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Abstract 

Visible light communication (VLC) is a promising technology that can jointly be used to accomplish the 

typical lighting functionalities of the light-emitting diodes (LEDs) and data transmission, where light 

intensity can be modulated on a high rate that cannot be noticed by the human eye. In this paper, a VLC 

simulation framework to study the effect of LEDs’ distributions on different room dimensions is proposed 

by considering the performance metrics such as light intensity quality in accordance with the International 

Organization for Standardization (ISO) recommendation, and data transmission efficiency measured in terms 

of bit error rate (BER). To achieve the abovementioned performance metrics, a VLC communication system 

is designed that modulates the data, transmits it over the room utilizing the communication channel that is 

modeled using an accurate ray-tracing algorithm, and receives it by exploiting different receivers that are 

uniformly distributed in the room. Our work is different from the other published works which either studied 

the data transmission efficiency or lighting quality but not both. Consequently, this study can be used as a 

methodological foundation to design an efficient VLC that satisfies the ISO lighting requirement, 

application-specific BER and quality. Furthermore, a video transmission use case has been demonstrated 

which shows how the video quality can be significantly improved when increasing the number of 

transmitters, thus justifying the need for increasing the number of transmitters in scenarios that involves 

video transmission in an indoor VLC environment. 

 

KEYWORDS: Visible light communication; light engineering; BER 

1. INTRODUCTION 

 

Nowadays, wireless networks have seen an unprecedented demand for increased data rate requirements. 

To facilitate realistic coverage with the data rate requirements, a considerable bandwidth is needed which 

remains a limiting factor due to the scantiness of radio frequency spectrum which bears the entire load of 

commercial and noncommercial wireless transmission applications. Most wireless communication systems 

are based on RF communication technologies. These applications are numerous, that range from maritime 

radio navigation to satellite communications. The advancement in data streaming and multimedia quality 

has an adverse effect on the available radio spectrum, which is soon set to hit a roadblock. Consequently, of 

late, researchers across academia and industries have started exploring alternate wireless transmission 

technologies to meet the ever-increasing demand. The ultraviolet spectrum is too dangerous for humans to 

be used for commercial purposes. The infrared spectrum also proves to be futile for commercial wireless 
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transmission due to the power limitations induced to ensure safety to the human eyes. In this context, the 

huge bandwidth available in the unlicensed electromagnetic spectrum in the optical domain is seen as a 

promising solution to the spectrum crunch. In view of this, research on wireless optical communications has 

seen an upsurge interest in the past decade [1]. Visible light communication (VLC) makes use of the higher 

frequencies in the visual band and extends the capabilities of data transmission using general light sources. 

It transmits data by high-speed switching or flickering at a rate that is not perceivable to the naked eye. VLC 

has been regarded as an appealing communication technology to fulfill the high data rate demands and as a 

new affiliate in the beyond fifth-generation (5G) heterogeneous networks (HetNets). As 5G networks are 

being deployed, VLC can aid in the design of systems that can serve as a hybrid in utilizing both the radio 

and visible spectrum to facilitate the high-speed data transmission without putting much strain on the radio 

spectrum. 

Additionally, significant research had been devoted to the optical spectrum specifically in the infrared 

region [2, 3]. Furthermore, advancements in illumination technology coupled with research efforts on high 

data rate have made VLC indoor optical wireless communications a reality [4]. The use of light-emitting 

diodes (LEDs)-based transmitter and photo detector-aided receivers that are of low cost and highly energy-

efficient when used in VLC offers significant advantages in both lighting and wireless communications. An 

LED lighting equipment is easy to install and safe to the human eye. LEDs are available in different shapes 

to aid specific illumination and communication aspects, offer good modulation performance, longer life 

span, and excellent brightness. Moreover, the low-energy consumption and high-speed data communication 

that can be achieved by using LEDs along with the exploitation of huge bandwidth available in the unlicensed 

spectrum results in a new paradigm for data transmission. Besides, energy-efficient illumination and lighting 

functionality can also be attained. 

Apart from the usage of the visible light spectrum by the VLC system, it offers several other advantages. 

To be specific, it offers secured communication as the light cannot penetrate through walls and other opaque 

objects. This provides protection against eavesdroppers and illegal tapping of data. To receive the data, the 

user or the receiver has to be in the field of view of LEDs, which will be noticed by the users in the room. 

The VLC system is also less hazardous to human health. In comparison to the infrared and ultraviolet 

communication, a VLC system can be implemented more comfortably and, consequently, a higher 

transmission power can be used to improve the communication link quality. In addition, VLC in the visible 

light spectrum is different from the RF spectrum and does not interfere with the existing RF communication 

devices [1]. This allows the VLC system to easily satisfy the electromagnetic compatibility requirements, 

and hence, VLC systems can be used in the applications, which are prone to electromagnetic interference 

such as hospitals, airplanes, and chemical plants. VLC can also be used in many application scenarios such 

as underwater communications where short radio waves cannot penetrate through long distances in water 

and as indoor positioning systems for departmental stores.  Also, the huge indoor setups that require 

directions for efficient movement may use LED arrays placed few meters apart through the indoor setup. It 

also finds an interesting application in the automotive industry in the form of vehicular VLC, which enables 

the communication between cars, traffic signals, and road signs. Cooperative RF-VLC communications finds 

application in a typical cellular network, device-to-device communications, and many other applications and 

scenarios as explained in [5-7]. 

The rest of the paper is organized as follows: Section 2 presents the most related work in the literature. 

Section 3 describes the indoor VLC system model. Section 4 presents the LED spatial distribution simulation 

setup. Section 5 presents the simulation results and performance evaluation. Finally, section 6 concludes the 

paper and presents future work. 

 

 



2. LITERATURE REVIEW 

 

In [8], Cheng et al. presented a ray-tracing algorithm based on wavelength for modeling multisource 

indoor channel impulse response for VLC, and demonstrated that blue LED exhibits a larger bandwidth in a 

plastic wall room. In particular, this research contribution has analyzed the root-mean-square (RMS) delay 

spread and average delay for three wavelengths. This work has illustrated that blue LED has larger bandwidth 

than other wavelengths. By contrast, in [9], authors have employed white LEDs for not only illuminating the 

rooms but also realizing VLC for indoor communications. Furthermore, with the help of numerical analysis, 

the influence of reflection and interference has been studied. A multi-user multi-input single-output (MU-

MISO) VLC broadcast is delved into with zero forcing (ZF) and ZF-dirty paper precoding techniques and 

biasing model for an indoor scenario [10]. The authors here have addressed the optimization problems in 

order to maximize the throughput subjected to the optical transmit power constraint. In the research article 

[11], authors have addressed a few basic techniques and key issues related to VLC realization. In [12], a 

MATLAB®-based simulation study has been reported which studies the distributions of illuminance and 

RMS delay-spread indoor VLC landscape. The simulation program considers the transmitters’ positions and 
reflections at each of the walls for an indoor VLC system. The authors in [13] have realized a digital 

transmission with the aid of RS-485 protocol. More specifically, the authors have exploited off-the-shelf 

white LED and demonstrated an indoor wireless VLC system that provides a coverage of 2.5 m and 7–10% 

bit error rate (BER). Zeyu et al. [14] have presented a new indoor VLC prototype that uses diffuse links to 

achieve acceptable data rates. This VLC system also supports mobility under line of sight (LOS) while at 

the same time, aiding illumination and transmission in excess of several meters. Additionally, it has been 

demonstrated that this VLC system is capable of delivering data rate that is in excess of 1 Mbps. 

 In [15], the impact of different modulation schemes including multiple pulse position modulation is 

discussed. It also explores the performance of the different modulation schemes for VLC by comparing the 

BER, signal-to-noise ratio (SNR) and data rate. The main aim is to perform the flickering improvement and 

dimming sustainability to offer optimal data rates for communication. The contribution in [16] reports a new 

constellation design called space-collaborative constellation for an indoor multi-input multi-output (MIMO) 

VLC. This new design has been shown to provide better BER under adverse operating condition than the 

conventional approaches that employ repetition code, spatial modulation and spatial multiplexing. In the 

research paper [17], the scope of the VLC to serve as a complementary technology to the current radio 

frequency standards is discussed. The paper includes a comprehensive survey of VLC, as well as the main 

concepts and challenges related to this emerging area. In [18] and [19], we have studied experimentally an 

indoor VLC system. In particular, in these contributions we have implemented, tested, and evaluated an 

indoor VLC. In [20], the performance of an indoor VLC system with randomly deployed LEDs is compared 

with fixed geometries such as circular and square. The SNR profile inside the room that changes with respect 

to LED placement as well as receiver’s position is compared between different arrangements. Further, in 

[21], we have evaluated the potential utilization of VLC for car-to-car communication, and studied the effect 

of shadowing on VLC performance in [22]. Recently, we investigated the effect of shifting the LEDs 

transmitter and receivers positions on the communication performance in [23].  

This work extends our previous works that aimed at designing and implementing a realistic yet efficient 

VLC transmission system. To be specific, against the background available in the open literature and our 

earlier work reported in [23], the main contributions of this paper are summarized as follows: 

 

 We present an expanded simulation analysis where the effect of the number of transmitters and 

receivers’ LEDs as well as their positions for different room sizes have been simulated and studied. 
 Furthermore, a realistic non-LOS channel model has been utilized in the simulation which gives a more 



realistic results more than ever when compared with most of the presented works in the literature that 

utilize a LOS channel model. 

 In addition, the illumination analysis for the LEDs’ positions has been presented, thus giving a 

comprehensive study for both data transmission efficiency and light illumination quality. 

 A video transmission use case over VLC utilizing different number of transmitters has been 

demonstrated. The simulation results showed that when video is transmitted over VLC, it is paramount 

to increase the number of transmitters to keep high-quality video transmission, thus justifying the high 

number of transmitters. 

 

3. INDOOR VLC SYSTEM 

A typical VLC system is depicted in Fig. 1. In what follows, a brief description of each block is 

provided. 

 

 

Fig. 1 A block diagram of a VLC system. 

 

3.1 Bit Stream Modulation 

As depicted in Fig. 1, the data bit stream is input to a modulator where an ON–OFF KEYING (OOK) 

modulation is utilized. There are a number of modulation schemes, which can be used for VLC. A bit one is 

simply represented by an optical pulse that occupies the entire or part of the bit duration, while a bit zero is 

represented by the absence of an optical pulse. Both the return-to-zero (RZ) and non-return-to-zero (NRZ) 

schemes can be applied. In the paper, the OOK NRZ is used although it yields relatively low data rate 

compared to other modulation schemes, but the BER performance is the best for OOK modulation compared 

to other modulation schemes [24], which makes it a good candidate for applications that require high 

reliability than high data rates. 

 

3.2 VLC Transmitter 

In VLC, LEDs play the role of transmitters along with its usual role as a lighting device. The LEDs are 

currently the best transmitters due to its long lifetime, cost effectiveness and energy efficiency. LEDs are 

normally modeled as Lambertian source where the luminance is distributed uniformly in all directions, 



whereas the luminous intensity is different in all directions. The luminous intensity for a Lambertian source 

is given by Equation (1) [16]. 

 𝐼(𝜑 ) = 𝐼(0) cos( 𝜑)𝑛…………….. (1) 

 

where φ is the angle of irradiance, 𝐼(0) is the center luminance intensity that  corresponds to the case, 

where 𝜑 = 0, and 𝑛 is the Lambert index calculated using Equation (2) [16]. 

 𝑛 = − ln 2ln cos𝜑1/2……………….. (2) 

Furthermore, Figure 2 depicts the main parameters used in characterizing an LED source and a photodiode 

receiver such as the field-of-view (FOV), and 𝜑1/2 is the transmitter’s semi-angle at half-power. 

 
Fig. 2 The main parameters used in characterizing an LED source and a photo-diode receiver [16]. 

3.3 NLOS Channel Model 

Two channels types are commonly used to model a VLC system. The first one is the LOS model (LOS), 

while the other is the non-LOS model (NLOS) or sometime called as the diffused link channel model [24]. 

In case of the LOS channel, the transmitter and receiver communicate through direct LOS transmission using 

narrow beams, where no wall or surrounding reflections are considered. This type of channel can be used 

for high transmission rates. However, this type of transmission faces shadowing effect and blocking, and 

may not resemble realistic scenarios where light beams undergo different paths and reflections before 

reaching the receiver. NLOS channel on the other side, takes into consideration the possible reflections of 

the light beams from the walls and surrounding environments and hence it is considered more realistic and 

practical. Clearly, this type of channel experiences multipath effect due to multiple reflections, but it does 

not experience the shadowing effect like the LOS channel. In this paper, we will be considering the NLOS 

channel for the simulation analysis and implement it using the modified Monte Carlo ray-tracing algorithm 

(MMC) proposed in [21]. 

 

3.4 Channel Impulse Response Estimation 

To generate a VLC indoor channel impulse response, the MMC algorithm is used. Several rays are 

generated from the emitter position with a distribution probability that equals to the emission profile or the 

angular optical intensity function. The rays strike the obstacles in the path and the point where it strikes the 

obstacle is taken as an optical source from where a new ray is generated because LEDs are considered 

Lambertian sources. The process continues until the time of flight. After every reflection, the power of the 



ray is decreased by the reflection coefficient of the obstacle. When a ray strikes a point, a new ray is generated 

and the reflected power contribution towards the receiver is calculated. In this paper, three reflections are 

considered as they contribute to most of the reflected power and rest of the reflected power contribution is 

ignored, as higher order reflections are negligible. The process continues for the number of rays generated 

from the source. Figure 3 shows a sample NLOS impulse response in time and frequency domains for an 

indoor room with a single transmitter and receiver located at [3.5, 3.5, 3], [0.5, 1, 3] m, respectively, in a 

room of dimension [7, 7, 3] m. 

 

3.5 VLC Receiver 

The light pulse is transmitted through a multi-path diffuse channel and received at the photo-detector. 

The received signal is passed through a matched filter. The detected signal at the input of the matched filter 

is given by Equation (3). 𝑖(𝑡) = 𝐼𝑝 ∗ ℎ(𝑡)  +  𝑛(𝑡) ……….. (3) 

where h(t) is the NLSO channel impulse response which is estimated by the MMC algorithm, n(t) is the 

additive white Gaussian noise due to shot noise, ambient light and thermal noise. Ip is the peak photocurrent 

[25]. The received bits are then demodulated and the performance in terms of BER is evaluated for different 

LEDs transmitters, numbers, positions, and rooms’ dimensions as will be explained in the next section. 

 
(a) 

 
 

(b) 

Fig. 3 A NLOS impulse response in (a) time and (b) frequency domains for an indoor room of a single 

transmitter and receiver located at [3.5, 3.5, 3], [0.5, 1, 3] m, respectively, in a room dimension  

of [7,7,3] m. 



 

4. LED SPATIAL DISTRIBUTION AND ILLUMINATION EVALUATION 

In order to realize the performance of VLC for different LED spatial distributions, different scenarios 

have been considered where the number of transmitters, their positions, the room dimensions has been 

varied. Furthermore, the number of rays used in modeling and simulating the LED, which is noticed to be 

affecting the performance of the system has been studied as well. A grid arrangement of LEDs has been used 

which is achieved by dividing the room into equal grids both horizontally and vertically depending on the 

number of LED transmitters, where one transmitter is allocated to each grid. Different room dimensions 

have been investigated as will be depicted in the simulation section. In order to simulate the grid 

arrangement, two mesh-grid functions in MATLAB® tool have been used to simulate the transmitter and the 

receiver planes. On the transmitter mesh-grid, the positions of the ceiling lamp arrays are set. On the other 

hand, the positions of the receivers are not fixed. Since the received light across the entire space is being 

measured, the receiver mesh-grid is assumed a continuous plane of photodiodes, with each point on the grid 

representing the received power of a photodiode at that location. However, due to the limitations of the 

simulation, the “continuous” plane of photodiodes is a set of discrete points on the mesh-grid. The resolution 

of the receiver mesh-grid could be increased at the cost of longer simulation runtime. To measure the effect 

of every array at each point on the receiver plane, the distance between each transmitter and every point on 

the receiver plane needs to be calculated as seen in Fig. 4. The distance is measured by using Equation (4). 

 

 
Fig. 4 Assuming a fixed transmitter at xt, yt, the distance between that transmitter and any point on the 

receiver xr, yr mesh-grid can be calculated using Pythagoras’ theorem. 
 𝑑𝑡−𝑟 = √(𝑥𝑟 − 𝑥𝑡)2 + (𝑦𝑟 − 𝑦𝑡)2 + ℎ2……… (4) 

 

where 𝑑𝑡−𝑟 is the distance between the transmitter and receiver. Following the calculation of the distance, 

the measurement of the angle between the normal to the receiver mesh-grid and the LOS path needs to be 

calculated. This is calculated using the simple trigonometry as depicted in Equation (5). 

 Ɵ = 𝑐𝑜𝑠−1( ℎ𝑑𝑡−𝑟) …………………………… (5) 

 

To calculate the channel gain (G), we use Equation (6). 

 



𝐺 = (𝑛+1) × 𝐷𝐴 × 𝑐𝑜𝑠(𝜑)(𝑛+1)2𝜋 × 𝑑𝑡−𝑟2 ………………  .(6) 

 

DA is the photo-detector area. The calculation of the received power (Pr) must take into account the 

remaining parameters set in the beginning of the simulation for the additional optional components. The 

power transmitted (Pt), the optical concentrator gain (C), the optical filter gain (F) as well as the calculated 

channel gain are all considered in Equation (7). 

 𝑃𝑟 = 𝑃𝑡 × 𝐺 × 𝐶 × 𝐹………………………. (7) 

The received power has a direct effect on the performance of VLC. For instance, if we use a non-return-to-

zero on–off keying (NRZ-OOK) modulation scheme, then the probability of the error is given by Equation 

(8) [10]: 

 𝑝(𝑒) = 𝑄(√SNR)…………………………. (8) 

 

Where   𝑆𝑁𝑅 = 𝑃𝑟𝑃𝑛 , where 𝑃𝑛 is the noise power at the receiver. Finally, the photodiodes placed far enough 

from the light source to have a receiver angle higher than that of the initially set FOV value are assumed to 

receive no light. Therefore, a “find” function in MATLAB® is called to find all the photodiodes with 

receivers’ angles, which exceed the FOV angle to set their respective received power to zero. Using the 
matrix properties in MATLAB®, all the previously mentioned calculations can be performed for every point 

on the receiver mesh-grid. The resulting matrix would contain the power distribution because of single array 

of LEDs at a single point, i.e., one ceiling lamp. In order to evaluate the effectiveness of the grid arrangement 

on the illuminance intensity, the illuminance due to the positioning of LEDs is evaluated using the horizontal 

illumination 𝐸ℎ given by Equation (9) [23]. 

 𝐸ℎ = 𝐼(0)cos𝑛𝜑 /𝑑𝑡−𝑟2. cosƟ ………………………… (9) 
 

where 𝐼(0) is the center luminance intensity. 

 

5. SIMULATION ANALYSIS 

Several experiments have been conducted to analyze the effect of changing the number of LEDs 

transmitters and their locations for various room dimensions. The main target of the simulation analysis is 

to study both the LEDs’ illumination efficiency and performance of the VLC systems. MATLAB® is used 

to generate the simulation results. The simulation code is a modified version of the code presented in [12]. 

The main simulation parameters used in this work is depicted in Table 1. 

 

5.1 LEDs’ Illumination Performance Evaluation 

An essential functionality of the VLC system is to provide efficient lighting. Hence, the LEDs’ 
illumination efficiency for different scenarios has been investigated. According to the International 

Organization for Standardization (ISO), the illuminance has to be between 300 lx and 1,500 lx for office work 

[27]. 

 

 

 



Table 1 VLC main simulation parameters 

 

Parameter Value/equation 𝜑1/2 70° 

PLED Transmitted optical power by individual LED 

equals to 20 dBm 

NLED: Number of 

LEDs.  

Note: Number of LED 

array = 

NLED × NLED 

 

60 

 

Pt: total transmitted 

power 

NLED × NLED × PLED 

 

DA 10–4 m 

Ts: gain of an optical 

filter 

1 

Index: refractive index of 

a lens at a PD 

1.5 

FOV 70° 

lx:ly:lz; 

room dimensions in 

meter 

5:5:3 m 

h: the distance between 

the source and receiver 

plane 

2.15 m 

θ 30° 

n 1 

Central luminance 

intensity (Io) 

0.73 lx 

Total luminance intensity 60 × 60 ×Io 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 LEDs grid arrangement 

 

No. of LEDs transmitters arrays LEDs array arrangement 

1 Transmitter 

coordinates: (3.5, 3.5) 

 

 
 

2 Transmitters 

coordinates: 

(1.75, 3.5), (5.25, 3.5) 

 

 
 

3 Transmitters 

coordinates: 

(1.75, 3.5), (3.5, 3.5),(5.25, 3.5) 

 

 
 

4 Transmitters 

coordinates: 

(1.75, 1.75), (5.25, 1.75), (1.75, 5.25), (5.25,5.25) 

 

 
 

5 Transmitters 

coordinates: 

(1.75, 1.75), (5.25, 1.75), 

(3.5, 3.5), (1.75, 5.25), 

(5.25, 5.25) 

 

 
 



6 Transmitters 

coordinates: 

(1.75, 1.75), (3.5, 1.75), 

(5.25, 1.75), (1.75, 5.25), (3.5, 5.25), (5.25, 5.25) 

 

 
 

7 Transmitters 

coordinates: 

(1.75, 1.75),(3.5, 1.75), 

(5.25, 1.75),(3.5, 3.5), 

(1.75, 5.25), (3.5, 5.25),(5.25, 5.25) 

 

 
 

8 Transmitters 

coordinates: 

(1.4, 1.75), (2.8, 1.75), 

(4.2, 1.75), (5.6, 1.75), 

(1.4, 5.25), (2.8, 5.25), 

(4.2, 5.25), (5.6, 5.25) 

 

 
 

 

 

 

 

 
 

Fig. 5 An array of LEDs are commonly used to enhance the illumination efficiency. 

 

Table 2 shows the coordinates and allocations of eight different LED transmitters for a 7×7×3 m room 

dimension. One can notice that whenever the number of LEDs is odd, a preference in terms of increasing 

the number of LEDs is given to the room center, where probably people are mostly residing most of the time. 

Further, it worth mentioning that an array of LEDs as shown in Fig. 5 is typically used to satisfy the 

illumination requirement, which is used in our simulation. Thus, each dot in the LEDs arrangement of Table 

2 consists of an array of LEDs. 

Table 3 depicts the illumination results for a room of dimension 7×7×3 m with different number of 

transmitters. From the results, it can be seen that even for a room of such large size, close to 100% 

illumination efficiency is attained which indeed satisfies the ISO standards for number of transmitters that 



equals to 6 or more. Furthermore, this result advocates the effectiveness of our proposed LEDs grid 

arrangement that is utilized in the room ceiling. Additionally, Table 4 verifies the above results by showing 

a grey colored figures, where areas that satisfy the ISO illumination standard are colored in light gray, while 

the ones that do not satisfy it are colored in dark gray. Yet again, it is clear that when the number of LEDs 

is increased to 6, illumination efficiency is satisfied in accordance with the ISO illumination standard. For 

further illustration, the table shows the contour and mesh diagrams for various light distributions. It is 

noteworthy that we have carried out the simulation experiments for different room sizes. From the results, 

we infer that for each room size, we require a minimum number of LEDs to satisfy the ISO illumination 

requirements, so that both the light illumination and data transmission efficiency can be jointly studied. This 

will aid us to decide on the minimum number of LEDs that will yield satisfactory light illumination thereby 

resulting in improved data transmission efficiency. Consequently, in the next section, the performance 

evaluation in terms of light illumination and data transmission efficiency is investigated for different light 

sources positions. 

 

Table 3 Illumination results of different number of LEDs utilizing a grid arrangement for a room 

dimension of 7×7×3 m 

 

Number of LED 

array transmitters 

Average luminance 

of the room (lx) 

Percentage of room average illumination 

satisfying ISO standards (%) 

 

1 149.99 4.46 

2 272.34 38.94 

3 422.33 71.95 

4 495.01 97.61 

5 645.01 99.92 

6 767.35 100 

7 917.35 100 

8 
1009.5 

100 

 

 

5.2 LEDs’ Data Transmission Performance Evaluation 

After studying the effect of changing the number of LEDs and their locations in a room light for illumination 

efficiency, it is important to study the performance of the data transmission ability, thus assuring that the 

LEDs can have acceptable performance for both light illumination and data transmission. In particular, 

several design parameters such the number of transmitters, receivers, and the room dimensions affect the 

data transmission performance. Hence, one of these parameters is kept fixed while the others are varied in 

our simulation, as will be discussed in the following scenarios. Table 5 shows the additional parameters used 

to simulate the VLC system. 

 

 

 

 



 

 

Table 4 The effect of changing the number of transmitters on the room light illumination intensity 

Transmitters 

arrangement 

Room light illumination 

showing areas satisfying and 

not-satisfying ISO standards, 

colored light and dark gray, 

respectively.  

 

Room Illuminance (lx), 

contour diagram 

Room illuminance (lx), 

mesh diagram 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

Table 5 Additional simulation parameters 

Transmitter mode number 1 

 

Emitting power 1 

Receiver area 0.0001m2 

FOV 85° 

Reflections considered 3 

Reflection coefficient 0.8 

Number of rays used in the simulation 1,000 

 

 

 

 

5.2.1 The effect of number of LED transmitters 

The first scenario investigates the effect of LED transmitters distributed in a grid setup as described 

before for different room sizes. The room is designed with multiple receivers that are deployed in grid 

formation with distance of 0.5 m between them. Figure 6 (a–d) shows the performance of the VLC 

communication system measured in terms of the attainable BER for different room sizes. As expected, it can 



be noticeable that the system performance is improved as the number of transmitter increases, especially 

when the SNR is low. However, at higher SNR, increasing the number of LEDs has small impact on 

improving the performance. One potential application scenario in this context can be transmitting the 

multimedia contents for the users who can tolerate small distortion in the multimedia content. As such for 

the case, increasing the number of LEDs is not going to result in a visible impact on the media content. 

Hence, the number of LEDs can be set to meet the ISO lightening standard (6 for the case of 7×7×3 m room 

dimensions). 

 

5.2.2 The effect of the room dimension 

In order to have a closer look at the effect of changing the room dimension, here, for each experiment, 

the simulation setup that was used in the earlier setting is adopted. However, in this experiment the number 

of transmitters and receivers is fixed while the room dimension keeps changing. Besides, note that we have 

employed the same receiver configurations used in the previous scenario. The system performance is 

measured for different SNR values. As depicted in Figs. 7(a–d) and Figs. 8 (e–h), regardless of the number 

of transmitters, the smaller room dimension has always resulted in better performance than the larger 

dimensions. This is due to the fact that the light path loss will be lower and the energy level will be higher 

in case of smaller room dimensions. Further, the effect of multi-path will be insignificant in the case of 

smaller room dimensions, which will not be the case in larger room dimension. Furthermore, when the SNR 

is low (<4 dB) and the number of transmitters is ≤5, the system performance for all room dimensions is 
almost the same. However, increasing the number of transmitters more than 5 have a noticeable impact 

especially at low SNR values (from 4 to 6 dB). At higher SNR values (i.e., >8), the performance enhancement 

resulted from increasing the number of transmitters (> 3) is more significant. This is apparent particularly 

for small room dimensions (4×4×3 m and 5×5×3 m) than the cases of having larger room dimension (6×6×3 

m and 7×7×3 m) and higher number of transmitters (i.e., >3).  

 
(a) 

 
(b) 



 
(c) 

 
(d) 

 

Fig. 6 The VLC system performance for different number of transmitters and receivers and 

different room dimensions: (a) 4×4×3 m, (b) 5×5×3m, (c) 6×6×3 m, and (d) 7×7×3m. 
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Fig. 7 The VLC system performance while varying the room dimensions and changing the number 

of transmitters: (a) 1 (b) 2 (c) 3 (d) 4 transmitters. 
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Fig. 8 The VLC system performance while varying the room dimensions and changing the number of 

transmitters: (a) 5 (b) 6 (c) 7 (d) 8 transmitters. 

 

5.3 Video transmission over VLC use case 

Multimedia transmission is one potential application for using VLC where it can be used to transmit 

video and images containing promotions, ads, and coupons, to potential customers while shopping and 

utilizing the shop lights. For example, a customer can position his/her smartphone under a product display 

that is running a special program capable of receiving and decoding the light signal and interpret it to a 

coupon that can be used to get a discount on the displayed product. In this section, for the video transmission 

we have selected a normal video in AVI format for transmission purpose. It has 300 frames in the ratio 4:3. 

The video obtained is then read as binary in our code. It is then transmitted through the designed channel. 

The received video after passing through the channel is obtained as binary and then written into AVI format 

video. Now, for every trial and case, we have a source video and the received video. 

Next, we need to compare the received videos to check its quality. Therefore, the source video and the 

received video are to be compared. There are two techniques for comparing the quality of the video: peak 

signal-to-noise ratio (PSNR) and structural similarity (SSIM) techniques. We have used the SSIM technique 

for the quality evaluation, as it is more apt for the video file. SSIM is known as structural similarity index, a 

metric known for evaluation of image and video quality. SSIM is used for the measurement of similarity 

between two images. In SSIM, a distorted image is compared with the original uncompressed image as the 

reference. SSIM is an improved technique to the traditional PSNR technique. 

In our code, the source video before transmission through the channel and the received video after 

passing through the channel are compared using the SSIM technique. In this code, both the videos are 

separated into various frames. Each corresponding frame is compared with each other and their SSIM value 



is calculated. Finally, the average of the entire SSIM value is taken to get the SSIM index for the videos 

compared. This process takes place for all the videos received. The SSIM index values vary from 0 to 1. 

Higher the value less is the distortion in the received video and better is the quality. Lower the value, it 

means that there is more distortion in the received video and hence, the quality is low. The value 1 represents 

the least distorted and 0 being the most distorted. Therefore, by the process of video transmission through 

the channel, we can check the efficiency of our channel and the effects related to different number of 

transmitters, different room dimensions, and different number of samples per second. 

In order to understand how different video parameters affect the video quality, an objective video quality 

evaluation metric is used. The SSIM) [27] index is a method for measuring the similarity between two 

images. SSIM is designed to improve on traditional methods like (PSNR) and mean-squared error (MSE) 

[28]. The SSIM metric is calculated on various windows of an image. The measure between two windows x 

and y of common size N×N is described by Equation (10). 

 SSIM(𝑥, 𝑦) =  (2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)(𝜇𝑥2+𝜇𝑦2+𝑐1)(𝜎𝑥2+𝜎𝑦2+𝑐2) (10), 

where: 

 𝜇𝑥2: the average pixel values of a reference image (x ) 

 𝜇𝑦2: the average pixel values of a reference image (y ) 

 𝜎𝑥2: the variance of x 

 𝜎𝑦2: the variance of y 

 𝜎𝑥𝑦: the covariance of x and y 

 𝑐1 = (𝑘1𝐿)2,𝑐2 = (𝑘2𝐿)2, 𝐿 = 2# bitsperpixel-1 and 𝑘1 = 0.01,𝑘2 = 0.03 

The video quality is estimated by calculating the average of the SSIM values of the video images. 

 
 

Fig. 9 SSIM values for video transmission over VLC channel for different SNR values and number of 

transmitters  

 



  As seen from Fig. 9, the SNR (dB) and SSIM values are plotted by varying the number of transmitters. 

It is seen that, even though all the curves reach the SSIM value of 1 at one point, it takes higher SNR values 

for lesser number of transmitters to reach high quality. Hence, it is clear that for higher number of 

transmitters, better video quality can be achieved at small SNR values. In addition, it is obvious that more 

the number of transmitters better is the received video quality, which shows the efficiency of the proposed 

VLC system for multimedia transmission. 

 

6. CONCLUSION AND FUTURE WORK 

 
 In this paper, a simulation framework to study the LEDs lighting functionality and data transmission 
efficiency measured in terms of light intensity based on ISO standard and BER, respectively, for a VLC 
system, has been proposed. The outcome of our study can be used as a guideline to design a VLC system 
such that a suitable number of LEDs can be used to satisfy the lighting and data rates requirements for 
application under consideration. As a future course of work, we are working in evaluating the optimum 
number of transmitters and receivers configurations that will ensure the transmission quality for different 
multimedia signals for different room dimensions. 
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Figures

Figure 1

A block diagram of a VLC system.



Figure 2

The main parameters used in characterizing an LED source and a photo-diode receiver [16].



Figure 3

A NLOS impulse response in (a) time and (b) frequency domains for an indoor room of a single
transmitter and receiver located at [3.5, 3.5, 3], [0.5, 1, 3] m, respectively, in a room dimension of [7,7,3] m.



Figure 4

Assuming a �xed transmitter at xt, yt, the distance between that transmitter and any point on the receiver
xr, yr mesh-grid can be calculated using Pythagoras’ theorem.

Figure 5

An array of LEDs are commonly used to enhance the illumination e�ciency.



Figure 6

The VLC system performance for different number of transmitters and receivers and different room
dimensions: (a) 4×4×3 m, (b) 5×5×3m, (c) 6×6×3 m, and (d) 7×7×3m.



Figure 7

The VLC system performance while varying the room dimensions and changing the number of
transmitters: (a) 1 (b) 2 (c) 3 (d) 4 transmitters.



Figure 8

The VLC system performance while varying the room dimensions and changing the number of
transmitters: (a) 5 (b) 6 (c) 7 (d) 8 transmitters.



Figure 9

SSIM values for video transmission over VLC channel for different SNR values and number of
transmitters


