Skip to main content
Log in

Musically Modified Substitution-Box for Clinical Signals Ciphering in Wireless Telecare Medical Communicating Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Telecare medical communication system (TMCS) is an essential component in today’s fast moving era. Patients are privileged to have wireless online medical facilities from their remote locations. Probability of noscomial infections is absolutely zero in such wireless TMCS. Data Security of heterogeneous patients during the wireless communication is a big challenge. Patients’ data privacy is highly confidential and need enhanced encryption measures. Intruding leads to the medical data adulterations in such telecare systems. This paper proposes a modified Advanced Encryption Standards (AES) based on the biometric generated key. Binary biometric key were generated from the patients’ fingerprints. S-box of AES has been enhanced by the musical involvement of metaheuristic harmony search algorithm. Clinical electrocardiogram (ECG) signals were carried out to enhance the security mechanism of the TMCS. Different tests were carried on the proposed technique, which in turn gets wise bench-mark outcomes. Statistical analyses were conducted to counterfeit the intruding. This proposed technique is suitable for wireless TCMS with higher degree of patients’ privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Sunitha, K. A., Dixit, S., & Singh, P. (2019). Design and development of a self-powered wearable device for a tele-medicine application. Wireless Personal Communications, 108, 175–186. https://doi.org/10.1007/s11277-019-06394-y.

    Article  Google Scholar 

  2. Wu, Z.-Y., Tseng, Y.-J., Chung, Y., Chen, Y.-C., & Lai, F. (2012). A reliable user authentication and key agreement scheme for web-based hospital-acquired infection surveillance information system. Journal of Medical Systems, 36, 2547–2555.

    Article  Google Scholar 

  3. Srividya, R., & Ramesh, B. (2019). Implementation of AES using biometric. International Journal of Electrical and Computer Engineering (IJECE), 9(5), 4266–4276.

    Article  Google Scholar 

  4. Bansal, R., Sehgal, P., & Bedi, P. (2011). Minutiae extraction from fingerprint images—A review. IJCSI International Journal of Computer Science Issues, 8(5), 3.

    Google Scholar 

  5. Physionet.org. (2016). PhysioBank ATM. Retrieved June 2019 from https://physionet.org/cgi-bin/atm/ATM

  6. Arunachalam, M., & Subramanian, K. (2015). AES based multimodal biometric authentication using cryptographic level fusion with fingerprint and finger knuckle print. The International Arab Journal of Information Technology, 12, 5.

    Google Scholar 

  7. Gonzalez, R. C., & Woods, R. E. (1992). Digital Image Processing (4th ed.). New York: Pearson.

    Google Scholar 

  8. Søgaard, P., Behrens, S., Konyi, A., Taborsky, M., Christiansen, P. D., Jacobsen, P. K., et al. (2019). Transmission and loss of ECG snapshots: Remote monitoring in implantable cardiac monitors. Journal of Electrocardiology, 56, 24–28. https://doi.org/10.1016/j.jelectrocard.2019.06.005.

    Article  Google Scholar 

  9. Madhusudhan, R., & Nayak, C. S. (2019). A robust authentication scheme for telecare medical information systems. Multimedia Tools and Applications, 78, 15255–15273. https://doi.org/10.1007/s11042-018-6884-6.

    Article  Google Scholar 

  10. He, D. B., Chen, J. H., & Zhang, R. (2011). A more secure authentication scheme for telecare medicine information systems. Journal of Medical Systems. https://doi.org/10.1007/s10916-011-9658-5.

  11. Wu, Z. Y., Lee, Y. C., Lai, F., Lee, H. C., & Chung, Y. (2010). A secure authentication scheme for telecare medicine information systems. Journal of Medical Systems. https://doi.org/10.1007/s10916-010-9614-9.

  12. Rayachoti, E., Tirumalasetty, S., & Prathipati, S. C. (2020). SLT based watermarking system for secure telemedicine. Cluster Computing. https://doi.org/10.1007/s10586-020-03078-2.

  13. Al-Haj, A., Mohammad, A., & Amer, A. (2017). Crypto-watermarking of transmitted medical images. Journal of Digital Imaging, 30, 26–38. https://doi.org/10.1007/s10278-016-9901-1.

    Article  Google Scholar 

  14. Manojkumar, T., Karthigaikumar, P., & Ramachandran, V. (2019). An optimized S-box circuit for high speed AES design with enhanced PPRM architecture to secure mammographic images. Journal of Medical Systems, 43, 31. https://doi.org/10.1007/s10916-018-1145-9.

    Article  Google Scholar 

  15. Krawczyk, S., & Jain, A. K. (2005). Securing electronic medical records using biometric authentication. In T. Kanade, A. Jain, & N. K. Ratha (Eds.), Audio- and Video-Based Biometric Person Authentication. AVBPA 2005 (Lecture Notes in Computer Science) (Vol. 3546). Berlin: Springer. https://doi.org/10.1007/11527923_115.

    Chapter  Google Scholar 

  16. Gritzalis, D., & Lambrinoudakis, C. (2004). A security architecture for interconnecting health information systems. International Journal of Medical Informatics, 73(3), 305–309.

    Article  Google Scholar 

  17. Dagadu, J. C., Li, J. P., & Aboagye, E. O. (2019). Medical image encryption based on hybrid chaotic DNA diffusion. Wireless Personal Communications, 108, 591–612. https://doi.org/10.1007/s11277-019-06420-z.

    Article  Google Scholar 

  18. Nayak, J., Subbanna Bhat, P., Acharya, U. R., & Sathish Kumar, M. (2009). Efficient storage and transmission of digital fundus images with patient information using reversible watermarking technique and error control codes. Journal of Medical Systems, 33, 163–171.

    Article  Google Scholar 

  19. Murillo-Escobar, M. A., Cardoza-Avendaño, L., López-Gutiérrez, R. M., & Cruz-Hernández, C. (2017). A double chaotic layer encryption algorithm for clinical signals in telemedicine. Journal of Medical Systems, 41(4), 59. https://doi.org/10.1007/s10916-017-0698-3.

    Article  Google Scholar 

  20. Sarkar, A., Dey, J., Chatterjee, M., Bhowmik, A., & Karforma, S. (2019). Neural soft computing based secured transmission of intraoral gingivitis image in e-health care. Indonesian Journal of Electrical Engineering and Computer Science, 14(1), 178–184.

    Article  Google Scholar 

  21. Nandakumar, K., & Jain, A. K. (2004). Local correlation-based fingerprint matching. In ICVGIP, pp. 503–508.

  22. Wang, X., Gao, X. Z., & Zenger, K. (2015). The overview of harmony search. In An Introduction to Harmony Search Optimization Method (Springer Briefs in Applied Sciences and Technology). Cham: Springer, Print ISBN: 978-3-319-08355-1.

    Chapter  Google Scholar 

  23. Assad, A., & Deep, K. (2018). A hybrid harmony search and simulated annealing algorithm for continuous optimization. Journal of Information Sciences—Informatics and Computer Science, Intelligent Systems, Applications, 450(C), 246–266.

    Google Scholar 

  24. Mathur, N., & Bansode, R. (2016). AES based text encryption using 12 rounds with dynamic key selection. Procedia Computer Science (Elsevier), 79, 1036–1043. https://doi.org/10.1016/j.procs.2016.03.131.

    Article  Google Scholar 

  25. Chen, H., & Chen, H. (2011). A novel algorithm of fingerprint encryption using minutiae-based transformation. Pattern Recognition Letters, 32(2), 305–309.

    Article  Google Scholar 

  26. Krishna Prasad, K., & Aithal, P. S. (2018). A study on fingerprint hash code generation based on MD5 algorithm and freeman chain code. International Journal of Computational Research and Development, 3(1), 13–22.

    Google Scholar 

  27. Lee, S., Lee, G. G., Jang, E. S., & Kim, W. Y. (2006). Fast affine transform for real-time machine vision applications. In D. S. Huang, K. Li, & G. W. Irwin (Eds.), Intelligent Computing. ICIC 2006 (Lecture Notes in Computer Science) (Vol. 4113). Berlin: Springer. https://doi.org/10.1007/11816157_147.

    Chapter  Google Scholar 

  28. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76, 60–68.

    Article  Google Scholar 

  29. Murillo-Escobar, M. A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R. M., & Del Campo, O. R. A. (2015). A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Processing, 109, 119–131.

    Article  Google Scholar 

  30. Karthigaikumar, P., Anitha Christy, N., & Siva Mangai, N. M. (2015). PSP CO2: An efficient hardware architecture for AES algorithm for high throughput. Wireless Personal Communications, 85, 305–323.

    Article  Google Scholar 

  31. Bhowmik, A., Karforma, S., Dey, J., & Sarkar, A. (2020). A way of safeguard using concept of recurrence relation and fuzzy logic against security breach in wireless communication. International Journal of Computer Science Engineering, 9(4), 297–311.

    Article  Google Scholar 

  32. Wei, J., Hu, X., & Liu, W. (2012). An improved authentication scheme for telecare medicine information systems. Journal of Medical Systems, 36, 3597–3604. https://doi.org/10.1007/s10916-012-9835-1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the inspirations received from Dr. Sukriti Ghosal, Principal, Maharajadhiraj Uday Chand Women’s College, Burdwan, West Bengal, India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Dey, J. & Karforma, S. Musically Modified Substitution-Box for Clinical Signals Ciphering in Wireless Telecare Medical Communicating Systems. Wireless Pers Commun 117, 727–745 (2021). https://doi.org/10.1007/s11277-020-07894-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07894-y

Keywords

Navigation