc and Ls are the number of the FFT outputs
of the conventional and additional frames.

2.3 Theoretical Analysis on Variance of Squared Noise

In this section the variance of the squared noise aver-
aged over the FFT outputs is theoretically evaluated.
The following theoretical analysis assumes that the in-
put of the detector only contains the noise. The out-
put of the detector in each FFT bin follows chi-square
distribution [9]. If the total number of the frames
L(= Lc + Ls) increases, the output after averaging ap-
proaches to correlated Gaussian distribution due to the
law of great numbers [9]. The joint probability density
function (PDF) is given as

p (S1[k], S2[k], ..., Sn[k]) (8)

=
1

(2π)L/2[detR[k]]1/2
exp

[
−1

2
S[k]TR[k]−1S[k]

]

where p(S1[k], S2[k], ..., Sn[k]) is the joint PDF of the
FFT outputs in the kth bin, S = [S1[k] S2[k] ... SL[k]]

T ,
and R[k] is the correlation matrix of the FFT outputs
in the kth bin, which is given as

R[k] =

⎛
⎜⎜⎜⎝

γ1,1[k] γ1,2[k] . . . γ1,L[k]
γ2,1[k] γ2,2[k] . . . γ2,L[k]

...
...

. . .
...

γL,1[k] γL,2[k] . . . γL,L[k]

⎞
⎟⎟⎟⎠ (9)

where γi,j is the correlation coefficient between the ith
and jth frames. This correlation matrix is a Hermitian
matrix and the eigenvalues are real values [10]. The
eigenvalues of R[k] are defined as

λ[k] = [λ1[k] λ2[k] . . . λL−1[k] λL[k]]
T

(10)

where λl is the lth eigenvalue. Finally, the sum of the
outputs from the detector is approximated by Gaussian
distribution with the following average and variance,

Average :
L∑

l=1

λl[k]σ
2, (11)

Variance :

L∑
l=1

2λl[k]
2
σ4, (12)

where σ2 is the variance of the noise, n(t). In computer
simulation, the threshold for signal detection is deter-
mined with the Gaussian approximation so that PFA

satisfies a predetermined value.
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The eigenvalues of the Hermitian matrix have a
relationship to the Frobenius norm of the matrix as
follows [10]:

||R[k]||F =

√√√√ L∑
i=1

L∑
j=1

|γi,j [k]|

=
√

tr(R[k] ∗R[k]) =

√√√√ L∑
l=1

λl[k]2. (13)

Thus, Eq. (12) can be rewritten as

Variance : 2

L∑
i=1

L∑
j=1

|γi,j [k]|σ4. (14)

Therefore, as the correlation between the frames re-
duces, the variance of the squared noise after averaging
decreases.

2.4 Circuit Size

The number of FFT frames per 1 frame duration in

Table 1 Simulation Conditions

Modulation QPSK / OFDM
Number of subcarriers 64

Number of data subcarriers 52
Transmit filter Fourier transform

of the spectrum mask
with hamming window

Filter length 50Ts

Filter bandwidth 20 MHz
Channel AWGN

Indoor Residential-A
Indoor Office-B

Observation period 24 μs
Sampling rate 40 MHz

FFT size 16
Window function Hamming window

PFA 0.1, 0.01
Detection bin 8

Number of trials 105

Freq.

Sampling rate 40 MHz

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16

2.5MHz

Carrier frequency

Transmitted signal bandwidth 20MHz

Detection bin

9

Fig. 8 Relationship between bandwidth and detection bin.

average is �N/(N − dOL)� in the conventional scheme
and 2�N/(N − dOL)� in the proposed scheme as shown
in Figs. 6 and 7 where �∗� means the maximum integer
less than ∗. Thus, if the processing speed of FFT is the
same as the frame duration, �N/(N−dOL)� FFT blocks
and 2�N/(N − dOL)� FFT blocks are required for real
time signal sensing in the conventional and proposed
schemes. Since an 802.11a/g WLAN receiver has an
FFT block with the size of 64, (64/N) FFT subblocks
with the size ofN are available. Thus, the circuit size in
terms of the number of FFT blocks increases �N/(N −
dOL)� × (N/64) times or 2�N/(N − dOL)� × (N/64)
times in the conventional and proposed schemes.

3. Numerical Results

3.1 Simulation Conditions

Table 1 shows the simulation conditions. The transmit
signal follows the format of the IEEE 802.11g standard.
The symbols are modulated with QPSK on each sub-
carrier. The number of the subcarriers and the number
of the data subcarriers are 64 and 52, respectively. The
tap coefficients of the transmit filter are calculated from
the 11g spectrum mask and a hamming window is mul-
tiplied to the inverse Fourier transform of the spectrum
mask. The filter length is 50Ts and the bandwidth is 20
MHz. As channel models, an AWGN channel as well as
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multipath fading channel models, Indoor Residential-A
and Indoor Office-B, are assumed [11]. As for the re-
ceiver, the observation period for signal sensing is set to
24 μs. The sample rate is 40 MHz and the size of FFT
is 16. PFA is set to 0.1 or 0.01 [12]. The 8th detection
bin is evaluated while the carrier frequency is located
in the middle of the 9th bin as shown in Fig. 8. The
number of trials is set to 105 for the numerical results.

3.2 Variance of the FFT Outputs without Signal

Figs. 9 and 10 show the relationship between the vari-
ance of the FFT outputs only with the noise and the
overlap ratio or the number of FFT processing. For
comparison, the variance of the squared noise after
averaging is normalized by that without overlapping.
The number of FFT processing is normalized by M/N ,

Table 2 Number of FFT Processing

Number of
FFT Processing Overlap Ratio

Proposed Scheme 314 10/16
Conventional Scheme 315 13/16
Conventional Scheme 945 15/16
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E S /N 0  [dB]

P
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Conventional Scheme OR=13/16
Conventional Scheme OR=15/16

Fig. 11 Probability of detection vs. SNR (PFA = 0.1), AWGN
channel.

where M is the number of the samples and N is the
size of FFT.

The variance of the squared FFT outputs only with
the noise is shown in Fig. 9. The variance is normal-
ized by the value without overlapping. As compared to
the conventional scheme, the proposed scheme reduces
the variance by about 0.15. This is because of the in-
crease of the number of the FFT frames. The variance
reduces monotonically as the overlap ratio increases in
the conventional scheme. On the other hand, the pro-
posed scheme shows the smallest value at the overlap
ratio of 10/16. When the overlap ratio increases, the
total value of the power of the correlation coefficients in
Eq. (14) increases and the variance also grows. Mean-
while, the overlap ratio of 0.5 also increases the total
sum of the power of the correlation coefficients. Thus,
the variance has the peak at the overlap ratio of 0.5.

With regards to Fig. 9, in the following simulations
we assume that the overlap ratio is 10/16 because it
shows the minimum variance. For the comparison, the
overlap ratio of 13/16 is chosen for the conventional
scheme since the number of FFT processing is almost
the same as that of the proposed scheme, as shown
in Table 2. It should be mentioned that, the overlap
ratio of 15/16 has also been evaluated and has given
the smallest variance in the conventional scheme.

3.3 Detection Probability on AWGN Channel

The numerical results on the AWGN channel are shown
in this section. The probability of false alarm, PFA, is
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Fig. 12 Probability of detection vs. SNR (PFA = 0.01),
AWGN channel.
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Fig. 13 ROC at Es/N0 = −9.5 dB, AWGN channel.

fixed to 0.1 or 0.01. Es/N0 ranges from -11 to -5 dB
where Es is the energy of the signal per symbol and N0

is the noise spectrum density.
Figs. 11 and 12 show the probability of detec-

tion, PD, versus the signal-to-noise ratio (SNR) for PFA

of 0.1 or 0.01. The detection probability of the pro-
posed scheme is better than that of the conventional
scheme on the whole range of Es/N0. In particular,
the proposed scheme improves the detection probabil-
ity by about 0.06 or 0.07 at PD = 0.9.

Fig. 13 shows the receiver operating characteristic
(ROC) curves for Es/N0 of −9.5 dB. The ROC also
improves with the proposed scheme. When PD of the
proposed scheme is 0.9, it is 0.05 higher than the prob-
abilities with the conventional scheme.

3.4 Detection Probability on Multipath Fading Chan-
nel Models

The numerical results on multipath fading channel
models are shown in this section.
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Fig. 14 Probability of detection vs. SNR (PFA = 0.1), Indoor
Residential-A channel model.
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Fig. 15 Probability of detection vs. SNR (PFA = 0.01), In-
door Residential-A channel model.

Figs. 14 and 15 show PD versus SNR for PFA of
0.1 or 0.01 on the Indoor Residential-A channel model.
Es/N0 ranges from -10 to 0 dB. The detection proba-
bility of the proposed scheme is better than that of the
conventional scheme on the whole range of Es/N0. In
particular, the proposed scheme improves the detection
probability by about 0.03 at PD = 0.9.

Fig. 16 shows the ROC curves for Es/N0 of −3
dB. The value of Es/N0 is fixed to the value when PFA

is fixed to 0.1 and PD of the proposed scheme becomes
0.9. The ROC also improves with the proposed scheme.
When PD of the proposed scheme is 0.9, it is 0.03 higher
than the probabilities with the conventional scheme.

3.5 Comparison of Indoor Residential-A and Indoor
Office-B Channel Model

In this paper, the performance on the Indoor
Residential-A channel model and the Indoor Office-B
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Fig. 17 Probability of detection vs. SNR (PFA = 0.1), com-
parison of Indoor Residential-A channel model and Indoor Office-
B channel model.
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Fig. 18 Probability of detection vs. SNR (PFA = 0.01), com-
parison of Indoor Residential-A channel model and Indoor Office-
B channel model.

channel model have been evaluated. The same ten-
dency of the performance curves can be observed on
both of the channel models. The slight difference in
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Fig. 19 Amount of delay vs. correlation between the frames
(8th bin).

the detection probability is found between those chan-
nel models. Figs. 17 and 18 show PD versus the SNR
for PFA of 0.1 or 0.01. The detection probability on the
Indoor Office-B channel model is degraded more than
that on the Indoor Residential-A channel model. It is
caused by the difference of the correlation between the
frames on those two channel models.

Fig. 19 shows the amount of delay versus the cor-
relation between the frames for the 8th bin on those
channel models. The correlation on the Indoor Office-
B channel model is higher than that on the Indoor
Residential-A channel model at the delay of less than
16Ts. This is because the delay spread of the Indoor
Office-B channel model is larger. As a result, the cor-
relation between the frames increases and the larger
correlation degrades the detection probability on the
Indoor Office-B channel model.

4. Conclusions

In this paper, the overlap FFT scheme for signal sens-
ing with the additional frames has been proposed. In
the proposed scheme in addition to the conventional
frames, the new frames are constructed to increase
the total number of the FFT outputs. The additional
frames are formed with the subframes that consist of
the different part of the received samples to reduce the
correlation to the conventional frames.

The variances of the power of the FFT outputs
without signal are theoretically analyzed for the con-
ventional and proposed schemes. When there is no
signal, the variance of the power of the FFT outputs
reduces in proportion to the overlap ratio in the con-
ventional scheme while there is the minimum point in
the proposed scheme.

By increasing the number of the frames the pro-
posed scheme improves the probability of detection by
about 0.07.

It has also been clarified that on the Indoor
Residential-A channel model and the Indoor Office-
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B channel model the proposed scheme improves the
probability of detection by about 0.03. In addition,
as the delay spread increases, the detection probability
reduces due to the correlation between the frames.
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