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Abstract Noise in signals and images can be removed through different de-noising

techniques such as mean filtering, median filtering, total variation and filtered variation

techniques etc. Wavelet based

de-noising is one of the major techniques used for noise removal. In the first part of our

work, wavelet transform based logarithmic shrinkage technique is used for de-noising of

images, corrupted by noise (during under-sampling in the frequency domain). The loga-

rithmic shrinkage technique is applied to under-sampled Shepp–Logan Phantom image.

Experimental results show that the logarithmic shrinkage technique is 7–10% better in

PSNR values than the existing classical techniques. In the second part of our work we de-

noise the noisy, under-sampled phantom image, having salt and pepper, Gaussian, speckle

and Poisson noises through the four thresholding techniques and compute their correlations

with the original image. They give the correlation values close to the noisy image. By

applying median or wiener filter in parallel with the thresholding techniques, we get

30–35% better results than only applying the thresholding techniques individually. So, in

the second part we recover and de-noise the sparse under-sampled images by the combi-

nation of shrinkage functions and median filtering or wiener filtering.
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1 Introduction

In signal and image processing, sparsity and compressed sensing provide relief in storage

and transmission of the data. Signals have sparse representations in some transform domain

such as Fourier Transform, Discrete Cosine Transform (DCT) and Wavelet Transform etc.

During under-sampling and transformation the data is corrupted by under-sampling noise,

which can be removed through different thresholding techniques. But in case of impulsive

noise we need some other techniques in combination with the thresholding techniques.

Different techniques are used for removal of noise, such as mean filtering [1], median

filtering [2], total variation de-noising (TVD) [3] and filtered variation de-noising (FVD)

[4] etc. Wavelet based de-noising is the most reliable technique due to its sparsity appli-

cations [5].

Wavelet based de-noising is important for its sparsity applications. It removes the noise

significantly, gives high resolution of signals (or images) and affects the signal of concern

to a very small extent. It can be used in three ways, such as wavelet de-noising using

shrinkage functions [6]. Wavelet de-noising based on detecting the local maxima of the

wavelet transform [7] and the third one is based on the correlation of the wavelet coeffi-

cients [8]. In the above three wavelet based de-noising techniques the most widely used

technique is wavelet based de-noising using shrinkage functions. Most of the under-

sampling noise can be removed from the signal (images) through this technique [9], [10].

Wavelet based thresholding technique consists of some classical and the recently

introduced shrinkage functions. D.L. Donoho used hard shrinkage function for the first

time. According to this rule the coefficients below the threshold level are discarded while

keep the remaining unchanged. Another form of hard shrinkage function was proposed

later by Donoho in 1995, called soft shrinkage function [11]. Later on a new shrinkage

function named garrote, was examined by Gao in his work [12]. Compressed sensing

techniques have many applications in the field of engineering and technology [16–19].

Although these all shrinkage functions produce good results but still there are some

problems which could not be handled through the classical shrinkage functions. A new

proposed shrinkage function with some modifications called logarithmic shrinkage func-

tion is used in this work for images recovery and de-noising. Various techniques for de-

noising and regularization use the Tychonov penalty to estimate the signal from degraded

data. Actually an attempt is made to solve the optimization problem,

argmin
1

2
x� yk k22þk

1

2
xk k22 ð1Þ

This equation has a close form solution as given by x̂ ¼ 1
1þk y where ‘‘x’’ is the original

signal, ‘‘x̂’’ is the estimated signal, ‘‘y’’ is the noisy signal and ‘‘k’’ is the regularization

parameter.

In this paper, we have compared the four thresholding techniques for recovery of under-

sampled sparse images and also use these techniques in combination with median filtering

and wiener filtering to recover the sparse images, degraded by salt and pepper, Gaussian,

speckle and Poisson noises. In the first portion of our work, we take the wavelet transform

of under-sampled Shepp–Logan Phantom image, apply the four thresholding techniques

individually and then recover the image by taking the Inverse Wavelet Transform of the

thresholded image. Proposed shrinkage function shines with the best results and gives high

PSNR values as compare to hard, garrote and soft shrinkage functions. In the second part

of our work, we take Shepp–Logan Phantom image and add salt and pepper (impulsive)
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noise to it. Taking the wavelet transform of the noisy image, threshold it and then itera-

tively recover the sparse image through hard, soft, garrote and proposed shrinkage func-

tions. Through these techniques we can recover the sparse images but cannot satisfactorily

de-noise them, when they are corrupted by impulsive noise, that’s why we apply median

filtering in addition with the thresholding techniques to get better results. The Images

corrupted by Gaussian, Speckle and Poisson noises are also recovered and de-noised

successfully through the proposed technique in parallel with the wiener filtering.

Basically we solved the following optimization problem for de-noising and regular-

ization as follows,

argmin
1

2
x� yk k22þk

1

2
xk k1 ð2Þ

We have applied iterative hard, garrote, soft and proposed shrinkage functions. Let X̂u is

the under-sampled Fourier transform of ‘‘x̂’’. At the start we suppose that X̂0 ¼ Y, the steps

of the algorithm are given as follows:

(1) Compute the inverse Fourier Transform of X̂ as x̂i ¼ F0ðX̂iÞ:
(2) Perform Wavelet transform to obtain sub-bands coefficients.

(3) Threshold all low frequency sub-band coefficients using certain shrinkage function

in the Wavelet domain x̂t ¼ Thresh ðW � x̂i; kÞ:
(4) Compute the inverse Wavelet transform to recover the noisy image x̂i ¼ W 0 � x̂i:
(5) Compute the Fourier transform X̂i ¼ Fðx̂iÞ:
(6) Enforce data consistency in the transform domain X = X (Y = = 0) ? Y.

(7) Run the iterations until x̂iþ1 � x̂ik k\e:
where ‘‘e’’ is stopping criteria. We apply the same procedure for garrote, soft and

proposed shrinkage functions. The above method is a Projection onto Convex Sets

(POCS) type algorithm. We apply twenty iterations to force the data consistency and

get the satisfactory results. We compare the thresholding techniques by means of

PSNR. Proposed shrinkage function gives the best results due to its flexibility.

Remaining paper is organized as follows. Section 2 discusses the compressed

sensing, Sect. 3 gives the proposed technique for noisy images, and Sect. 4

establishes the results. Conclusions are given in Sect. 5 followed by references.

2 Compressed Sensing and Its Recovery Techniques

Besides the other recovery and wavelet de-noising techniques, thresholding is the simplest

technique through which the signal (or image) of interest may be recovered and de-noised

with great accuracy. By means of thresholding the under-sampling noise is removed up to a

very good extent. For the signal (or images) corrupted by both the under-sampling and

impulsive noise median or wiener filtering in parallel with the thresholding techniques may

be used. The three classical shrinkage functions along with the proposed technique for the

recovery of sparse signals are given with proper mathematical and graphical representa-

tions in this section.
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2.1 Hard Thresholding

Hard thresholding works on the principle of keep or kill rule. It removes the wavelet

coefficients whose absolute values are below the threshold value and keep the remaining. It

doesn’t change the values of coefficients above the threshold value [13]. Hard shrinkage

function is shown in Fig. 1a and is formulated as:

xht ¼
0 if xj j � k
x if xj j[ k

� �
ð3Þ

2.2 Garrote Thresholding

Garrote thresholding adopts a modest way between hard and soft thresholding, and is a good

compromise between hard and soft thresholding. It is more flexible than hard threshold and

continuous like soft threshold, therefore it is more stable than hard threshold and soft

threshold [14]. Garrote shrinkage function is depicted in Fig. 1b and is represented as:

xgt ¼
0 if xj j � k

x� k2
x

if xj j[ k

( )
ð4Þ

Fig. 1 a Hard shrinkage function, b garrote shrinkage function, c soft shrinkage function, d proposed
shrinkage function
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2.3 Soft Thresholding

Actually soft threshold is an extension of hard threshold. It is continuous shrinkage

function, produces better results than hard and garrote threshold in our experiments [15].

Soft shrinkage function is shown in Fig. 1c and is formulated as follows:

xst ¼
0 if xj j � k

xj j � s log 1þ xj j
s

� �
if xj j[ k

8<
:

9=
; ð5Þ

Equation 5 is compact form of soft shrinkage function.

Original Image

Degraded Image

Under-sampling +Impulsive Noises

Wavelet Transform

Shrinkage

Inverse Wavelet Transform

Recovered Image

De-noised using filter

Fig. 2 Flow chart of the
proposed technique
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2.4 Proposed Thresholding

The previous three techniques are used continuously from a few decades. This is a new

shrinkage function. It produces the best results due to the usage of ‘‘log’’ function. The

proposed shrinkage function is depicted in Fig. 1d. The mathematical form of the proposed

function is given by

xpt ¼
0 if xj j � k

xj j � s log 1þ xj j
s

� �
if xj j[ k

8<
:

9=
; ð6Þ

The values of ‘‘s’’ are small positive constants. As Eq. (2), an optimization problem and

the thresholding functions try to find the global minima. In the case of logarithmic

shrinkage function, we find local minima instead of global minima. This is an iterative l1-

norm approach. Due to direct relation with l1-norm it produces better results in recovery

than soft thresholding and is also better in performance than hard thresholding due to the

discontinuity of hard shrinkage function. l1-norm is a pointy function and having a great

ability to provide the sparse solution. In case of l2-norm, we can find pseudo inverse but

having no sparsity while in case of l0-norm, we can recover the exact sparse signal but

solving it, is NP-complete. It need exhaust search, all
N

K

� �
are non-zero coefficients.

Logarithmic function is the extension of exponential function. The exponential func-

tions have derivatives exist at origin. That’s why the proposed function produces better

results for sparse signals recovery. For more flexibility in Eq. 6 (3d) we can select two

different values of thresholding for positive and negative values of ‘‘x’’. By applying the

wavelet transform, the total energy of the signal (or image) is spread to only a few coef-

ficients and the remaining is lowered in amplitude. The proposed technique assigns the non-

negative values to the components of the signal (or image) by taking the absolute values of

the components. The reasons behind applying the proposed wavelet based thresholding

technique is to discard all the components having values lesser than certain threshold value

irrespective of their signs. Then well reconstruct the under-sampled signal (or image) from

the high amplitude components only. The proposed technique produce enhanced results as

compared to the soft, hard and garrote thresholding techniques because of its adoptive

behavior to both the negative and positive values at the same time.

3 Proposed Model for Noisy Images

In addition with the sparse images recovery in Sect. 2, by means of wavelet based

thresholding, we de-noise the phantom image, corrupted by impulsive noises (salt and

pepper, Gaussian, speckle and Poisson) through median filtering or wiener filtering,

Table 1 PSNR values in dB
Shepp–Logan phantom image

Shrinkage functions k PSNR values

Hard 0.35 81.6

Garrote 0.20 83.4

Soft 0.07 85.5

Proposed 0.10 87.0
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Fig. 3 Original phantom, noisy and de-noised images. a Original image, b noisy image, c de-noisy image,
hard thresholding. d de-noisy image, garrote thresholding, e de-noisy image, soft thresholding and f de-noisy
image, proposed method
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because only thresholding is very less effective in case of impulsive noises and gives the

correlation values of the recovered images closed to the noisy image. In signal and image

processing median filter is frequently used for de-noising of signals and images because of

its edge preserving properties. But in this work, we use thresholding technique in addition

with median filter to recover and de-noised sparse images. We apply wavelet based

thresholding techniques, by means of which we recover the sparse images and then apply

median filter or wiener filter to eliminate the impulsive noises (salt and pepper, Gaussian,

speckle and Poisson) from the images. Flow chart of the technique for sparse and noisy

images recovery and de-noising is given in Fig. 2.

The novelty brought in the wavelet de-noising through the threhsolding techniques

enhanced the performance of the recovery and de-noising. In the de-noising case where the

signal (or image) is corrupted by impulsive noises along with the under-sampling noise,

median or wiener filtering is used in parallel with the thresholding techniques. The original

phantom image is under-sampled and corrupted (or degraded) by the impulsive noise. After

applying the Wavelet Transform to get enough sparsity. As a special case of Wavelet

Transform, Daubechies (4,4) Wavelet Transform is used. Iterative shrinkage functions are

applied to remove the noise contents from the signal (or image). Only shrinkage functions

are enough efficient to remove the under sampling noise but the signal (or image)

recovered is still no satisfactory. For the removal of impulsive noise this work apply

median filtering in case of salt and pepper noise while wiener filtering in case of Gaussian,

Speckle and Poisson Noises. The methods used are very efficient and reliable in both cases

either the noise is only under-sampling noise or is a mixture of under-sampling and

impulsive noises.

The gains of using the Wavelet Transform or some other transforms are the nature of the

transform to bring sparsity to the signal. A signal may not be sparse in one domain but

when transform to some other domain must be sparse enough. That is the phantom images

in the specific case are not sparse in spatial domain but when transformed to the Wavelet

Transform become sparse and make the computation simple. After the necessary opera-

tions, the under-sampled images are recovered back through the shrinkage functions and

Fig. 4 PSNR curves for de-noising of phantom
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Fig. 5 Original, noisy (salt and pepper noise) and de-noised phantom images. a Original image, b noisy
(salt and pepper noise), c wavelets of the noisy image, d recovered image, soft thresholding, e de-noised
image, median filter ? soft, f recovered image, hard thresholding, g de-noised image, median ? hard,
h recovered image, garrote thresholding, i de-noised image, median ? garrote, j recovered image, proposed
shrinkage, and k de-noised image, median ? proposed
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Fig. 5 continued
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de-noised. Filters other than median and wiener filtering may be use but keeping in mind

the requirement to preserve edges.

Sparsity has more applications in the field of medical imaging, where the time is the

most important factor. That is MRI (Magnetic Resonance Imaging) and ultrasound. Due to

the use of strong magnetic field and radio waves to take the images of the under inves-

tigation person, MRI badly affects the body. For the purpose of reduction of time, sparse

signal applications are used to reduce the time inside the MRI machine and process the

images to get the required results.

4 Results and Discussion

We present four thresholding techniques for image de-noising using wavelet transform. We

take Shepp–Logan Phantom image of size 256 9 256. We individually apply the four

shrinkage functions on Shepp–Logan Phantom. Performance of the techniques is judged by

the PSNR values and correlation values.

PSNR of the noisy Shepp–Logan Phantom image is 68 dB. The PSNR value achieved

by hard, garrote and soft shrinkage functions are 81.5, 83.4 and 85.5 dB respectively, while

the PSNR value achieved by the proposed technique is 87.0 dB, which is greater than the

other three techniques.

For phantom image, hard threshold gives satisfactory results at ‘‘k ¼ 0:35’’, garrote
threshold is comparatively better at k ¼ 0:20 from hard while soft threshold shows the best

results at ‘‘k ¼ 0:070’’. The proposed shrinkage function gives 87.0 dB, which is the best

of all. The values of PSNR and k for hard, garrote, soft and proposed methods are given in

Table 1.

From the behavior of shrinkage functions it is clear that the proposed shrinkage function

is the best among the other shrinkage functions, followed by soft, garrote and hard. We can

give different values to ‘‘s’’. This is the additional parameter along with the ‘‘log function’’

which makes the proposed technique more flexible among the others.

The original and recovered images through the thresholding techniques are given in

Fig. 3. Table 1 shows the PSNR values of the four shrinkage functions. The PSNR curves

of them are given in Fig. 4.

Table 2 Correlation values

Salt and pepper noise Noise
density

0.10

Correlations of the noisy and de-noised images with the original image. Hard
threshold (H), soft (S), garrote (G), proposed (P) and median filtering(MF)

Noisy 0.6884

S 0.6966

S ? MF 0.9761

H 0.6865

H?MF 0.9681

G 0.6786

G ? MF 0.9551

P 0.7046

P ? MF 0.9853
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In the second portion of our work we apply median or wiener filtering in parallel with

the thresholding techniques. We first apply the shrinkage functions on the sparse noisy

images through which we recover the images but still having the impulsive ‘‘salt and

pepper’’ noise. Then we apply median filtering to eliminate the salt and pepper noise. This

hybrid technique is very effective in case of proposed thresholding, and gives high cor-

relation values as compared to the other three thresholding techniques. The noisy and de-

noised images are given in Fig. 5. We have evaluated the images based on the correlation

values. The correlations values of images de-noised through these techniques and through

median filtering are given in Table 2. The same procedure is used for de-noising of images

corrupted by Gaussian, Speckle and Poisson Noises. For the recovery and de-noising of the

images, wiener filtering is used in parallel with the proposed technique. The results are

given in Fig. 6.

The proposed algorithm is computationally more efficient than the others because it just

takes ten iterations for full recovery as compared to the other three thresholding techniques

which take twenty iterations. The required results of recovery and de-noising are achieved

in only ten iterations.

5 Conclusion

This paper addresses the image de-noising problem and compares the performance of the

three existing shrinkage functions with that of the proposed logarithmic shrinkage function.

The four shrinkage functions are applied for recovery of images having under-sampling

noise (in transform domain). We test the Shepp–Logan Phantom (256 9 256) images in

our experiments. The proposed threshold technique removes the under-sampling (aliasing)

noise significantly and shows the best results as compared to hard, garrote and soft

threshold functions. The proposed technique produces 7–10% better results than the

existing classical shrinkage functions. In the second part of our work, we compare the de-

noising results of the four thresholding techniques with that of the median filtering or

wiener filtering. We use median and wiener filtering for de-noising of sparse and noisy

images recovered through soft, hard, garrote and proposed shrinkage functions. These four

thresholding techniques remove the under-sampling noise from the images but are not

significant in the case of impulsive noise, that’s why we use median and wiener filtering in

parallel with the thresholding techniques for sparse images corrupted by salt and pepper,

Gaussian, Speckle and Poisson Noises. The thresholding techniques in parallel with the

median or wiener filtering produce 30–35% better results than produced by ordinary

thresholding techniques. Besides the algorithm is better in performance, it is computa-

tionally simple for recovery and de-noising because of using the sparsity measures. In just

ten iterations the proposed algorithm produces better results. The function running time is

4.01 s while the other three takes more than 4.5 s.

Compliance with Ethical Standards

Conflict of interest The authors declare that there is no conflict of interests regarding the publication of this
paper.

bFig. 6 Original, noisy (Gaussian, Speckle and Poisson Noises) and de-noised phantom Images. The original

phantom image, the noisy (Gaussian noise), de-noised (Gaussian noise), noisy (Speckle noise), de-noised
(Speckle noise), noisy (Poisson noise) and de-noised (Poisson noise) images are respectively given as a, b, c,
d, e, f and g above
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