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Abstract

Most of the non-linear transceivers, which are based on Tomlinson Harashima

(TH) precoding and have been proposed in the literature for two-way relay

networks, assume perfect channel state information (CSI). In this paper, we

propose a novel and robust TH precoding scheme for two-way relay networks

with multiple antennas at the transceiver and the relay nodes. We assume im-

perfect CSI and that the channel uncertainty is bounded by a spherical region.

Furthermore, we consider the sum of the mean square error as the objective

function, under a limited power constraint for transceiver and relay nodes. Sim-

ulations are provided to evaluate the performance and to validate the efficiency

of the proposed scheme.

Keywords: Imperfect channel state information, Tomlinson Harashima

Precoding, worst-case optimization.

1. Introduction

By using network coding, two-way relay networks have attracted a signif-

icant attention, due to its advantage in terms of spectral efficiency [1]. On
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the other hand, multiple−input−multiple−output (MIMO) technique enhances

spatial diversity, throughput and reliability. The combination of MIMO and

two-way relaying with precoding at both source and relay nodes shows the ben-

efits of them. In addition, non-linear precoding at the transmitter, in the form of

TH with linear relay precoder and linear minimum mean square error (MMSE)

receiver provides a better bit error-rate (BER) performance in comparison to

linear source precoder [2].

The performance of a MIMO relaying system depends on the available chan-

nel state information (CSI). However, in most practical cases, CSI is imperfect,

due to quantization error or inaccurate channel estimation, which is a result

of insufficient training sequences or low signal-to-noise ratio (SNR), feedback

errors, etc.. Therefore, this imperfectness must be explicitly considered in the

estimated channel that is led to some robust designs, which are less sensitive

to the optimization errors. In general, there are two types of robust designs:

stochastic [3] and worst case [4]. In the worst-case, the channel error is con-

sidered to belong to a predefined uncertainty region and the final goal is the

optimization of the worst system performance for each error in this region. In

the stochastic approach, a stochastic viewpoint is chosen to look to the problem

and the required robustness is acquired from a probabilistic feature. Regarding

the stochastic approach advantages, the worst-case design is necessary to take

absolute robustness, i.e., guaranteed performance with probability one.

TH precoding is more sensitive on the channel estimation errors, compared

to linear precoding techniques, due to its nonlinear nature. Specifically, in the

presence of channel imperfectness, the performance of TH precoding would be

deteriorated critically [2]. In [5]-[7], robust linear precoding were considered for

one way network. TH precoding design in one way relay network with perfect

CSI was proposed in [8] and robust consideration were done in [9]-[11]. However,

to our best knowledge, the research on robust TH precoding design for two way

MIMO networks is missing.

In this paper, we propose a TH precoding scheme for two-way MIMO relay

systems, where both source and relay nodes are equipped with multiple anten-
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Figure 1: MIMO Two-Way Relay with TH Precoding.

nas. Furthermore, perfect CSI of the source-relay links and imperfect CSI of the

relay-destination links are available at the relay node. The aim is to minimize

the sum of mean square error (MSE) at each receiver node, keeping the transmit

power of relay and source nodes less than a threshold.

Notations- The lower case and upper case boldface letters indicate the vec-

tors and matrices, respectively. (.)H , (.)T , (.)−1, ||.||, |.|, tr(.), E(.) and I
N

represent Hermitian, Transpose, inversion, Frobenius norm, determinant, trace

of a matrix, statistical expectation, and an identity matrix of size N , respec-

tively.

2. System Model And Problem Description

We consider a MIMO two way relay system including two multiple antenna

nodes with Nt antennas, which exchange their information with the help of one

relay node, equipped with Nr antennas as shown in Fig. 1. The information

exchange between nodes 1 and 2 is performed in two time slots. In the first,

nodes 1 and 2 concurrently fed their information, si = [si,1, ...si,Nt
], into the

TH precoder. The resulted vector of signals at each transmitter node is

xi = C−1
i vi, (1)

whereCi = Bi+INt
is a lower left triangular matrix with unit diagonal elements

and vi = si + di contains modified data symbols, where di is such that the
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real and imaginary components of xi are constrained to be within the region

(−
√
M,

√
M ] which M is the number of constellation points in the M-ary QAM

modulation scheme. In addition, the entries of xi is considered as E(xix
H
i ) =

σ2
xi
I. After the nonlinear operation, the vector xi is multiplied with an Nt×Nt

precoder matrix Fi, i = 1, 2 and forward to relay. The received signals at the

relay antennas are

Yr = H1F1x1 +H2F2x2 + nr, (2)

where Hi, i = 1, 2 is the Nr × Nt channel matrix between the node i and the

relay node and nr is the additive white complex Gaussian noise vector at relay

with σ2
nr
. In the second time slot, the received signal in the relay is multiplied

by an Nr ×Nr linear precoding matrix Fr and forward to the receivers.

xr = FrYr = FrH1F1x1 + FrH2F2x2 + Frnr. (3)

The received signal at the receivers can be written as

yi = GiFrH1F1x1 +GiFrH2F2x2 +GiFrnr + ni, (4)

where Gi, i = 1, 2 is Nt ×Nr channel matrix between relay and ith receiver.

The following assumptions are made about the CSI:

1. The receiver nodes have available perfect CSI of the equivalent channels

between transmitter-relay-receiver, GiFrHiFi, GiFrHjFj that i, j =

1, 2, i 6= j. The equivalent channel can be estimated by using the sent

training sequence from transmitter and received in receiver after passing

from relay.

2. The source-relay channel, Fi, is perfected estimated at the relay by using

a training sequence.

3. The relay-receiver CSI is not perfect at the relay, due to limitation in the

rate of feedback link from receiver to relay or due to feedback error.

Based on above assumptions, the self-interference can be completely removed.

Therefore,

Ȳi = GiFrHjFjxj +GiFrnr + ni, i, j = 1, 2, i 6= j (5)
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Due to its simplicity, a linear receiver is used at each receiver to retrieve the

transmitted signals. Denoting Γi as the Nt × Nt matrix at the i receiver, the

estimation of the transmitted signal vector can be expressed as

v̂i = ΓiG1FrHjFjxj + ΓiGiFrnr + Γini, (6)

where i, j = 1, 2, i 6= j. Note that if vi can be estimated at the destination, si

can be recovered by modulo operation.

In this paper, we consider the minimization of the sum MSE of two receiver

nodes in order to estimate vi subject to transmit power constraint at the relay

and transmitter nodes. Optimization is jointly done over TH precoding matrices

Ci, Fi, linear relay precoder Fr and linear equalizer at the receiver Γi. Thus

the optimization problem can be formulated as

min
Γi,Fi,Fr,Ci,i=1,2

mse1 +mse2

s.t. PT ≤ Pr,t, P1 ≤ P1,t, P2 ≤ P2,t, (7)

where msei is the MSE at the ith receiver, PT , Pi, i = 1, 2 are the transmit

power of relay and ith transmitter and Pr,t, Pi,t are the maximum power which

can be used by the relay and ith transmitter.

The MSE at the ith receiver node can be written as

msei = E(‖v̂i−Cjxj‖2) = E(‖(ΓiGiFrHjFj−Cj)xj‖2)+σ2
nr
(‖ΓiGiFr‖2)+σ2

ni
‖Γi‖2,

(8)

where j = 2 if i = 1 and j = 1 if i = 2. The transmit power of the relay node is

PT = σ2
x1
tr(FrH1F1F

H
1 HH

1 FH
r ) + σ2

x2
tr(FrH2F2F

H
2 HH

2 FH
r ) + σ2

nr
tr(FrF

H
r )

(9)

The transmit power of ith transmitter node can be denoted as

Pi = σ2
xi
tr(FiF

H
i ), i = 1, 2. (10)

We assume that the information for the channels between relay-receivers

are not perfect. Therefore, by considering the popular methods for channel
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estimation, we have

Gi = Ĝi +∆Gi, (11)

where Ĝi is the estimated channels and ∆Gi is the channel error matrice that

is bounded by spherical, i.e.

Sg = {a ∈ C : ||a||2 ≤ σ2
gi},∆G ∈ Sg. (12)

It should be noted that the actual error is unknown and only the upper bound, ε2g

is known. When the channel error exists, there are infinite goals and constraints

for the problem and it is unsolvable. In the rest of paper, we attempt to obtain

a solution for (7) with CSI errors.

3. Robust THP Design

To solve the optimization problem in (7), using a worst-case design, we could

transform it to a simpler problem as

min
Γi,Fi,Fr,Ci,i=1,2

max
∆Gi

mse1 +mse2

s.t. PT ≤ Pr,t, P1 ≤ P1,t, P2 ≤ P2,t. (13)

It can see from (13), the optimization is done over the error of the channels. To

this end, the channel error is considered in sum MSE expression.

max
∆Gi

msei ≤ σ2
xj
‖(ΓiĜiFrHjFj −Cj‖2

+ σ2
xj
σ2
gi‖Γi‖2‖FrHjFj‖2 + σ2

nr
‖ΓiĜiFr‖2

+ σ2
nr
σ2
gi‖Γi‖2‖Fr‖2 + σ2

ni
‖Γi‖2. (14)

By considering this fact that the power constraints are not related to Γi, we

minimize the obtained sum mse over Γi

∂

∂Γ∗
i

= 0 ⇒σ2
xj
ΓiĜiFrHjFjF

H
j HH

j FH
r ĜH

i − σ2
xj
CjF

H
j HH

j FH
r ĜH

i

+ σ2
xj
σ2
giΓi‖FrHjFj‖2 + σ2

nr
ΓiĜiFrF

H
r ĜH

i + σ2
nr
σ2
giΓi‖Fr‖2 + σ2

ni
Γi = 0,

(15)
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and

Γi =σ2
xj
CjF

H
j HH

j FH
r ĜH

i

× (σ2
xj
ĜiFrHjFjF

H
j HH

j FH
r ĜH

i + σ2
xj
σ2
gi‖FrHjFj‖2I

+ σ2
nr
ĜiFrF

H
r ĜH

i + σ2
nr
σ2
gi‖Fr‖2I+ σ2

ni
I)−1. (16)

By replacing the obtained Γi in the (14), we obtain the following expression for

mse

msei =tr(σ2
xj
Cj(I− σ2

xj
DH

j EH
i (AiI+Bi +EiDjD

H
j EH

i )−1 ×EiDj)C
H
j ),

(17)

where

Ai = σ2
xj
σ2
gi ||FrDj ||2 + σ2

nr
σ2
gi ||Fr||2 + σ2

ni
,

Ei = ĜiFr,

Di = HiFi,

Bi = σ2
nr
EiE

H
i . (18)

By applying the matrix inversion lemma (A+BCD)−1 = A−1−A−1B(DA−1B+

C−1)BA−1, we obtain

msei = tr(σ2
xj
Cj(I+ σ2

xj
DH

j EH
i (AiI+Bi)

−1EiDj)
−1CH

j ). (19)

In the second step, the optimization must be done over Fi,Fr,Ci. Since the

problem (10) by considering (19) is nonconvex, a globally optimal solution of

Fi,Fr,Ci is difficult to obtain with reasonable computational complexity. We

develop an iterative algorithm. Before doing optimization, using the relation

between trace and determinant, the MSE expression is changed. Indeed, a

lower bound for MSE is considered as

msei = |I+ σ2
xj
DH

j EH
i (AiI+Bi)

−1EiDj |
−1

N . (20)

In this relation, we use tr(X) ≥ N |X| 1

N with a N × N positive semidefinite

matrix, X. If the X is diagonal and have equal diagonal elements, this relation

is established for equality. Here, we use this fact |CiC
H
i | = 1 and |XY| = |YX|.

In addition, since minimizing |X|(−1) is equivalent to maximizing |X|, therefore,
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the equivalent equation can be expressed as

max
F1,F2,Fr

|I+ σ2
x2
DH

2 EH
1 (A1I+B1)

−1E1D2|+ |I+ σ2
x1
DH

1 EH
2 (A2I+B2)

−1E2D1|

s.t. σ2
x1
tr(FrD1D

H
1 FH

r ) + σ2
x2
tr(FrD2D

H
2 FH

r ) + σ2
nr
tr(FrF

H
r ) ≤ Pr,t

σ2
xi
tr(FiF

H
i ) ≤ Pi,t, i = 1, 2.

(21)

In order to solve the equivalent master problem, we consider the following sin-

gular value decomposition (SVD)

H = [H1,H2] = UhΛ
(1/2)
h VH

h ,

H1 = UhΛ
(1/2)
h VH

h,1,

H2 = UhΛ
(1/2)
h VH

h,2,

VH
h = [VH

h,1,V
H
h,2], (22)

and

Ĝ = [ĜT
1 , Ĝ

T
2 ]

T = UgΛ
(1/2)
g VH

g ,

Ĝ1 = Ug,1Λ
(1/2)
g VH

g ,

Ĝ2 = Ug,2Λ
(1/2)
g VH

g ,

Ug = [UT
g,1,U

T
g,2]

T , (23)

where the dimension of Uh,Λh,Vh are Nr × Nr,Nr × Nr,2Nt × Nr, respec-

tively and the dimension of Ug,Λg,Vg are 2Nt × Nr,Nr × Nr,Nr × Nr, re-

spectively. In addition, SVD of Fi and Fr are given by Fi = XiΛ
(1/2)
i Zi and

Fr = XrΛ
(1/2)
r Zr.

Proposition 1: By using equivalent decomposition, the mse relation in (23)

can be maximized such that

Xr = Vg,Zr = Uh,

X1 = Vh,1,

X2 = Vh,2. (24)

Proof : Denote T and R are Hermitian and positive definite. Then, function

|IN + T−1R|, is maximized when T and R commute and have eigenvalues in
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opposite order. Two matrices T and R are commute when TR = RT. By

using this Lemma, the mse is maximized when precoder and relay matrices

have diagonal structure and follow proposed design.

By replacing sources precoder and relay precoder structure in msei, PT

and Pi, we obtain relations in (25). Even after the above transformation, the

optimization problem is nonconvex over optimization coefficients. We apply

a convex optimization method to optimize the functions with respect to each

variable and introduce an alternating optimization algorithm to solve them.

Therefore, we divide obtained problem in (25) into three sub-problem and apply

the proposed algorithm for each subproblem.

max
Λr,Λ1,Λ2

2∑

i,j=1,i6=j

|I+ σ2
xi
ΛiΛhΛgΛr((σ

2
xi
σ2
gj‖Λ

(1/2)
r Λ

(1/2)
h Λ

(1/2)
i ‖2 + σ2

nr
σ2
gj‖Λ

(1/2)
r ‖2 + σ2

nj
)I+ σ2

nj
ΛrΛg)

−1|

s.t. σ2
x1
tr(ΛrΛ1Λh) + σ2

x2
tr(ΛrΛ2Λh) + σ2

nr
tr(Λr) ≤ Pr,t

σ2
xi
tr(Λi) ≤ Pi,t, i = 1, 2

(25)

Firstly, by introducing auxiliary variables tk and t′k, (25) is transformed to

relation in (26). For each subproblem, we introduce slack variables βk, β
′
k as

a upper bound for the denominator of relation in (26) and define f(tk, βk) =

βk(tk − 1) and f(t′k, β
′
k) = β′

k(t
′
k − 1). To deal with nonconvex constraints

f(tk, βk) and f(t′k, β
′
k), we replace them by its convex upper bound and iter-

atively solve the resulting problem by judiciously updating the variables until

convergence. To this end, for a given φk for all k, we define G(tk, βk, φk) ,

φk

2 β2
k + 1

2φk
(tk − 1)2 which obtain by considering the inequality of arithmetic

and geometric means of φkβ
2
k and φ−1

k (tk − 1)2 and φk = tk−1
βk

. This procedure
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is also applied for f(t′k, β
′
k).

max
x,tk,t

′

k

Nr∏

k=1

tk +

Nr∏

k=1

t′k

s.t.
σ2
x1
λ1,kλh,kλg,kλr,k

(σ2
x1
σ2
g2‖Λ

(1/2)
r Λ

(1/2)
h Λ

(1/2)
1 ‖2 + σ2

nr
σ2
g2‖Λ

(1/2)
r ‖2 + σ2

n2
) + σ2

n2
λr,kλg,k

≥ tk − 1

σ2
x2
λ2,kλh,kλg,kλr,k

(σ2
x2
σ2
g1‖Λ

(1/2)
r Λ

(1/2)
h Λ

(1/2)
2 ‖2 + σ2

nr
σ2
g1‖Λ

(1/2)
r ‖2 + σ2

n1
) + σ2

n1
λr,kλg,k

≥ t′k − 1

σ2
x1
tr(ΛrΛ1Λh) + σ2

x2
tr(ΛrΛ2Λh) + σ2

nr
tr(Λr) ≤ Pr,t

σ2
xi
tr(Λi) ≤ Pi,t, i = 1, 2

(26)

By applying the mentioned procedure, it is seen that (26) can be transformed

to second order cone programming (SOCP) over each variable. The SOCP

representation of (26) is shown in (27). The main ingredient in arriving at the

SOCP representation is the fact that hyperbolic constraint uv ≥ z2 is equivalent
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to ||[2z (u− v)]T || ≤ (u+ v).

max
x,tk,t′k

τ + τ ′

s.t. ‖[2v1,j1 t2j1−1 − t2j1 ]
T ‖ ≤ t2j1−1 + t2j1 , j1 = 1, 2, ..., 2q−1

‖[2vm,j1 vm−1,2jm−1 − vm−1,2jm ]T ‖ ≤ vm−1,2jm−1 + vm−1,2jm ,m = 2, ..., q, jm = 1, ..., 2q−m

‖[2τ vq−1,1 − vq−2,2]
T ‖ ≤ vq−1,1 + vq−2,2

‖[2v′1,j1 t′2j1−1 − t′2j1 ]
T ‖ ≤ t′2j1−1 + t′2j1 , j1 = 1, 2, ..., 2q−1

‖[2v′m,j1 v′m−1,2jm−1 − v′m−1,2jm ]T ‖ ≤ v′m−1,2jm−1 + v′m−1,2jm ,m = 2, ..., q, jm = 1, ..., 2q−m

‖[2τ ′ v′q−1,1 − v′q−2,2]
T ‖ ≤ v′q−1,1 + v′q−2,2

σ2
x1
λ1,kλh,kλg,kλr,k ≥ φk

2
β2
k +

1

2φk
(tk − 1)2

(σ2
x1
σ2
g2‖Λ

(1/2)
r Λ

(1/2)
h Λ

(1/2)
1 ‖2 + σ2

nr
σ2
g2‖Λ

(1/2)
r ‖2 + σ2

n2
) + σ2

n2
λr,kλg,k ≤ βk

σ2
x2
λ2,kλh,kλg,kλr,k ≥ φk

2
β′2

k +
1

2φk
(t′k − 1)2

(σ2
x2
σ2
g1‖Λ

(1/2)
r Λ

(1/2)
h Λ

(1/2)
2 ‖2 + σ2

nr
σ2
g1‖Λ

(1/2)
r ‖2 + σ2

n1
) + σ2

n1
λr,kλg,k ≤ β′

k

σ2
x1
tr(ΛrΛ1Λh) + σ2

x2
tr(ΛrΛ2Λh) + σ2

nr
tr(Λr) ≤ Pr,t

σ2
xi
tr(Λi) ≤ Pi,t, i = 1, 2

(27)

After convergence iterations and replacing obtained matrices Fi and Fr in

optimization problem, we minimize MSE function over Ci. The optimum Ci

can be obtained by using proposed approach in [12].

4. Simulations and Discussion

In this section, we present the computer simulation results of our proposed

robust non-linear THP transceiver design. We simulate a MIMO two-way relay

system with Nr = Nt = 4. The channel matrices are modeled by copmlex

Gaussina random variables zero mean and unit variance. Noise variances at

the relay and at the receivers are also assumed similar and equal to σ2
nr

=

σ2
n1

= σ2
n2

= 0.1. All simulation results were averaged over 1000 independent

realizations of the fading channels.
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Figure 2: Sum of MSE versus the number of iterations for different values of Pr,t, where

σ
2
g1

= σ
2
g2

= σ
2
g = 0.01.

Fig. 2 depicts the convergence behavior of the proposed optimization algo-

rithm and its required number of iterations for different power constraint on

the transmitters. This figure confirms that algorithm converge after a few it-

erations. Fig. 3 displays the effect of channels uncertainty. Two error bounds

σ2
g = 0.01, 0.05 are considered. The ideal case with perfect CSI, i.e. σ2

g = 0, is

also considered. When σ2
g is increased, the uncertainty in channel coefficients

grows. Therefore, the MSE is increased with increasing channel uncertainty.

5. Conclusion

This paper studied the robust TH precoding for two relay network. It is

assumed that the CSI is imperfect. We aim to minimize the maximum of the

sum of MSE subject to transmit power of relay and transmitters is lower than

a predefined threshold. The spherical model is used to characterize uncertainty

of the channels. We show that the problem can be transformed to an iterative

SOCP procedure. Simulations are shown to verify the efficiency of the robust

algorithm.
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