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Abstract 

The road transport of dangerous goods has been the subject of research with increasing 

frequency in recent years. Global positioning system (GPS) based vehicle location devices 

are used to track vehicles in transit. However, this tracking technology suffers from 

inaccuracy and other limitations. In addition, real-time tracking of vehicles through areas 

shielded from GPS satellites is difficult. In this paper, the authors have addressed the 

implementation of a smart vehicle navigation system capable of using radio frequency 

identification based on information about navigation paths. For prediction of paths and 

accurate determination of navigation paths in advance, predictive algorithms have been used 

based on the hidden Markov model. At the core of the system there is an existing field 

programmable gate array board and hardware for collection of navigation data. A 

communication protocol and a database to store the driver’s habit data have been designed. 

From the experimental results obtained, an accurate navigation path prediction is consistently 

achieved by the system. In addition, once-off disturbances to the driver habits have been 

filtered out successfully. 

Keywords 

Hidden Markov model, Navigation path, Prediction algorithms, RFID, Vehicle tracking 

 

 

 



2 
 

1. Introduction 

Currently, the road transport of dangerous goods relies on tracking technology. In designing 

smart navigation systems Global Positioning System (GPS) data may be augmented with 

Wireless Fidelity (Wi-Fi) and Global System for Mobile comunications (GSM) signals to be 

used to provide location information of vehicles transporting goods and passengers [1]. At 

present these systems suffer from limitations such as reduced reliability in areas that are not 

permeated by the necessary GSM or Wi-Fi signals, or areas in which GPS satellites do not 

provide sufficient coverage. In this paper, we have designed and implemented a system that is 

capable of predicting the navigation path of a vehicle on the basis of a database built using 

the driver’s existing driving practices. The problem addressed in this work is the 

implementation of a system capable of using Radio Frequency Identification (RFID) based 

information about navigation paths, in conjunction with predictive algorithms based on the 

hidden Markov model to accurately determine the vehicle navigation paths in advance. For 

predictive systems, current methods may be split into two main groups. Prediction based on 

historical data use either frequency based probabilistic models or Bayesian inference to 

determine future events [2]. In the absence of historical data, evolutionary or meta-heuristic 

algorithms are used to predict optimal navigation paths, such as the one used by [3]. These 

algorithms usually require a constraint to be placed on the system for effective prediction to 

take place. For example, if the prediction is for vehicle navigation, then the constraint could 

be finding the quickest possible navigation path. A genetic algorithm using this constraint is 

addressed by [4]. The design of the proposed smart navigation system will extend the 

predictive systems by using existing vehicle navigation information, gathered using RFID 

technology, to predict navigation paths without necessarily constraining the paths to the 

quickest or the shortest one. 

A Markov process is a stochastic process in which one can make predictions about the future 

state of the process based on only its current state. These predictions would be as good as 

predictions made if one had been aware of the entire history of the process. Since the future 

of the system is dependent only on its current state, the process can be considered 

’memoryless’. This ’memoryless’ property of a process is called the Markov property, 

whereas a HMM is one in which the states, though known, are not directly visible to the 

observer. What is visible is the output, which is dependent on the current state (as a result of 

the underlying process assuming the Markov property). Therefore the sequence of observed 

output values provides information about the sequence of states. We have used the concept of 

HMM to design and implement the smart navigation system. 

This paper is categorized into various sections. Sect. 2 discusses the literature survey and 

various techniques related to vehicle navigation path prediction and data acquisition. Sect. 3 

focuses on the theoretical analysis and modeling aspect of the proposed system and also 

shows the various navigation path possibilities. Sect. 4 lists the design principles used in two 

different sections for hardware and software parts. Sect. 5 provides the detailed view of 

hardware and software implementations of the design. Sect. 6 consists the various 

experimental results of the implemented system. Finally, Sect. 7 concludes the work. 

2. Literature Survey 

The main aim of this work is to implement a system capable of predicting the navigation path 

of a vehicle according to a database built using the driver’s habits and populated by data 

using the previous navigation path details. In addition, it is required that RFID devices and 
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sensors be used in gathering the data. Finally, the prediction algorithm needs to be based on 

the HMMl. In order to meet the requirements, an investigation into predictive techniques as 

well as data gathering methods has been undertaken. Furthermore, a detailed look at the 

nature of the HMM and its application in predictive algorithms. A discussion of the 

accumulated literature follows in the subsections below. 

2.1. Hidden Markov model 

It is known that in the HMM the sequence of observed output values provides information 

about the sequence of states. If modeled using an HMM, then the observer will only observe 

a sequence of output tokens directly. The underlying states and the state transition and 

emission probabilities are considered prior knowledge. Baum et al. [5] have described the 

model based on this information; the observer can attempt to infer the sequence of states that 

yielded the observed output sequence. The application of the HMM as a predictive algorithm 

has been used in biotechnical fields to study protein structures and genetics. Sonnhammer et 

al. [6] discussed a method of modeling and predicting the location and orientation of alpha 

helices in some forms of proteins, whereas Stanke and Wack [7] used the HMM for gene 

prediction. Despite the differences in application, the HMM is an acknowledged tool for 

predictive solutions to systems that can be modeled as Markov processes. Applying HMM to 

a vehicle navigation system requires only that the navigation path be represented as a Markov 

process as well. Ning et al. [8] proposed the route recommendation system architecture and 

the mathematical model for driving route prediction using K-means++ and Laplace 

smoothing technique. 

2.2. Vehicle Navigation Path Prediction 

Vehicle navigation paths are usually repetitive in nature due to natural constraints that limit 

the freedom of the driver. One of the most common natural constraints is time; most drivers 

attempt to reduce the amount of time spent traveling between their origin and destination. 

However the eventual navigation path that a vehicle driver decides on is influenced by 

emergent constraints from the road network and environment in general. Harsh weather 

conditions, poor traffic conditions and the availability of fuel will all factor into the decision-

making of the driver and affect the eventual navigation path. The proposed system will 

collect driver habits over a period of time and, using this data, perform a static prediction on a 

vehicle’s navigation path. The prediction is considered static, as it will not be updated as the 

vehicle is being driven along the navigation path. The possible navigation path will be 

modeled as an HMM whose parameters are derived from the driver’s existing driving 

practices. 

A number of methods can be considered for the prediction of vehicle navigation paths. Barth 

and Karbassi [9] have used a hierarchical tree data structure to perform real-time prediction 

on the navigation path that a vehicle will take for direct trips (source to destination). Their 

algorithm is recomputed as new data from the vehicle arrives while the vehicle is already in 

transit. However, their method is incapable of handling situations in which the vehicle is 

required to make an erroneous stop along the way (for example a fuel stop). Froehlich and 

Krumm [10] discussed an alternative method where details of vehicle’s navigation path are 

collected and grouped by similarity. Each specific navigation path is assigned an index and 

stored. As the vehicle begins its journey, the navigation path progresses their algorithm 

attempts to match the current navigation path with an existing one. Although this allows for 

an initial prediction of the navigation path, the prediction is continuously updated as the 
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journey progresses. The nature of this algorithm implies that the presence of disturbances in 

the navigation path (such as unexpected stops or unexpected road works) will result in the 

creation of new navigation paths. These paths will affect the accuracy of future predicted 

navigation paths by increasing the time it takes for the matching algorithm to find an existing 

matching navigation path. Feng et al. [11] proposed a new method using a Kalman filter? to 

predict the reliable location of vehicles’ next move. In their experiments they achieved a 

degree of location performance. They also quantitatively compared the prediction 

performance of the proposed method and neural network methods. Silva et al. [12] proposed 

a solution for navigation on congested roads by using smart phones. The proposed system 

first obtains the traffic information from a central system and then it guide the driver on the 

basis of obtained information. In Simmons et al.  [13] proposed the usage of the HMM to 

perform predictions on a vehicle’s navigation path. In their method, the historical driver data 

are gathered using GPS information. This is then used to supply parameters to the HMM. 

They were able to achieve results with acracy of above 98 % in most cases, although the 

navigation paths they tested had very few places in which choices were required. However, in 

their analysis it was shown that GPS data are not reliable because of noise and shielding from 

buildings in urban areas or tunnels. They had to include specialized algorithms to counteract 

the poor reliability of the GPS data. 

The shortcomings of the systems described above create the gap that must be addressed by 

the proposed smart navigation system to be designed. The nature of the HMM allows for 

accurate predictions when presented with reliable data, as indicated by the results of 

Simmons et al. [13] . However, this navigation system is designed to gather data using RFID 

devices rather than GPS. The inclusion of a filtering algorithm on the gathered data will 

reduce the effect of occasional disturbances to the navigation paths that will be considered by 

the vehicle. 

2.3. Acquisition of Navigation Paths 

Using the prediction algorithms described above, data regarding vehicles’ navigation paths 

have to be gathered. The data should include pertinent variables that can be used to construct 

a clear picture of the driver’s decision-making process. To that effect, information such as the 

vehicle’s speed, the time of day and the occurrence of precipitation must be gathered as the 

vehicle travels along a navigation path. In addition to the aforementioned variables, the 

position of the vehicle is also critical information for the algorithm. There are a number of 

ways to acquire this information. These include among others: 

 Manual note-taking by the driver or an accompanying passenger. 

 GSM signal tracking using cell tower triangulation. 

 GPS signal tracking. 

 RFID based tracking. 

The global presence of mobile phones has led to a number of investigations as to their 

usability in tracking systems. Ye et al. [14] defined the relationship between various roads on 

the basis of social network analysis and then applied a route prediction algorithm to find the 

optimal route. The authors verified the efficiency of their algorithm by conducting various 

experiments.Quddus and Washington [15] developed a map-matching algorithm for finding 

the shortest path and vehicle trajectory. The proposed algorithm uses A* search algorithm for 

finding the shortest path. The accuracy of the proposed algorithm is obtained 98.9 % for 

every 30s GPS data. The authors considered the threshold of 1000m for finding the shortest 
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distance. Luo et al. [16] proposed a new path-finding query that finds the most frequent path 

during user-specified time periods. The authors conducted their experiments on GPS data 

obtained from 6000 taxis in Shanghai. Kansal et al. [17] discussed a sensor network for 

tracking using mobile phone devices. They mentioned the fact that the prevalence of mobile 

devices and the increased availably of GPS technology on them make them ideal nodes in a 

sensory network that focuses on the same GSM signals used for voice communication. 

Alternatively, exclusive GPS devices can be mounted on vehicles for the sole purpose of 

tracking. These devices can be integrated with the vehicle’s electronics for power purposes 

and run indefinitely. Both GSM and GPS based systems suffer from noise and accuracy 

limitations, particularly in areas where the GSM towers of GPS satellites have limited or no 

coverage. This limits their potential usage as location data sources for the proposed prediction 

algorithm. However, RFID devices can be used to counteract this limitation in such areas. 

3. Theoretical Analysis and Modelling 

In order to design the proposed system, an understanding of the HMM and its application in 

predictive analysis is required. Details of HMM is discussed in the next section. Here, we will 

explain the nature of the model and highlight the specific features that will make it suitable 

for this system. In Fig. 1, a Markov process with random variable ’x’ is shown. The transition 

probabilities between the three states of the variable are indicated as aij where ’i’ refers to the 

preceding state and ’j’ refers to the resulting state. The tokens yielded by the process (outputs 

at each state) are represented by the variable ’y’. The probability of a specific output, given 

that the system is at a specific state, is called the emission probability. These probabilities are 

indicated as ′bm(yn)′. In this case, the ’m’ represents the current state and the ′y′n represents a 

particular output. The proposed work requires the use of the HMM to predict vehicle’s 

navigation path which is necessary to model the driver environment as a stochastic process 

possessing the Markov property. 

 
 
Fig. 1. Hidden Markov model 

 

The real-world context of the navigation path prediction problem can be described as follows: 

 A vehicle travels along a navigation path from point A to point B. It is assumed that 

this navigation path is frequently used but, there may be multiple navigation paths to 

travel between these two endpoints. Furthermore, it is assumed that the driver bases 

the decision on which navigation path to take on the environmental and traffic 

conditions at the time the path must be driven. 

 Each vehicle that drives along this navigation path has a set of routing habits based on 

the decisions the drivers make, given specific environmental conditions. It is assumed 

that any other factors (such as the driver’s health or the vehicle’s status) are not 

statistically significant in the habitual analysis of the driver. 
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 Information about the vehicle’s navigation paths and the external conditions at the 

time of the navigation is stored in an accessible database. Based on this context, a 

suitable stochastic process has to be determined. This would be the process modelled 

using the HMM. There are a number of ways to reduce this information into a Markov 

process. Two such methods are discussed below. 

3.1. Navigation Paths as States 

In this representation, the stochastic process settles at states that are defined as navigation 

paths. This means that transition probabilities indicate the probability of selecting a 

navigation path based on the present navigation paths and observations. As shown in Fig. 1, 

all possible navigation paths between points A and B are possible states of the Markov 

process. Information about the observations made on a specific day along a given navigation 

path of a vehicle is stored in a database. The navigation path information is linked to the 

driver’s driving habits. The variables indicated as aij in the diagram represent the possibility 

of the driver selecting a navigation path, given the last one he has driven. The variable bi 

represents the probability of a specific observation being made (yi), given the current state. 

For instance, if a vehicle travels along navigation path 3, the probability of driving navigation 

path 2 next is a32 in the figure. In addition, the probability of observation 2 being made is 

b3(y2) where y is a variable indicating the different observations. 

3.2. Vertices/Edges as States 

In this representation, the stochastic process settles at states that represent points along the 

navigation path. These points could be intersections (vertices) or road sections (edges). The 

transition probabilities in this case would represent the chance of proceeding to a specific 

intersection (or road section), given that the vehicle is currently on a specified intersection (or 

road section). Figure 2 represents the road sections from x1 to x4 as states in the Markov 

process. A navigation path is stored in the database as a sequence of transitions from road to 

road. The transition probabilities between the road sections are expressed by variable aij in 

Fig. 2 above. For instance, given that the vehicle is on road section x1 above, the probability 

of turning onto road x2 is a12 whereas the probability of driving on straight ahead would be 

a13 and the probability of turning onto road x4 is a14. It should be noted that this is 

functionally similar in most aspects for using the road intersections as states, rather than the 

road sections themselves. This is due to the fact that representing a navigation path as a 

sequence of road transitions is equivalent to using intersection transitions, and just as 

effective. 
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Fig. 2. Road sections as states 

 

3.3. Selected Navigation Path Model 

From the above two alternatives, for representation of the problem as a Markov process, we 

have considered that using the road intersections (vertices) as states in the algorithm would be 

the most effective way of representing the problem. Figure 3 shows a virtual road network 

with intersections marked as numbers. The arrows between the intersections indicate the 

allowable transitions between them. For example, it is possible to transition from vertex ’0’ to 

vertex ’1’ as well as from vertex ’1’ to vertex ’0’. This form of directed graph representation 

of the road network allows for easy translation into the HMM problem space. If we assume 

that the process by which a vehicle proceeds along a navigation path is a Markov process, 

then each vertex would represent a possible state in which the process can be at a specific 

time. The presence of at least one directed arrow between two states indicates the existence of 

a transition probability between the two. To expound on that point, there is a directed arrow 

between vertex ’1’ and vertex ’4’, which implies that there is a probability of transitioning 

between the two states (from 1 to 4). In addition, there are three directed arrows starting at 

vertex ’1’ (from 1 to 4 to 5 to 2 and back to 1), implying that it is possible to transition from 

vertex ’1’ and return to it. 
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Fig. 3. Road network model 

As the purpose of an algorithm is to determine the likely navigation paths, it is unlikely that a 

navigation path accurately predicted will require the vehicle to loop backwards onto the same 

intersection. Therefore, the definition of possible transitions is constricted, with the condition 

that the presence of exactly one directed arrow between two states indicates the existence of a 

transition probability between them. This would mean that it is not possible to transition from 

vertex ’1’ and return to it, as that requires more than 1 directed arrow. Having defined the 

states of the process, we can define the transition probabilities of the model. These 

probabilities indicate the likelihood of a vehicle to transition from the current state to a future 

one. Using Fig. 3, if the transition probability from vertex ’1’ to ’4’ is 60 %, from ’1’ to ’2’ is 

35 % and from ’1’ to ’0’ is 5 %, then one can assert with high confidence that the vehicle at 

vertex ’1’ will most likely transition to vertex ’4’ next. These transition probabilities are 

derived from the accumulated existing driving practices of the driver. 

Finally, translating the problem into the HMM which uses a-priori knowledge of emission 

probabilities (the probability of an observation being made given that the process is at a 

specific state), state transition probabilities and the initial probability of each state to compute 

the most likely sequence of states which results in the observations. This section of the HMM 

should be adapted in a novel fashion to suit the requirements of the work. For a road network 

based problem, possible observations include traffic, weather and time of day. None of these 

are directly caused by the current state of the process which affects their inclusion into the 

problem. To represent these two main design decisions were made. 

 Three observations of a binary nature would be tracked, namely traffic (high or low), 

precipitation (rainy or dry) and daytime (day or night). These observations have been 

combined into a bit flag, allowing for eight possible combinations. For instance, the 

bit flag ’101’, which is the number 5 in the decimal system, would represent ’high 

traffic, dry, daytime’ if we use the order of observations as stated earlier and other 

possible combinations could be similarly designed. 

 The observations would be represented as a list (containing the present observation, 

repeated) rather than a single observation. This stems from the nature of the HMM. 
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The number of states in the sequence predicted is directly linked to the number of 

available observations. If only one observation is available, only one state is 

predicted. However, with a list of observations, the sequence returned has a maximum 

length limited only by the length of the list of observations. By using in a maximally 

long list of observations, the resulting predicted sequence can be truncated based on 

another parameter (for example, when the sequence first reaches the destination state). 

4. Design Methodology 

In order to meet the stated objectives, a system consisting of a sensory platform and a 

predictive algorithm has to be designed. The possible interface of the proposed smart 

navigation system has been determined and preferable outputs have been considered. Based 

on these parameters, the boundary for the proposed smart navigation system has been defined 

and the top-level components of the system have been conceptualized and designed. These 

top-level components are broadly separated into a primarily hardware-based sensory platform 

and the software implementation of a predictive algorithm. The conceptual design of these 

two components is discussed in the following sub-sections. 

4.1. Hardware-Centric Component 

The hardware sensing platform has been designed to allow for the gathering of environmental 

and geographical data. A detailed hardware platform as represented in Figs. 4 and 5 consists 

of a sensory system comprising of an accelerometer, humidity sensor, temperature sensor and 

real-time clock capable of interrogating environmental conditions. The raw data output from 

these individual components would be used to determine the environmental and traffic 

conditions along the navigation path being recorded. The navigation path itself is determined 

by the sequence of tags read by the RFID reader in the vehicle. The real-time clock is 

included to reduce the complexity that the user would have to face when operating the 

system. In addition, it may not always be possible to recall the starting time of a navigation 

path with sufficient accuracy. Finally, the interface between the hardware and the computer 

running the algorithm was implemented as a direct cable, communicating using a serial link. 

This allows for direct viewing and analysis of collected data when the hardware platform is 

connected to a portable computer while the vehicle is on a navigation path. The entire 

hardware platform is designed around an FPGA controller. 

 
Fig. 4.Detailed hardware design of implemented system 
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Fig. 5. Components used for designing the smart navigation system 

4.2. Software System 

The main component of the proposed navigation system as shown in Fig. 6, is the algorithm, 

which predicts a navigation path based on historical data collected by the hardware system. 

These historical data are stored in a database that can be accessed by the algorithm. Two 

software subsections complement the functionality of the predictive algorithm. (1) The 

filtering subsection is used to ensure that statistically significant data points have been used in 

the predictive algorithm to prevent unnecessary skewing of results due to once-off deviations 

from the norm. (2) The HMM is used to predict the navigation paths. Currently, two major 

algorithms are used to solve problems modelled by the HMM: (a) The forward-backward 

algorithm is used to determine the probability of all potential state transitions in the model 

that would have led to the observed outputs, (b) The Viterbi algorithm is used to determine 

the most likely sequence of states that would result in the observed outputs. In most cases the 

algorithm returns the same solution given the same input and conditions. However, the 

Viterbi algorithm is more representative to use with the proposed smart navigation system, 

which is why it is implemented as opposed to the forward-backward algorithm. 

 
Fig. 6. Components of software systems 
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An exponentially weighted moving average (EWMA) filter has been used to smooth out 

spikes in the data points queried from the database before using them to compute state 

parameters for the prediction algorithm. The EWMA filter has an easily adjustable 

smoothness, making it ideal for situations in which the volume of data is not necessarily 

known beforehand. As for the mapping, an adjacency list has been used to store information 

about the roads between intersections. The adjacency list would be queried from the database 

and used to generate a graph with intersections as vertices and roads as directed edges 

between them. 

5. Implementation 

5.1. Hardware implementation 

To implement the proposed smart vehicle navigation system as shown in Fig. 4, we have 

selected two communication protocols which are described as follows: 

5.1.1. Universal Asynchronous Receiver/Transmitter (UART) 

Communication between the FPGA and the computer on which the software performs is 

achieved using the UART protocol. This protocol allows for serial data transmission using a 

synchronized clock between the sender and receiver. The protocol transmits and receives data 

according to the set of standards described below: 

 Idle - the line is high. 

 Start - the line is set low (a ’0’ bit is sent). 

 Data - the eight data bits are sent by setting the line to high for ’1’ and back to low for 

’0’. 

 Stop - the line is set high (a ’1’ bit is sent). 

 There are two options: 

o Idle - keep the line high 

o Start - set the line low and send another byte. 

The entire process is controlled by the UART clock speed, commonly called the baud rate. 

Baud (Bd) is the unit for symbol rate, effectively representing the number of distinct symbol 

changes per second on a digital signal. This clock is generated both by the emitter and 

receiver. As a result, the two clocks may fall out of synchronization, which would result in 

incorrect data or failed transmissions. To avoid such a type of scenario, the FPGA is coded to 

oversample the incoming signal at 16 times the baud rate. This allows for samples of the 

incoming data bits to be taken at times when the bit value is settled irrespective of clock 

synchronization status. For instance, in Fig. 7 the faster clock can be used to sample the 

slower one. If there are 16 ticks of the faster clock for each cycle of the slower one, one 

simply counts the number of ticks (rolling over from 15 to 0) and sample at a number that is 

suitable for the situation. To sample in the middle of the ’high’ cycle in the Fig. 6, the sample 

would be taken at tick counter ’0’. 
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Fig. 7.Oversampling a slow clock  

 

In the proposed navigation system the UART protocol is implemented as a finite state 

machine (FSM), shown in Fig. 8. The control signal ’rx’ determines whether or not the 

UART is ready to receive a byte. The variable ’nbits’ counts the number of bits received and 

after a full byte (8 bits) and the stop signal (1 bit) have been received, it returns to the idle 

state. The transmission FSM is fundamentally identical to the reception one. However, the 

direction of data flow is reversed. 

 
 
Fig. 8. UART reception FSM 

5.1.2. Inter-Integrated Circuit (I2C) 

Communication between the FPGA controller and the digital sensors uses the I2C 

protocol. The basic protocol considers two signal lines: (1) the data line, and (2) clock signal. 

For most I2C applications a maximum clock signal of 400 kHz is recommended. Considering 

the nature of the data being sent from the sensors to the FPGA, an I2C clock of 100 kHz is 

generated and used for the protocol. Because of to its dual lane nature, the protocol 

description is slightly more involved than the UART one. As shown in Fig.9, the data line is 

pulled high by an external resistor while the system is idling. 

 
Fig. 9. I

2
C protocol start and stop conditions 
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In between these two conditions, data are sent in bytes (exactly 8 bits long). Each transferred 

byte is followed by an acknowledgment condition, which is defined as the data line being 

pulled and held low (by the receiver) for the duration of a clock cycle ’high’. Based on this 

protocol and with small variations to its fundamental design, communication between the 

FPGA and sensory units is established and used to interrogate them as required. Protocol I2C 

is also implemented as FSM, shown in Fig. 10. Here, the system is initially in the idle state. 

As soon as the reset (’rx’) button is set ’low’, the system moves into the ’Start’ state, which 

sets the ’start’ condition on the data line. The next state is the ’Transfer’ state in which the 

first byte on the stack (whose length is given by ’nbytes’) is sent or received. Once the byte 

transfer is completed, an acknowledgment condition is set on the data line. Depending on 

whether there are more bytes to transfer or not the system then either transitions into the 

’Stop’ state or returns to the ’Transfer’ state. 

 
 

Fig. 10. I
2
C FSM 

5.2. Software implementation 

The primary function of the software system is the prediction of the most likely navigation 

path for the navigation of the vehicle. As shown in Fig. 6, there are four subsections related to 

this prediction system, which are discussed as follows: 

5.2.1. Driver habits database 

The algorithm depends on information gathered about external conditions during the 

navigation of a vehicle, as well as the navigation path used between the endpoints of interest. 

This information is stored in a database, which is accessible by the algorithm. The schema of 

the database to store the received information is shown in Fig. 11. Here, the table 

representations only include the primary and foreign keys, whereas the arrows point towards 

the table being linked by the foreign keys. Based on this initial description of data, a 

relational database scheme is developed. To develop these schemas, ab SQLite database has 

been used. The programming language Python is used for the further implementation section. 

An Object Relational Mapper (ORM) system called peewee is used to facilitate database 
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communication within the software. The ORM layer allows for the representation of database 

tables and relationships as higher-level language classes and types. It encourages separation 

of low-level database management from high-level data usage, making it easy to switch out 

databases completely if the situation requires it. 

 
 
Fig. 11. Database schema showing major links 

5.2.2. Road network map 

The algorithm is required to predict vehicle’s navigation path along a road network. This 

section of the design focuses on translating the real-world geographical map system into a 

mathematical construct that can be used by the algorithm. As discussed in the hardware 

implementation section, geographical data gathered by RFID devices strategically placed 

along the roads. This requirement of placing tags in advance allows for manual gathering of 

the geographical information relating to tagging locations. For instance, a tag placed along a 

certain road would be translated into the geographical coordinates of the terminal intersection 

of that road. Once the intersections had been tagged accordingly, an adjacency list is used to 

represent possible transitions between the intersections. The decision is made to use an 

adjacency list rather than an adjacency matrix because of the inherently sparse nature of road 

networks when represented as directed graphs. The ’sparse’ property can be defined as the 

relationship between the average numbers of edges intersecting at a single vertex versus the 

total number of vertices in the graph. 

For road networks, most intersections have four roads feeding them, whereas the number of 

intersections in an area with multiple navigation paths between two endpoints is assumed to 

be significantly higher than four. As the number of intersections (represented here by ’n’) 

grows, the adjacency matrix size grows by a factor of n2 

. The adjacency list is less space-efficient for small numbers of vertices, but as the scale of 

the problem grows, the upper limit to the size of the adjacency list approaches n2 

as well. However, if the network is sufficiently sparse (for example, if there are at most four 

edges at a vertex), the adjacency list will be significantly more space-efficient, approaching 

only 4n in size. 
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Table 1. Table adjacency list 

 

Vertex Adjacents 

0 1,3 

1 0, 2, 4 

2 1, 5 

3 0, 4, 6 

4 1, 3, 5, 7 

5 2, 4, 8 

6 3, 7 

7 4, 6, 8 

8 5, 7 

 

Table 2. Adjacency matrix vertex versus adjacent 

 

 
0 1 2 3 4 5 6 7 8 

0 0 1 0 1 0 0 0 0 0 

1 1 0 1 0 1 0 0 0 0 

2 0 1 0 0 0 1 0 0 0 

3 1 0 0 0 1 0 1 0 0 

4 1 0 0 1 0 1 0 1 0 

5 0 0 1 0 1 0 0 0 1 

6 0 0 0 1 0 0 0 1 0 

7 0 0 0 0 1 0 1 0 1 

8 0 0 0 0 0 1 0 1 0 

Here, Tables 1 and 2 represents two road network models for Fig. 3. Note that the adjacency 

matrix representation has a large number of cells with no constituent data, whereas the 

adjacency list simply has shorter constituent lists as required. 

5.2.3. Filtering 

As the vehicle’s navigation details are collected, it is expected that occasional deviations such 

as side trips to petrol stations, reroutes due to accidents or roadworks, human interference and 

many others from the normal path, may take place. To keep the efficiency of the prediction 

algorithm high, a filtering subsection has been designed to process the pertinent data that is 

prone to disturbance before using these data in the prediction algorithm. Here, the vehicle 

navigation details are represented as a sequence of transitions. If a vehicle navigates along the 

same navigation path ’n’ times, there will be at least ’n’ transitions from each intersection on 

the navigation path to the next one, for the intersection along the navigation path used. 

Fig. 12 shows a short section of such a navigation path. As shown in Fig. 12, the vehicle has 

transitioned from vertex ’3’ to vertex ’5’ twice, and from vertex ’3’ to vertex ’4’ only once. 

Vertex ’3’ has three possible transitions becuse of the nature of the road network. In order to 

translate these data into transition probabilities, all the possible transitions are first 

considered: 

 

tp3x=1/adj(3)=1/3          (1) 

 

Equation 1 states that the initial transition probabilities for all transitions from state ’3’ are 

equal and a function of the number of adjacent intersections to state ’3’. After this, the 
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individual transition probabilities are incremented by 1 for each transition in the database, 

which is shown in Eqs. 2 and 3. The resulting transition probability values are then 

normalized to sum up to 1 in Eqs. 4–6. 

 

tp34=tp3x+1=4/3          (2) 

 

tp35=tp3x+2=7/3          (3) 

 

tp32norm=tp32/(tp32+tp34+tp35)=1/12        (4) 

 

tp34norm=tp34/(tp32+tp34+tp35)=1/3        (5) 

 

tp35norm=tp35/(tp32+tp34+tp35)=7/12        (6) 

  

The above calculations show that there is a 58.33 % chance of the vehicle transitioning to 

state 5 from state 3, a 33.33 % chance to transition to state 4 and an 8.33 % chance to 

transition to state 2. Whereas these values are intuitively acceptable, the nature of the HMM 

algorithm calls into question their reliability. The issue with this unfiltered transition data has 

strong confidence given to the transition probabilities after only 3 samples. It can also be seen 

that the transition probability from state ’3’ to ’2’, which should be approximately 33.33 %, is 

now 8.33 %. This low probability would have a large effect on the algorithm, where the 

probabilities are combined multiplicatively, and reduce all possible chances of a probable 

navigation path transition from ’3’ to ’2’ even when that transition may be the likeliest one 

based on the situation at the time of prediction. 

 

 
 
Fig. 12. Road section 

Therefore, it is decided to implement an Exponential Weighted Moving Average (EWMA) 

filter to reduce the effect of single deviations and low sample sizes on the resulting transition 

probabilities. After three samples, there should ot be a significant difference between the new 

transition probabilities and the ones computed without any vehicle information and, after 100 

samples, a few new deviations should not have a significant effect on the transition 

probabilities that have been established. A slow response of the EWMA filter would provide 

the required smoothing. The filter parameter (represented by a) could be parameterized, 

allowing for user control over the smoothness of the filter and its reactiveness to change. 

With an ’α’ value of 0.9, the filter takes 0.9 of the existing transition value, and (1 − 0.9) of 

the new value (set to be 1 in this case, as in the unfiltered case as well). This computation 
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takes place recursively for each new transition recorded. At the end, the normalization is done 

as before. 

 

tp34=(0.9×tp34)+0.1=0.4         (7) 

 

tp35=((0.9×tp35)+0.1)×0.9)+0.1=0.46        (8) 

 

Normalizing using the normalization formulas given in Eqs. 4–6 for above results will be: 

tp32 = 27.93% 

tp34 = 33.52% 

tp35 = 38.55% 

These values still indicate the highest preference for the ’3’ to ’5’ transition and the lowest 

for the ’3’ to ’2’ transition. However, all the values are still relatively close to the original 

33.33 % assigned to them by the nature of the road network. This is a closer representation of 

the truth, as the sample size does not give us the requisite confidence to deviate too far from 

the default, as was the case with the unfiltered values. The smaller range between the 

probabilities also means that the algorithm will be free to attempt all alternative values if the 

situation demands it. 

 
 
Fig. 13. Viterbi algorithm visualizer 

5.2.4. HMM algorithm 

As stated earlier, the Viterbi algorithm is used to determine the most likely sequence of 

intersections based on vehicle navigations and observations on the day of travel. This 

algorithm can be visualized as a trellis diagram, with the solution being the highest 

probability path through the trellis. The algorithm is visualized in Fig. 13 and a simple 

problem is postulated to demonstrate the algorithm’s process. For this we have considered the 

following parameters: 

 Initial probabilities: 

o State 1 = 60 % 
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o State 2 = 40 % 

 Transition probabilities: 

o 1 to 1 = 35 % 

o 1 to 2 = 65 % 

o 2 to 1 = 55 % 

o 2 to 2 = 45 % 

 Emission probabilities: 

o A given 1 = 70 % 

o A given 2 = 30 % 

o B given 1 = 25 % 

o B given 2 = 75 % 

On the basis of the above probabilities, this algorithm proceeds as follows: 

1.Initial path sections (t = 1). For these sections the computation is given by: 

Pinitialforstate×Pobservation,givenstate 

 Path 1 = (0.6)×(0.7) = 0.42 

 Path 2 = (0.4)×(0.3) = 0.12 

 

1. Next observation (t = 2). For these sections the computation is given by: 

Poldstate×Ptransitionfromoldtonewstate×Pobservation,givennewstate  

 Path 11 = (0.42)×(0.35)×(0.25) = 0.03675 

 Path 12 = (0.42)×(0.65)×(0.75) = 0.20475 

 Path 21 = (0.12)×(0.55)×(0.25) = 0.0165 

 Path 22 = (0.12)×(0.45)×(0.75) = 0.0405 

Select the highest probability path to each state and preserve the path. For the above case 

those are Path 12 (probability 0.20475) and Path 11 (probability 0.03675). The remaining 

paths can be discarded. If there are additional observations, start with transitions from the 

remaining paths and proceed as indicated in number 2 above. This means that the next 

computations would be for Paths 121, 122, 111 and 112. 

One aspect of the algorithm is the fact that probabilities are multiplied along the path. As 

probabilities are fractional quantities, their multiplication can result in small numbers that 

encroach on the precision limits of most computer systems. As a means of dealing with that, 

the Viterbi implementation used in this work uses the inverse logarithm of all probabilities in 

its calculations. This means that the values are added rather than multiplied, and, at the end, 

the Viterbi path is the one with the lowest inverse log probability. This effectively removes 

the need for handling extremely small numbers, as the inverse logs of probabilities will 

generally be large positive numbers and primarily using addition should keep them well 

within the precision limits of most commercial computer systems. 
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6. Experimental Analysis 

This section represents the various experiments carried out using the above-mentioned 

hardware, software designs and algorithms. Details of these experiments and the results 

obtained are listed as follows: 

6.1. Experiment 1: Prediction Accuracy 

The objective of this experiment is to determine whether the algorithm can accurately predict 

the navigation path of the vehicle using the path database. To perform this experiment we 

used the GPS tracking android phone software (intelligent routing by FilterIS). In our 

observations we obtained the results shown in Table 3. From the data obtained it is clear that 

the algorithm correctly predicted the navigation path eight times out of 10, and for the two 

incorrect predictions the reasons are outside the scope of the problem. 

 
Table 3Experiment 1 results 

 

Test Accurate Possible reason for inaccuracy. 

1 Yes 
 

2 No Phone call diversion 

3 Yes 
 

4 Yes 
 

5 Yes 
 

6 Yes 
 

7 No Traffic lights out on major streets. 

8 Yes 
 

9 Yes 
 

10 Yes 
 

6.2. Experiment 2: Heading Information Through Magnetic Compass 

The objective of this experiment is to perform well in a test involving multiple direction 

changes. The vehicle is driven on a straight road for 100 meters; it makes a sharp right-hand 

turn and thn cotinues straight. Figure 14 depict three images, one on the first straight, the 

second while the turn is taking place and the third three seconds after the second turn when 

the vehicle is moving straight on the road. The degrees for Fig. 14 from left to right are: 

97.12, 109.6 and 97.63. A deviation of less than one degree is shown. 
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Fig. 14. Vehicle movement readings using magnetometer on a T-shaped road test 

6.3. Experiment 3: RFID Tag Read Distance 

The objective of this experiment is to determine the effective range of the RFID tags used in 

the system. To perform this experiment, we used RFID tags, a reader, and distance-measuring 

devices. In Table 4, most of the tags were unable to reach 5m. However, despite the rating for 

maximum distance on the tags being given as 3m, they could be all capable of being read 

from outside that range. 

 
Table 4.Experiment 2 results 

 

Tag ID Read distance 

123483 3.8 

123444 5.2 

123445 4.4 

234545 4.6 

123583 5.1 

234511 3.4 

165001 4.0 

769696 4.2 

123458 4.3 

6.4. Experiment 4: RFID Devices Read Rate 

This experiment sought to establish an upper limit on the vehicle speed that would allow for 

interrogation of the tags placed by the road. To perform this experiment, we used RFID tags 

and readers. Here, tags had a significantly larger acquisition rate, which improved the range 

in which the vehicle needed to be for a successful tag read. We considered a road distance of 

700 m and all the tags were placed along it. Seve successful trips were recorded. A successful 

trip is defined as one in which all of the tags placed along the road are interrogated. The 

maximum speed of the vehicle across this experiment was recorded at 28.3 km/h, which is a 

marked improvement over the values obtained from the initial run of the experiment. The 

experimental runs are listed in Table 5 below. 
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Table 5. RFID read rate data 

 

Navigation Path Start End Duration Distance Speed (km/h) 

1 19:47:38 19:51:38 0:04:00 700 10.50 

2 20:09:39 20:12:04 0:02:25 700 17.38 

3 20:23:27 20:25:25 0:01:58 700 21.36 

4 20:36:50 20:38:43 0:01:53 700 22.30 

5 20:48:29 20:50:03 0:01:34 700 26.81 

6 21:05:12 21:06:41 0:01:29 700 28.31 

7 21:18:52 21:20:30 0:01:38 700 25.71 

Average 
  

0:02:08 700 21.77 

6.5. Experiment 5: GPS Location Estimation 

The objective of this experiment was to obtain the latitude and longitude from the location 

listener and convey this to the map application. The camera position was constantly moved to 

the user’s current location. A snapshot of the GPS location while on the move is shown in  

Fig. 15. 

 
Fig. 15. Position estimation using GPS sensor 
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6.6. Experiment 6: Tag Detection Application 

A reader is mounted underneath the car on the front side. Tags were placed on a straight 

section of an underground parking lot of a local mall 10 m apart. The vehicle traversed the 

tags at a speed of about 30 km/h. All four tags that were placed were detected by the reader 

and displayed with position data and timestamps. This is shown in Fig. 16. 

 
 

Fig. 16. Successful tag detection with location data and timestamps 

6.7. Experiment 7: Total System Delay 

This experiment measured the amount of time expended during the execution of the 

algorithm. Here, we used the prediction algorithm on a commercially available personal 

computer. We also used the stopwatch to record the working time of algorithm. In the results 

obtained it was found that the algorithm is much faster than the reaction time of the person 

holding the stopwatch. 
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6.8. Experiment 8: Filtering System 

This experiment was designed to test the robustness of the filtering system in the face of 

disturbances. To perform this experiment we used a sample database with some pre-existing 

navigation paths and it was assumed that one of the navigation path would always be the 

same for a specific vehicle. Then, we added a new navigation path with a different transition 

from the common navigation path used by the vehicle and observed the resulting prediction. 

From our analysis, it is found that the predicted navigation paths were not affected by single 

instances as long as there were more than one existing navigation paths for the vehicle 

between the points of interest. In cases where there was only navigation path for the vehicle 

between the two endpoints, the addition of another navigation path would not be regarded as 

a disturbance because of the lack of information on what navigation path should be 

considered the norm. 

7. Conclusion 

The main objective of this research work is to implement a system capable of predicting a 

vehicle’s navigation paths based on the existing driving practices of drvers by using an HMM 

inference algorithm. These existing driving practices are collected by a hardware-sensing 

platform and RFID technology. The software algorithms in this research work all turned out 

quite well. Implemented algorithms were rigorously tested and the entire prediction software 

suite was sbject to unit tests to prevent changes over time from affecting its core 

functionality. In addition, the UART communication module was well designed. No timing 

issue or data loss issues occurred throughout the implementation of work. The Viterbi 

algorithm, which is an inference algorithm for the HMM, was implemented using Python 

programming language. This algorithm provided the most likely sequence of states that a 

Markov process underwent to provide a given sequence of observations. For the data 

collection, sensors were acquired and attached to an FPGA controller. Communication 

protocols between the sensors and FPGA, as well as the FPGA and a computer, were 

designed. An RFID reader and tag set was used to gather geographical data as well as trigger 

the gathering of environmental data via the serial connection being bridged via the computer. 

With the recent advancement in sensitivity and scale of smart-phone sensors, one future 

prospect for this project would be a fully mobile application, capable of collecting existing 

driving practices of a driver, storing the information, predicting navigation paths and tracking 

the vehicle in real-time using GPS where available and falling back on Bluetooth low energy 

devices, which are ideal because of the near universal presence of Bluetooth technology on 

modern smart phones. 
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