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Abstract The need for high data rate increases with the growing demand for wireless

communication. In order to meet this demand, one of the most effective ways is deploy-

ment of small cells which are considered as a promising technique for future wireless

networks. However, the deployment of these low-power base stations brings many chal-

lenges. Interference management will be one of the major drawbacks for the deployment of

small cells in coverage of the macro base stations. In order to cope with interference

problem, we propose a joint beamforming and power allocation technique for a two-tier

network system involving femtocell and macrocell layers to design power efficient net-

works. The beamforming technique is applied by using partial zero-forcing method to

remove the highest cross-tier interference while satisfying the macro and femtocell users’

data rate requirements. Then, we perform power allocation to further reduce interference

and design power efficient femtocell networks. The performance results of the proposed

technique are illustrated in terms of power consumption in femtocell networks.

Keywords Interference management � Femtocell networks � Beamforming � Power
control � Power efficiency

1 Introduction

The demand for higher data rates which increases exponentially with the usage of mobile

devices will be satisfied by deploying of low power base stations and increasing the

channel reuse in the wireless networks while reducing the power consumption [1]. In
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accordance with the recent surveys, 50% of phone calls and 70% of data services will take

place indoors in the next years. Therefore, it is important for cellular networks to provide

good quality coverage to indoor users. Macro base stations have drawbacks for indoor

communication due to the penetration loss, which reduces the overall system throughput.

In order to meet the needs of high data rate network, the deployment of a great number of

macro base stations is not efficient [2].

One solution for indoor coverage, expected to be one of the most-promising tech-

nologies, is femtocells which are small and low power nodes to increase system capacity

by offloading the data from macro cells to small cells [3]. These nodes, known as femto

base station, create small wireless coverage area to connect user equipment to the cellular

core network through the subscriber broadband internet access. Owing to the fact that,

small cells are installed by the end-users, they are cost effective solutions as compared to

other indoor coverage solutions. Since the femtocell users do not need to communicate

with the macro base station, the battery life of the mobile devices is increased by fem-

tocells [1]. Aiming at reducing cost and improving capacity, the co-channel deployment is

preferred, so that the same portion of spectrum is used by both macro and femtocell base

stations, and it causes an interference [3]. Therefore, the femto base stations provide better

indoor coverage in the expense of causing interference [4]. Interference causes a strong

degradation of both femtocell and macrocell user’s signal-to-interference-plus-noise ratio

(SINR).

The interference management has a great importance for femtocell networks to ensure

that the users have good quality of service. Adding a new femtocell in the macro cell

coverage area can disturb other users’ functionality. Considering two-tier networks,

interference can cause ‘‘dead zones’’ in other existing layer of network [5]. Dead zones can

occur in both femtocell and macrocell coverage area due to the strong interference.

There are great deal of interference management techniques for femtocell networks.

First, spectrum splitting has been suggested in [6]. In this technique, spectrum band is

divided into two portions. One portion is allocated for macrocell while the other one is

allocated for femtocell. However, this is not an efficient technique due to scarcity of

spectrum. In some cases where dense deployment of femtocell is concerned, separate

portion of spectrum can be used for femtocell operations [7]. Power control is also a key

technique in the interference avoidance. In this technique, by controlling the transmit

power of femtocell, macro user in the vicinity of the femtocell can be protected. It has been

carried out by using game theory in [8], where macro and femto base stations operate in

semi-autonomous mode in order to maximize energy-efficiency. In this scheme, each base

station updates its power allocation strategy to maximize its utility. Another power control

technique is based on Stackelberg game [9, 10]. In the techniques, the macro base station

acts a leader while femtocells act as a followers. The leader adjusts its power and imposes

interference price on followers to maintain its own user’s minimum data rate requirements.

Subsequently, the followers optimize their powers based on the imposed price. The similar

technique has been also presented based on game theoretical approaches in [11]. In order to

achieve much more effective interference management technique, cognitive capabilities of

femtocells can be used for interference mitigation [12]. In [13], an interference alignment

for femtocell overlaid cellular network has been presented by selecting the strongest

interfering nodes and applying interference cancellation at each node. In [14], a power

allocation strategy has been examined for the cross-tier interference management problem

in macrocell uplink communication and femtocell users.

In this paper, we propose a joint beamforming and power allocation technique for

femtocell networks consists of one macro base station and multiple femto base stations
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with multiple transmit antennas. Our goal is to mitigate cross-tier interference and to

design power efficient femtocell networks. Firstly, we apply interference cancellation by

employing partial zero forcing to mitigate the strongest interference between different

layers. Then, we perform power allocation to reduce power consumption and further

mitigate interference while satisfying both macro and femto users’ SINR requirements.

The system model is introduced in Sect. 2. The proposed algorithm is described in Sect. 3.

The performance evaluations and the conclusion are given in Sects. 4 and 5, respectively.

2 System Model

We consider a wireless network which consists of one macro base station with Ntm transmit

antennas and K femto-base stations with Ntf transmit antennas. Both the macro user and the

femto user have one receive antenna.

In the femtocell network, our main target is to minimize the total transmit power of the

femtocells while satisfying data rate requirements of both macro and femto users. The

optimization problem is defined as in the following:

min
X

k

P
f
k ð1Þ

subject to

cm � cmtar ð2Þ

cfk � cftark ; 8k ð3Þ

Pfmin �P
f
k �Pfmax; 8k ð4Þ

where P
f
k is transmit power of the kth femto base station, cmtar and cftark are the target SINR

for the macro user and the kth femto user, respectively. Pfmin and Pfmax are the minimum

and maximum allowable transmit power of the femto base station.

The instantaneous SINR values of the macro user and the kth femto user are given as

follows:

cm ¼ ðPtm=PLmmÞGmm

PK
k¼1 P

f
k=PL

fm
k

� �
G

fm
k þ N0B

ð5Þ

cfk ¼
P
f
k=PL

ff
k;k

� �
G

ff
k;k

PK
j¼1;j 6¼k P

f
j =PL

ff
j;k

� �
G

ff
j;k þ Ptm=PLmfk

� �
G

mf
k þ N0B

ð6Þ

where Ptm is transmit power of the macro base station, PLmm, PL
fm
k , PL

ff
k;k and PL

mf
k include

the effect of path loss and shadowing between the macro user and the macro base station,

between the macro user and the kth femto base station, between the kth femto user and the

kth femto base station, between the kth femto user and the macro base station respectively,

N0 is power spectral density and B is the total bandwidth. Gmm is gain between the macro

base station and the macro user, G
fm
k is gain between the kth femto base station and the

macro user, G
ff
k;k is the one between the kth femto base station and the kth femto user, G

ff
j;k is
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the one between the jth femto base station and the kth femto user, G
mf
k is the one between

the macro base station and the kth femto user. We will determine these gain values by

using either partial zero forcing or maximum ratio combining strategies in the following

section.

The femtocells are located far from each other in the macro coverage. Therefore, we

assume that the term for co-tier interference,
PK

j¼1;j 6¼k P
f
j =PL

ff
j;k

� �
G

ff
j;k becomes zero and we

only focus on cross-tier interference in this paper.

3 The Proposed Joint Beamforming and Power Allocation Technique

We perform a joint beamforming and power allocation technique into two phase. In this

first phase, all femto base stations tune their maximum transmit power. The femto base

station that causes the highest interference for the macro user is determined and then the

partial zero forcing (PZF) beamforming [15] is applied to eliminate cross-tier interference.

We perform maximum ratio combining (MRC) beamforming for all remaining femto base

stations. At the macro base station, the PZF beamforming is applied to eliminate the

interference on the femto user which receives the highest interference from the macro base

station. At the second stage, we apply power allocation to design a power efficient fem-

tocell networks and to further reduce the interference caused by the femto base stations.

While performing power allocation, the total received interference power on the macro

user from the femto base stations is calculated and the transmit power of the femto base

stations is reduced proportional to the distances between the femto base stations and the

macro user.

The femto user which receives the average highest interference from the macro base

station is determined by,

k
0 ¼ argmax

k
P
If
k ð7Þ

where P
If
k ¼ Ptm=PLmfk .

Then, the beamforming vector for the macro base station is designed as,

w0m ¼ ðI � ZmÞhmm ð8Þ

where hmm is the channel coefficient between the macro base station and the macro user,

Zm is the projection matrices on Vm and is formulated as

Zm ¼ VmððVmÞHVmÞ�1ðVmÞH ð9Þ

with

Vm ¼ hmf
k0 ð10Þ

where hmf
k0 is the channel coefficient between the macro base station and the k0th femto

user. Then, the beamforming vector for the macro base station is obtained by normalizing

wm ¼ w0m

kw0mk.

The femto base station which causes the highest interference to the macro user is

determined by,
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k� ¼ argmax
k

PI
k ð11Þ

where PI
k ¼ Ptf =PLfmk .

Then, beamforming vector of the k�th femto base station is designed as,

w0f
k� ¼ I � Zf

k�

� �
hff
k�;k� ð12Þ

where Zf
k� is the projection matrice on Vf

k� and formulated as

Zf
k� ¼ Vf

k� Vf
k�

� �H

Vf
k�

� ��1

Vf
k�

� �H
ð13Þ

with

Vf
k� ¼ hfm

k� ð14Þ

where hfm
k� is the channel coefficient between the macro user and the k�th femto user. Then,

the beamforming vector of the k�th femto base station is obtained by wf
k� ¼

w0f
k�

w0f
k�k k.

For all remaining femto base stations, we apply MRC beamforming as,

wf
k ¼

hff
k

hff
k

���
���

8k; k 6¼ k� ð15Þ

Then, the gains belonging to the macro base station and for all femto base stations are

calculated by,

Gmm ¼ ðhmmÞHwm
�� ��2 ð16Þ

G
mf
k ¼ ðhmf

k ÞHwm
���

���
2

; 8k ð17Þ

G
ff
k;k ¼ ðhff

k Þ
Hwf

k

���
���
2

; 8k ð18Þ

G
fm
k ¼ ðhfm

k ÞHwf
k

���
���
2

; 8k ð19Þ

With the help of designed beamforming vectors, the gains G
mf
k0 and G

fm
k� are forced to zero

by producing beamforming vectors in a way that they are orthogonal to the cross-tier

channel vectors while Gmm and G
ff
k;k are maximized. In this way, beamforming vectors

enable the base stations to adjust their gain depending on users basis, which makes it

possible to eliminate highest interference for both the femto user and the macro user while

maximizing the channel gains.

After performing PZF and MRC beamforming, we propose to adjust transmit power of

the femto base stations. The minimum femto base station power for the femto users can be

determined based on the maximum and minimum transmit power bound while elimination

cross-tier interference and satisfying both macro and SINR requirements of the femto-

users.
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As a result of the first stage, the total received interference power for the macro user,

Pm
I , is calculated to determine in which way each individual femto base station adjusts its

power so that the femto base stations do not pose an interference to the macro user.

This aggregated average interference power is given by,

Pm
I ¼

X

8k;k 6¼k�

P
f
k=PL

fm
k

� �
ð20Þ

Using Eq. (5), the maximum interference power bound is written as follows:

Pm
I ¼ Ptm

PLmmcmtar
� N0B

� 	
ð21Þ

The transmitted power is adjusted among the femto base stations in a distance-based

manner.

C
f
k ¼

dkPK
k¼1;8k 6¼k� dk

ð22Þ

where dk is the distance between the macro user and the kth femto base station.

This coefficient, Pm
I and the path loss coefficient between femto base stations and macro

user are used in adjusting the power of femtocells by,

P
fmax
k ¼ C

f
kP

m
I PL

fm
k 8k; k 6¼ k� ð23Þ

Thus, the transmit power for the femto base stations that causes interference to the macro

user is adjusted proportional to the distance between the femto base station and the macro

user. The power allocation by Eq. (23) provides a maximum power bound, which is

denoted by P
fmax
k , for the femtocells so that they do not cause interference on the macro

user. For the k�th femto base station that is performed PZF to eliminate interference for the

macro user, the allowed transmit power is equal to maximum transmit power for femto

base station, Pfmax.

Using Eq. (6), the minimum transmit power for the kth femto base station can be

formulated by,

P
fmin
k ¼ Ptm

PL
mf
k

þ N0B

" #
cftarPLffk;k 8k; k 6¼ k0 ð24Þ

Since the cross-tier interference is the only considered, the co-tier interference term in

SINR of the femto user is not included in Eq. (24).

For the k0th femto base station, since base station is performed PZF to eliminate

interference for the k0th femto user, the transmit power is adjusted to satisfy its user’ SINR

constraint as follows:

P
fmin
k0 ¼ PL

ff
k0;k0c

ftarN0B ð25Þ

Equations (24), (25) provides that all femto users can satisfy their SINR’ requirements.

P
fmin
k is calculated to satisfy the users’ SINR requirements in the network, Pfmax is deter-

mined considering the interference constraints.

These two parameters on maximum and minimum power level for femto base stations

form a feasible power region by,
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max Pfmin;Pfmin
k

h i
�P

f
k � min Pfmax;Pfmax

k

h i
8k; k 6¼ k� ð26Þ

The proposed power allocation achieves not only to have good satisfaction ratio for all

macro and femto users but also to design power efficient femtocell networks.

4 Performance Evaluations

In this section, the performance results are illustrated for the scenarios which include one

macro base station and a single femto base station, four femto base stations and randomly

placed multiple base stations in macro coverage area based on the simulation parameters

listed in Table 1.

4.1 Single Femto Base Station Case

The joint beamforming and power control technique is of great use to the systems which

are aiming at both interference-free environment and power-efficient networks. In order to

illustrate the effects of this technique, firstly the performance results are obtained for the

network including only one femto base station, given in Fig. 1.

In Fig. 2, the elimination of interference is shown depending on the distance between

the femto base station at the coordinates of (600, 800) and the macro user. The SINR of the

macro user is stabilized even though the macro user is very close to the femto base station

and is not degraded with the help of the proposed joint technique.

The achievable power-efficiency is illustrated in Fig. 3 that gives comparison results for

the only power control and the joint proposed technique based on power consumption. The

femto base station and the macro user are at the coordinates of (600, 800) and (800, 620)

respectively. The transmit power of the femto base station changes with respect to the

distance of the femto user to the femto base station due to the controllable-nature of it. The

Table 1 Simulation parameters

Explanation Parameters Value

Transmit power of the macro base station Ptm 43 dBm

Transmit power of the femto base station Pf Variable

Maximum allowable transmit power for the femto base
station

Pfmax 23 dBm

Minimum allowable transmit power for the femto base station Pfmin 0 dBm

Target SINR values of the macro user cmtar 10 dB

Target SINR values of the femto user cftar 10 dB

Noise power spectral density N0 �174 dBm/Hz

Bandwidth B 10 MHz

Path Loss Model for the macro user PLm 128:1þ 37:6 log10ðdmðkmÞÞ
Path Loss Model for the femto user PLf 37þ 18:3nþ 30 log10ðdf ðmÞÞ
Shadowing for the macro user r2m 4 dB

Shadowing for femto users r2f 2 dB

Macro cell radius Rm 1 km

Femto cell radius Rf 100 m
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transmit power of the femto base station, when the joint technique is used, can be reduced

around 15 dB compared to the only power control technique.

4.2 Multiple Femto Base Stations Case

In multiple femto base stations case, there are four femto base stations in macro coverage

area as shown in Fig. 4. The macrocell base station is located in the origin and the

femtocells are located in coordinate axis in a way that they constitute a square.

Fig. 1 The system model including a single femto-base station
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Fig. 2 SINR of the macro user with the proposed technique versus distance between the femto base station
and the macro user for a single femto base station case
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The beamforming technique is applied to the chosen femto base station which causes

the greatest interference on the macro user and then power control technique is applied to

all femto base stations as described in the proposed technique. At the macro base station,

the beamforming technique is performed for the femto user that receives the highest

interference from macro base station. We achieve both interference suppression and power

efficiency with help of the proposed technique.
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Fig. 3 Power consumption results of different algorithms for a single femto base station case

Fig. 4 The system model including multiple femto base stations
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In Fig. 5, the SINR of the macro user with respect to its location is demonstrated for the

proposed joint technique and the only beamforming technique. The first sub-figure, on the top

of Fig. 5, illustrates the femto base stations layout in which the macro user moves toward to

the determined-direction. The second sub-figure, in the middle of Fig. 5, shows the SINR

changing and gives a comparable sight of SINR values for the two techniques. The third sub-

figure of Fig. 5 indicates which the femto base station is chosen at a given particular location

of the macro user to implement the PZF beamforming.When the macro user is being close to

the femto base station, its SINR does not undergoes any degradation effects, which proves

that the joint technique suppresses the cross-tier interference successfully. Furthermore, a

small amount of decreasing in SINRs of the macro user results from the fact that the macro

user is moving away from the macro base station as seen in its trajectory graph.

In Fig. 6, the macro user moves over the different path compares to Fig. 5. In Fig. 6, the

macro user is moving from 3rd femto base station, whose coordinate is (600, 800) to 2nd

femto base station along the diagonal whereas the macro user, in Fig. 5, is moving from 1st

femto base station to 4rd femto base station. In both figures, x-axes of graphs represent,

dfm, the distance from the femto base station to the macro user. In Fig. 5, dfm denotes the

distance from 1st femto base station to the macro user while denoting the distance from 3rd

femto base station to the macro user in Fig. 6.

The power distributions of the femto base stations in macro coverage area are given in

Figs. 7 and 8. In these figures, the power of the femto base stations which are selected for

beamforming process are not shown because they have no effects on the macro user. In Fig. 7,

the macro user is located at the coordinates of (690, 610). Here, the 1st femto base station is

selected for beamformingmethod because it has a strongest interference power in this case. The

2nd femto base station has a lowest power because of its distance to the macro user. Since the

distances of the other femto base stations are approximately the same, there is no observable

difference between their powers.Moreover, Fig. 8 is the counterpart of the previous figure. The

macro user is located at (710, 790). Here, 4rd femto base station is selected for beamforming

process. Considering the distances of each femto base station to the macro user, the power

sharing or controlling is successfully achieved for femto base stations as seen in Fig. 8.
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Fig. 5 SINR of the macro user moving from the femto base station 1 to 4 for the joint method
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In order to illustrate the gain of the proposed algorithm based on power consumption,

we consider different number of femto base stations that are randomly located in the macro

cell coverage area by taking into account the distances between them to hold the

assumption of very low interference between co-tier network. The macro cell user and the

femtocell users are randomly placed in the macro cell and their corresponding femtocell

coverage, respectively. The macro base station is also adjusted its power depending on the

location of the macro user to satisfy its SINR requirement. We illustrate the performance

results of the joint proposed algorithm in terms of total average transmitted power by femto

base stations compared to only the power control scheme in Fig. 9. It is clearly seen that

total consumed power, when joint technique is employed, about 3 dB less than that of the

only power control method for the multiple femto base stations case.
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5 Conclusion

In this paper, interference management techniques including beamforming and power

control have been proposed for two-tier networks consists of multiple femto base stations

and a single macro base station.

In single femto base station case, the PZF beamforming cancel the interference signal

while the power control enables femto base station to select minimum transmit power. As a
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result of this, it has been shown that these two techniques, when applied jointly, not only

provide cross-tier interference suppression but also enable femtocell to consume less power

than before. Thus, the proposed joint technique proves to be a power-efficient interference

management solution when compared to individual techniques. In multiple femto base

station case, the proposed joint technique has been applied differently. The PZF beam-

forming method has been applied to one femto base station which causes the strongest

interference on the macro user, and the power allocation has been performed for all

remaining femto base stations to further cancel interference and reduce the power con-

sumption. The proposed technique works efficiently in terms of avoiding interference on

the macro user and adjusting the power of the multiple femto base stations which are

located randomly in the macro cell coverage area. According to the performance results on

power consumption, the proposed joint beamforming and power control algorithm out-

performs to the only power control algorithm significantly for the practical femtocell

deployment scenarios.

As future femtocell networks, there is no doubt that interference management will

eventually become the major concern because of, likely, dense deployment of the femto

base stations. We will extend our proposed scheme for the dense deployment scenario,

which also requires interference management between femtocells. Furthermore, we will

consider the imperfect channel state information for the proposed joint power control and

beamforming technique by designing an efficient limited feedback link for the femtocell

networks.
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2015 from İzmir Institute of Technology. Afterward, he started a job in
ITS telecommunication company as a Network Engineer in Izmir.
Currently, he is continuing his career at Nokia Turkey office, Istanbul,
in Fixed Access Network Technical Support Department. He is
working on the realms of GPON and xDSL access networks. His
research interests are on GPON and xDSL technologies, Fixed Access
Network models, interference management strategies in Femtocells.
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