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Abstract— The integration of everyday objects into the Internet represents the 

foundation of the forthcoming Internet of Things (IoT). Such “smart” objects will 

be the building blocks of the next generation of applications that will exploit 

interaction between machines to implement enhanced services with minimum or no 

human intervention in the loop. A crucial factor to enable Machine-to-Machine 

(M2M) applications is a horizontal service infrastructure that seamlessly integrates 

existing IoT heterogeneous systems. The authors present BETaaS, a framework that 

enables horizontal M2M deployments. BETaaS is based on a distributed service 

infrastructure built on top of an overlay network of gateways that allows seamless 

integration of existing IoT systems. The platform enables easy deployment of 

applications by exposing to developers a service oriented interface to access things 

(the Things-as-a-Service model) regardless of the technology and the physical 

infrastructure they belong. 

 
Index Terms— IoT platforms, M2M, Local cloud, Fog computing, Context-awareness 

I. INTRODUCTION

HE  recent advancements in embedded computing and sensor technologies are turning the Inter-

net of Things into reality. Many solutions commercially available today exploit networked 

“smart” objects to provide end-users with advanced services connected to the physical world. Such 

solutions are however often vertical, isolated, systems based on ad-hoc HW/SW realizations which 

are not able to cooperate with each other to share common smart object capabilities. Isolation is not 

the only drawback: from a software developer perspective, the lack of a common software fabric to 

interact with smart objects entails great limitations on software portability and maintenance [1].  

To overcome such limitations, a layered horizontal approach is by far more appropriate and desira-

ble, since it eases the integration of heterogeneous existing systems, and also facilitates the devel-

opment of IoT applications based on a unified interface to a converged infrastructure. In fact, sever-

al horizontal IoT platforms have been recently designed and developed exposing standard interfaces 

T 
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to access smart objects. Most of these solutions are characterized by a centralized cloud-based ap-

proach, which yields the usual benefits in terms of scalability (potentially infinite computation and 

storage capacity), ease of maintenance, time to market and low development costs. 

On the other hand, running an IoT platform in a cloud infrastructure deployed far from where the 

smart objects are physically located may result in a sub-optimal choice for many classes of IoT ap-

plications, e.g., Machine-to-Machine (M2M) ones, which typically have a limited scope in time and 

space (data need to be processed only when and where it is generated), require simple and repetitive 

closed-loop interactions, and often must respond with stringent latency guarantees to avoid service 

disruption. 

As a practical example, consider a confined environment like a smart home with a number of al-

ready deployed M2M systems, such as an alarm system equipped with presence sensors for surveil-

lance, an environmental control system including temperature sensors for heating and cooling con-

trol as well as light switch actuators, and a garden watering system with humidity sensors. In this 

scenario, one might want to deploy and run an all-in-one IoT platform to enable the development of 

new applications leveraging sensors and actuators from all the available M2M systems. Solutions 

relying on centralized cloud storage and computational capabilities would obviously require contin-

uous connection and data offloading towards remote external systems, even to support applications 

that only need to exploit data generated locally. Moreover, a centralized architecture fails to support 

applications that require proximity to physical deployments. As an example, an application for home 

security would very much increase its effectiveness at a minimum cost if, in case of an alarm event, 

it could also directly control the smart lights available at home as part of a different system. This 

however requires real-time interaction with the latter and accurate context collection, which can be 

guaranteed only by a fully local deployment. 

BETaaS, Building the Environment for the Things-as-a-Service –a European project funded under 

the 7th Framework Programme– aims at overcoming such limitations through the creation of a hori-

zontal runtime platform. A distinctive and novel feature of the BETaaS platform is its architecture, 

which is based on a distributed runtime environment made of a so-called local cloud of nodes that 

allows accessing smart objects connected to the platform regardless of their technology and physical 

location. The distributed environment can be installed on devices such as network gateways, home 

routers, set-top boxes, etc. characterized by heterogeneous storage and computational capabilities, 

generically hereafter referred shortly as gateways. Such architecture does not only enable the de-

ployment of private/isolated platforms but also allows applications to run close to the IoT physical 

deployments, with a scope that can span over different domains by means of direct interaction 

among gateways. The proximity between applications and smart objects is of paramount importance 

as a crucial enabler for M2M applications that rely on timed and fresh information from smart ob-
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jects. 

On top of the distributed runtime environment, the BETaaS platform provides a unified framework 

to the software developer of M2M applications through a content-centric service-oriented interface, 

named Thing-as-a-Service. Such unified programming interface, mandatory to cut software devel-

opment time and enable code reusability, is exposed to applications to interact with smart objects 

with the support of semantic technologies and regardless of their location, technology or communi-

cation protocol. The platform is designed with a modular structure that supports integration and 

expandability. This structure facilitates the integration of existing vertical M2M systems to allow 

on the one hand applications to interact with things from different environments, and, on the other 

hand, to preserve implementations and functionalities of existing solutions. Such modular architec-

ture allows also easy customization that is supported by allowing the development of custom ser-

vices (named extended services) running on the platform.  

In addition, the BETaaS platform provides built-in support for several non-functional requirements. 

These extra functionalities are included to support the wide variety of application environments en-

visaged for future IoT platforms [3]. Although a subset of them are sporadically offered by existing 

platforms, to the best of our knowledge BETaaS is the first one that provides applications with all 

the following functionalities by design:  

• Context Awareness is implemented by means of semantic support for discovery and 

thing selection by means of efficient and scalable context identification and manage-

ment.  

• Quality of Service (QoS) is supported for applications that require timed interaction 

with physical objects. 

• Security is included to secure access to sensitive data and to improve the platform man-

agement through things and gateways trust assessments.  

• Big Data Management is provided to handle the large amount of information generated 

by things and to offer applications big data functionalities. 

• Virtualization is finally included to guarantee an efficient management of storage and 

computation resources and isolation between different applications that share the same 

horizontal platform. 

In this paper we first present the concept behind the BETaaS project and then we provide an over-

view of the  platform, recently released as open-source product. The remainder of the paper is struc-

tured as follows. In Section II an overview of the related work is presented, Section III introduces 

the BETaaS concepts and overview the platform architecture, in Section IV we present the interface 

offered to software developers to build applications for the BETaaS platform, Section V provides 
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some details of the open-source platform implementation, finally in Section VI we draw the conclu-

sions.  

II. RELATED WORK 

Several initiatives have been carried out towards the definition of horizontal platforms for the de-

velopment of IoT applications. Differently from the BETaaS approach, the majority of such initia-

tives adopts a centralized architecture. The OpenIoT project 1, for instance, exploits cloud compu-

ting to run an open-source middleware that supports the creation of services offering virtualization 

of IoT devices and context awareness. The ClouT project2 adopts a cloud-based approach as well, 

however their efforts are specifically tailored to the smart-city use-case. The COMPOSE project3, 

instead, focuses on mobile apploications to enable easy access to things through a cloud-based ar-

chitecture for integration and scalability. Finally, a number of open horizontal cloud-based platforms 

are also commercially available, such as, for example, Xively4, originated by the former infrastruc-

ture named Pachube.  

More recently, a novel approach that goes beyond traditional centralized computing towards a geo-

graphically distributed architecture has been proposed. This is referred as Fog Computing [6], which 

fosters the move of computational and storage capabilities to the edge of the network. Although 

such approach is recognized as the long-term evolution to support M2M applications [7], only a few 

decentralized solutions have been proposed in literature so far. However, they are usually bounded 

to a specific technology, e.g. [8], that exploits the CoAP protocol, or provide only a basic set of 

functionalities to applications, e.g. [9], that focuses only on interoperability and integration.  

Regarding standardization, it is worth to mention the work of the oneM2M consortium5, which aims 

at developing technical specifications of a common Service Layer to rely upon interconnecting 

M2M devices. Finally, among the many research projects on the field it is worth to mention the IoT-

A project6 that defined an architectural reference model and an initial set of key building blocks to 

foster the future IoT, but no actual implementation is provided.  

III. BETAAS CONCEPT AND ARCHITECTURE 

The BETaaS concept and reference architecture are illustrated in Figure 1. The logical steps 

bringing forth a converged M2M service platform starting from a number of already existing sys-

tems are shown from bottom to top on the left of the picture. More specifically, M2M systems com-

posed of different smart objects (1) are integrated through a set of gateways, each one providing ac-
 

1 http://openiot.eu/ 
2 http://clout-project.eu/ 
3 http://www.compose-project.eu/ 
4 http://xively.com/ 
5 http://www.onem2m.org/ 
6 http://www.iot-a.eu/ 
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cess to its locally connected M2M system (2). Gateways then cluster together through a tight mutual 

interaction so as to logically form a local cloud of gateways, which provides the distributed runtime 

environment hosting the BETaaS platform (3). The term “local cloud” referring to the set of gate-

ways hosting the platform has been adopted to highlight the locality of such deployments, often 

physically confined in space, and because of some inherent characteristics of the general cloud sys-

tems that are incorporated in the BETaaS platform, i.e.,  

• Resource pooling. An application cannot know/control which physical device will pro-

vide the required service. Efficient service selection based on context information is im-

plemented to optimize the usage of resources. 

• Rapid elasticity. The distributed nature of the architecture makes it highly scalable and 

suitable to handle bursts of requests. 

• Measured service. Execution of services is based on the current status of physical devic-

es hosting the gateways, which is therefore monitored to implement resource optimiza-

tion. 

On top of the local cloud of gateways, a number of extended services can be further deployed (4), 

in addition to basic ones, in order to expose to applications the underlying sensing and actuating in-

frastructure as a service. 
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The BETaaS reference architecture (on the right in Figure 1) reflects the logical steps previously 

described by means of a corresponding layered structure. This structure guarantees the proper level 

of abstraction to applications at the top layer, and the flexibility needed to integrate different sys-

tems characterized by heterogeneous technologies at the bottom layer. Transparent integration of ex-

isting systems is achieved through platform-side adapters installed at the adaptation layer which 

provides a uniform interface to the layer above and converts requests from the latter to access exist-

ing systems according to their respective technology. On top of the adaptation layer there is the TaaS 

layer, which is at the core of the BETaaS platform. This layer implements the Things-as-a-Service 

model, which defines a common interface to access things as a service regardless of their specific 

technology, communication protocol and location. For each smart thing, one or more thing ser-

vice(s) are derived in a content-centric manner and exposed to applications. In order to provide also 

  

Figure 1 BETaaS concept and architecture. 
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abstraction from physical location, i.e., allow applications to transparently access thing services irre-

spectively of the gateway, the TaaS layer is implemented in a distributed fashion to cooperatively 

share resources among gateways, thus realizing the concept of local cloud previously introduced. 

We refer the reader to our previous work [2] for a detailed description of the functional view of the 

BETaaS architecture. 

On top of the TaaS layer, the platform implements the service layer, which defines the interface 

to external applications. By default, this layer exposes all thing services available in a running in-

stance of the platform as basic services that enable applications to interact directly with smart ob-

jects. In addition, the service layer also allows the dynamic deployment inside the platform of cus-

tom services, named extended services, possibly developed by a third party. Extended services can 

be used to extend the functionalities of the platform by implementing complex logic tailored to a 

specific running instance, or can be exploited by applications to push functionalities, such as real-

 
Figure 2 BETaaS platform Use-Case example. 
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time control, close to the platform, where they can run independently of the status of the remote ap-

plication. In-platform deployment of extended services does not only allow the platform to support a 

wide range of application environments through customization, but also opens the possibility to es-

tablish a digital market of extended services that can be installed dynamically by end users on de-

mand.  

Figure 2 shows BETaaS potential usage in the smart-home use-case previously presented. Alt-

hough the BETaaS platform can be adopted in a wide range of context, we focus on this specific 

scenario in order to show through an actual simple example how BETaaS can be exploited to deploy 

an unified system. In this case for example an all-inclusive runtime environment: alarm, environ-

mental and irrigation systems are integrated and a unified standard interface is exposed to develop-

ers that can create applications leveraging resources from all systems in a seamless manner. In order 

to enable this integration, a number of BETaaS gateways need to be installed. This can be performed 

through a combination of installing additional hardware that is natively running the BETaaS soft-

ware and connects to the M2M system through a dedicated adapter, and modifying whenever possi-

ble the original system in order to implement all or a subset of layer functionalities of the BETaaS 

platform, e.g., through an update of the software running on the control unit. 

While the existing systems preserve their original functionalities, new enhanced ones are now 

enabled by BETaaS. For instance, an extended service can be installed on the platform to enhance 

the environmental control system by exploiting humidity and presence information available from 

the others, e.g., turning down the air-conditioning when a window is opened as results from the 

magnetic sensor part of the alarm system. Applications interacting with the platform and running on 

external devices, instead, can be installed on a smartphone to expose a uniform control interface to 

end users. An all-in-one application running on a smartphone, for example, can offer users remote 

control of all the systems according to user’s preference and context information, e.g., by turning 

on/off the heating/cooling system depending on whether the user is approaching/leaving the house. 

Finally, it is worth to highlight that as a matter of fact the complete separation between applica-

tions and the sensing and actuating infrastructure realized by the TaaS layer allows third-party de-

velopers to build generic applications which can be run in any instance of the BETaaS platform, ir-

resepectively of its actual deployment. This is key to enabling the development of an M2M applica-

tion market from where BETaaS applications/extended services can be downloaded and installed by 

users in their own platforms. 

IV. BUILDING SOFTWARE FOR THE BETAAS PLATFORM 

BETaaS provides software developers with two types of mechanisms to allow exploiting the re-

sources managed by the platform. The first one consists of developing external applications with 
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their own logic that access the services exposed by the platform. In the second case, BETaaS is dy-

namically extended through the installation of custom services. On the resource side, BETaaS pro-

vides mechanisms for an M2M system to be seamlessly integrated into the platform through a trans-

parent interface. Finally, a set of enhanced capabilities is natively provided to applications/extended 

services to ease their development by focusing on the implementation of the application logic. 

Application programming interface 

The BETaaS platform exposes services to applications through both Web Service and RESTful 

APIs.  The set of available operations is quite small so that no complex interaction is required: 

• Installation, an application requests the platform to allocate the resources needed for its ex-

ecution; 

• Service invocation, applications request/send data from/to one basic or extended service; 

• Registration, an application register to a basic or extended service to receive data notifica-

tions; 

• Notification, the platform notifies to applications new available data; 
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The installation procedure requires a set of structured information about the resources to be allo-

cated. Applications pass such information to BETaaS through a manifest document, as illustrated in 

Figure 3, which contains specifications on the required service through its semantic description 

through a set of natural language keywords. In particular the manifest contains the required infor-

mation type, e.g. presence information, and the required context attributes, e.g. the location of inter-

est. To complete the service description, other additional requirements might be specified, such as 

the security level, the QoS and the trust level. Given this description, the platform takes care of se-

lecting and aggregating the necessary thing services in order to match the manifest description.  

Easy of usage and flexibility are the main strengths of this approach, which allows developers to de-

scribe the required service through a description, which is easy to understand and modify.  

As the installation procedure terminates successfully, the application can request/send data 

from/to one basic or extended service specified in the manifest. In order to support a wide range of 

applications, the platform defines two different methods to invoke basic or extended services: 

through single service invocation or through registration/notifications. Through single service invo-

cation an application requests/sends data from/to a service one-time, e.g. to retrieve the current val-

<?xml version='1.0'?> 

<manifest> 

   <Application> 

      ... 

      <name>eu.betaas.demo.convHomeAutomation</name> 

      ... 

   </Application> 

             

   <ServiceDescriptionTerm>   

      <ServiceDefinition> 

         <Feature>presence</Feature> 

         <Areas> 

            <Environment>Private</Environment> 

            <LocationKeyword>home</LocationKeyword> 

            <Floor>1</Floor> 

         </Areas> 

         <Period>10</Period> 

         <Trust>4</Trust> 

         <QoS> 

            <MaxResponseTimeSec>20</MaxResponseTimeSec> 

            <MinAvailability>1</MinAvailability> 

         </QoS> 

      </ServiceDefinition>   

      ... 

     

  </ServiceDescriptionTerm>    

</manifest> 

 

Figure 3. Simplified example of application manifest. 
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ue from a sensor. Through registration/notification, instead, an application registers its interest to 

the platform in unsolicited updates on the value of a service. As the value of a given service chang-

es, the platform takes care of notifying all the applications that registered to the service with the new 

available data.   

Extended Service support 

BETaaS allows developers and vendors to implement extended services to integrate custom ser-

vices. The flexible framework that BETaaS is based on allows their dynamic deployment as soft-

ware bundles. Extended services operate just like applications and are suitable for delivering com-

plete solutions including application logic. Extended services may operate as automatic processes 

(e.g., to implement closed-loop control logic as a true M2M application) or can also expose an inter-

face to applications. 

Integration of existing systems 

Integration of an existing M2M system can be performed transparently through the definition of 

an Adaptation Layer. The major capabilities of each Adaptation Layer are as follows:  

(a) ability to automatically detect, connect and communicate with the underlying device infra-

structure,  

(b) gathering and creation of contextual information based on the information provided by the 

hardware (or software) of the physical device 

(c) collect missing contextual information through supplementary configuration documents 

that complete the semantic profile within the platform represented by a software compo-

nent called Thing object. This object holds the necessary information and when forwarded 

to the upper layers, creates services for handling the devices not as simple hardware com-

ponents but as smart objects.  

In parallel, the Adaptation Layer is responsible for accommodating low level support available to 

the layers above such as the periodic notification of values/metrics of particular things to subscribed 

services, which are notified on periods described at subscription time. 

Platform capabilities 

The BETaaS platform implements by design a set of enhanced capabilities that are available to 

applications and are briefly described in the following. 

Context Management 

BETaaS is a context aware platform, which means that it is aware of the circumstances that may 

affect the behaviour of the smart objects connected to it. Among the circumstances that BETaaS 

considers we have concepts such as the location of smart objects or the type of feature offered by 

them. Through context management BETaaS is able to: (a) unify information coming from hetero-
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geneous resources in the physical environment, as information collected by the Adaptation Layer is 

modeled by an ontology, i.e., the BETaaS ontology, (b) generate unique thing services names for 

each of the smart objects, and (c) infer new knowledge from raw data in a context-aware fashion. 

Knowledge inference is performed by two different mechanisms. On the one hand, we have defined 

semantic rules based on the BETaaS scenarios, e.g., we have defined a rule to detect equivalent 

thing services, which are those associated to things of the same time in the same location. On the 

other hand, we have defined two word-sense disambiguation (WSD) algorithms to infer information 

from locations and from sensor/actuator types. Information is inferred both when a smart object is 

attached, and when an application demands information, e.g., if an application demands the temper-

ature at home, a temperature sensor installed in the kitchen is valid (kitchen is meronym of home). 

Every gateway in the platform stores a BETaaS ontology. The BETaaS ontology is a network of 

ontologies that we have created reusing ontologies that are relevant in their domains and that model 

the BETaaS scenarios. In order to promote standardization, the BETaaS ontology is populated 

whenever possible with the common vocabulary provided by a lexical database that groups English 

words into sets of synonyms or synsets. Such database is based on the semantic relationships be-

tween synsets (hypernymy, hyponymy, holonymy, meronymy). All synsets inserted in the BETaaS 

ontology are stored following these relationships.  

Quality of Service 

Support for heterogeneous QoS requirements is a non-trivial challenge, considering the broad va-

riety of applications that can run on the BETaaS platform. Classic approaches define a standard QoS 

model to categorize QoS requirements into a pre-defined set of service classes [4]. Since at run-time 

applications can only select one class with a fixed set of service parameters, supporting a wide range 

of applications will increase dramatically the complexity.  

In order to reduce the platform complexity, a simple schema composed by three service classes 

has been adopted: Real-time service (applications with hard response time requirements), Assured 

service (applications with soft response time requirements) and Best-effort service (applications that 

do not require any assurance). At the same time, flexibility is guaranteed allowing applications to 

customize their requirements through a dynamic negotiation procedure within the selected service 

class.  

The negotiation is performed at the time of the installation following a two-stages procedure: first 

the application specifies the QoS parameters required for the service, then the service negotiates 

with the TaaS layer the QoS of the thing services required to fulfill application requirements. For the 

sake of simplicity, application developers specify the QoS parameters required for each service di-

rectly into the Manifest file, developers of extended services can exploit, instead, an advanced Ser-



14  

 

vice Level Negotiation interface to allow complex developments. For the sake of interoperability, a 

standard protocol is exposed by the TaaS layer: the WS-Agreement Negotiation protocol [5], which 

is the de-facto standard for SLA agreement negotiating, establishing and managing for Web Ser-

vices.  

The negotiation protocol, is only an interface through which an application can specify the re-

quired service level. In order to enforce and monitor the negotiated QoS requirements, a pervasive 

QoS framework must be included in the platform architecture. At this aim, a QoS framework has 

been defined and implemented in the platform in order to ensure an efficient management of re-

sources that optimizes their usage and guaranteess fulfillment of the agreements with applications. 

The framework included in BETaaS is based on a two-phase procedure, namely, reservation and al-

location. The reservation phase is handled by a Broker. The Broker manages the QoS negotiation, 

performs admission control and, most importantly, manages resource reservation. The allocation 

phase, instead, is managed by a Dispatcher. The Dispatcher performs allocation of resources at time 

of invocation. Resource allocation can manage the resources following different optimization goals. 

In the platform currently an algorithm that optimizes the energy efficiency of battery powered 

smart-sensors is adopted as described in [10].  

For an exhaustive description of the QoS framework introduced in the platform, the interested 

reader can refer to [11]. 

Security Management 

A capability-based approach for access control that includes access delegation feature is used. 

The approach is coupled by a Public Key Infrastructure (PKI), which is implemented through digital 

certificates. With this approach, an application developer will receive a certificate signed by BE-

TaaS’ trusted Certificate Authority (CA) upon requesting to use BETaaS APIs through a registration 

process. During installation, as the application has obtained the certificate, it acquires a capability or 

token which states the access rights to the thing services, such as access conditions, validity period, 

delegation information, and digital signature. After mapping each service specified in the manifest 

to the required thing services, the platform evaluates the access policies. As a result, a set of tokens 

is granted to the application. Every time a service is invoked, the token is verified confirming access 

rights and conditions. 

Relying on external systems manufactured and maintained by independent third-parties can raise 

trust issues. For this reason BETaaS includes a trust model to monitor things and gateways behavior 

evaluating their reliability. The trust model takes into account: the security mechanisms available for 

interacting with entities, the QoS fulfillment, dependability measures related to things and gateways, 

scalability as interactions increase, expected availability because of battery load, stability in data 
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generation and gateways reputation. 

Big Data Management 

In order to handle the amount of data generated by the things in large deployments such as a 

smart city scenario, a big data manager that exploits the BETaaS distributed architecture is included. 

A flexible data distribution paradigm that allows gateways to distribute data from local things to re-

mote services and provides a storage service (through a SQL database) is adopted. These data ser-

vices overcome the limitation of a single gateway, where resource could be limited. Moreover, more 

databases services could be deployed in a BETaaS instance, so that a failure or the unavailability of 

a local data service does not compromise the whole data layer.  

The big data manager connects these database services to a Big Data platform for the purpose of 

storing and analytics processing of large amount of data. Loading tasks from a SQL DMBS to a dis-

tributed file system are performed at regular intervals, keeping local database data growth limited to 

only recent data. The big data platform leverages a metastore to define a structure for the data load-

ed into the distributed file system, leveraging a Presto DB to offer clients a SQL interface to access 

the stored data.  

The big data capabilities of the platform are exposed to applications through a specific module of 

the big data manager, which provides an interface, named data task, which allows the analytics de-

ployment, i.e. queries run by PrestoDB that returns results to client applications. Such interface pro-

vides a mechanism to describe the input parameters that are used to specify the query and to repre-

sent the returned data. The module responsible for managing the data task has different capabilities: 

it provides the list of the available data tasks that applications could run to perform analytics and 

controls the applications access to tasks and used resources. 

Virtualization 

Virtualization capabilities are included in the BETaaS platform for two main purposes: to provide 

a way for deploying applications locally (in an isolated environment, protecting the core BETaaS 

platform) and to enable scalability for the platform functionalities (such as computation and storage 

for big data analysis). 

The platform exploits both local virtualization capabilities provided by gateways and external 

cloud resources provided by third parties. This is achieved by providing a set of basic images that 

contain pre-installed software depending on their purpose, based on a very lightweight Linux oper-

ating system. In case of big data, there is an image for computation nodes and another image for 

storage nodes, while in the case of applications deployment, there is a Java web container for de-

ploying web applications. 

It is possible to instantiate the same image with different resources, depending on the require-
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ments. The algorithm to allocate resources minimizes fragmentation by taking into account the re-

sources required by the existing VMs and the potential requirements for new instances. The priority 

is to exploit those resources provided by local gateways but, in the case not enough resources are 

available, the algorithm will try to use an external Cloud (if external accounts have been config-

ured). 

Application developers may provide information about the resources required by their applica-

tions in the Manifest file used during the installation, in an OVF-like format, so the platform can al-

locate resources accordingly.  

V. PLATFORM IMPLEMENTATION  

The first release of the BETaaS platform, including a substantial subset of the platform capabil-

ities, has been released as open-source software on github7. This implementation is based on 

the OSGi8 technology: BETaaS services are designed to be modular and highly dynamic, and 

OSGi is a framework that satisfies such requirements; in fact it allows the deployment of bun-

dles that expose services discoverable and accessible through a service registry, provided by the 

OSGi container itself. The OSGi service registry is restricted to a local container without possi-

bility of sharing services: in order to overcome such limitation, BETaaS takes also advantage of 

Distributed OSGi, which allows sharing OSGi services between different containers through a 

distributed registry, implemented by using Apache Zookeeper and Web services. The BETaaS 

platform, in order to offer a seamless deployment mechanism, also leverages Apache Karaf as 

OSGi container. Karaf allows the provisioning of bundle groups by using features. A feature is 

actually a list of bundles with their related dependencies, which can be then deployed inside the 

container directly from the BETaaS repository. In this way, the deployment of a BETaaS gate-

way can be performed through a feature or a set of features, without requesting any manual in-

stallation of a bundle and its dependencies.  

The modularity offered by OSGi is exploited to guarantee the expandability of the platform, i.e. 

additional “extended” services can be deployed as third-party bundles at runtime, with a full au-

tomatic management of their lifecycle. For the same reason, platform capabilities are imple-

mented as bundles as follows.  

Context Awareness Look-up is implemented by the Context Manager (CM) bundle. Every 

gateway has its own CM, which contains a BETaaS ontology and a Semantic Parser. Through 

 

7 https://github.com/BETaaS 
8 http://www.osgi.org 
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these two elements, the CM is able to unify the information coming from heterogeneous re-

sources and applications, and to infer knowledge from raw data in a context-aware fashion.  

The BETaaS network of ontologies has been created using used the following ontologies: 

SSN9, Time10, CF11, Phenonet12, MUO13, FIPA14 and GeoNames15. Ontology develop-

ment has been performed through Apache Jena16. 

Whenever a thing is connected to a gateway, contextual information about this thing (location, 

type, etc.) is automatically or manually retrieved by the Adaptation Layer of the gateway. This 

information is sent to the Semantic Parser of the gateway. In order to promote standardization, 

the Semantic Parser uses WordNet17 to translate this contextual information to WordNet 

synsets whenever possible, and stores this data in the ontology.  

WordNet organization is based on semantic relationships between synsets (hypernymy, hypon-

ymy, holonymy and meronymy). All synsets inserted in the BETaaS ontology are stored fol-

lowing these relationships, through SKOS18. The relationships between the terms are used as a 

mechanism of knowledge inference: e.g. if an application demands the temperature at home, a 

temperature sensor installed in the kitchen is valid (kitchen is meronym of home). 

Using the semantic requirements of the Manifest file, the CM creates a thing service for each of 

the things connected to a gateway. The information of the things registered in a gateway is 

propagated in the instance by means of the TaaSRM (the bundle that implements the TaaS layer 

in every gateway), which communicates locally with its own CM. 

The QoS Manger bundle implements QoS functionalities. At the TaaS layer the module adopts 

the WS-Agreement Negotiation protocol, which has been implemented leveraging on an exist-

ing publicly available implementation, WSAG4J a java-based implementation. The implemen-

tation has been customized in order to store information within the distributed data storage em-

bedded in the platform. 

Security management capabilities are implemented within the Security Manager bundle. The 

implementation of digital certificate has been performed based on Java cryptography library, 

namely bouncycastle19. The implementation of access condition within the capability or token 

 

9 http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628 
10 http://www.w3.org/2006/time 
11 http://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-property 
12 http://www.w3.org/2005/Incubator/ssn/ssnx/meteo/phenonet 
13 http://purl.oclc.org/NET/muo/muo 
14 http://www.fipa.org/specs/fipa00091/PC00091A.html 
15 http://www.geonames.org/ontology/ontology_v3.1.rdf 
16 https://jena.apache.org/ 
17 http://wordnetweb.princeton.edu 
18 http://www.w3.org/2004/02/skos/intro 
19 https://www.bouncycastle.org/java.html 

http://www.w3.org/2006/time
http://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-property
http://purl.oclc.org/NET/muo/muo
http://www.geonames.org/ontology/ontology_v3.1.rdf
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is done based on the Condition field in the XACML (eXtended Access Control Markup Lan-

guage) standard, using a library called JBossXACML20. 

Big Data Manager bundle provides services to store data in a SQL database, e.g. MariaDB, H2 

and Mysql. With respect to the analytics platform, it uses the Apache Sqoop2 server to load da-

ta from a SQL database into a Hadoop HDFS. Big Data Manager also uses Apache Hive Metas-

tore to define a metatable on top of the HDFS imported data: leveraging Hive, such data can be 

then processed by a data task, through the usage of the PrestoDB query system. 

Finally, Virtual Manager bundle provides virtualization capability. Its implementation relies on 

the usage of livbirt as the way to manage local VMs, both for x86/x64 and ARM architectures, 

thanks to the last versions of Xen hypervisor. Moreover, support for clouds built on OpenStack 

(through its API libraries) and OpenNebula (through OCCI) is included.  

For an exhaustive description of the platform implementation details, we remind the interested 

reader to the public deliverables available on the project website.  

The platform is validated through two field trials set in two different scenarios: smart-home and 

smart-city. In the smart-home trial, an existing proprietary domotic system is integrated into the 

platform to demonstrate how existing closed systems can be successfully integrated. In the 

smart-city trial, planned to test platform scalability on large-scale and test features like QoS and 

Big Data, a smart parking service is deployed to help drivers finding a parking spot using the 

presence sensors installed on lamp posts, and to optimize the car distribution, using traffic in-

formation. In this scenario, the M2M systems integrated in the platform are based on an open 

standard, i.e., the ETSI M2M.  

VI. CONCLUSIONS 

In this paper we have presented the BETaaS platform, an open-source run-time platform for the 

execution of M2M applications that facilitates the integration of existing IoT systems, and pro-

vides software developers with a high-level, content-centric, abstraction to access smart ob-

jects’ resources, along with a built-in support for several non-functional requirements. The plat-

form leaverages on a distributed architecture made of gateways that are interconnected through 

the BETaaS software thus forming local cloud of gateways on which M2M applications can run 

exploiting a unified interface to interact with smart-objects. We believe that the BETaaS open-

source framework will play an important role in facilitating the creation of open IoT systems 

 

20 http://picketbox.jboss.org/ 
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and on which third-party M2M applications can run, breaking the bareers that are refraining the 

expansion of the IoT market.  
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