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Abstract

Road traffic is experiencing a drastic increase in recent years, thereby in-
creasing the every day traffic congestion problems, especially in metropolitan
areas. Governments are making efforts to alleviate the increasing traffic pres-
sure, being vehicular density one of the main metrics used for assessing the
road traffic conditions. However, vehicle density is highly variable in time
and space, making it difficult to be estimated accurately. Currently, most
of the existing vehicle density estimation approaches, such as inductive loop
detectors, or traffic surveillance cameras, require very specific infrastructure
to be installed on the road. In this paper, we present a novel solution to
accurately estimate the density of vehicles in urban scenarios. Our proposal,
that has been specially designed for Vehicular Networks, allows Intelligent
Transportation Systems to continuously estimate vehicular density by ac-
counting for the number of beacons received per Road Side Unit (RSU), and
also considering the roadmap topology where the RSUs are located. Simula-
tion results reveal that, unlike previous proposals solely based on the number
of beacons received, our approach accurately estimates the vehicular density,
and therefore our approach can be integrated within automatic traffic control-
ling systems to predict traffic jams, and thus introducing countermeasures.

Keywords: Vehicular Networks, vehicular density estimation, V2I
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1. Introduction

Enhancing transportation safety and efficiency has emerged as a major
objective for the automotive industry in the last decade (Stanica et al., 2011).
However, road traffic is experiencing a drastic increase, and vehicular traffic
congestion is becoming a major problem, especially in metropolitan environ-
ments throughout the world. In particular, traffic congestion: (i) reduces the
efficiency of the transportation infrastructure, (ii) increases travel time, fuel
consumption, and air pollution, and (iii) leads to increased user frustration
and fatigue (Tyagi et al., 2012).

Some of the factors affecting traffic congestion are badly managed and
poorly designed roads, as well as bad traffic lights sequencing (Tan and Chen,
2007). These factors negatively affect the traffic distribution on the roads,
making it possible to find extremely high congested areas where vehicles
travel very slowly or even get stuck.

Intelligent Transportation Systems (ITS) emerge as the technology that
can efficiently manage information on the road, being able to offer to drivers
a variety of added services such as safe, efficient, and smart driving.

In vehicular environments, wireless technologies enable peer-to-peer mo-
bile communication among vehicles (V2V) (Fogue et al., 2012b; Weiß, 2011),
as well as communication between vehicles and the infrastructure (V2I)
(Soldo et al., 2008; Vales-Alonso et al., 2011). Vehicles can broadcast warn-
ing messages in case of an accident, and also periodically exchange other
messages (beacons) that contain information about their position, speed, or
route. These messages are received not only by nearby vehicles, but also by
Road Side Units (RSUs), distributed along the infrastructure.

The specific characteristics of vehicular networks favor the development
of attractive and challenging services and applications (Chao et al., 2010;
Martinez et al., 2009). Though traffic safety has been the primary motive
for the development of these kind of networks (Santa et al., 2010), VNs also
facilitate applications such as managing traffic flow, monitoring the road
conditions, offering mobile applications, providing environmental protection,
and infotainment, (Chen et al., 2010; Bekris et al., 2009; Gonzalez et al.,
2011). However, most of these applications could be more efficient designed
if the protocols involved became aware of the density of vehicles at any given
time, being able to adapt their behavior according to this critical factor
(Maslekar et al., 2011).

Traditionally, vehicle density has been one of the main metrics used for
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assessing road traffic conditions. A high vehicle density usually indicates
congested traffic; however, the density of vehicles in a city highly varies de-
pending on the area and the time during the day. Thus, knowing the density
of a vehicular environment is important since it allows both estimating the
level of traffic congestion, while improving ITS services by using the wireless
channel more efficiently (Shirani et al., 2009).

Currently, most of the vehicle density estimation approaches are designed
to use very specific infrastructure-based traffic information systems, which
require the deployment of vehicle detection devices such as inductive loop
detectors, or traffic surveillance cameras (Tan and Chen, 2007; Balcilar and
Sonmez, 2008; Thakur et al., 2011). However, these approaches are limited
since they can only be aware of traffic density in a priori selected areas (i.e.,
the streets and junctions in which these devices are already located), making
it difficult to estimate the vehicular density along a whole city. In addition,
some of these approaches are not able to perform accurate estimations in real
time (e.g., using cameras involves hard image treatment and analysis).

Other existing works propose to estimate the traffic density using V2V
communications (Stanica et al., 2011; Sanguesa et al., 2013). These proposals
allow vehicles to know density information about their neighborhood, but
they can not obtain traffic information about the rest of the scenario. Hence,
these vehicles are unable to obtain the best route avoiding traffic jams. This
problem could be solved by adding some infrastructure elements, since this
solution allows using the traffic information obtained by the infrastructure
nodes, with the aim of reducing traffic jams.

In this work, we present a solution to estimate traffic density on the roads
that relies on the V2I communication capabilities offered by Vehicular Net-
works. Unlike previous proposals, our approach allows ITS to continuously
estimate the vehicular density in a given area by accounting for the number
of beacons received per RSU, as well as the roadmap topology where the
vehicles are located.

The rest of this paper is organized as follows: Section 2 motivates our
proposal by discussing the importance of traffic congestion. Section 3 details
our proposal for V2I-based real-time vehicular density estimation, assess-
ing its goodness. Additionally, we discuss the obtained results and measure
the estimated error. In Section 4 we validate our proposal by simulating
three particular scenarios, showing that it performs well and is able to accu-
rately estimates the vehicular density. In Section 5 we compare our proposal
with two beacon-based approaches, where the estimated vehicular density is
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based only on the number of beacons received. Section 6 reviews previous
approaches related to our work, focusing on infrastructure-based solutions
to estimate traffic density, and density-aware systems to avoid traffic jams.
Finally, Section 7 concludes this paper.

2. Motivation

Transportation plays an important role in the economic growth and pro-
ductivity of countries. When transportation systems are efficient, they pro-
vide economic and social opportunities, as well as benefits that result in pos-
itive multiplier effects such as better accessibility to markets, employment,
and additional investments. On the contrary, when transport systems are
deficient in terms of capacity or reliability, they can have an economic cost
such as reduced or missed opportunities. Efficient transportation reduces
costs, while inefficient transportation increases them (Rodrigue and Notte-
boom, 2012). For this reason, traffic congestion problems have been studied
for a long time, mainly to relieve traffic jams and to increase transportation
efficiency.

The number of vehicles in our roads is drastically increasing, especially
in developing countries such as India, China, or Brazil. In addition, these
vehicles tend to be concentrated in large urban areas which present a large
population. Traffic jams have important and negative consequences such as
increasing travel time, fuel consumption, and air pollution. According to the
Texas Transportation Institute in their 2010 Urban Mobility Report (Schrank
et al., 2010), congestion caused urban Americans to travel 4.8 billion hours,
and to purchase an extra 3.9 billion gallons of fuel for a cost of $115 billion.
On average, the yearly peak period delays caused by traffic congestion for
the average commuter was 34 hours, and the cost to the average commuter
has increased by 230% in only two decades. Additionally, according to the
World Health Organization1, one of the most important polluting factors in
the world comes from the fossil minerals combustion in vehicles.

Therefore, in the past ten years, governments have been making great
efforts to alleviate the increasing traffic pressure, e.g., the Chinese govern-
ment is trying to strengthen the traffic infrastructure. However, the number
of vehicles on the roads is growing faster, making the current road network

1http://www.who.int
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capacity insufficient, and thereby causing the traffic congestion phenomenon
to become a growing problem. Fortunately, effective traffic management,
through the prediction of traffic status based on the implementation of large-
scale flow controlling methods, are effective measures for mitigating traffic
jams (Ye et al., 2008).

We seek to go a step further, since we consider that a vehicular commu-
nications system able to estimate the traffic density in real-time could really
mitigate or even solve these problems. The main objective of this paper is
to propose a mechanism which allows estimating the density of vehicles in a
specific area by using infrastructure-based Vehicular Networks. In particular,
we estimate the density by taking into account the number of beacons re-
ceived by the RSUs, and the characteristics of the roadmap topology. Hence,
real-time traffic controlling systems can precisely estimate the vehicular den-
sity in a specific area, and then redirect vehicles to lower traffic density areas
in order to avoid traffic jams. This could be possible by using the in-vehicle
communication capabilities and navigation systems, requirements which are
currently fulfilled by most of the vehicles in many countries.

3. Real-Time Vehicular Density Estimation

In this work we propose a technique that is able to accurately estimate
the density of vehicles based on two parameters: (i) the number of beacons
received by RSUs, and (ii) the roadmap topology. In order to find the best
possible approach, we perform a total nearly 2000 simulations. Experiments
involving a wide variety of controlled urban scenarios, where the actual den-
sity is known. According to the obtained results, and using a regression
analysis, we propose a density estimation function capable of estimating in
real time the vehicular density in urban environments. In this section we
start by presenting a discussion about the most important features of urban
roadmaps. Then, we present the main parameters and the selected methodol-
ogy, and finally, based on the obtained results, we detail our proposed density
estimation function, assessing its accuracy.

3.1. Features of the Cities Studied

The roadmaps used during the experiments to obtain our density estima-
tion approach were selected in order to have different profile scenarios (i.e.,
with different topology characteristics).
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Table 1: Number of Streets obtained depending on the approach used.
City SUMO OSM RAV

New York 700 827 257
Minnesota 1592 105 459
Madrid 1387 1029 628

San Francisco 1710 606 725
Amsterdam 3022 796 1494

Sydney 1668 315 872
Liverpool 3141 1042 1758
Valencia 5154 1050 2829
Rome 2780 1484 1655

The first step before starting the simulations was to obtain the main fea-
tures for each roadmap (i.e., the number of streets, the number of junctions,
the average segment size, and the number of lanes per street). As for the
number of streets, we realized that different alternatives could be selected
to obtain the number of streets of a given roadmap. Basically, there are
three alternatives: (i) the number of streets obtained in SUMO (Krajzewicz
and Rossel, 2012), where each segment between two junctions is considered a
street, (ii) the number of streets obtained in OpenStreetMap (OSM) (Open-
StreetMap, 2012), where each street has a different ”name”, and (iii) the
number of streets according to the Real Attenuation and Visibility (RAV)
(Martinez et al., 2013) radio propagation model, where vehicles can only ex-
change information if they are in line-of-sight (i.e., visibility means that there
are no obstacles blocking the wireless signal between the vehicles).

Figure 1 shows a small portion of New York City to depict the different
criteria when counting the number of streets. For example, Thames Street
is considered only one street in OSM, whereas the SUMO and RAV models
consider that there are two different streets instead. However, if we observe
Cedar Street, the RAV visibility model and the OSM approaches consider a
single street (as expected), whereas it is represented by three different streets
according to SUMO, since it has three different segments. Finally, according
to both the OSM and SUMO approaches, Trinity Place and Church Street
are represented as two different streets, whereas the RAV model considers
that only one street exists.

Table 1 shows the the number of streets for the selected cities according
to the three different criteria. As shown, the differences between these ap-
proaches are significant (e.g., New York has 700, 827, or 257 streets when
considering SUMO segments, OSM streets, or the RAV visibility approach,
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Figure 1: Different criteria when counting the number of streets.

respectively, whereas Sydney has 1668, 315, or 872 streets, depending on
the selected criterion). Therefore, it is important to decide which one to
use in order to obtain accurate results. By analyzing experimental results,
we realized that the RAV approach better correlated with the real features
of cities. In fact, a street must not be considered as a graph lane between
two junctions (SUMO) or different lanes with the same name (OSM), since
this consideration does not take into account the visibility between vehicles.
In terms of communication links, we can not consider that two vehicles are
circulating in the same street if there is no wireless communication between
them.

Table 2 shows the main features of each map for the cities under study.
Specifically, we obtained the number of streets according to the RAV model,
the number of junctions directly extracted from the graph (junctions are the
intersection point between segments), the average segment size (segments are
graph lines which link two junctions), and the number of lanes per street.
We also added a column labeled as SJ Ratio, which represents the result
of dividing the number of streets between the number of junctions, thereby
indicating the roadmap complexity. As shown, the first city (New York)
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Table 2: Map Features
Map Streets Junctions avg. segment size (m.) lanes/street SJ Ratio

New York 257 500 45.8853 1.0590 0.5140
Minnesota 459 591 102.0652 1.0144 0.7766
Madrid 628 715 83.0820 1.2696 0.8783

San Francisco 725 818 72.7065 1.1749 0.8863
Amsterdam 1494 1449 44.8973 1.1145 1.0311

Sydney 872 814 72.1813 1.2014 1.0713
Liverpool 1758 1502 49.9620 1.2295 1.1704
Valencia 2829 2233 33.3653 1.0854 1.2669
Rome 1655 1193 45.8853 1.0590 1.3873

presents a SJ ratio of 0.5130, which indicates that it has a simple topology,
whereas the last cities in the table present a greater SJ value, which indicates
a more complex topology. As shown in Section 3.3, this aggregated factor
correlates well with the obtained results.

The roadmap topology where the vehicles are located not only constrains
vehicles movements, but it also has a great influence on the V2V and V2I
communication capabilities (Fogue et al., 2012b) . Thus, a wide set of maps
with different complexities are going to be used in order to obtain and validate
our traffic density estimation system.

3.2. Simulation Environment

All the simulations performed in this work were done using the ns-2 sim-
ulator (Fall and Varadhan, 2000), where the PHY and MAC layers have
been modified to closely follow the IEEE 802.11p standard, which defines
enhancements to 802.11 required to support ITS applications. We assume
that all the nodes are equipped with an IEEE 802.11p interface tuned at the
frequency of 5.9 GHz for both V2V and V2I communications.

In terms of the physical layer, the data rate used for packet broadcasting
is 6 Mbit/s, as this is the maximum rate for broadcasting in 802.11p. The
MAC layer was also extended to include four different priorities for channel
access. Therefore, application messages are categorized into four different
Access Categories (ACs), where AC0 has the lowest and AC3 the highest
priority.

To prove how maps affect the performance of vehicular communications,
we selected nine street maps, each one representing a square area of 4 km2.
Figure 2 shows the topology of the maps used in the simulations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Scenarios used in our simulations. Fragments of the cities of: (a) New York
(USA), (b) Minnesota (USA), (c) Madrid (Spain), (d) San Francisco (USA), (e) Amster-
dam (Netherlands), (f) Sydney (Australia), (g) Liverpool (England), (h) Valencia (Spain),
and (i) Rome (Italy).
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Table 3: Parameters used for the simulations
Parameter Value

New York, Minnesota, Madrid,
roadmaps San Francisco, Amsterdam, Sydney,

Liverpool, Valencia, and Rome
roadmap size 2000m × 2000m
number of vehicles [100, 200, 300...1000]
number of collided vehicles 2
warning message size 13 and 18KB
beacon message size 512B
warning messages priority AC3
beacon priority AC1
interval between messages 1 second
number of RSUs 9
RSU deployment policy Uniform Mesh
MAC/PHY 802.11p
radio propagation model RAV
mobility model Krauss
channel bandwidth 6Mbps

max. transmission range 400m

In order to deploy RSUs in the maps, we used the Uniform Mesh deploy-
ment policy (Barrachina et al., 2012a), that consists on distributing RSUs
uniformly on the map. The advantage of this deployment policy is that it
achieves a more uniform coverage area since the distance between RSUs is
the same, preventing RSUs to be deployed too closely, or too sparsely. As for
the mobility model, it has been obtained with CityMob for Roadmaps (C4R)
(Fogue et al., 2012a), a mobility generator able to import maps directly
from OpenStreetMap (OpenStreetMap, 2012), and generate ns-2 compatible
traces. Table 3 shows the parameters used for the simulations.

To estimate our traffic density function, we consider a Warning Message
Dissemination mechanism, where each vehicle periodically broadcasts infor-
mation about itself or about abnormal situations (traffic jams, icy roads,
etc.). To increase the realism of our results, we include the possibility that
vehicles share accident notification messages in our simulations. In fact, we
consider that vehicles can operate in two different modes: (i) warning, and (ii)
normal. Vehicles in warning mode inform other vehicles about their status
by sending warning messages periodically (every second). Therefore, these
warning messages significantly congested the channel. Normal mode vehicles
enable the diffusion of these warning packets and, in addition, every second
they also send beacons with information such as their positions, speed, etc.
These periodic messages are not propagated by other vehicles. We simulated
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Figure 3: Number of beacons received when varying the vehicular density and the roadmap.

a frontal impact scenario where two vehicles are involved. The warning mes-
sages exchanged between vehicles and RSUs are built according the Vehicular
Accident Ontology (VEACON) (Barrachina et al., 2012b), which provides a
standard structure which enables data interoperability among all the different
entities involved in transportation systems.

All the results represent an average of over 20 runs with different scenarios
(maximum error of 10% with a degree of confidence of 90%).

3.3. Density Estimation Function

After performing the topological analysis of the selected city maps, we
obtained the average number of beacons received by each RSU along a period
of 30 seconds, taking into account that each vehicle sends one beacon per sec-
ond, and that these messages, unlike warning messages, are not disseminated
by the rest of the vehicles.

Figure 3 shows the obtained results for the different cities studied. As
shown, the performance in New York and Minnesota in terms of number of
beacons received highly differs from the rest of the cities. This is caused
because New York and Minnesota have a low SJ ratio (i.e., they present
regular roadmaps).

11



Table 4: Coefficients of our Proposed Density Estimation Equation
Coeff. Value

a 2.3037584774238823E+02
b 1.9069648769466475E+01
c -4.2946130569906342E+02
d 3.1880957532509228E+01
f 1.8795302200929001E+02
g -6.8125878716641097E+01

As expected, complex roadmaps (maps which have a higher SJ Ratio)
present a number of beacons received lower than regular roadmaps for a
similar vehicular density, since the effect that buildings have over the signal
propagation is higher in complex maps. Figure 3 also shows that the vehic-
ular density not only depends on the number of beacons received, but also
on the SJ ratio (according to data shown in Table 2). Therefore, the char-
acteristics of the roadmap will be very useful in order to accurately estimate
the vehicular density in a given scenario.

After observing the direct relationship between the topology of the maps,
the number of beacons received, and the density of vehicles, we proceed to
obtain a function to estimate, with the minimum possible error, each of the
curves shown in Figure 3. To this end, we performed a regression analysis
that allowed us to find an equation offering the best fit to the data obtained
through simulation. Specifically, we used the ZunZun application (ZunZun,
2012) which provides different equations using regression analysis. We select
Equation 1 as a density estimation function, since it obtained the smallest
relative error. This proposed function is able to estimate the number of
vehicles per km2 in urban scenarios, according to the number of beacons
received per RSU, and the SJ ratio (i.e., streets/junctions) of the selected
roadmap.

f(x, y) = a+ b · ln(x) +
c

y
+ d · ln(x)2 +

f

y2
+

g · ln(x)

y
(1)

In this equation, f(x, y) is the number of vehicles per km2, x is the average
number of beacons received by each RSU, and y is the SJ ratio obtained from
the roadmap. The values of the coefficients (a, b, c, d, f, and g) are listed in
Table 4. Figure 4 shows the 3-dimensional representation of the proposed
equation.

To determine the accuracy of our proposal, we proceed to measure the
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Figure 4: 3D representation of our density estimation function.

estimated error. Table 5 shows the different errors when comparing our
density estimation function with the values actually obtained by simulation.
Note that the average relative error is of only 3.04%, which we consider
accurate enough to validate our proposed approach.

In this work, we also tested other possible functions that can be used in
our vehicular density estimation approach. Equation 2 presents one of the
alternative equations we obtained. However, in terms of accuracy, the average
relative error is of 8.45%, while the first function presents a lower value
(3.04%). Additionally, the Sum of Squared Errors (SSE) for the absolute
error relative to this function is of 5.8344E+04, while the first approach
presents a lower value (4.7003E+04). Thus, we considered adequate to use
the first equation in our approach.

f(x, y) = a · (dx+ f)b · (gy + h)c (2)
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Table 5: Density Estimation Error of our Proposed Equation
Error Absolute Relative

Minimum -5.399392E+01 -1.224762E+00
Maximum 4.837353E+01 1.696793E+00

Mean 2.848487E-13 3.041071E-02
Std. Error of Mean 2.422418E+00 3.542728E-02

Median 2.370528E-01 1.583324E-03

4. Validation of our Proposal

To assess our proposed density estimation function, we chose four partic-
ular cases. Specifically, we simulated: (i) a density of 100 vehicles per km2

in Rome, the city with the highest SJ Ratio (ii) a density of 250 vehicles per
km2 in San Francisco, a city with an intermediate SJ Ratio, (iii) a density of
200 vehicles per km2 in New York, the city with the lowest SJ Ratio, and (iv)
a density of 200 vehicles per km2 in Mexico D. F., a city that was not used
to obtain our density estimation function, which has a SJ Ratio of 0.7722.

Figure 5 shows the RSU deployment strategy and the vehicles’ location at
the end of the simulation for the studied scenarios, whereas Table 6 shows the
obtained results. We observe that the average number of beacons received per
RSU is of 8.78, 52.67, 68.78, and 47.56 in Rome, San Francisco, New York,
and Mexico D. F., respectively. These values obtained are highly affected by
the vehicular density, as well as the roadmap topology. Note that, although
the vehicular density simulated in New York is lower than the one simulated
in San Francisco, more beacons are received per RSU. This is caused by the
lower SJ Ratio, since the roadmap topology of New York is simpler than San
Francisco, thus allowing a better wireless signal propagation, as well as the
reception of more messages by the RSUs.

According to our proposal (i.e., applying the function shown in Equation
1), our system estimates a density of 103.68, 256.95, 196.87, and 196.91 ve-
hicles, respectively (see Equations 3, 4, 5, and 6). Therefore, our vehicular
density estimation approach accurately resembles the actual density, present-
ing an error of 3.68, 6.95, 3.13, and 3.09 vehicles, which only represents the
3.68%, the 2.78%, the 1.57%, and the 1.55% of the total vehicles. Results
also indicate that our proposed density estimation functions allows to prop-
erly calculate the estimated traffic density in cities which were not used to
tune our estimation function (e.g., Mexico D. F.).
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(a) (b)

(c) (d)

Figure 5: RSUs deployment and vehicles location at the end of the simulation in the
cities of: (a) Rome, (b) San Francisco, (c) New York, and (d) Mexico D.F. Solid squares
represent the vehicles, and the triangles represent the RSUs.
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Table 6: Beacons received when simulating 250 vehicles/km2 in San Francisco, and 200
vehicles/km2 New York

RSU Rome San Francisco New York Mexico D. F.
number Received % of rec. Received % of rec. Received % of rec. Received % of rec.

beacons beacons beacons beacons beacons beacons beacons beacons

1 10 12.66 38 8.02 65 10.50 54 12.62

2 11 13.92 69 14.56 68 10.99 46 10.75

3 6 7.59 32 6.75 50 8.08 43 10.05

4 14 17.72 50 10.55 68 10.99 68 15.89

5 6 7.59 46 9.7 84 13.57 48 11.21

6 6 7.59 72 15.19 72 11.63 38 8.88

7 10 12.66 31 6.56 58 9.37 48 11.21

8 10 12.66 66 13.92 92 14.86 46 10.75

9 6 7.59 70 14.77 62 10.02 37 8.64

Total 79 100 474 100 619 100 428 100

Average 8.78 - 52.67 - 68.78 - 47.56 -

f(x, y) = a+ b · ln(8.78) +
c

1.3873
+ d · ln(8.78)2 +

f

1.38732
+ g ·

ln(8.78)

1.3873
= 103.68 (3)

f(x, y) = a+ b · ln(52.67) +
c

0.8863
+ d · ln(52.67)2 +

f

0.88632
+ g ·

ln(52.67)

0.8863
= 256.95 (4)

f(x, y) = a+ b · ln(68.78) +
c

0.5140
+ d · ln(68.78)2 +

f

0.51402
+ g ·

ln(68.78)

0.5140
= 196.87 (5)

f(x, y) = a+ b · ln(47.56) +
c

0.7722
+ d · ln(47.56)2 +

f

0.77222
+ g ·

ln(47.56)

0.7722
= 196.91 (6)

Moreover, using our system, we demonstrated that we are able to estimate
the vehicular density in more specific areas. For example, using the data
included in Table 6, our system can identify areas where the traffic is more
congested (i.e., areas where the RSUs receive a higher percentage of beacons).
For example, in the case of San Francisco, RSUs 2, 6, and 9 received a
higher number of beacons compared to RSUs 1 and 7. According to these
results, an automatic traffic control system could take advantage from V2I
communication capabilities, adapting the vehicles’ routes in order to redirect
vehicles traveling in more congested areas to those areas where the RSUs
receive a lower number of messages (i.e., less congested), thus avoiding traffic
jams.
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5. Comparing our proposal with previous Beacon-based Approaches

Other vehicular density estimation proposals (e.g., (Maslekar et al., 2011),
and (Stanica et al., 2011)) take only into account the number of beacons
received, while omitting any data related to the map topology where the
vehicles are located at. In order to assess the importance of the topology, we
compared our proposal with a beacon-based approach, where the vehicular
density is estimated only by using the number of beacons received. To make
a fair comparison, we followed the same methodology in both approaches
(i.e., we also made a regression analysis to obtain an equation capable of
estimating the vehicular density, but in this case the estimation is solely
based on the number of beacons received).

We tested several density estimation functions which are only based on
the number of beacons received, trying to obtain the lowest value for the
Sum of Squared Errors (SSE). In particular, we obtained the quintic poly-
nomial function shown in Equation 7, and the logarithmic function shown in
Equation 8.

f(x) = a + bx+ cx2 + dx3 + fx4 + gx5 (7)

f(x) = a+ b · ln(dx) + c · ln(dx)2 (8)

Figure 6 shows a comparison of the estimated values with the simulation
results obtained for the cities of Rome, San Francisco, and New York. The
results confirm that our function provides more accurate results, presenting
a low value for the Sum of Squared Errors (i.e., 4.7003E+04), whereas the
beacons-based functions present a Sum of Squared Errors value of 1.8993E+05
(for the polynomial) and 2.0161E+05 (for the logarithmic), i.e., one order of
magnitude higher than our proposal.

As shown, our approach achieves a very good fit in the three cities stud-
ied, since it adjusts the estimation made, by accounting not only for the
number of beacons received, but also for the features of the maps where
the vehicles are located. On the contrary, those approaches that only take
into account the number of beacons received are prone to provide inaccurate
estimations. Specifically, they overestimate the number of vehicles in high
density complex environments, despite being able to correctly estimate lower
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Figure 6: Comparison between our approach with respect to simulated and estimated
results for beacon based density estimation function.

densities in complex maps, and higher densities in simple maps. Therefore,
the advantages of using our vehicular density estimation proposal are clear
in terms of accuracy.

6. Related Work

In this section we review previous works related to our proposal. In par-
ticular, we focus on: (i) infrastructure-based solutions to estimate traffic
density, and (ii) density-aware systems designed to reduce traffic jam situa-
tions in urban areas.

6.1. Infrastructure-based Solutions to Estimate Traffic Density

Despite the importance of determining vehicular density to reduce traffic
congestion, so far only a few studies have explored the density estimation
process.

Tyagi et al. (2012) considered the problem of vehicular traffic density es-
timation, using the information available in the cumulative acoustic signal
acquired from a roadside-installed single microphone. This cumulative signal
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comprises several noise signals such as tire noise, engine noise, engine-idling
noise, occasional honks, and air turbulence noise of multiple vehicles. The
occurrence and mixture weightings of these noise signals are determined by
the prevalent traffic density conditions on the road segment. Based on these
learned distributions, they used a Bayes’ classifier to classify the acoustic sig-
nal segments spanning a duration of 5-30 s. Using a discriminative classifier,
such as a Support Vector Machine (SVM), results in further classification
accuracy compared to a Bayes’ classifier.

Tan and Chen (2007) proposed a novel approach based on video analy-
sis which combines an unsupervised clustering scheme called AutoClass with
Hidden Markov Models (HMMs) to determine the traffic density state in a
Region Of Interest (ROI) of a road. Firstly, low-level features were extracted
from the ROI of each frame. Secondly, an unsupervised clustering algorithm
called AutoClass was applied to the low-level features to obtain a set of clus-
ters for each pre-defined traffic density state. Finally, four HMM models were
constructed for each traffic state, respectively, with each cluster correspond-
ing to a state in the HMM; the structure of the HMM is determined based
on the cluster information.

Shirani et al. (2009) presented the Velocity Aware Density Estimation
(VADE). In VADE, a car estimates the density of neighboring vehicles by
tracking its own velocity and acceleration pattern. An opportunistic for-
warding procedure, based on VADE estimation, was also proposed. In this
procedure, data forwarding is done when the probability of having a neigh-
bor is high, which dramatically reduces the probability of messages being
dropped.

Maslekar et al. (2011) claimed that clustering has demonstrated to be
an effective concept to implement the estimation of vehicular density in the
surroundings. However, due to high mobility, a stable cluster within a ve-
hicular framework is difficult to implement. In this work, they proposed a
direction based clustering algorithm with a clusterhead switching mechanism.
This mechanism aims at overcoming the influence of overtaking within the
clusters.

Other authors use the Kalman filtering technique for the estimation of
traffic density. For example, Balcilar and Sonmez (2008) estimate traffic
density based on images retrieved from traffic monitoring cameras operated
by the Traffic Control Office of Istanbul Metropolitan Municipality. To this
end, they use a Kalman filter-based background estimation which can effi-
ciently adapt itself to environmental factors such as light changes. However,
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this approach requires the density estimation procedures to be applied to
the road areas manually marked beforehand. More recently, Anand et al.
(2011) proposed a method that also uses the Kalman filtering technique for
estimating traffic density. In particular, they propose using the flow values
measured from video sequences and the travel time obtained from vehicles
equipped with a Global Positioning System (GPS). They also report density
estimations using flow and Space Mean Speed (SMS) obtained from location
based data, using the Extended Kalman filter technique.

All these previous works established the importance of vehicular density
awareness for neighboring areas, but none has deepened in the analysis of
the accuracy of the method used to estimate this density, or the impact
that topology has on the obtained results. Moreover, the vehicular density
estimation does not always take place in real time, and the majority of them
require specialized infrastructure devices. In addition, neither method can
obtain an specific sub-area traffic density, being only focused on the scenario
as a whole.

6.2. Density-aware Systems Designed to Avoid Traffic Jams

Regarding systems designed to avoid traffic congestion based on vehicular
density awareness, Hattori et al. (1999) simulated the traffic flow consider-
ing the capacity of the road by using a cellular automaton method. They
controlled several traffic flow cases, and presented three useful results of this
control method. The first one is a dispersion of traffic flow and exhaust gas,
the second one is a reduction of CO gas, and the third one is an increase of
the transportation efficiency.

Bedi et al. (2007) proposed the Dynamic System for Avoiding Traffic Jam

(DSATJ), inspired in Ant Colony Optimization (ACO) algorithms, which
aims at choosing an alternative optimum path to avoid traffic jams. In their
proposal, traffic jams are detected through pheromone values on edges. Their
experiments were carried out with the partial road map of the North-West
region of Delhi (India), to observe the performance of their approach.

Yin et al. (2008) presented an urban traffic congestion dynamic prediction
method based on an advanced fuzzy clustering model. Additionally, they
used fuzzy cluster analysis methods to analyze six different groups of relevant
parameters related to traffic jams, which allow researchers to classify and
rank them.

Thakur et al. (2011) studied the possibility of applying robust data min-
ing and knowledge discovery techniques on traffic data gathered by on-line
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vehicular traffic cameras to identify potential bottlenecks. Their resulting
dataset is a collection of vehicular mobility traces captured during several
months from 2709 traffic webcams in ten different cities across the world
(this collection consists of 7.5 Terabytes of data with 125 million vehicular
images). They also collected driving distance and time between geocoordi-
nate pairs of street intersections for these cities, and applied spatio-temporal
data mining techniques to profile these global cities. Their study helps to
shed light on causes of contention in traffic jams, and provides an insight into
the resolution to traffic congestion, or the possibility to plan and develop fu-
ture cities.

More recently, Sanguesa et al. (2013) proposed a V2V-based mechanism
to estimate the vehicular density in urban environments. Their mechanism
also uses as input parameters the number of beacons received per vehicle,
and the topological characteristics of the environment where the vehicles are
located. Their approach allows vehicles to accurately estimate two kinds
of vehicular densities: (i) their specific neighborhood density, and (ii) the
overall traffic density of the scenario. However, unlike our proposal, vehicles
can not obtain traffic information about other areas of the scenario. Thus,
vehicles are unable to obtain the best route avoiding traffic jams.

As shown, different solutions with the aim of adopting traffic redistribu-
tion to avoid traffic congestion have been proposed. In this paper we propose
a solution able to estimate the density of vehicles in real-time by using the
communication capabilities between vehicles and RSUs. Using our system,
a traffic jam can be predicted, hence allowing traffic controlling systems to
anticipate their solutions.

7. Conclusions

This paper proposes a method that allows estimating the vehicular den-
sity in urban environments at any given time by using V2I communications.
Our proposal allows improving proactive traffic congestion mitigation mech-
anisms to better redistribute vehicles’ routes, while adapting them to the
specific traffic conditions.

Our vehicular density estimation algorithm takes into account not only
the number of beacons received by the RSUs, but also the topology of the
map where the vehicles are located. We demonstrate how our approach
is able to accurately predict the vehicular density. Results show that it
allows estimating the vehicular density for any given city with high accuracy,
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thereby allowing governments to improve their traffic control mechanisms.
Finally, we compare our proposal with respect to two different approaches
that are solely based on beacons, proving the high efficiency of our approach
when tested in a wide variety of vehicular scenarios.
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