
1

Smart Vehicle Navigation System Using Hidden Markov Model and RFID Technology

Reza Malekian
1*

, A. F. Kavishe
1
, B. T. Maharaj

1
, P. K. Gupta

1
, G. Singh

2
 and H. Waschefort

1

1
Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa

2
Department of Electronics and Communication Engineering, Jaypee University of Information Technology,

Waknaghat,Solan, HP 173 234, India

* Correspondence author: Reza Malekian, reza.malekian@ieee.org

A. F. Kavishe, kavishe@gmail.com

B. T. Maharaj, sunil.maharaj@up.ac.za

P. K. Gupta, pkgupta@ieee.org

G. Singh, drghanshyamsingh@gmail.com

H. Waschefort, Waschefort@gmail.com

Abstract

The road transport of dangerous goods has been the subject of research with increasing

frequency in recent years. Global positioning system (GPS) based vehicle location devices

are used to track vehicles in transit. However, this tracking technology suffers from

inaccuracy and other limitations. In addition, real-time tracking of vehicles through areas

shielded from GPS satellites is difficult. In this paper, the authors have addressed the

implementation of a smart vehicle navigation system capable of using radio frequency

identification based on information about navigation paths. For prediction of paths and

accurate determination of navigation paths in advance, predictive algorithms have been used

based on the hidden Markov model. At the core of the system there is an existing field

programmable gate array board and hardware for collection of navigation data. A

communication protocol and a database to store the driver’s habit data have been designed.

From the experimental results obtained, an accurate navigation path prediction is consistently

achieved by the system. In addition, once-off disturbances to the driver habits have been

filtered out successfully.

Keywords

Hidden Markov model, Navigation path, Prediction algorithms, RFID, Vehicle tracking

2

1. Introduction

Currently, the road transport of dangerous goods relies on tracking technology. In designing

smart navigation systems Global Positioning System (GPS) data may be augmented with

Wireless Fidelity (Wi-Fi) and Global System for Mobile comunications (GSM) signals to be

used to provide location information of vehicles transporting goods and passengers [1]. At

present these systems suffer from limitations such as reduced reliability in areas that are not

permeated by the necessary GSM or Wi-Fi signals, or areas in which GPS satellites do not

provide sufficient coverage. In this paper, we have designed and implemented a system that is

capable of predicting the navigation path of a vehicle on the basis of a database built using

the driver’s existing driving practices. The problem addressed in this work is the

implementation of a system capable of using Radio Frequency Identification (RFID) based

information about navigation paths, in conjunction with predictive algorithms based on the

hidden Markov model to accurately determine the vehicle navigation paths in advance. For

predictive systems, current methods may be split into two main groups. Prediction based on

historical data use either frequency based probabilistic models or Bayesian inference to

determine future events [2]. In the absence of historical data, evolutionary or meta-heuristic

algorithms are used to predict optimal navigation paths, such as the one used by [3]. These

algorithms usually require a constraint to be placed on the system for effective prediction to

take place. For example, if the prediction is for vehicle navigation, then the constraint could

be finding the quickest possible navigation path. A genetic algorithm using this constraint is

addressed by [4]. The design of the proposed smart navigation system will extend the

predictive systems by using existing vehicle navigation information, gathered using RFID

technology, to predict navigation paths without necessarily constraining the paths to the

quickest or the shortest one.

A Markov process is a stochastic process in which one can make predictions about the future

state of the process based on only its current state. These predictions would be as good as

predictions made if one had been aware of the entire history of the process. Since the future

of the system is dependent only on its current state, the process can be considered

’memoryless’. This ’memoryless’ property of a process is called the Markov property,

whereas a HMM is one in which the states, though known, are not directly visible to the

observer. What is visible is the output, which is dependent on the current state (as a result of

the underlying process assuming the Markov property). Therefore the sequence of observed

output values provides information about the sequence of states. We have used the concept of

HMM to design and implement the smart navigation system.

This paper is categorized into various sections. Sect. 2 discusses the literature survey and

various techniques related to vehicle navigation path prediction and data acquisition. Sect. 3

focuses on the theoretical analysis and modeling aspect of the proposed system and also

shows the various navigation path possibilities. Sect. 4 lists the design principles used in two

different sections for hardware and software parts. Sect. 5 provides the detailed view of

hardware and software implementations of the design. Sect. 6 consists the various

experimental results of the implemented system. Finally, Sect. 7 concludes the work.

2. Literature Survey

The main aim of this work is to implement a system capable of predicting the navigation path

of a vehicle according to a database built using the driver’s habits and populated by data

using the previous navigation path details. In addition, it is required that RFID devices and

3

sensors be used in gathering the data. Finally, the prediction algorithm needs to be based on

the HMMl. In order to meet the requirements, an investigation into predictive techniques as

well as data gathering methods has been undertaken. Furthermore, a detailed look at the

nature of the HMM and its application in predictive algorithms. A discussion of the

accumulated literature follows in the subsections below.

2.1. Hidden Markov model

It is known that in the HMM the sequence of observed output values provides information

about the sequence of states. If modeled using an HMM, then the observer will only observe

a sequence of output tokens directly. The underlying states and the state transition and

emission probabilities are considered prior knowledge. Baum et al. [5] have described the

model based on this information; the observer can attempt to infer the sequence of states that

yielded the observed output sequence. The application of the HMM as a predictive algorithm

has been used in biotechnical fields to study protein structures and genetics. Sonnhammer et

al. [6] discussed a method of modeling and predicting the location and orientation of alpha

helices in some forms of proteins, whereas Stanke and Wack [7] used the HMM for gene

prediction. Despite the differences in application, the HMM is an acknowledged tool for

predictive solutions to systems that can be modeled as Markov processes. Applying HMM to

a vehicle navigation system requires only that the navigation path be represented as a Markov

process as well. Ning et al. [8] proposed the route recommendation system architecture and

the mathematical model for driving route prediction using K-means++ and Laplace

smoothing technique.

2.2. Vehicle Navigation Path Prediction

Vehicle navigation paths are usually repetitive in nature due to natural constraints that limit

the freedom of the driver. One of the most common natural constraints is time; most drivers

attempt to reduce the amount of time spent traveling between their origin and destination.

However the eventual navigation path that a vehicle driver decides on is influenced by

emergent constraints from the road network and environment in general. Harsh weather

conditions, poor traffic conditions and the availability of fuel will all factor into the decision-

making of the driver and affect the eventual navigation path. The proposed system will

collect driver habits over a period of time and, using this data, perform a static prediction on a

vehicle’s navigation path. The prediction is considered static, as it will not be updated as the

vehicle is being driven along the navigation path. The possible navigation path will be

modeled as an HMM whose parameters are derived from the driver’s existing driving

practices.

A number of methods can be considered for the prediction of vehicle navigation paths. Barth

and Karbassi [9] have used a hierarchical tree data structure to perform real-time prediction

on the navigation path that a vehicle will take for direct trips (source to destination). Their

algorithm is recomputed as new data from the vehicle arrives while the vehicle is already in

transit. However, their method is incapable of handling situations in which the vehicle is

required to make an erroneous stop along the way (for example a fuel stop). Froehlich and

Krumm [10] discussed an alternative method where details of vehicle’s navigation path are

collected and grouped by similarity. Each specific navigation path is assigned an index and

stored. As the vehicle begins its journey, the navigation path progresses their algorithm

attempts to match the current navigation path with an existing one. Although this allows for

an initial prediction of the navigation path, the prediction is continuously updated as the

4

journey progresses. The nature of this algorithm implies that the presence of disturbances in

the navigation path (such as unexpected stops or unexpected road works) will result in the

creation of new navigation paths. These paths will affect the accuracy of future predicted

navigation paths by increasing the time it takes for the matching algorithm to find an existing

matching navigation path. Feng et al. [11] proposed a new method using a Kalman filter? to

predict the reliable location of vehicles’ next move. In their experiments they achieved a

degree of location performance. They also quantitatively compared the prediction

performance of the proposed method and neural network methods. Silva et al. [12] proposed

a solution for navigation on congested roads by using smart phones. The proposed system

first obtains the traffic information from a central system and then it guide the driver on the

basis of obtained information. In Simmons et al. [13] proposed the usage of the HMM to

perform predictions on a vehicle’s navigation path. In their method, the historical driver data

are gathered using GPS information. This is then used to supply parameters to the HMM.

They were able to achieve results with acracy of above 98 % in most cases, although the

navigation paths they tested had very few places in which choices were required. However, in

their analysis it was shown that GPS data are not reliable because of noise and shielding from

buildings in urban areas or tunnels. They had to include specialized algorithms to counteract

the poor reliability of the GPS data.

The shortcomings of the systems described above create the gap that must be addressed by

the proposed smart navigation system to be designed. The nature of the HMM allows for

accurate predictions when presented with reliable data, as indicated by the results of

Simmons et al. [13] . However, this navigation system is designed to gather data using RFID

devices rather than GPS. The inclusion of a filtering algorithm on the gathered data will

reduce the effect of occasional disturbances to the navigation paths that will be considered by

the vehicle.

2.3. Acquisition of Navigation Paths

Using the prediction algorithms described above, data regarding vehicles’ navigation paths

have to be gathered. The data should include pertinent variables that can be used to construct

a clear picture of the driver’s decision-making process. To that effect, information such as the

vehicle’s speed, the time of day and the occurrence of precipitation must be gathered as the

vehicle travels along a navigation path. In addition to the aforementioned variables, the

position of the vehicle is also critical information for the algorithm. There are a number of

ways to acquire this information. These include among others:

 Manual note-taking by the driver or an accompanying passenger.

 GSM signal tracking using cell tower triangulation.

 GPS signal tracking.

 RFID based tracking.

The global presence of mobile phones has led to a number of investigations as to their

usability in tracking systems. Ye et al. [14] defined the relationship between various roads on

the basis of social network analysis and then applied a route prediction algorithm to find the

optimal route. The authors verified the efficiency of their algorithm by conducting various

experiments.Quddus and Washington [15] developed a map-matching algorithm for finding

the shortest path and vehicle trajectory. The proposed algorithm uses A* search algorithm for

finding the shortest path. The accuracy of the proposed algorithm is obtained 98.9 % for

every 30s GPS data. The authors considered the threshold of 1000m for finding the shortest

5

distance. Luo et al. [16] proposed a new path-finding query that finds the most frequent path

during user-specified time periods. The authors conducted their experiments on GPS data

obtained from 6000 taxis in Shanghai. Kansal et al. [17] discussed a sensor network for

tracking using mobile phone devices. They mentioned the fact that the prevalence of mobile

devices and the increased availably of GPS technology on them make them ideal nodes in a

sensory network that focuses on the same GSM signals used for voice communication.

Alternatively, exclusive GPS devices can be mounted on vehicles for the sole purpose of

tracking. These devices can be integrated with the vehicle’s electronics for power purposes

and run indefinitely. Both GSM and GPS based systems suffer from noise and accuracy

limitations, particularly in areas where the GSM towers of GPS satellites have limited or no

coverage. This limits their potential usage as location data sources for the proposed prediction

algorithm. However, RFID devices can be used to counteract this limitation in such areas.

3. Theoretical Analysis and Modelling

In order to design the proposed system, an understanding of the HMM and its application in

predictive analysis is required. Details of HMM is discussed in the next section. Here, we will

explain the nature of the model and highlight the specific features that will make it suitable

for this system. In Fig. 1, a Markov process with random variable ’x’ is shown. The transition

probabilities between the three states of the variable are indicated as aij where ’i’ refers to the

preceding state and ’j’ refers to the resulting state. The tokens yielded by the process (outputs

at each state) are represented by the variable ’y’. The probability of a specific output, given

that the system is at a specific state, is called the emission probability. These probabilities are

indicated as ′bm(yn)′. In this case, the ’m’ represents the current state and the ′y′n represents a

particular output. The proposed work requires the use of the HMM to predict vehicle’s

navigation path which is necessary to model the driver environment as a stochastic process

possessing the Markov property.

Fig. 1. Hidden Markov model

The real-world context of the navigation path prediction problem can be described as follows:

 A vehicle travels along a navigation path from point A to point B. It is assumed that

this navigation path is frequently used but, there may be multiple navigation paths to

travel between these two endpoints. Furthermore, it is assumed that the driver bases

the decision on which navigation path to take on the environmental and traffic

conditions at the time the path must be driven.

 Each vehicle that drives along this navigation path has a set of routing habits based on

the decisions the drivers make, given specific environmental conditions. It is assumed

that any other factors (such as the driver’s health or the vehicle’s status) are not

statistically significant in the habitual analysis of the driver.

6

 Information about the vehicle’s navigation paths and the external conditions at the

time of the navigation is stored in an accessible database. Based on this context, a

suitable stochastic process has to be determined. This would be the process modelled

using the HMM. There are a number of ways to reduce this information into a Markov

process. Two such methods are discussed below.

3.1. Navigation Paths as States

In this representation, the stochastic process settles at states that are defined as navigation

paths. This means that transition probabilities indicate the probability of selecting a

navigation path based on the present navigation paths and observations. As shown in Fig. 1,

all possible navigation paths between points A and B are possible states of the Markov

process. Information about the observations made on a specific day along a given navigation

path of a vehicle is stored in a database. The navigation path information is linked to the

driver’s driving habits. The variables indicated as aij in the diagram represent the possibility

of the driver selecting a navigation path, given the last one he has driven. The variable bi

represents the probability of a specific observation being made (yi), given the current state.

For instance, if a vehicle travels along navigation path 3, the probability of driving navigation

path 2 next is a32 in the figure. In addition, the probability of observation 2 being made is

b3(y2) where y is a variable indicating the different observations.

3.2. Vertices/Edges as States

In this representation, the stochastic process settles at states that represent points along the

navigation path. These points could be intersections (vertices) or road sections (edges). The

transition probabilities in this case would represent the chance of proceeding to a specific

intersection (or road section), given that the vehicle is currently on a specified intersection (or

road section). Figure 2 represents the road sections from x1 to x4 as states in the Markov

process. A navigation path is stored in the database as a sequence of transitions from road to

road. The transition probabilities between the road sections are expressed by variable aij in

Fig. 2 above. For instance, given that the vehicle is on road section x1 above, the probability

of turning onto road x2 is a12 whereas the probability of driving on straight ahead would be

a13 and the probability of turning onto road x4 is a14. It should be noted that this is

functionally similar in most aspects for using the road intersections as states, rather than the

road sections themselves. This is due to the fact that representing a navigation path as a

sequence of road transitions is equivalent to using intersection transitions, and just as

effective.

7

Fig. 2. Road sections as states

3.3. Selected Navigation Path Model

From the above two alternatives, for representation of the problem as a Markov process, we

have considered that using the road intersections (vertices) as states in the algorithm would be

the most effective way of representing the problem. Figure 3 shows a virtual road network

with intersections marked as numbers. The arrows between the intersections indicate the

allowable transitions between them. For example, it is possible to transition from vertex ’0’ to

vertex ’1’ as well as from vertex ’1’ to vertex ’0’. This form of directed graph representation

of the road network allows for easy translation into the HMM problem space. If we assume

that the process by which a vehicle proceeds along a navigation path is a Markov process,

then each vertex would represent a possible state in which the process can be at a specific

time. The presence of at least one directed arrow between two states indicates the existence of

a transition probability between the two. To expound on that point, there is a directed arrow

between vertex ’1’ and vertex ’4’, which implies that there is a probability of transitioning

between the two states (from 1 to 4). In addition, there are three directed arrows starting at

vertex ’1’ (from 1 to 4 to 5 to 2 and back to 1), implying that it is possible to transition from

vertex ’1’ and return to it.

8

Fig. 3. Road network model

As the purpose of an algorithm is to determine the likely navigation paths, it is unlikely that a

navigation path accurately predicted will require the vehicle to loop backwards onto the same

intersection. Therefore, the definition of possible transitions is constricted, with the condition

that the presence of exactly one directed arrow between two states indicates the existence of a

transition probability between them. This would mean that it is not possible to transition from

vertex ’1’ and return to it, as that requires more than 1 directed arrow. Having defined the

states of the process, we can define the transition probabilities of the model. These

probabilities indicate the likelihood of a vehicle to transition from the current state to a future

one. Using Fig. 3, if the transition probability from vertex ’1’ to ’4’ is 60 %, from ’1’ to ’2’ is

35 % and from ’1’ to ’0’ is 5 %, then one can assert with high confidence that the vehicle at

vertex ’1’ will most likely transition to vertex ’4’ next. These transition probabilities are

derived from the accumulated existing driving practices of the driver.

Finally, translating the problem into the HMM which uses a-priori knowledge of emission

probabilities (the probability of an observation being made given that the process is at a

specific state), state transition probabilities and the initial probability of each state to compute

the most likely sequence of states which results in the observations. This section of the HMM

should be adapted in a novel fashion to suit the requirements of the work. For a road network

based problem, possible observations include traffic, weather and time of day. None of these

are directly caused by the current state of the process which affects their inclusion into the

problem. To represent these two main design decisions were made.

 Three observations of a binary nature would be tracked, namely traffic (high or low),

precipitation (rainy or dry) and daytime (day or night). These observations have been

combined into a bit flag, allowing for eight possible combinations. For instance, the

bit flag ’101’, which is the number 5 in the decimal system, would represent ’high

traffic, dry, daytime’ if we use the order of observations as stated earlier and other

possible combinations could be similarly designed.

 The observations would be represented as a list (containing the present observation,

repeated) rather than a single observation. This stems from the nature of the HMM.

9

The number of states in the sequence predicted is directly linked to the number of

available observations. If only one observation is available, only one state is

predicted. However, with a list of observations, the sequence returned has a maximum

length limited only by the length of the list of observations. By using in a maximally

long list of observations, the resulting predicted sequence can be truncated based on

another parameter (for example, when the sequence first reaches the destination state).

4. Design Methodology

In order to meet the stated objectives, a system consisting of a sensory platform and a

predictive algorithm has to be designed. The possible interface of the proposed smart

navigation system has been determined and preferable outputs have been considered. Based

on these parameters, the boundary for the proposed smart navigation system has been defined

and the top-level components of the system have been conceptualized and designed. These

top-level components are broadly separated into a primarily hardware-based sensory platform

and the software implementation of a predictive algorithm. The conceptual design of these

two components is discussed in the following sub-sections.

4.1. Hardware-Centric Component

The hardware sensing platform has been designed to allow for the gathering of environmental

and geographical data. A detailed hardware platform as represented in Figs. 4 and 5 consists

of a sensory system comprising of an accelerometer, humidity sensor, temperature sensor and

real-time clock capable of interrogating environmental conditions. The raw data output from

these individual components would be used to determine the environmental and traffic

conditions along the navigation path being recorded. The navigation path itself is determined

by the sequence of tags read by the RFID reader in the vehicle. The real-time clock is

included to reduce the complexity that the user would have to face when operating the

system. In addition, it may not always be possible to recall the starting time of a navigation

path with sufficient accuracy. Finally, the interface between the hardware and the computer

running the algorithm was implemented as a direct cable, communicating using a serial link.

This allows for direct viewing and analysis of collected data when the hardware platform is

connected to a portable computer while the vehicle is on a navigation path. The entire

hardware platform is designed around an FPGA controller.

Fig. 4.Detailed hardware design of implemented system

10

Fig. 5. Components used for designing the smart navigation system

4.2. Software System

The main component of the proposed navigation system as shown in Fig. 6, is the algorithm,

which predicts a navigation path based on historical data collected by the hardware system.

These historical data are stored in a database that can be accessed by the algorithm. Two

software subsections complement the functionality of the predictive algorithm. (1) The

filtering subsection is used to ensure that statistically significant data points have been used in

the predictive algorithm to prevent unnecessary skewing of results due to once-off deviations

from the norm. (2) The HMM is used to predict the navigation paths. Currently, two major

algorithms are used to solve problems modelled by the HMM: (a) The forward-backward

algorithm is used to determine the probability of all potential state transitions in the model

that would have led to the observed outputs, (b) The Viterbi algorithm is used to determine

the most likely sequence of states that would result in the observed outputs. In most cases the

algorithm returns the same solution given the same input and conditions. However, the

Viterbi algorithm is more representative to use with the proposed smart navigation system,

which is why it is implemented as opposed to the forward-backward algorithm.

Fig. 6. Components of software systems

11

An exponentially weighted moving average (EWMA) filter has been used to smooth out

spikes in the data points queried from the database before using them to compute state

parameters for the prediction algorithm. The EWMA filter has an easily adjustable

smoothness, making it ideal for situations in which the volume of data is not necessarily

known beforehand. As for the mapping, an adjacency list has been used to store information

about the roads between intersections. The adjacency list would be queried from the database

and used to generate a graph with intersections as vertices and roads as directed edges

between them.

5. Implementation

5.1. Hardware implementation

To implement the proposed smart vehicle navigation system as shown in Fig. 4, we have

selected two communication protocols which are described as follows:

5.1.1. Universal Asynchronous Receiver/Transmitter (UART)

Communication between the FPGA and the computer on which the software performs is

achieved using the UART protocol. This protocol allows for serial data transmission using a

synchronized clock between the sender and receiver. The protocol transmits and receives data

according to the set of standards described below:

 Idle - the line is high.

 Start - the line is set low (a ’0’ bit is sent).

 Data - the eight data bits are sent by setting the line to high for ’1’ and back to low for

’0’.

 Stop - the line is set high (a ’1’ bit is sent).

 There are two options:

o Idle - keep the line high

o Start - set the line low and send another byte.

The entire process is controlled by the UART clock speed, commonly called the baud rate.

Baud (Bd) is the unit for symbol rate, effectively representing the number of distinct symbol

changes per second on a digital signal. This clock is generated both by the emitter and

receiver. As a result, the two clocks may fall out of synchronization, which would result in

incorrect data or failed transmissions. To avoid such a type of scenario, the FPGA is coded to

oversample the incoming signal at 16 times the baud rate. This allows for samples of the

incoming data bits to be taken at times when the bit value is settled irrespective of clock

synchronization status. For instance, in Fig. 7 the faster clock can be used to sample the

slower one. If there are 16 ticks of the faster clock for each cycle of the slower one, one

simply counts the number of ticks (rolling over from 15 to 0) and sample at a number that is

suitable for the situation. To sample in the middle of the ’high’ cycle in the Fig. 6, the sample

would be taken at tick counter ’0’.

12

Fig. 7.Oversampling a slow clock

In the proposed navigation system the UART protocol is implemented as a finite state

machine (FSM), shown in Fig. 8. The control signal ’rx’ determines whether or not the

UART is ready to receive a byte. The variable ’nbits’ counts the number of bits received and

after a full byte (8 bits) and the stop signal (1 bit) have been received, it returns to the idle

state. The transmission FSM is fundamentally identical to the reception one. However, the

direction of data flow is reversed.

Fig. 8. UART reception FSM

5.1.2. Inter-Integrated Circuit (I2C)

Communication between the FPGA controller and the digital sensors uses the I2C

protocol. The basic protocol considers two signal lines: (1) the data line, and (2) clock signal.

For most I2C applications a maximum clock signal of 400 kHz is recommended. Considering

the nature of the data being sent from the sensors to the FPGA, an I2C clock of 100 kHz is

generated and used for the protocol. Because of to its dual lane nature, the protocol

description is slightly more involved than the UART one. As shown in Fig.9, the data line is

pulled high by an external resistor while the system is idling.

Fig. 9. I

2
C protocol start and stop conditions

13

In between these two conditions, data are sent in bytes (exactly 8 bits long). Each transferred

byte is followed by an acknowledgment condition, which is defined as the data line being

pulled and held low (by the receiver) for the duration of a clock cycle ’high’. Based on this

protocol and with small variations to its fundamental design, communication between the

FPGA and sensory units is established and used to interrogate them as required. Protocol I2C

is also implemented as FSM, shown in Fig. 10. Here, the system is initially in the idle state.

As soon as the reset (’rx’) button is set ’low’, the system moves into the ’Start’ state, which

sets the ’start’ condition on the data line. The next state is the ’Transfer’ state in which the

first byte on the stack (whose length is given by ’nbytes’) is sent or received. Once the byte

transfer is completed, an acknowledgment condition is set on the data line. Depending on

whether there are more bytes to transfer or not the system then either transitions into the

’Stop’ state or returns to the ’Transfer’ state.

Fig. 10. I
2
C FSM

5.2. Software implementation

The primary function of the software system is the prediction of the most likely navigation

path for the navigation of the vehicle. As shown in Fig. 6, there are four subsections related to

this prediction system, which are discussed as follows:

5.2.1. Driver habits database

The algorithm depends on information gathered about external conditions during the

navigation of a vehicle, as well as the navigation path used between the endpoints of interest.

This information is stored in a database, which is accessible by the algorithm. The schema of

the database to store the received information is shown in Fig. 11. Here, the table

representations only include the primary and foreign keys, whereas the arrows point towards

the table being linked by the foreign keys. Based on this initial description of data, a

relational database scheme is developed. To develop these schemas, ab SQLite database has

been used. The programming language Python is used for the further implementation section.

An Object Relational Mapper (ORM) system called peewee is used to facilitate database

14

communication within the software. The ORM layer allows for the representation of database

tables and relationships as higher-level language classes and types. It encourages separation

of low-level database management from high-level data usage, making it easy to switch out

databases completely if the situation requires it.

Fig. 11. Database schema showing major links

5.2.2. Road network map

The algorithm is required to predict vehicle’s navigation path along a road network. This

section of the design focuses on translating the real-world geographical map system into a

mathematical construct that can be used by the algorithm. As discussed in the hardware

implementation section, geographical data gathered by RFID devices strategically placed

along the roads. This requirement of placing tags in advance allows for manual gathering of

the geographical information relating to tagging locations. For instance, a tag placed along a

certain road would be translated into the geographical coordinates of the terminal intersection

of that road. Once the intersections had been tagged accordingly, an adjacency list is used to

represent possible transitions between the intersections. The decision is made to use an

adjacency list rather than an adjacency matrix because of the inherently sparse nature of road

networks when represented as directed graphs. The ’sparse’ property can be defined as the

relationship between the average numbers of edges intersecting at a single vertex versus the

total number of vertices in the graph.

For road networks, most intersections have four roads feeding them, whereas the number of

intersections in an area with multiple navigation paths between two endpoints is assumed to

be significantly higher than four. As the number of intersections (represented here by ’n’)

grows, the adjacency matrix size grows by a factor of n2

. The adjacency list is less space-efficient for small numbers of vertices, but as the scale of

the problem grows, the upper limit to the size of the adjacency list approaches n2

as well. However, if the network is sufficiently sparse (for example, if there are at most four

edges at a vertex), the adjacency list will be significantly more space-efficient, approaching

only 4n in size.

15

Table 1. Table adjacency list

Vertex Adjacents

0 1,3

1 0, 2, 4

2 1, 5

3 0, 4, 6

4 1, 3, 5, 7

5 2, 4, 8

6 3, 7

7 4, 6, 8

8 5, 7

Table 2. Adjacency matrix vertex versus adjacent

0 1 2 3 4 5 6 7 8

0 0 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0 0 0

2 0 1 0 0 0 1 0 0 0

3 1 0 0 0 1 0 1 0 0

4 1 0 0 1 0 1 0 1 0

5 0 0 1 0 1 0 0 0 1

6 0 0 0 1 0 0 0 1 0

7 0 0 0 0 1 0 1 0 1

8 0 0 0 0 0 1 0 1 0

Here, Tables 1 and 2 represents two road network models for Fig. 3. Note that the adjacency

matrix representation has a large number of cells with no constituent data, whereas the

adjacency list simply has shorter constituent lists as required.

5.2.3. Filtering

As the vehicle’s navigation details are collected, it is expected that occasional deviations such

as side trips to petrol stations, reroutes due to accidents or roadworks, human interference and

many others from the normal path, may take place. To keep the efficiency of the prediction

algorithm high, a filtering subsection has been designed to process the pertinent data that is

prone to disturbance before using these data in the prediction algorithm. Here, the vehicle

navigation details are represented as a sequence of transitions. If a vehicle navigates along the

same navigation path ’n’ times, there will be at least ’n’ transitions from each intersection on

the navigation path to the next one, for the intersection along the navigation path used.

Fig. 12 shows a short section of such a navigation path. As shown in Fig. 12, the vehicle has

transitioned from vertex ’3’ to vertex ’5’ twice, and from vertex ’3’ to vertex ’4’ only once.

Vertex ’3’ has three possible transitions becuse of the nature of the road network. In order to

translate these data into transition probabilities, all the possible transitions are first

considered:

tp3x=1/adj(3)=1/3 (1)

Equation 1 states that the initial transition probabilities for all transitions from state ’3’ are

equal and a function of the number of adjacent intersections to state ’3’. After this, the

16

individual transition probabilities are incremented by 1 for each transition in the database,

which is shown in Eqs. 2 and 3. The resulting transition probability values are then

normalized to sum up to 1 in Eqs. 4–6.

tp34=tp3x+1=4/3 (2)

tp35=tp3x+2=7/3 (3)

tp32norm=tp32/(tp32+tp34+tp35)=1/12 (4)

tp34norm=tp34/(tp32+tp34+tp35)=1/3 (5)

tp35norm=tp35/(tp32+tp34+tp35)=7/12 (6)

The above calculations show that there is a 58.33 % chance of the vehicle transitioning to

state 5 from state 3, a 33.33 % chance to transition to state 4 and an 8.33 % chance to

transition to state 2. Whereas these values are intuitively acceptable, the nature of the HMM

algorithm calls into question their reliability. The issue with this unfiltered transition data has

strong confidence given to the transition probabilities after only 3 samples. It can also be seen

that the transition probability from state ’3’ to ’2’, which should be approximately 33.33 %, is

now 8.33 %. This low probability would have a large effect on the algorithm, where the

probabilities are combined multiplicatively, and reduce all possible chances of a probable

navigation path transition from ’3’ to ’2’ even when that transition may be the likeliest one

based on the situation at the time of prediction.

Fig. 12. Road section

Therefore, it is decided to implement an Exponential Weighted Moving Average (EWMA)

filter to reduce the effect of single deviations and low sample sizes on the resulting transition

probabilities. After three samples, there should ot be a significant difference between the new

transition probabilities and the ones computed without any vehicle information and, after 100

samples, a few new deviations should not have a significant effect on the transition

probabilities that have been established. A slow response of the EWMA filter would provide

the required smoothing. The filter parameter (represented by a) could be parameterized,

allowing for user control over the smoothness of the filter and its reactiveness to change.

With an ’α’ value of 0.9, the filter takes 0.9 of the existing transition value, and (1 − 0.9) of

the new value (set to be 1 in this case, as in the unfiltered case as well). This computation

17

takes place recursively for each new transition recorded. At the end, the normalization is done

as before.

tp34=(0.9×tp34)+0.1=0.4 (7)

tp35=((0.9×tp35)+0.1)×0.9)+0.1=0.46 (8)

Normalizing using the normalization formulas given in Eqs. 4–6 for above results will be:

tp32 = 27.93%

tp34 = 33.52%

tp35 = 38.55%

These values still indicate the highest preference for the ’3’ to ’5’ transition and the lowest

for the ’3’ to ’2’ transition. However, all the values are still relatively close to the original

33.33 % assigned to them by the nature of the road network. This is a closer representation of

the truth, as the sample size does not give us the requisite confidence to deviate too far from

the default, as was the case with the unfiltered values. The smaller range between the

probabilities also means that the algorithm will be free to attempt all alternative values if the

situation demands it.

Fig. 13. Viterbi algorithm visualizer

5.2.4. HMM algorithm

As stated earlier, the Viterbi algorithm is used to determine the most likely sequence of

intersections based on vehicle navigations and observations on the day of travel. This

algorithm can be visualized as a trellis diagram, with the solution being the highest

probability path through the trellis. The algorithm is visualized in Fig. 13 and a simple

problem is postulated to demonstrate the algorithm’s process. For this we have considered the

following parameters:

 Initial probabilities:

o State 1 = 60 %

18

o State 2 = 40 %

 Transition probabilities:

o 1 to 1 = 35 %

o 1 to 2 = 65 %

o 2 to 1 = 55 %

o 2 to 2 = 45 %

 Emission probabilities:

o A given 1 = 70 %

o A given 2 = 30 %

o B given 1 = 25 %

o B given 2 = 75 %

On the basis of the above probabilities, this algorithm proceeds as follows:

1.Initial path sections (t = 1). For these sections the computation is given by:

Pinitialforstate×Pobservation,givenstate

 Path 1 = (0.6)×(0.7) = 0.42

 Path 2 = (0.4)×(0.3) = 0.12

1. Next observation (t = 2). For these sections the computation is given by:

Poldstate×Ptransitionfromoldtonewstate×Pobservation,givennewstate

 Path 11 = (0.42)×(0.35)×(0.25) = 0.03675

 Path 12 = (0.42)×(0.65)×(0.75) = 0.20475

 Path 21 = (0.12)×(0.55)×(0.25) = 0.0165

 Path 22 = (0.12)×(0.45)×(0.75) = 0.0405

Select the highest probability path to each state and preserve the path. For the above case

those are Path 12 (probability 0.20475) and Path 11 (probability 0.03675). The remaining

paths can be discarded. If there are additional observations, start with transitions from the

remaining paths and proceed as indicated in number 2 above. This means that the next

computations would be for Paths 121, 122, 111 and 112.

One aspect of the algorithm is the fact that probabilities are multiplied along the path. As

probabilities are fractional quantities, their multiplication can result in small numbers that

encroach on the precision limits of most computer systems. As a means of dealing with that,

the Viterbi implementation used in this work uses the inverse logarithm of all probabilities in

its calculations. This means that the values are added rather than multiplied, and, at the end,

the Viterbi path is the one with the lowest inverse log probability. This effectively removes

the need for handling extremely small numbers, as the inverse logs of probabilities will

generally be large positive numbers and primarily using addition should keep them well

within the precision limits of most commercial computer systems.

19

6. Experimental Analysis

This section represents the various experiments carried out using the above-mentioned

hardware, software designs and algorithms. Details of these experiments and the results

obtained are listed as follows:

6.1. Experiment 1: Prediction Accuracy

The objective of this experiment is to determine whether the algorithm can accurately predict

the navigation path of the vehicle using the path database. To perform this experiment we

used the GPS tracking android phone software (intelligent routing by FilterIS). In our

observations we obtained the results shown in Table 3. From the data obtained it is clear that

the algorithm correctly predicted the navigation path eight times out of 10, and for the two

incorrect predictions the reasons are outside the scope of the problem.

Table 3Experiment 1 results

Test Accurate Possible reason for inaccuracy.

1 Yes

2 No Phone call diversion

3 Yes

4 Yes

5 Yes

6 Yes

7 No Traffic lights out on major streets.

8 Yes

9 Yes

10 Yes

6.2. Experiment 2: Heading Information Through Magnetic Compass

The objective of this experiment is to perform well in a test involving multiple direction

changes. The vehicle is driven on a straight road for 100 meters; it makes a sharp right-hand

turn and thn cotinues straight. Figure 14 depict three images, one on the first straight, the

second while the turn is taking place and the third three seconds after the second turn when

the vehicle is moving straight on the road. The degrees for Fig. 14 from left to right are:

97.12, 109.6 and 97.63. A deviation of less than one degree is shown.

20

Fig. 14. Vehicle movement readings using magnetometer on a T-shaped road test

6.3. Experiment 3: RFID Tag Read Distance

The objective of this experiment is to determine the effective range of the RFID tags used in

the system. To perform this experiment, we used RFID tags, a reader, and distance-measuring

devices. In Table 4, most of the tags were unable to reach 5m. However, despite the rating for

maximum distance on the tags being given as 3m, they could be all capable of being read

from outside that range.

Table 4.Experiment 2 results

Tag ID Read distance

123483 3.8

123444 5.2

123445 4.4

234545 4.6

123583 5.1

234511 3.4

165001 4.0

769696 4.2

123458 4.3

6.4. Experiment 4: RFID Devices Read Rate

This experiment sought to establish an upper limit on the vehicle speed that would allow for

interrogation of the tags placed by the road. To perform this experiment, we used RFID tags

and readers. Here, tags had a significantly larger acquisition rate, which improved the range

in which the vehicle needed to be for a successful tag read. We considered a road distance of

700 m and all the tags were placed along it. Seve successful trips were recorded. A successful

trip is defined as one in which all of the tags placed along the road are interrogated. The

maximum speed of the vehicle across this experiment was recorded at 28.3 km/h, which is a

marked improvement over the values obtained from the initial run of the experiment. The

experimental runs are listed in Table 5 below.

21

Table 5. RFID read rate data

Navigation Path Start End Duration Distance Speed (km/h)

1 19:47:38 19:51:38 0:04:00 700 10.50

2 20:09:39 20:12:04 0:02:25 700 17.38

3 20:23:27 20:25:25 0:01:58 700 21.36

4 20:36:50 20:38:43 0:01:53 700 22.30

5 20:48:29 20:50:03 0:01:34 700 26.81

6 21:05:12 21:06:41 0:01:29 700 28.31

7 21:18:52 21:20:30 0:01:38 700 25.71

Average

0:02:08 700 21.77

6.5. Experiment 5: GPS Location Estimation

The objective of this experiment was to obtain the latitude and longitude from the location

listener and convey this to the map application. The camera position was constantly moved to

the user’s current location. A snapshot of the GPS location while on the move is shown in

Fig. 15.

Fig. 15. Position estimation using GPS sensor

22

6.6. Experiment 6: Tag Detection Application

A reader is mounted underneath the car on the front side. Tags were placed on a straight

section of an underground parking lot of a local mall 10 m apart. The vehicle traversed the

tags at a speed of about 30 km/h. All four tags that were placed were detected by the reader

and displayed with position data and timestamps. This is shown in Fig. 16.

Fig. 16. Successful tag detection with location data and timestamps

6.7. Experiment 7: Total System Delay

This experiment measured the amount of time expended during the execution of the

algorithm. Here, we used the prediction algorithm on a commercially available personal

computer. We also used the stopwatch to record the working time of algorithm. In the results

obtained it was found that the algorithm is much faster than the reaction time of the person

holding the stopwatch.

23

6.8. Experiment 8: Filtering System

This experiment was designed to test the robustness of the filtering system in the face of

disturbances. To perform this experiment we used a sample database with some pre-existing

navigation paths and it was assumed that one of the navigation path would always be the

same for a specific vehicle. Then, we added a new navigation path with a different transition

from the common navigation path used by the vehicle and observed the resulting prediction.

From our analysis, it is found that the predicted navigation paths were not affected by single

instances as long as there were more than one existing navigation paths for the vehicle

between the points of interest. In cases where there was only navigation path for the vehicle

between the two endpoints, the addition of another navigation path would not be regarded as

a disturbance because of the lack of information on what navigation path should be

considered the norm.

7. Conclusion

The main objective of this research work is to implement a system capable of predicting a

vehicle’s navigation paths based on the existing driving practices of drvers by using an HMM

inference algorithm. These existing driving practices are collected by a hardware-sensing

platform and RFID technology. The software algorithms in this research work all turned out

quite well. Implemented algorithms were rigorously tested and the entire prediction software

suite was sbject to unit tests to prevent changes over time from affecting its core

functionality. In addition, the UART communication module was well designed. No timing

issue or data loss issues occurred throughout the implementation of work. The Viterbi

algorithm, which is an inference algorithm for the HMM, was implemented using Python

programming language. This algorithm provided the most likely sequence of states that a

Markov process underwent to provide a given sequence of observations. For the data

collection, sensors were acquired and attached to an FPGA controller. Communication

protocols between the sensors and FPGA, as well as the FPGA and a computer, were

designed. An RFID reader and tag set was used to gather geographical data as well as trigger

the gathering of environmental data via the serial connection being bridged via the computer.

With the recent advancement in sensitivity and scale of smart-phone sensors, one future

prospect for this project would be a fully mobile application, capable of collecting existing

driving practices of a driver, storing the information, predicting navigation paths and tracking

the vehicle in real-time using GPS where available and falling back on Bluetooth low energy

devices, which are ideal because of the near universal presence of Bluetooth technology on

modern smart phones.

References

1.Ning, Y., Zhong-qin, W., Malekian, R., Ru-chuan, W., & Abdullah, A. H. (2013). Design of accurate vehicle

location system using RFID. Electronics & Electrical Engineering, 19(8), 105–110.Google Scholar

2.Tebaldi, C., & West, M. (1998). Bayesian inference on network traffic using link count data. Journal of the

American Statistical Association, 93(442), 557–573.MathSciNetCrossRefMATHGoogle Scholar

3.Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers &

Operations Research, 31(12), 1985–2002.MathSciNetCrossRefMATHGoogle Scholar

24

4.Baker, B. M., & Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing problem. Computers &

Operations Research, 30(5), 787–800.MathSciNetCrossRefMATHGoogle Scholar

5.Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical

analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164–

171.MathSciNetCrossRefMATHGoogle Scholar

6.Sonnhammer, Erik L. L., Heijne, Gunnar V., & Krogh, A. (1998). A hidden Markov model for predicting

transmembrane helices in protein sequences. Ismb, 6, 175–182.Google Scholar

7.Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel.

Bioinformatics, 19, 215–225.CrossRefGoogle Scholar

8.Ning, Y., Zhong-qin, W., Malekian, R., Qiaomin, L., & Ru-chuan, W. (2015). A method for driving route

predictions based on hidden Markov model. Mathematical Problems in Engineering, 2015, 1–12.Google

Scholar

9.Barth, M., & Karbassi, A. (2003). Vehicle route prediction and time of arrival estimation techniques for

improved transportation system management.” Intelligent vehicles symposium, (pp. 511–516).

10.Froehlich, J., & Krumm, J. (2008). Route prediction from trip observations. SAE Technical Paper No. 2008-

01-0201.

11.Feng, H., Liu, C., Shu, Y., & Yang, O. W. (2015). Location prediction of vehicles in VANETs using a

Kalman filter. Wireless Personal Communications, 80(2), 543–559.CrossRefGoogle Scholar

12.De Silva, M. W. H. M., Konara, K. M. S. M., Karunarathne, I. R. A. I., Lal, K. K. U. P., & Wijesundara, M.

(2014). An information system for vehicle navigation in congested road networks. PNCTM 21, 3, 113–

116.Google Scholar

13.Simmons, R., Browning, B., Zhang, Y., & Sadekar, V. (2006). Learning to predict driver route and

destination intent. Intelligent transportation systems conference (ITSX 06), (pp.127–132).

14.Ye, N., Wang, Z. Q., Malekian, R., Zhang, Y. Y., & Wang, R. C. (2015). A method of vehicle route

prediction based on social network analysis. Journal of Sensors, 2015, 1–9.CrossRefGoogle Scholar

15.Quddus, M., & Washington, S. (2015). Shortest path and vehicle trajectory aided map-matching for low

frequency GPS data. Transportation Research Part C: Emerging Technologies, 55, 328–339.CrossRefGoogle

Scholar

16.Luo, W., Tan, H., Chen, L., & Ni, L. M. (2013). Finding time period-based most frequent path in big

trajectory data. In Proceedings of the 2013 ACM SIGMOD international conference on management of data,

(pp. 713–724).

17.Kansal, A., Goraczko, M., & Zhao, F. (2007). Building a sensor network of mobile phones. In Proceedings

of the 6th international conference on Information processing in sensor networks(IPSN ’07), (pp. 547–548).

	Smart Vehicle Navigation System Using Hidden Markov Model and RFID Technology
	A. F. Kavishe, kavishe@gmail.com
	B. T. Maharaj, sunil.maharaj@up.ac.za
	P. K. Gupta, pkgupta@ieee.org
	G. Singh, drghanshyamsingh@gmail.com
	H. Waschefort, Waschefort@gmail.com
	Abstract
	Keywords

	1. Introduction
	2. Literature Survey
	2.1. Hidden Markov model
	2.2. Vehicle Navigation Path Prediction
	2.3. Acquisition of Navigation Paths

	3. Theoretical Analysis and Modelling
	3.1. Navigation Paths as States
	3.2. Vertices/Edges as States
	3.3. Selected Navigation Path Model

	4. Design Methodology
	4.1. Hardware-Centric Component
	4.2. Software System

	5. Implementation
	5.1. Hardware implementation
	5.1.1. Universal Asynchronous Receiver/Transmitter (UART)
	5.1.2. Inter-Integrated Circuit (I2C)

	5.2. Software implementation
	5.2.1. Driver habits database
	5.2.2. Road network map
	5.2.3. Filtering
	5.2.4. HMM algorithm

	6. Experimental Analysis
	6.1. Experiment 1: Prediction Accuracy
	6.2. Experiment 2: Heading Information Through Magnetic Compass
	6.3. Experiment 3: RFID Tag Read Distance
	6.4. Experiment 4: RFID Devices Read Rate
	6.5. Experiment 5: GPS Location Estimation
	6.6. Experiment 6: Tag Detection Application
	6.7. Experiment 7: Total System Delay
	6.8. Experiment 8: Filtering System

	7. Conclusion
	References

