
ar
X

iv
:2

30
2.

12
45

2v
1

 [
cs

.C
R

]
 2

4
Fe

b
20

23

Journal of Latex Class manuscript No.
(will be inserted by the editor)

Machine Learning based Intrusion Detection Systems

for IoT Applications

Abhishek Verma1,∗
· Virender Ranga1

Received: 8 August 2019 / Accepted: date

Abstract Internet of Things (IoT) and its applications are the most popular
research areas at present. The characteristics of IoT on one side make it easily
applicable to real-life applications, whereas on the other side expose it to cyber
threats. Denial of Service (DoS) is one of the most catastrophic attacks against
IoT. In this paper, we investigate the prospects of using machine learning classi-
fication algorithms for securing IoT against DoS attacks. A comprehensive study
is carried on the classifiers which can advance the development of anomaly-based
intrusion detection systems (IDSs). Performance assessment of classifiers is done in
terms of prominent metrics and validation methods. Popular datasets CIDDS-001,
UNSW-NB15, and NSL-KDD are used for benchmarking classifiers. Friedman and
Nemenyi tests are employed to analyze the significant differences among classifiers
statistically. In addition, Raspberry Pi is used to evaluate the response time of
classifiers on IoT specific hardware. We also discuss a methodology for selecting
the best classifier as per application requirements. The main goals of this study
are to motivate IoT security researchers for developing IDSs using ensemble learn-
ing, and suggesting appropriate methods for statistical assessment of classifier’s
performance.1

Keywords : Internet of Things · Denial of Service · Intrusion detection ·
Anomaly · Significance test · Performance analysis

1 Introduction

Security and privacy aspects of the Internet of Things (IoT) [7, 5, 65, 64, 45] are
the key players which drive its potential to become one of the globally adopted
technology in the future [58, 34]. However, self-configuring and open nature of IoT

1Department of Computer Engineering, National Institute of Technology, Kurukshetra, India
E-mail: ∗abhiverma866@gmail.com
E-mail: virender.ranga@nitkkr.ac.in

1 The final publication is available at https://link.springer.com/article/10.1007/s11277-019-
06986-8

http://arxiv.org/abs/2302.12452v1

2 Abhishek Verma1,∗, Virender Ranga1

makes it vulnerable to various insider and outsider attackers [49, 37]. Attackers
may compromise the users’ security and privacy in order to gain access to their
personal information, create monetary losses, and eavesdropping [72]. These fac-
tors prevent global adoption of IoT, consequently slowing down its growth [30].
Denial of Service (DoS) is one of the most catastrophic attacks that prevent le-
gitimate user to access the service it has paid for [55, 17]. This violates Service
Level Agreement (SLA) terms which leads to huge monetary losses for firms and
organizations. Moreover, DoS also affects the services of small networks, i.e., smart
home, healthcare and smart agriculture etc [43]. DoS attacks on critical smart ap-
plications such as healthcare may even lead to death like situations because normal
services get delayed [48]. IoT devices (e.g., smart light bulbs, smart door locks,
smart television) are an easy target of attackers which exploit their vulnerabilities
in order to perform DoS attacks [50, 56, 59, 20, 68]. Thus, securing these devices
is one of the important concerns for researchers nowadays [71, 6]. To address this
issue, intrusion detection is being heavily researched worldwide [69, 9]. Intrusion
detection systems (IDSs) are categorized into three classes based on the detection
method, i.e., signature, anomaly, and specification. Among three IDS types, our
focus is primarily on anomaly-based IDS [32]. A signature-based IDS matches net-
work traffic patterns with the attack patterns (signatures) already stored in its
database. In case a match is found, an alarm is raised. A signature-based IDS has
high accuracy and low false alarm rate, however, it is incapable of detecting new
attacks. A specification-based network IDS match traffic behavior (parameters)
against a predefined set of rules and values (specifications) for detecting malicious
activities. These specifications are manually specified by a security expert. In con-
trast to signature and specification based IDS, anomaly-based IDS continuously
checks network traffic for any deviation from normal network profile. In case a
deviation exceeds the threshold, an alarm is raised to signify attack detection.
The normal network profile is learned using machine learning (ML) algorithms. A
anomaly-based IDS are preferred over signature and specification based IDS be-
cause of its ability to detect new attacks, but this comes with a cost of high false
alarm rate. The effectiveness of anomaly-based IDS depends on the goodness of
detection engine (model or classifier), and this goodness comes with the quality of
network traffic patterns (dataset instances) being used for engine’s training. Once
the detection engine has been trained, it can detect new attacks effectively. Intru-
sion detection in IoT networks is characterized as a binary classification problem
in which a trained classifier aims to classify network traffic into normal or attack
class with maximum accuracy and minimum false alarms (FAR). The high per-
formance of the classifier in terms of accuracy and FAR solely depends on the
choice of classification algorithm and training data. Security experts prefer good
performing classifier for the task of intrusion detection. Many solutions for intru-
sion detection have been proposed in the literature [18, 8, 47, 44, 32, 14] and most
of them are dedicated for traditional networking paradigms only, and as far as
the literature is concerned, less work has been done towards the development of
ML-based intrusion detection for IoT applications. Moreover, we didn’t find any
work in the literature which statistically analyzed the significance of classifier’s
performance in particular to IoT based intrusion detection. Also, no work in the
literature has realized the execution of classifier on an IoT hardware. Thus, our
focus is basically on utilizing ML classification algorithms for building IDS in order
to secure IoT against DoS attacks.

Intrusion Detection Systems for IoT Applications 3

In this work, we carry out a performance assessment of ML classifiers for IDS in
particular to IoT. The performance of single classifiers including CART and MLP,
and classifier ensembles namely Random forest (RF), AdaBoost (AB), Extreme
gradient boosting (XGB), Gradient boosted machine (GBM), and Extremely ran-
domized trees (ETC) is measured in terms of prominent metrics, i.e., accuracy,
specificity, sensitivity, false positive rate, area under the receiver operating char-
acteristic curve (AUC). Hyper-tuning (finding the set of optimal parameters) of
all the classifiers is done using random search[10]. The significant differences of
classifiers are statistically assessed using a well known statistical test. Finally, we
have tested the performance of classifiers in terms of average response time on
Raspberry Pi, i.e., IoT device [70].

Our primary contributions can be summarized as follows.

– Performance assessment of different ML classifiers on CIDDS-001, UNSW-
NB15, NSL-KDD datasets with repeated hold-out and repeated cross fold val-
idation methods is done.

– Statistical assessment of performance results using widely used Friedman test
(non-parametric statistical test) and Nemenyi post-hoc test, i.e., Friedman test
for classifier significance test and Nemenyi test for pairwise comparison among
classifiers is done.

– Implementation and execution of classifiers on Raspberry Pi hardware for re-
alizing actual response time on real IoT hardware is carried out.

The paper organization is as follows. Section 2 discusses recent works in the
concerned domain. Section 3 provides a brief discussion on classification algo-
rithms, i.e., single classifiers, and ensembles. Experimental design is discussed in
section 4. Discussion related to the classifier’s performance and statistical tests is
done in section 5. Section 6 concludes the paper.

2 Related Work

There are few works present in the literature which suggest methods for defending
IoT against DoS attacks. Like, Misra et al. [46] proposed a specification-based IDS
based on Learning Automata for preventing distributed DoS attacks against IoT.
The authors considered preventing IoT middle-ware layer rather than a particular
device. The proposed security system sets a threshold for the number of requests
a middleware layer can service. As soon as the number of incoming requests ex-
ceeds the set threshold, an attack is detected. Kasinathan et al. [39] proposed a
signature-based IDS framework for detecting DoS attack in IoT. The proposed
framework consists of a monitoring and detection modules. These modules are in-
tegrated with the network framework of European Union (EU) FP7 project ‘ebbits’
for securing the network against DoS attacks. A DoS protection manager and IDS
are integrated with the ‘ebbits’ network. A network-based IDS is used for cap-
turing and analyzing the packets sniffed from IDS probe node’s that are spread
across the network. The evaluation results show that the proposed framework per-
forms well in terms of true positive and false positive rate. Kasinathan et al. [38]
proposed an IDS to detect DoS attacks. Suricata [1] (open source IDS) is used
for pattern matching and attack detection. A probe node is used to sniff all the
packet transmissions in the network and transfer information to IDS for further

4 Abhishek Verma1,∗, Virender Ranga1

analysis. Penetration testing tool ‘Scapy’ is used to test the performance of the
proposed IDS. No simulation study is done in support of IDS performance and its
usability. Moreover, the authors did not mention any details regarding signature
database management (update). Lee et al. [42] proposed a novel IDS for detecting
DoS attacks. The key idea behind the proposed IDS is to analyze the node’s en-
ergy consumption in order to track malicious nodes. The authors proposed various
models for normal energy consumption in mesh routing based networks. The pro-
posed security system requires nodes to monitor their own energy consumption at
a sampling rate of 0.5 seconds. The proposed IDS continuously checks the energy
consumption of nodes against the defined threshold, and whenever a deviation
is found for any node, such a node is marked as malicious and removed from the
routing table. The proposed approach shows promising results in terms of accuracy
only. The major concern with this proposed approach is that there is no inbuilt
mechanism to verify the integrity of energy consumption values being reported by
a node. Sonar et al. [60] proposed an IDS to detect distributed DoS attacks in IoT
networks. The authors implemented IDS as software-based manager deployed be-
tween network and gateway. The proposed IDS maintains greylist and blacklist or
IP addresses in order to control the access to the network. In the proposed IDS, the
greylist is updated every 40 seconds while blacklist is updated every 300 seconds.
Simulation of the proposed IDS is performed on the contiki [23] operating system.
The proposed IDS performs do not achieve satisfactory performance in terms of
packet delivery ratio, the number of serviced packets, true positives, and false pos-
itives. Moreover, the recovery time is larger than agent learning time which adds
to the major limitations of the proposed IDS. Diro et al. [21] proposed a deep
learning based IDS for defending DoS against IoT networks. The proposed model
is evaluated using NSL-KDD dataset. The authors performed the comparison of
proposed IDS with the traditional shallow model approach. In addition, the pro-
posed IDS is implemented with centralized and distributed detection scheme. The
comparison results show that the distributed attack detection scheme performs
better compared to centralized detection scheme in terms of accuracy. Similarly,
the deep model shows better results compared to the shallow model in terms of
accuracy, precision, recall, and F1 measure. Tama et al. [61] proposed an anomaly
based IDS that uses gradient boosted machine (GBM) as a detection engine. The
optimal parameters of GBM are obtained using grid search and the performance
of the proposed IDS is validated using hold-out and cross fold methods on three
different datasets namely UNSW-NB15, NSL-KDD, and GPRS. The authors show
that proposed IDS outperforms the fuzzy classifier, GAR forest, tree based ensem-
bles in terms of accuracy, specificity, sensitivity, and area under curve (AUC).
Primartha et al. [52] studied the performance of RF based IDS in terms of accu-
racy and false alarm rate. The authors employed NSL-KDD, UNSW-NB15 and
GPRS dataset for model training and testing. The proposed IDS is studied with
different tree size ensembles, and statistical analysis based on Friedman ranking
showed that the ensemble of 800 trees achieves best results whereas an ensem-
ble of 20 trees showed the worst performance. Moreover, the proposed RF based
IDS outperforms ensemble of Random tree+Naive Bayes, and single classifiers like
NBTree and Multi-layer perceptron.

Intrusion Detection Systems for IoT Applications 5

3 Classification Algorithms

Wolpert et al. [67] stated a theorem popularly known as “no free lunch” theorem
that shows the importance of experimenting with different machine classifiers for
solving classification tasks. The theorem states that “there is no single learning
algorithm that universally performs best across all domains” [22]. Thus, different
classifiers should be tested for solving domain specific problems, and in our case,
the problem is intrusion detection or classification problem. We consider two types
of classification algorithms, i.e., ensembles and single classifiers. Among ensembles,
widely studied algorithms [29, 41, 57] like Random forest (RF), AdaBoost (AB),
Gradient boosted machine (GBM), Extreme gradient boosting (ETC), and Ex-
tremely randomized trees (ETC) are chosen. There are main reasons for selection
of mentioned classification algorithms. First, because ensemble-based classification
methods are prone to over-fitting in case the number of input features is large we
also choose to study some single classifiers like Classification and regression trees
(CART), and Multi-layer perceptron (MLP). Second, the performance of ensem-
bles has not been studied in depth for CIDDS-001 and UNSW-NB15 datasets.
Third, the performance of ensembles and single classifiers over real IoT hardware
has not been studied yet, which motivated us for carrying this analytical study.

3.1 Classifier ensembles

This section discusses various classifier ensembles in brief. Ensembles have been
proven to be good classification and regression algorithms in the literature. Thus,
we have used five different ensembles in this analytical study.

3.1.1 Random forest (RF)

RF[12] is a collection of trees, i.e., predictors {t(xin, θn), n = 1, . . .} which indi-
vidually make predictions on a given input xin. Each predictor depends on the
random set of variables {θn} that are sampled independently with the same dis-
tribution. The main idea behind RF is that the number of predictors together
might achieve better prediction accuracy while avoiding the over-fitting problem.
Each predictor in RF grows to a maximum size without getting pruned. Once a
large number of trees are created, they make predictions over the input data by
voting for the most popular class at input xin. For the performance assessment the
number of estimators (trees) is set to 500 and maximum depth for tree construc-
tion is set to 26 as recommended by [12, 61]. The other parameters are obtained
using randomized search.

3.1.2 AdaBoost (AB)

AB[25] is an adaptive meta-estimator that learns the initial training weights on
the original dataset. These weights act as input to additional copies of the clas-
sifier based on incorrectly classified instances. The subsequent classifiers adjust
the weights of classified instances, i.e., difficult cases. In this way, AB improves
the performance of learning algorithms by boosting weak learners such that final

6 Abhishek Verma1,∗, Virender Ranga1

model converges to a strong learner. Eq. (1) represents a boost classifier where cp
resembles a weak learner and x resembles an input object.

CP (x) =

P
∑

p=1

cp(x) (1)

cp(x) returns the value indicating predicted class. Each cp generates an output
hypothesis (h(xi)) for each instance in the training set. At each iteration p, a
cp is chosen and assigned a coefficient βp such that the sum training error Et

(represented as eq. (2)) of the resulting p-stage CP (x) is minimized. Cp−1(xi)
represents the boosted classifier built from previous training phase, E(C) is error
function which is to be minimized, and cp(x) = βph(xi) is the weak learner that
is to be added to the final model, i.e., classifier. The optimal parameters of AB
include 50 estimators and 0.1 learning rate.

Et =
∑

i

E[Cp−1(xi) + βph(xi)] (2)

3.1.3 Gradient boosted machine (GBM)

GBM[27, 26] is a member of the ensemble family which aims to improve the perfor-
mance of decision trees (DT). Like other boosting methods it sequentially combines
weak classifiers, i.e., DT, and allows them to optimize an arbitrary differential loss
function in order to form a strong prediction model. Each present learner (tree)
relies on the predictions of previous learners in order to improve the prediction er-
rors. Formally, let us consider a set of random input variables and random output
represented by x (eq. (3)) and z respectively.

x = {x1, x2, . . . , xN} (3)

Our aim is to find an estimate A (approximation) that maps x to z by using
training data {z, xi}

N
1 . A is represented as Equation 6. Given a dataset (S) with

p samples and q features as represented by eq. (4). Then, a ensemble utilizes M
additive function to predict final output eq. (5).

S = {(xi, zi)}(|D| = p, xi ∈ R
q
, zi ∈ R) (4)

ẑi = φ(xi) =

M
∑

m=1

fm(xi), fk ∈ A (5)

A = {f(x) = wr(x)(r : Rm → K,w ∈ R
K)} (6)

A is the instance set of DT, and r represents the tree structure that relates
an instance to the correlating leaf index, K indicates the total count of trees, and
fm is a single tree with structure r and leaf weight w. The tree ensemble makes
the final prediction by summation of the scores (w) of leaves which are found by
classifying given test sample. Suppose, a first classifier (i.e., tree) makes prediction
h1(x) over a sample {(xi, yi)}

N
1 . Then, h1(x) is fed as input to next classifier

in order to adjust the weights of previously misclassified instances. Consequently,

Intrusion Detection Systems for IoT Applications 7

next classifier makes prediction h2(x) over {(xi, yi−h1(xi))}
N
1 . The final prediction

h(x) for a given sample data S is the summation of predictions made by the trees
while minimizing the prediction error. The hyper-tuned parameters for GBM are:
500 estimators, maximum tree construction depth is 3, minimum samples required
for split are 100 and 0.1 learning rate.

3.1.4 Extreme gradient boosting (XGB)

XGB[15] is also known as regularized gradient boosting is an improved version
of GBM. Like GBM, XGB follows the same principle of gradient boosting. The
only key difference between them is in terms of modeling details. XGB uses more
regularized model formalization in order to control over-fitting and increase gener-
alization ability while GBM focuses only on the variance. Regularization parameter
(ζ) is mathematically expressed as eq. (7). Where, Tl is the number of leaves in
the tree, w2

j is the score on the j-th leaf, λ represents regularization term the
controls model complexity. XGB uses gradient boosting for optimizing the loss
function during model training. Typically, for binary classification the LogLoss
function (L) [11] is used and represented as eq. (8). Where, N is the total number
of observations, yi is the binary indicator of whether predicted class c is the cor-
rect classification for particular observation o and pi is the predicted probability
that particular observation o is of class c. Most importantly, L controls the predic-
tive power, and ζ controls the simplicity of the model. The major implementation
enhancement of XGB includes usage of sparse matrices (DMatrix) with sparsity
aware algorithms, improved data structures, parallelization support. Thus, XGB
leverages the hardware to achieve high speed computing with low memory uti-
lization (primary memory and cache). The optimal values of parameters obtained
for XGB are: 100 estimators, maximum tree depth is 8, value of minimum child
weight is 1, gbtree booster is considered, minimum loss reduction and sub-sample
ratio are 2 and 0.6 respectively.

ζ = γTl +
1

2
λ

T
∑

j=1

w
2
j (7)

L = −
1

N

N
∑

i=1

(yilog(pi) + (1− yi)log(1− pi)) (8)

3.1.5 Extremely randomized trees (ETC)

ETC[33] also known as Extra trees is a tree induction algorithm for performing
supervised classification and regression. To be more specific, ETC builds an en-
semble of unpruned DTs. The key procedure in ETC involves randomly selecting
both features and cut-point irrespective of the target variable. At each tree node,
this procedure is followed with totally or partially selecting a certain number of
features among which the optimal one is determined. In the worst case, the algo-
rithm selects a single feature and cut-point at each node. In this manner, totally
randomized trees are built which are independent of the training sample’s target
attribute values. The classical top-down methodology is followed while building
the ensemble. Unlike other tree-based ensemble algorithms, ETC uses complete

8 Abhishek Verma1,∗, Virender Ranga1

training sample rather than bootstrap replicas in order to grow the trees while
minimizing bias and variance. The ETC splitting procedure for numeric features
has three important parameters. The first parameter is K indicates the number
of features selected at each node. The second parameter is nmin which represents
minimum training set size for splitting a node. The third parameter is Tcount that
is the number of trees in the ensemble. All three parameters play a significant
role in the ETC building. Where K is responsible for the strength of feature se-
lection procedure, nmin governs the averaging output noise, and Tcount specifies
the reduction in variance. ETC performs almost the same as RF, however with
optimal feature selection ETC is computationally faster compared to RF. The
hypertuned parameters obtained from randomized search for ETC are: 1788 es-
timators, maximum tree depth value is 10, minimum sample size for split is 5,
number of features considered for best split are log10 2, gini criterion is considered
with no bootstrapping.

3.2 Single classifiers

This section discusses single classifiers in brief. In this comparative study we have
used classification and regression trees, and multi-layer perceptron.

3.2.1 Classification and regression trees (CART)

CART[13] is one of the widely employed ML methods for predictive modeling
problems. It is a non-parametric algorithm with a built-in mechanism to handle
missing feature values. CART involves recursive partitioning of training samples
and fitting of a simple predictionmodel within each partition. This partitioning can
be represented as DT graphically. CART employs exhaustive search technique, in
order to identify the splitting variables such that the total impurity of node’s child
nodes (two children) is minimized. CART uses the Gini index as its impurity func-
tion which makes it computationally efficient over entropy based classification tree
algorithms. The number of folds in the internal cross-validation and the minimal
number of observations at the terminal nodes considered are 5 and 2, respectively
as used in [61]. The optimal value of maximum depth of tree construction obtained
is 10.

3.2.2 Multi-layer perceptron (MLP)

MLP[35] is a logical unit of connected nodes (artificial neurons) that attempts to
mimic the biological brain behavior commonly referred as a feed-forward artificial
neural network. It learns its expertise towards a particular task using supervised
learning approaches. MLP comprises several layers, i.e., input, middle and output.
Training of MLP involves learning a mathematical function f(.) shown in eq.
(9), where d, c are the number of inputs and outputs respectively. In order to
perform any predictive task, MLP learns a non-linear function approximator over
a set of input features {I = i1, i2, . . . , id} and output variable O, i.e., class. The
leftmost layer also termed as input layer consists of many artificial neurons {
ip|i1, i2, . . . , id} each representing a particular input feature. The second layer,
i.e., the middle layer performs the task of transformation. First, the outputs from

Intrusion Detection Systems for IoT Applications 9

the former layer are summed using weighted linear summation y represented as
eq.(10). Second, a non-linear activation function (g(·)) is applied to y which results
into a value that is forwarded to further layers, typically output layer in case single
hidden layer is present. The rightmost layer is the output layer which receives
values from the last hidden layer and responsible for firing outputs, i.e., final
predictions. The optimal parameters values of MLP obtained are: hidden layer
size of 100, logistic activation function, sgd solver, learning rate of 0.001, and 200
maximum iterations.

f(·) = R
d → R

c (9)

y =
d
∑

p=1

(wpip) (10)

4 Experimental Design

4.1 Experimental setup

The performance assessment has been carried out on a machine operated on 64-
bit Windows 10 Pro and equipped with Intel® i7-7700 four core CPU having
3.60 GHz clock speed and 12GB main memory. The classifiers are implemented in
the Python programming language (version 3.6.1). Parameter hyper-tuning is per-
formed on PARAM Shavak system operated on 64-bit Ubuntu 14.04 and equipped
with Intel® Xeon® Gold 6132 twenty eight-core CPU having 2.6GHz clock speed
and 96GB main memory. Raspberry Pi 3 Model B+ operated on Raspbian op-
erating system and equipped with 64-bit quad-core ARM CPU running having
1.4GHz clock speed and 1GB main memory is used for assessing the response time
of classifiers. Popular ML library scikit-learn [51] is utilized for implementing clas-
sifiers. In order to perform statistical tests on the performance results, we used
the STAC [54] web platform application.

4.2 Datasets

In this study three different datasets, i.e., CIDDS-001 [2], UNSW-NB15 [4], and
NSL-KDD [3] are used. We choose CIDDS-001 and UNSW-NB15 dataset as they
are most recently generated datasets and contain traffic of real data, and hence
can be beneficial for building accurate IDSs for monitoring and detection of new
type of DoS attacks in IoT networks. The CIDDS-001 dataset has recently been
released for facilitating the development of anomaly-based IDS. The complete
dataset contains approximately 32 million records comprising of normal and at-
tacks traffic. CIDDS-001 possesses 12 features and 2 labeling attributes. Random
sampling is employed to extract 100,000 instances from the internal server traffic
data, compromising of 80,000 normal and 20,000 attacks (DoS) records. The ex-
tracted sample is used for carrying out hold-out and cross fold validation tests of
classifiers. Our previous works [62, 63] focused on evaluating the performance of
various ML classification algorithms on CIDDS-001 dataset.

10 Abhishek Verma1,∗, Virender Ranga1

Further, we have conducted our experiments on newly publicly available dataset
known as UNSW-NB15. The dataset possesses 49 features and 1 class attribute.
A part of the dataset is used as train and test sets, i.e., UNSW NB15 Train and
UNSW NB15 Test. The train set comprises of 175,341 instances, and the test set
comprises of 82,332 instances. The train set includes 56,000 instances of normal
traffic and 119,341 instances of attack traffic. Similarly, the test set includes 37,000
instances of normal traffic and 45,332 instances of attack traffic. Hold-out valida-
tion is conducted using the complete train and test sets, whereas for cross-fold
validation test only train set is employed.

Subsequently, NSL-KDD dataset is also used for performing validation of clas-
sifiers. The dataset contains 41 features and 1 class attribute. In this study, KD-
DTrain+ (training) and KDDTest+ (testing) sets of NSL KDD dataset are used.
The KDDTrain+ set contains total 25,192 instances comprising of 13,499 instances
of attack traffic and 11,743 instances of normal traffic. Whereas, the KDDTest+
set contains total 22,544 instances comprising of 9,711 instances of attack traffic
and 12,833 instances of normal traffic. Hold-out and cross fold validation of classi-
fiers is done on each dataset individually. The choice of these sets is done in order
to avoid random sampling of instances from complete NSL-KDD dataset.

4.3 Evaluation metrics and Validation methods

Selection of input parameter settings influences the overall performance of the
classifiers, thus we follow random search [10] procedure to find the optimal in-
put parameters of RF, AB, XGB, GBM, and ETC for different datasets. Ran-
domizedSearchCV implementation in scikit-learn package of Python programming
language is used for hyper-tuning of parameters. RandomizedSearchCV finds op-
timal parameter settings by performing a cross-validated search over candidate
parameter values provided by the user. Prominent metrics for evaluating classi-
fier’s performance have been used in this study. These metrics include accuracy,
specificity or true negative rate, sensitivity or true positive rate, FPR, and AUC,
mathematically represented as eqs. (11)-(15) respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Specificity =
TN

TN + FP
(12)

Senstivity =
TP

TP + FN
(13)

FPR =
FP

TN + FP
(14)

AUC =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
(15)

Where true positive (TP) represents the number of correctly classified attack in-
stances, true negative (TN) represents the number of correctly classified normal
instances, false positive (FP) is the number of wrongly classified attack instances,

Intrusion Detection Systems for IoT Applications 11

and false negative (FN) is the number of wrongly classified normal instances. Ac-
curacy is defined as the total number of correctly classified instances over the
total number of instances in the dataset. Specificity is defined as the number of
correctly classified normal instances over the total number of normal instances.
Sensitivity is defined as the number of correctly classified attack instances over
the total number of attack instances. FPR is defined as the number of incorrectly
classified attack instances over the total number of normal instances. AUC refers
to the area under the receiver operating characteristic (ROC) curve, where ROC
curve defined as plotting TPR against FPR.

In order to perform a comprehensive performance assessment of different clas-
sifiers, we conducted experiments by using repeated hold-out as well as repeated
k-fold cross validation (10f) method [40]. As suggested in [53], the repeated ver-
sion stabilizes the error estimation and minimizes the variance of the validation
approach. For hold-out validation, we divided sample dataset into 60:40 ratio (60%
training instances and 40% testing instances) in order to create train and test set.
Similarly, for k-fold cross validation the value of k is considered as 10. We con-
sidered 100 rounds of repeated 10f and hold-out validation as the classification
models are observed to be stable, i.e., same prediction for the same test data. 10f
is performed in order to asses the classifier’s performance while avoiding the effect
of instance sampling (i.e in case of hold-out validation). In order to avoid bias, all
the performance results reported in this paper are the mean value of outputs from
10 iterations of each repeated validation approach. Each experiment is repeated by
using different seed (an input to a random number generator) for avoiding biased
results.

4.4 Statistical significance tests

In ML studies, comparison of multiple algorithms over multiple datasets is an
essential issue [19]. An algorithm may show better performance over one dataset
whereas may fail to achieve similar result over another dataset. The reason for this
may be the presence of outliers, feature distribution or algorithm characteristics.
Thus, it becomes quite difficult to compare different algorithms among themselves.
This consequently makes it challenging to decide which algorithm is better than
others. To address this issue, the statistical assessment is needed to statistically
validate the performance results. In this study, two statistical significance tests
[16] are utilized in order to perform the comparison of classifiers in a correct way.
Friedman [28] and Nemenyi [24] tests are selected for this purpose. The significance
tests help in finding whether the classifiers are significantly different from each
other or not [19, 31]. The null hypothesis (H0) considered in this case is that
there is no performance difference among classifiers. While alternative hypothesis
(H1) is that there is at least one classifier that performs significantly different
that at least one other classifier. The main reason behind choosing the Friedman
test is that it is the most powerful statistical test in case the number of entities
being compared are greater than five [16, 61]. Friedman test helps in determining
whether at least one classifier performs significantly better than the others in case
of all the datasets. In any one such classifier is found, then Nemenyi post-hoc test
is performed for pairwise multiple comparisons. As suggested in [19], it is crucial
to conduct post-hoc test so as to identify the performance differences among the

12 Abhishek Verma1,∗, Virender Ranga1

classifiers. To be more specific, Friedman test checks for the significant difference
among the classifiers being tested, whereas the Nemenyi test pinpoints where that
difference lies. The further discussion assumes d as the number of datasets, and k as
the number of classifiers. In Friedman test, initially the performance results (Xij)
of classifiers are ranked (R(Xij)) for all the datasets. Then, sum of the R(Xij) is
computed for each classifier in order to obtain Rj (eq. (16)), where j = 1, 2, . . . , k.
The Friedman statistic (F-Statistic) is computed as eq. (17), where Q is calculated
as eq. (18).

Rj =
d
∑

i=1

R(Xij) (16)

F − Statistic =
(d− 1)Q

d(k − 1)−Q
(17)

Q =
12

dk(k + 1)

k
∑

j=1

(

Rj −
d(k + 1)

2

)2

(18)

The F-Statistic is tested against the F-quantiles for a given α with degree of
freedom, f1 = k−1 and f2 = (d−1)(k−1), where α is the significance level being
considered. In this study the values of d, k are 4 and 7 respectively. Nemenyi
post-hoc test is performed by calculating test statistic γxy (represented as eq.
(19)) for all classifier pairs, where Rx and Ry are mean ranks of classifiers x and
y respectively on all datasets, and computed as eq. (20). After all the γxy are
calculated and those which exceed a critical value are said to indicate a significant
difference between classifiers x and y at α significance level. In this study, two
values of α are considered, i.e., 0.05 and 0.1. The statistical analysis of both hold-
out and 10f validation results is carried out in this experimental study.

γxy =
Rx − Ry
√

k(k+1)
6d

(19)

Rj =
1

d

d
∑

i=1

R(Xij) (20)

5 Results and Analysis

In this section, a detailed discussion on performance analysis of ensembles (RF,
AB, GBM, XGB and ETC) and single classifiers (CART and MLP) specific to
CIDDS-001, UNSW-NB15, and NSL-KDD datasets is done. The results are com-
pared and statistically analyzed. We have shown that the classifiers used in this
study are suitable for intrusion detection in IoT applications. First, we analyze
the performance results of hold-out validation. Fig. 1 indicates the average value
of all prominent metrics other than FPR, achieved with hold-out validation across
CIDDS-001, UNSW-NB15, KDDTrain+, and KDDTest+ datasets. It is observed
that RF outperforms other classifiers in terms of accuracy (94.94%) and specificity
(91.6%). GBM performs best in terms of sensitivity (99.53%). In terms of AUC

Intrusion Detection Systems for IoT Applications 13

metric, XGB performs best by achieving 98.76%. MLP is the worst performer in
terms of accuracy (82.76%), whereas AB performs worst in terms of specificity
(86.72%) and sensitivity (97.94%). CART achieves lowest AUC value (94.01%).
Fig. 2 shows the average FPR values of classifiers across four datasets with hold-
out validation. It is observed that RF performs best whereas AB performs worst
among all the classifiers in terms of FPR by achieving 8.89% and 13.26% respec-
tively. Table 1 lists out model building time (MBT) of different classifiers across
four datasets with hold-out validation. The main reason behind computing MBT
is that it is very important to consider the training time a model takes, as it
would directly impact the resources usage, which is an important criterion for
resource-constrained devices [66]. Thus, MBT helps in making a good trade-off
between resource usage and classification performance of a classifier, i.e., IDS. RF
and CART take approximately 2 seconds for training on all four datasets. The
highest time for model training is taken by GBM and ETC in case of KDDTrain+
dataset. MBT of all the classifiers is calculated for hold-out validation only.

RF CART MLP AB GBM XGB ETC

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0
.9
4
9
4

0
.9
1
9
8

0
.8
2
7
6

0
.9
0
3
7

0
.9
2
9
8

0
.9
3
1
5

0
.8
2
9
9

0
.9
1
6

0
.8
7
9
1

0
.8
8
5
7

0
.8
6
7
2

0
.8
9
1
5

0
.8
9
3
4

0
.8
9
1
4

0
.9
8
4
1

0
.9
8
9
5

0
.9
8
7
9

0
.9
7
9
4 0
.9
9
5
3

0
.9
9
4
6

0
.9
9
5
2

0
.9
8
4
8

0
.9
4
0
1

0
.9
8
0
2

0
.9
5
6
5

0
.9
8
4
9

0
.9
8
7
6

0
.9
7
6
7

Classification Algorithm

V
a
lu
e

Accuracy Specificity Sensitivity AUC

Fig. 1: The average value of prominent metrics per classifier across four datasets
with hold-out validation

Fig. 3 shows the average value of all prominent metrics other than FPR,
achieved with 10f validation across CIDDS-001, UNSW-NB15, KDDTrain+, and

14 Abhishek Verma1,∗, Virender Ranga1

RF CART MLP AB GBM XGB ETC

0

0.1

0.2

0.3

0.4

0
.0
8
9
8

0
.1
2
0
7

0
.1
1
4
1

0
.1
3
2
6

0
.1
0
8
4

0
.1
0
6
5

0
.1
0
8
5

Classification Algorithm

V
a
lu
e

FPR

Fig. 2: The average value of FPR per classifier across four datasets with hold-out
validation

Table 1: MBT (seconds) of classifiers across four datasets

Dataset RF CART MLP AB GBM XGB ETC

CIDDS-001 0.4124 0.2353 1.0160 0.9557 20.1139 7.3965 17.5031
UNSW-NB15 1.4657 0.6260 4.3782 7.9092 12.7477 23.7196 44.4775
KDDTrain+ 0.4087 0.2653 16.7050 2.6928 318.8914 14.0115 143.0728
KDDTest+ 0.0601 0.0337 5.3062 0.4866 22.7327 2.9957 1.5041

KDDTest+ datasets. It is observed that the performances of all the used classifiers
improve with 10f validation in comparison to classifier’s performances with hold-
out validation. This is due to the effect of sampling which results in the selection
of random instances that leads to poor classification. This phenomenon advocates
the use of 10f validation over hold-out validation. The 10f validation results show
promising performance for all the classifiers. However, from the point of compari-
son, CART performs best in terms of accuracy (96.74%). AB achieves the highest
average value of specificity (97.5%) metric. RF and XGB perform best in terms
of sensitivity by achieving 97.31% performance measure. For AUC, the best per-
forming classifier is XGB which achieves 98.77%. Fig. 4 shows the average FPR
values of classifiers across four datasets with 10f validation. It is observed that
CART performs best whereas RF performs worst among all classifiers in terms of
FPR by achieving 3.78% and 21.85% respectively.

Table 2: Friedman test statistics for hold-out validation

Accuracy Specificity Sensitivity FPR AUC
F-Statistic 6.7745 7.7091 7.1434 7.7091 4.7020
p-value 0.0007 0.0003 0.0005 0.0003 0.0048
α = 0.05 R R R R R
α = 0.1 R R R R R

Intrusion Detection Systems for IoT Applications 15

RF CART MLP AB GBM XGB ETC

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
0
.9
6
7
3

0
.9
6
7
4

0
.9
6
7
3

0
.9
6
7
3

0
.9
6
7
3

0
.9
6
7
3

0
.9
6
7
3

0
.9
6
1
9

0
.9
6
2

0
.9
6
2

0
.9
7
5

0
.9
6
1
8

0
.9
6
1
8

0
.9
6
1
8

0
.9
7
3
1

0
.9
7
3

0
.9
7
3

0
.9
7
3

0
.9
7
3

0
.9
7
3
1

0
.9
7
3

0
.9
8
5
3

0
.9
4
2
2

0
.9
8
1
3

0
.9
5
7
8

0
.9
8
5
1

0
.9
8
7
7

0
.9
7
6
8

Classification Algorithm

V
a
lu
e

Accuracy Specificity Sensitivity AUC

Fig. 3: The average value of prominent metrics per classifier across four datasets
with 10f validation

RF CART MLP AB GBM XGB ETC

0

0.1

0.2

0.3

0.4

0
.2
1
8
5

0
.0
3
7
8

0
.0
3
7
9

0
.0
3
8

0
.2
1
8
4

0
.0
3
8

0
.0
3
8

Classification Algorithm

V
a
lu
e

FPR

Fig. 4: The average value of FPR per classifier across four datasets with 10f vali-
dation

16 Abhishek Verma1,∗, Virender Ranga1

Table 3: Friedman test (mean ranks for hold-out validation)

Accuracy Specificity Sensitivity FPR AUC
RF 4.875 5.750 2.875 2.250 3.750
CART 2.250 2.000 3.250 6.000 1.500
MLP 3.250 3.250 2.250 4.750 3.000
AB 1.250 1.500 2.000 6.500 2.875
XGB 6.000 6.375 5.500 1.625 6.000
GBM 5.750 4.625 6.250 3.375 5.875
ETC 4.625 4.500 5.875 3.500 5.000

The performance results are statistically assessed using Friedman and Nemenyi
post-hoc test. Both the statistical tests are performed for two values of significance
level α (i.e., 0.05 and 0.1). For α = {0.05,0.1} the value of f1, f2 are 6 and 18
respectively, the F-Statistic and p-value for each performance metric is computed.
Table 2 shows Friedman test statistics for hold-out validation results. From the
results it is observed that the performance of the classifiers is significantly different
(p < 0.05 and p < 0.1) in terms of all the considered performance metrics. Thus,
it is concluded that there is at least one classifier that performs significantly dif-
ferent that one another classifier. Because the results of Friedman test are highly
significant (p < 0.05 and p < 0.1), the null hypothesis H0 is rejected (represented
by R in Table 2) and alternative hypothesis H1 is accepted. In Table 3, the mean
ranks of all the classifiers for hold-out validation are shown. In order to find which
classifier pairs perform significantly different, Nemenyi post-hoc test is performed.
For this purpose, the p-value of all the pairwise comparisons is tested against the
considered significance level α.

Table 4 presents the results of the Nemenyi test (pairwise comparison) over
accuracy, specificity and sensitivity. As shown in table 4, the classifier’s accuracy
is highly significant (p < 0.05) in case of AB-XGB pair, whereas less significant
(p < 0.1) in case of AB-GBM pair. While the remaining pairs are not significant
(p < 0.1). Moreover, in terms of specificity, the highly significant pair is AB-XGB,
whereas the less significant pair is XGB-CART, whilst no other pair is found to
be significant. Furthermore, no pair is significant in terms of sensitivity. Table 5
shows the results of the Nemenyi test (pairwise comparison) over FPR, AUC and
MBT. It is observed that for FPR metric the classifier’s performance is highly
significant in the case of AB-XGB and less significant in the case of XGB-CART,
whereas remaining pairs are not significant. While, in the case of AUC metric there
are no pairs which are highly significant, whilst GBM-CART and XGB-CART are
the only less significant pairs among all the classifier pairs, every other pair is not
significant.

Table 6 shows Friedman test statistics for 10f validation results. From the
results it is observed that the performance of the classifiers is significantly different
(p < 0.05 and p < 0.1) in terms of AUC only. Thus, it is concluded that there is at
least one classifier that performs significantly different than one another classifier.
Because the result of Friedman test is highly significant (p < 0.05 and p < 0.1)
for AUC metrics, the null hypothesis H0 is rejected and alternative hypothesis
H1 is accepted (represented by A in Table 6). In Table 7 the mean ranks of all
the classifiers for 10f validation results are shown. Table 8 presents the results of
the Nemenyi test (pairwise comparison) over AUC values. As shown in table 8,

Intrusion Detection Systems for IoT Applications 17

the classifier’s AUC measure is found less significant in case of XGB-CART pair,
whereas all other pairs are not significant.

Table 4: Nemenyi pairwise comparison (hold-out validation) Part I

A1 versus A2

Accuracy Specificity Senstivity
α α α

F-Statistic p-value 0.05 0.1 F-Statistic p-value 0.05 0.1 F-Statistic p-value 0.05 0.1
AB versus XGB 3.1096 0.0393 R R 3.1914 0.0297 R R 2.2912 0.4608 A A
AB versus GBM 2.9459 0.0676 A R 2.0457 0.8563 A A 2.7822 0.1133 A A
AB versus RF 2.3731 0.3704 A A 2.7822 0.1134 A A 0.5728 1.0 A A
AB versus ETC 2.2094 0.57 A A 1.9639 1.0 A A 2.5367 0.2349 A A
AB versus MLP 1.3093 1.0 A A 1.1456 1.0 A A 0.4091 1.0 A A
AB versus CART 0.6546 1.0 A A 0.3273 1.0 A A 0.8183 1.0 A A
CART versus ETC 1.5548 1.0 A A 1.6366 1.0 A A 1.7184 1.0 A A
CART versus MLP 0.6546 1.0 A A 0.8183 1.0 A A 0.6546 1.0 A A
ETC versus MLP 0.9001 1.0 A A 0.8183 1.0 A A 2.3731 0.3704 A A
GBM versus CART 2.2912 0.4608 A A 1.7184 1.0 A A 1.9639 1.0 A A
GBM versus MLP 1.6366 1.0 A A 0.9001 1.0 A A 2.6186 0.1854 A A
GBM versus ETC 0.7364 1.0 A A 0.0818 1.0 A A 0.2455 1.0 A A
GBM versus RF 0.5728 1.0 A A 0.7364 1.0 A A 2.2094 0.57 A A
GBM versus XGB 0.1636 1.0 A A 1.1456 1.0 A A 0.4909 1.0 A A
RF versus CART 1.7184 1.0 A A 2.4549 0.2959 A A 0.2455 1.0 A A
RF versus MLP 1.0638 1.0 A A 1.6366 1.0 A A 0.1636 1.0 A A
RF versus ETC 0.1636 1.0 A A 0.8183 1.0 A A 1.9639 1.0 A A
XGB versus CART 2.4549 0.2959 A A 2.8641 0.0878 A R 1.4729 1.0 A A
XGB versus MLP 1.8003 1.0 A A 2.0457 0.8563 A A 2.1276 0.7007 A A
XGB versus ETC 0.9001 1.0 A A 1.2274 1.0 A A 0.2455 1.0 A A
XGB versus RF 0.7364 1.0 A A 0.4091 1.0 A A 1.7184 1.0 A A

In addition, we have analyzed the average response time (seconds) that a clas-
sifier takes to classify an instance. The main reason to perform this experiment
is that the knowledge of classifier’s response time plays an important role in its
selection as a intrusion detection system [36]. The classifiers with quick (small)
response time are favored over classifier with slow (large) response time. To ac-
complish this task, all the classifiers with test data as input were executed on
Raspberry Pi 3 Model B+. The average time is computed by dividing the total
time taken by the classifier for classifying all the test instances by the total number
of test instances.

Average response time =

∑ntest

i=1 ti

ntest

(21)

Eq. (21) represents the mathematical expression of average response time,
where i represents an instance number, ti represents time taken by a classifier
to classify ith test instance into attack or normal category, and ntest is the total
number of test instances.

Fig. 5 shows the average response time taken by different classifiers for classify-
ing a single instance. From the experiment results, it is observed that CART takes

18 Abhishek Verma1,∗, Virender Ranga1

Table 5: Nemenyi pairwise comparison (hold-out validation) Part II

A1 versus A2

FPR AUC
α α

F-Statistic p-value 0.05 0.1 F-Statistic p-value 0.05 0.1
AB versus XGB 3.1914 0.0297 R R 2.0457 0.8563 A A
AB versus GBM 2.0457 0.8563 A A 1.9639 1.0 A A
AB versus RF 2.7822 0.1133 A A 0.5728 1.0 A A
AB versus ETC 1.9639 1.0 A A 1.3911 1.0 A A
AB versus MLP 1.1456 1.0 A A 0.0818 1.0 A A
AB versus CART 0.3273 1.0 A A 0.9001 1.0 A A
CART versus ETC 1.6366 1.0 A A 2.2912 0.4608 A A
CART versus MLP 0.8183 1.0 A A 0.9819 1.0 A A
ETC versus MLP 0.8183 1.0 A A 1.3093 1.0 A A
GBM versus CART 1.7184 1.0 A A 2.8641 0.0878 A R
GBM versus MLP 0.9001 1.0 A A 1.8821 1.0 A A
GBM versus ETC 0.0818 1.0 A A 0.5728 1.0 A A
GBM versus RF 0.7364 1.0 A A 1.3911 1.0 A A
GBM versus XGB 1.1456 1.0 A A 0.0818 1.0 A A
RF versus CART 2.4549 0.2959 A A 1.4729 1.0 A A
RF versus MLP 1.6366 1.0 A A 0.4909 1.0 A A
RF versus ETC 0.8183 1.0 A A 0.8183 1.0 A A
XGB versus CART 2.8641 0.0878 A R 2.9459 0.0676 A R
XGB versus MLP 2.0457 0.8563 A A 1.9639 1.0 A A
XGB versus ETC 1.2274 1.0 A A 0.6546 1.0 A A
XGB versus RF 0.4091 1.0 A A 1.4729 1.0 A A

Table 6: Friedman test statistics for 10f validation

Accuracy Specificity Sensitivity FPR AUC
F-Statistic 0.1698 0.2346 0.2740 0.4242 4.5294
p-value 0.9816 0.9594 0.9418 0.8532 0.0057
α = 0.05 A A A A R
α = 0.1 A A A A R

Table 7: Friedman test (mean ranks for 10f validation)

Accuracy Specificity Sensitivity FPR AUC
RF 4.000 4.000 4.500 4.625 3.625
CART 4.375 4.250 3.375 3.500 1.500
MLP 4.250 5.000 3.375 2.750 3.125
AB 4.625 4.000 4.500 4.750 2.875
XGB 3.125 3.375 4.500 4.250 6.125
GBM 4.000 3.250 4.500 4.625 5.625
ETC 3.625 4.125 3.250 3.500 5.125

minimum time to classify an instance of CIDDS-001, UNSW-NB15, KDDTrain+,
and KDDTest+ in comparison to other classifiers. RF and XGB show almost sim-
ilar results in terms of average response time for all four datasets. ETC takes
maximum time for classifying an instance of CIDDS-001 and KDDTest+ dataset
in comparison to other classifiers. Moreover, GBM is the worst performer in the
case of KDDTrain+ dataset. The experimental results show promising solutions
for the choice of different classifiers suitable for performing the task of intrusion
detection (DoS specific) in IoT applications. The classifiers have been validated
using hold-out and 10f validation methods. Both the methods show promising per-

Intrusion Detection Systems for IoT Applications 19

Table 8: Nemenyi test (10f validation)

A1 versus A2

AUC
α

F-Statistic p-value 0.05 0.1
AB versus XGB 2.1276 0.7007 A A
AB versus GBM 1.8003 1.0 A A
AB versus ETC 1.4729 1.0 A A
AB versus CART 0.9001 1.0 A A
AB versus RF 0.4909 1.0 A A
AB versus MLP 0.1636 1.0 A A
CART versus GBM 2.7004 0.1454 A A
CART versus ETC 2.3731 0.3704 A A
CART versus MLP 1.0638 1.0 A A
ETC versus MLP 1.3093 1.0 A A
ETC versus GBM 0.3273 1.0 A A
MLP versus GBM 1.6366 1.0 A A
RF versus CART 1.3911 1.0 A A
RF versus GBM 1.3093 1.0 A A
RF versus ETC 0.9819 1.0 A A
RF versus MLP 0.3273 1.0 A A
XGB versus CART 3.0277 0.0517 A R
XGB versus MLP 1.9639 1.0 A A
XGB versus RF 1.6366 1.0 A A
XGB versus ETC 0.6546 1.0 A A
XGB versus GBM 0.3273 1.0 A A

formance results in terms of accuracy, specificity, sensitivity, FPR, AUC. These
results can be used to select the suitable classifier as per the requirement of the
application. Like, if an application demands high accuracy and low FPR, then
CART, MLP, AB, XGB, or ETC can be used. Whereas, if an application demands
quick response time, then CART, RF, or XGB can be selected. Similar trade-
offs can be considered in the selection of the best suitable classifier for an IoT
application. The real-time performance of IDS depends on the dataset selected
for model training. Thus, a dataset containing traffic patterns of recent types of
DoS attacks must be used for achieving the best real-time results. CIDDS-001
and UNSW-NB15 are suitable choices for this purpose. It can be observed from
the experimental results that classifiers show promising performance results with
CIDDS-001 and UNSW-NB15 dataset thus, we suggest these datasets for training
IDSs to achieve the best classification results.

In this study only supervised learning based ML classifiers are used. It is one
of the popular ML approaches in which the classifier uses known target values for
training. The result shown by different ML classifiers shows the effectiveness of
using supervised learning for the intrusion detection task. The main reason for
choosing supervised learning is that the network characteristics (traffic patterns)
can be effectively used to train ML models for further predictions. These pat-
terns can be differentiated between normal and attack based on different network
based features. The other ML approach like unsupervised learning can also be
used to perform a similar task. Clustering (i.e., unsupervised learning algorithm)
can be used to train the different classifiers. In this paper, the emphasis is made
particularly on the performance assessment of supervised ML algorithms. The per-
formance assessment of unsupervised ML algorithms for intrusion detection in IoT
will be considered in our future work.

20 Abhishek Verma1,∗, Virender Ranga1

RF CART MLP AB GBM XGB ETC

0

0.5

1

1.5

2

2.5

3

·10−4

8
.1
8
·
1
0
−
6

8
.2
2
·
1
0
−
7

2
.7
7
·
1
0
−
5

4
.9
2
·
1
0
−
5

7
.1
2
·
1
0
−
5

8
.3
9
·
1
0
−
6

2
.0
9
·
1
0
−
4

9
.7
4
·
1
0
−
6

9
.5
5
·
1
0
−
7

3
.0
1
·
1
0
−
5

5
.1
9
·
1
0
−
5

1
.0
5
·
1
0
−
4

1
.2
5
·
1
0
−
5

8
.4
7
·
1
0
−
6

1
.0
3
·
1
0
−
5

1
.1
6
·
1
0
−
6

3
.3

·
1
0
−
5

5
.3
3
·
1
0
−
5 1
.0
2
·
1
0
−
4

1
.2
4
·
1
0
−
5

8
.2
9
·
1
0
−
5

1
.0
9
·
1
0
−
5

1
.4

·
1
0
−
6

3
.3
7
·
1
0
−
5

5
.3
3
·
1
0
−
5

1
.2
8
·
1
0
−
4

1
.0
9
·
1
0
−
5

2
.4
7
·
1
0
−
4

Classification Algorithm

T
im

e
(s
ec
o
n
d
s)

CIDDS-001 UNSW-NB15 KDDTrain+ KDDTest+

Fig. 5: Average response time of classifiers

6 Conclusion

In this paper, a study on anomaly-based IDS suitable for securing IoT against
DoS attacks is carried out. The performance assessment of seven machine learning
classification algorithms including random forests, adaboost, gradient boosted ma-
chine, extremely randomized trees, classification and regression trees, and multi-
layer perceptron is done. The optimal parameters of classifiers are obtained using
a random search algorithm. Performance of all the classifiers is measured in terms
of accuracy, specificity, sensitivity, false positive rate, and area under the receiver
operating characteristic curve. Benchmarking of all the classifiers is performed
on CIDDS-001, UNSW-NB15, and NSL-KDD datasets. Moreover, in order to find
significant differences among classifiers the statistical analysis of performance mea-
sures is done using Friedman and Nemenyi post host tests. In addition to this, the
average response time of all classifiers is evaluated on Raspberry Pi hardware
device. From the performance results and statistical tests, it is concluded that
classification and regression trees, and extreme gradient boosting classifier show
the best trade-off between prominent metrics and response time, thus both are the
suitable choice for building IoT specific anomaly-based IDS. Our future goal is to
design an IDS for defending routing attacks in IoT networks.

Intrusion Detection Systems for IoT Applications 21

ACKNOWLEDGMENT

This research was supported by the Ministry of Human Resource Development,
Government of India.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict
of interest.

References

1. (2014) Suricata: open-source ids/ips/nsm engine.
https://suricata-ids.org/, [Online; accessed 3-Nov-2019]

2. (2017) CIDDS-001 dataset. https://www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html,
[Online; accessed 3-Nov-2019]

3. (2017) NSL-KDD dataset. http://nsl.cs.unb.ca/nsl-kdd/, [Online; ac-
cessed 3-Nov-2019]

4. (2017) UNSW-NB15 dataset. https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/,
[Online; accessed 3-Nov-2019]

5. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) In-
ternet of Things: A Survey on Enabling Technologies, Protocols, and Appli-
cations. IEEE Communications Surveys Tutorials 17(4):2347–2376

6. Arış A, Oktuğ SF, Yalçın SBÖ (2015) Internet-of-things security: Denial of ser-
vice attacks. IEEE, 23th Signal Processing and Communications Applications
Conference (SIU), pp 903–906

7. Ashton K (2009) That ‘internet of things’ thing. RFID journal 22(7):97–114
8. Axelsson S (2000) Intrusion detection systems: A survey and taxonomy. Tech.

rep., Technical report
9. Baykara M, Das R (2017) A Novel Hybrid Approach for Detection of Web-

Based Attacks in Intrusion Detection Systems. International Journal of Com-
puter Networks and Applications 4(2):62–76

10. Bergstra J, Bengio Y (2012) Random Search for Hyper-Parameter Optimiza-
tion. Journal of Machine Learning Research 13(Feb):281–305

11. Bishop CM (2006) Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg

12. Breiman L (2001) Random forests. Machine learning 45(1):5–32
13. Breiman L (2017) Classification and regression trees. Routledge
14. Butun I, Morgera SD, Sankar R (2014) A survey of intrusion detection sys-

tems in wireless sensor networks. IEEE communications surveys & tutorials
16(1):266–282

15. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. ACM,
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 785–794

16. Conover WJ, Conover WJ (1980) Practical nonparametric statistics. Wiley
New York

https://suricata-ids.org/
https://www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html
http://nsl.cs.unb.ca/nsl-kdd/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

22 Abhishek Verma1,∗, Virender Ranga1

17. Das R, Tuna A, Demirel S, Yurdakul MK (2017) A Survey on the Internet of
Things Solutions for the Elderly and Disabled: Applications, Prospects, and
Challenges. International Journal of Computer Networks and Applications
4(3):84–92

18. Debar H, Dacier M, Wespi A (2000) A revised taxonomy for intrusion-
detection systems. Annales Des Télécommunications 55(7):361–378

19. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets.
Journal of Machine learning research 7(Jan):1–30

20. Dhanjani N (2013) Hacking lightbulbs: Security evalua-
tion of the philips hue personal wireless lighting system.
https://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf,
[Online; accessed 3-Nov-2019]

21. Diro AA, Chilamkurti N (2018) Distributed attack detection scheme using
deep learning approach for internet of things. Future Generation Computer
Systems 82:761–768

22. Douglas PK, Harris S, Yuille A, Cohen MS (2011) Performance comparison of
machine learning algorithms and number of independent components used in
fmri decoding of belief vs. disbelief. Neuroimage 56(2):544–553

23. Dunkels A, Gronvall B, Voigt T (2004) Contiki-a lightweight and flexible op-
erating system for tiny networked sensors. IEEE, 29th Annual IEEE Interna-
tional Conference on Local Computer Networks, pp 455–462

24. Dunn OJ (1961) Multiple comparisons among means. Journal of the American
statistical association 56(293):52–64

25. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences 55(1):119 – 139

26. Friedman JH (2001) Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics pp 1189–1232

27. Friedman JH (2002) Stochastic gradient boosting. Computational Statistics &
Data Analysis 38(4):367–378

28. Friedman M (1937) The use of ranks to avoid the assumption of normality im-
plicit in the analysis of variance. Journal of the american statistical association
32(200):675–701

29. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2011) A review
on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 42(4):463–484

30. Gao L, Bai X (2014) A unified perspective on the factors influencing consumer
acceptance of internet of things technology. Asia Pacific Journal of Marketing
and Logistics 26(2):211–231

31. Garcia S, Herrera F (2008) An extension on“statistical comparisons of classi-
fiers over multiple data sets”for all pairwise comparisons. Journal of Machine
Learning Research 9(Dec):2677–2694

32. Garcia-Teodoro P, Diaz-Verdejo J, Maciá-Fernández G, Vázquez E (2009)
Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges. computers & security 28(1-2):18–28

33. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Machine
learning 63(1):3–42

 https://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf

Intrusion Detection Systems for IoT Applications 23

34. Granjal J, Monteiro E, Silva JS (2015) Security for the internet of things: A
survey of existing protocols and open research issues. IEEE Communications
Surveys Tutorials 17(3):1294–1312

35. Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall
PTR

36. Hodo E, Bellekens X, Hamilton A, Dubouilh PL, Iorkyase E, Tachtatzis C,
Atkinson R (2016) Threat analysis of iot networks using artificial neural net-
work intrusion detection system. IEEE, International Symposium on Net-
works, Computers and Communications (ISNCC), pp 1–6

37. Hwang YH (2015) Iot security & privacy: Threats and challenges. ACM, New
York, NY, USA, Proceedings of the 1st ACM Workshop on IoT Privacy, Trust,
and Security, pp 1–1

38. Kasinathan P, Costamagna G, Khaleel H, Pastrone C, Spirito MA (2013)
Demo: An ids framework for internet of things empowered by 6lowpan. ACM,
New York, NY, USA, Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (CCS ’13), pp 1337–1340

39. Kasinathan P, Pastrone C, Spirito MA, Vinkovits M (2013) Denial-of-service
detection in 6lowpan based internet of things. IEEE, 9th international con-
ference on wireless and mobile computing, networking and communications
(WiMob), pp 600–607

40. Kim JH (2009) Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap. Computational statistics & data analysis
53(11):3735–3745

41. Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M (2017) Ensemble
learning for data stream analysis: A survey. Information Fusion 37:132–156

42. Lee TH, Wen CH, Chang LH, Chiang HS, Hsieh MC (2014) A lightweight
intrusion detection scheme based on energy consumption analysis in 6low-
pan. Springer Netherlands, Dordrecht, Advanced Technologies, Embedded and
Multimedia for Human-centric Computing, pp 1205–1213

43. Li X, Lu R, Liang X, Shen X, Chen J, Lin X (2011) Smart community: an
internet of things application. IEEE Communications Magazine 49(11)

44. Lunt TF (1993) A survey of intrusion detection. Computers & Security 12:405–
418

45. Medhat M, Elshafey K, Rashed A (2019) Evaluation of Optimum NPRACH
Performance in NB-IoT Systems. International Journal of Computer Networks
and Applications 6(4):55–64

46. Misra S, Krishna PV, Agarwal H, Saxena A, Obaidat MS (2011) A learning
automata based solution for preventing distributed denial of service in internet
of things. IEEE, 4th international conference on cyber, physical and social
computing, Internet of things (ithings/cpscom), pp 114–122

47. Modi C, Patel D, Borisaniya B, Patel H, Patel A, RajarajanM (2013) A survey
of intrusion detection techniques in cloud. Journal of network and computer
applications 36(1):42–57

48. Moosavi SR, Gia TN, Rahmani AM, Nigussie E, Virtanen S, Isoaho J, Ten-
hunen H (2015) Sea: a secure and efficient authentication and authorization
architecture for iot-based healthcare using smart gateways. Procedia Com-
puter Science 52:452–459

49. Mosenia A, Jha NK (2017) A comprehensive study of security of internet-of-
things. IEEE Transactions on Emerging Topics in Computing 5(4):586–602

24 Abhishek Verma1,∗, Virender Ranga1

50. Notra S, Siddiqi M, Gharakheili HH, Sivaraman V, Boreli R (2014) An experi-
mental study of security and privacy risks with emerging household appliances.
2014 IEEE Conference on Communications and Network Security, pp 79–84,
DOI 10.1109/CNS.2014.6997469

51. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V, et al (2011) Scikit-learn: Machine
learning in python. Journal of machine learning research 12(Oct):2825–2830

52. Primartha R, Tama BA (2017) Anomaly detection using random forest: A
performance revisited. In: 2017 International Conference on Data and Software
Engineering (ICoDSE), IEEE, pp 1–6

53. Rodriguez JD, Perez A, Lozano JA (2010) Sensitivity Analysis of k-Fold Cross
Validation in Prediction Error Estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(3):569–575

54. Rodŕıguez-Fdez I, Canosa A, Mucientes M, Bugaŕın A (2015) Stac: a web
platform for the comparison of algorithms using statistical tests. IEEE, Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE), pp 1–8

55. Roman R, Zhou J, Lopez J (2013) On the features and challenges of security
and privacy in distributed internet of things. Computer Networks 57(10):2266–
2279

56. Ronen E, Shamir A (2016) Extended functionality attacks on iot devices: The
case of smart lights. 2016 IEEE European Symposium on Security and Privacy
(EuroS P), pp 3–12, DOI 10.1109/EuroSP.2016.13

57. Sagi O, Rokach L (2018) Ensemble learning: A survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8(4):e1249

58. Sfar AR, Natalizio E, Challal Y, Chtourou Z (2018) A roadmap for security
challenges in the internet of things. Digital Communications and Networks
4(2):118 – 137

59. Sivaraman V, Gharakheili HH, Vishwanath A, Boreli R, Mehani O (2015)
Network-level security and privacy control for smart-home iot devices. IEEE
11th International Conference on Wireless and Mobile Computing, Network-
ing and Communications (WiMob), pp 163–167, DOI 10.1109/WiMOB.2015.
7347956

60. Sonar K, Upadhyay H (2016) An approach to secure internet of things against
ddos. Springer, Proceedings of International Conference on ICT for Sustain-
able Development, pp 367–376

61. Tama BA, Rhee KH (2019) An in-depth experimental study of anomaly de-
tection using gradient boosted machine. Neural Computing and Applications
31(4):955–965

62. Verma A, Ranga V (2018) On Evaluation of Network Intrusion Detection
Systems: Statistical Analysis of CIDDS-001 Dataset Using Machine Learning
Techniques. Pertanika Journal of Science & Technology 26(3):1307–1332

63. Verma A, Ranga V (2018) Statistical analysis of CIDDS-001 dataset for Net-
work Intrusion Detection Systems using Distance-based Machine Learning.
Procedia Computer Science 125:709–716

64. Verma A, Ranga V (2019) ELNIDS: Ensemble Learning based Network In-
trusion Detection System for RPL based Internet of Things. In: 2019 4th
International Conference on Internet of Things: Smart Innovation and Usages
(IoT-SIU), IEEE, pp 1–6

Intrusion Detection Systems for IoT Applications 25

65. Verma A, Ranga V (2019) Evaluation of Network Intrusion Detection Systems
for RPL Based 6LoWPAN Networks in IoT. Wireless Personal Communica-
tions 108(3):1571–1594

66. Williams N, Zander S, Armitage G (2006) A preliminary performance com-
parison of five machine learning algorithms for practical ip traffic flow classi-
fication. ACM SIGCOMM Computer Communication Review 36(5):5–16

67. Wolpert DH, Macready WG, et al (1997) No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation 1(1):67–82

68. Zahoor S, Mir RN (2018) Virtualization and IoT Resource Management:
A Survey. International Journal of Computer Networks and Applications
5(4):43–51

69. Zarpelão BB, Miani RS, Kawakani CT, de Alvarenga SC (2017) A survey of
intrusion detection in Internet of Things. Journal of Network and Computer
Applications 84:25–37

70. Zhao CW, Jayanand J, Son CL (2015) Exploring IoT Application Using
Raspberry Pi. International Journal of Computer Networks and Applications
2(1):27–34

71. Zhao K, Ge L (2013) A survey on the internet of things security. IEEE, 9th
International Conference on Computational Intelligence and Security (CIS),
pp 663–667

72. Ziegeldorf JH, Morchon OG, Wehrle K (2014) Privacy in the internet of things:
threats and challenges. Security and Communication Networks 7(12):2728–
2742

	1 Introduction
	2 Related Work
	3 Classification Algorithms
	4 Experimental Design
	5 Results and Analysis
	6 Conclusion

